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Abstract

We study the influence of vertical high frequency and small amplitude vibrations on the
separation of a binary mixture saturating a shallow horizontal porous layer heated from
below. The monocellular flow obtained for a separation ratio >y, = >0, leadstoa
migration of the species towards the two vertical boundaries of the cell. The 2D direct
numerical simulations and the linear stability of the averaged governing equations
analysis show that the vertical vibrations delay the transition from monocellular flow to

multicellular flow. The vibrations also decrease the value of , , which allows species

separation for a wide variety of binary mixtures.
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1. Introduction

The problem under consideration concerns the interaction between two phenomena:

Soret-driven convection and thermo-vibrational convection in a porous medium.

In binary fluid mixtures subjected to temperature gradients, the thermodiffusion effect

induces a mass fraction gradient. In addition to the usual expression for the mass flux J

given by the Fick law, an additional part proportional to the temperature gradient is

considered so that:

J =-pDVC - pC(1-C)D,VT

(1)

where D is the mass diffusion coefficient, D, the thermodiffusion coefficient, p the




density, and C the mass fraction of the denser component.

Thermogravitational diffusion is the combination of two phenomena: convection and
thermodiffusion. The coupling of these two phenomena leads to species separation.

In 1938, Clusius and Dickel [1] successfully carried out the separation of gas mixtures
in a vertical cavity heated from the side (thermogravitational column : TGC). For this
configuration, during the following years, two fundamental theoretical and experimental
works on species separation in binary mixtures by thermogravitation were published.
Furry, Jones and Onsager [2], (FJO theory) developed the theory of thermodiffusion to
interpret the experimental processes of isotope separation. Subsequently, many works
appeared, aimed at justifying the assumptions or extending the results of the theory of
FJO to the case of binary liquids [3]. Other works were related to the improvement of
the experimental devices to increase separation. Lorenz and Emery [4] proposed the
introduction of a porous medium into the cavity. Platten et al. [5] inclined the cavity
keeping the hot plate on the top, to increase separation.

Elhajjar et al. [6] used a horizontal cavity heated from above with temperature gradients
imposed on the horizontal walls to improve the separation process with the use of two
control parameters.

Double-diffusive convection caused by temperature and concentration gradients in a
porous medium has been widely studied due to its numerous fundamental and industrial
applications. Some examples of interest are the migration of moisture in fibrous
insulation, the transport of contaminants in saturated soil, drying processes or solute
transfer in the mushy layer during the solidification of binary alloys. A review of the
recent works in this field is given by Nield and Bejan [7]. Soret-driven convective effects
cannot be neglected in many industrial processes. Sovran et al. [8] studied the onset of
Soret-driven convection in an infinite horizontal porous layer. For a cell heated from

below and for a positive separation ratio i > 0 they showed that the first primary
bifurcation is a stationary one. Using a regular perturbation method, in the case of long

wave disturbances (i.e. k=0), they found the set of critical parameters Ra, =12 /(Ley ),

k. =0fory>y, =1/(40/51)Le—1].

Many works have been devoted to thermo-vibrational convection in porous media.
Khallouf et al. [9] considered a square differentially heated cavity filled with a porous

medium saturated by a pure fluid and subjected to linear harmonic oscillations in the



vertical direction. In their study, the authors used a Darcy-Boussinesq model and a direct
formulation. In the case of a horizontal porous layer saturated by a pure fluid, heated from
below or from above, Zen’kovskaya and Rogovenko [10], Bardan and Mojtabi [11], used
the Darcy model including the non-stationary term and adopted the time averaged
equations formulation to study the influence of high frequency, small amplitude
vibrations on the onset of convection. They found that vertical vibrations stabilize the rest
solution. Charrier Mojtabi et al. [12] investigated the influence of vibrations on Soret
driven convection in a horizontal porous cell heated from below or from above. They
showed that the vertical vibrations had a stabilizing effect while the horizontal vibrations
had a destabilizing effect. Thermo-vibrational convection in a fluid medium has received
more attention than thermo-vibrational convection in a porous medium (Gershuni et al.
[13], Gershuni and Lyubimov [14], etc.). It is well known that high frequency
accelerations induced by crew activities in microgravity platforms (g-jitter), can produce
drastic disturbances during the experiments in space as, for instance, in solidification
processes during which mushy zones, modeled as porous media, are produced. The g-
jitter, which can be represented by a unidirectional harmonically oscillating small
amplitude acceleration field (Alexander, [15]), leads to a non-zero mean flow which may
have an important effect on the average heat transfer. High-frequency vibrations can also
significantly alter earth-bound experiments. In the case of weightlessness, only the
specific thermo-vibrational mechanism is responsible for instabilities. Under a gravity
field, both thermo-vibrational and thermo-gravitational mechanisms occur. All these
previous works show that it is important to study the control of convective motions by
vibration effects either (1) in a single constituent or a binary fluid, or (i1) in a porous
medium saturated by a single constituent or a binary fluid. Gershuni et al. [16], [17],
analyzed the stability of mechanical quasi-equilibrium or mechanical equilibrium of a
binary mixture horizontal layer subjected to a vertical temperature gradient, under a high-
frequency vibrational field, when Soret-effect is taken into account. Recently, Shevtsova
et al. [18] produced a benchmark of numerical solutions of the vibrational convection
problem with Soret effect in a cubic rigid cell filled with water (90 %) and isopropanol
and subjected to a temperature gradient between opposite lateral walls. In the present
paper, we use the same formulation as the one used by Charrier Mojtabi et al. [12] for a

shallow porous cavity saturated by a binary mixture and heated from below. We verify



that it is possible to carry out the species separation of a binary mixture in this
geometrical configuration, and that the vibrations can be used to delay the loss of stability
of the monocellular flow, which allows separation at a higher Rayleigh number. We
consider the case of high frequency, small amplitude vibrations, so that a formulation
using time averaged equations can be used. The results of the linear stability analysis of
the mechanical equilibrium and the monocellular flow in an infinite porous layer heated

from below, in the case of a separation ratio ¥ >y, >0, are corroborated by the direct

numerical simulations.

2. Mathematical formulation

We consider a rectangular cavity with aspect ratio 4 = L/ H , where H is the height of
the cavity along the vertical axis and L is the width along the horizontal axis. The
aspect ratio is assumed infinite in the stability analysis. The cavity is filled with a
porous medium saturated by a binary fluid for which the Soret effect is taken into
account. The impermeable horizontal walls are kept at different, uniform temperatures:
T, for z=0 and T, for z=H ,with T, >T,. The vertical walls (x =0,x= L) are
impermeable and adiabatic. All the boundaries are assumed rigid. The cavity is
subjected to linear harmonic oscillations in the vertical direction (amplitude b and
dimensional frequency @ ). For the governing equations, we adopt the Boussinesq
approximation and Darcy equation for which the non-stationary term is taken into
account.

We set all the properties of the binary fluid constant except the density p in the buoyancy

term, which depends linearly on the local temperature and mass fraction:
p=p.f1=B(T-T,)=p(C-C,)] 2

where p, is the fluid mixture density at temperature 7. and mass fraction C,.. S, and

B, are the thermal and concentration expansion coefficients respectively.

When we consider the referential related to the oscillating system, the gravitational field

g is replaced by: g+bh@’ sin(@ t')e, where e, is the unit vector along the vertical axis

(vibration axis) and ¢’ the dimensional time.
Thus the dimensionless governing conservation equations for mass, momentum, energy

and chemical species, where the Soret effect is taken into account are:



VV=0

Baa—‘;+ V =-VP+Ra(T +yC)(1-Rsin(wt))e,

3
a—T+V.VT:V2T )
ot
€ vve= i(vzc -V°T)

ot Le

where B =Da(pc), /[( pc )" € Pr] is the inverse of the Vadasz number (B = 1/Va ) and

R=b®’/g. Da=K/H" is the Darcy number and K the permeability of the porous
medium. The reference scales are H for the length, H° /(A1 /(pc)” ) for the time
(where 4" and ( pc )" are respectively the effective thermal conductivity and volumetric

heat capacity of the porous medium ), a / H for the velocity with a = X I(pc)s (a isthe

effective thermal diffusivity), AT =T, — T, for the temperature and

AC =—AT C,(1-C,)D"r / D" for the mass fraction where C,, D, , D" are the initial
mass fraction, the thermodiffusion and the mass diffusion coefficients of the denser
component respectively. The dimensionless temperature and mass fraction are
respectively defined by : T=(T" =T,)/ AT , C=(C" -C,)/ AC.

The dimensionless boundary conditions are:

aT dC
T=1forz=0;T=0 forz=1;—=—=0 for x=0,4;
J J ox ox U 4)
VCn=VTn for z=0,1;Vn=0VMe dQ
The problem under consideration depends on eight non-dimensional parameters: the

thermal Rayleigh number, Ra=K g S, H AT (pc), HAv), R=b@’/g,the
separation ratio W =—( 3, / 8. )(D, /D" )C.(1-C, ), the Lewis number Le=a /D",
the normalized porosity € =& (pc), /( pc)” (where € is the porosity), the dimensionless

frequency o, the aspect ratio 4 and the factor B.

In the momentum equation the term BAV /0t is usually neglected since B is of order

107% . However, in our problem, high frequency vibrations cause very large accelerations,

making it necessary to consider this non-stationary term [10].

3. The averaged equations



In the limiting case of high frequency and small amplitude vibrations, the averaging
method can be applied to study thermal vibrational convection [14]. According to this
method, each field (V, P, T, C) is subdivided into two parts: the first part varies slowly
with time (i.e. the characteristic time is large with respect to the period of the vibrations)
and the second one varies quickly with time (i.e. the characteristic time is of the order of

magnitude of the vibrational period):
V=V (@®)+u'(wt);P=P )+ p'(wt);T=T (1)+8'(wt); C=C (t)+c'(wt) (5

Here, V',P",T",C" are the averaged fields (i.e. the mean value of the field calculated

over the period 7 = 2z / w) of the velocity, pressure, temperature and mass fraction. The

decoupling between the frequencyal parts of the velocity and the pressure is obtained by

using a Helmhotz decomposition of (7~ +yC")e, .

(T"+wC)e,=W+VE  where W is the solenoidal part of (7” +wC")e, satisfying

VW=0.
Thus the averaged flow equations are:
V.V =0
aV* * * * * * W *
Ba—+V =—VP +Ra(T +¥C )ez+ RV[W.(VT +—VC )]e,
t £
ai+V*.VT* =V°T" (6)
ot
gai+v*.vc* =i(vzc* -VT)
ot Le

(T"+wyCe,=W+VE, VW=0

In addition to the boundary conditions (4) applied to the mean fields, we consider:

Wn=00n0dL2.

The modified vibrational Rayleigh number Rv =(Ra’R’ B)/(2(B’ @’ +1))

characterizes the intensity of the vibrations.

4. Linear stability of the equilibrium solution in an infinite horizontal porous layer



The stability of the equilibrium solution was studied by Charrier-Mojtabi et al. [12]. They
restricted their study to the case Le =2 for which the fluid considered is in the gaseous
state, and so the Dufour effect should be taken into account. We extended this study to the
case of a high Lewis number and we focused on the transition from the equilibrium
solution to the monocellular flow obtained for binary mixtures with positive separation
ratio: y >y, . >0.
This problem admits a mechanical equilibrium solution characterized by:

V,=0,T, =1-2z;,C,=cst—z,W=0 (7)
In order to analyze the stability of this conductive solution, we introduced the perturbation

of the vertical velocity component w, the perturbation of the vertical component of W,
w, , and the perturbations of temperature, 6, and concentration, ¢. We assumed that the
perturbations (w, w,, 6, c) were small.

We introduced a new function n=c—0, in order to more easily take into account the
boundary conditions on 6 and c at z=0, 1.

The linear stability equations were solved using the 4™ order Galerkin method.

For ¥ > 0 the first bifurcation is stationary. The factor B was setto 10 "and £ =0.5.
For Le =100 we determined the bifurcation diagrams, Ra, = f(y) and k, = f(y ),
where Ra_and k_are respectively the critical thermal Rayleigh number and the critical
wave number in the infinite horizontal direction. The results are illustrated in Fig. 1 and 2,
for the case Le =100, £ =0.5 and for Rv=0,10, 50. For a layer heated from below, it

can be noted that Ra, increases with Rv whereas k., decreases with Rv. For y >0,

when Rv increases, the value ¥

mono

of the separation ratio beyond which the critical
wave number vanishes (i.e. k, = 0), decreases. Table I shows the influence of vibrations
(Rv)on vy, . .Wenotethat , — decreases and becomes close to 0 when Rv increases.

For Le =100, we obtain y, ~=0.0129 without vibration and ¥, = 0.0033 for

mono mono

Rv =100 . This value of ¥ is very small and most binary liquids have a separation ratio
higher than this value. So, by adding vibrations, we can use the horizontal cell to separate
most binary mixtures. Using a regular perturbation method in the case of long wave

disturbances (i.e. k = 0'), we showed that, for ¥ >y, the first primary bifurcation is a



stationary one and the critical thermal Rayleigh number is: Ra, =12 /(Ley ) ¥V Rv.

Furthermore, we noticed that when the vibrational Rayleigh number, Rv, increased, the

value of the separation ratio ¥, beyond which the wave number &, = 0 decreased. To

mono

conclude, vertical vibrations have a stabilizing effect on the convective motions whereas

they do not modify the value of Ra_ for the flow associated with the long wave mode (i.e.

k, = 0). The same results can be observed in a horizontal binary fluid layer [16].

5. Analytical solution of the monocellular flow

In the case of a shallow cavity 4 >> I, we considered the parallel flow approximation
used by Cormack et al. [19]. The basic flow, denoted with a subscript0, is then given as
follows:
V,=U,(2)e;T,=bx+ f(2); C, =mx+g(z); W, =W,,(2)e, (8)

For the stationary state, when the above mentioned assumptions are made and the
corresponding boundary conditions are considered, we obtain the velocity, temperature
and concentration fields:
T,=1-z
U,=Ram¥(1/2-z)
C,=mx+(m’ RaLe¥(3z° =22 ))/12~z

—(m’ RalLe¥ )/24+(1-mA)/2
m=+\/(10LeRa¥ —120) /(LeRa'¥’)
W,=(b+ym)(1/2-z)

)

The expressions obtained for the velocity, the temperature and the concentration
fields are similar to those obtained in [20]. This means that the basic state,
corresponding to the monocellular flow, is independent of the vibrations.

The separation, S =mA, is defined as the difference in mass fraction of the denser
component in the vicinity of the left and the right vertical walls of the cell. Then the

maximum separation is obtained for Ra =24 /(Le'W) . This value is denoted Ra,,, .

Fig. 3 presents the separation versus the thermal Raley obtained analytically and

numerically for an arbitrary chosen value of Rv since the separation is independent of

the vibrations; here we used Rv =50. It can be seen that the separation has a maximum



corresponding to the optimal coupling between thermodiffusion and convection. For
small values of the Rayleigh number, the convection is weak and the separation is
mainly caused by thermodiffusion. For high values of the Rayleigh number, the
convection is strong and the flow increases the mixing of the species leading to a small
separation. It can be noted that, due to the reference scale used for the concentration

field, the separation S may be higher than 1.
6. Linear stability analysis of the monocellular flow

We studied the stability of the monocellular solution in order to confirm that the species
separation could occur in a horizontal porous cell heated from below. For this study, we
write the governing equations using the perturbations of the velocity v, temperature &,
pressure p , mass fraction ¢, and solenoidal field w :
v=V-V,,0=T-T,,c=C-C,, p=P—-F, w=W-W,.

The second order terms are neglected; we obtain the linear equations where the
unknown functions are the perturbations.

To take the boundary conditions for temperature and concentration at z=0 and z =1
into account more easily, we introduce the new variable 7 =c - 6.

The disturbances are developed in normal modes

(w,0.1,w, ) =(w(z),0(z),1(z),w,(z))e™ " and we obtain the following equation
system:

(Bo+1)(D° =k’ )w+ Rak’(O(1+¥ )+¥n)+R,[kIDw,m(y /€)

+w,k’ (DT, +(y/€)DC, )+ W, Ik’ (1+y/€)0+(w/e)n)] =0

(D’ =k’ )0—0c0+w—-1kU,0=0 (10)
(1/Le)lk(D’ =k’ )n—€eclk(n+6)+k’U,(n+6)+mDw—1kwDC, =0

(D’ =k’ )w, +k*((1+w)8+wn)=0

where D =0d/0z, k is the horizontal wave number, o = o, + [0, is the temporal

amplification of the perturbation, /> =—1, w is the vertical component of the velocity
and w, the vertical component of w .

The corresponding boundary conditions are:

10



w:0,0:0,%—n:0,w2:0 at z=0,1 (11)

Z
The resulting linear problem is solved using the 4™ order Galerkin method. The

perturbation quantities are chosen as follows:
N N N-1

w(z) = Zai sin(inz) ; 0(z) = Zb,. sin(inz) ;n(z) = ZCi cos(inz);
i=1 i=1 i=0

w,(z) = ZN:di sin(izz)

The critical values of the Rayleigh number and the wave number were obtained for a
stationary and a non-stationary bifurcation. For the values of ¥ and Le studied, the
critical Rayleigh number leading to stationary bifurcation is always higher than the one
leading to Hopf bifurcation. So, in this study, we focus on the values of the critical wave
numberk,,, the critical Rayleigh number Ra_, and the critical frequency @,, related to
the Hopf bifurcation. The results of linear stability analysis for Le =30 and Le =100
and for y = 0.1 are presented in tables II and III. It can be observed in these two tables
that the vibrations have a stabilizing effect and lead to an increase in the critical value of
the thermal Rayleigh number. So the vibrations can be used to maintain the
monocellular flow and then allow the separation of the binary mixture components over
a wide range of thermal Rayleigh number. But it should be noticed that the separation
decreases for the high values of Ra . It should be mentioned that vibrations reduce the
critical wave number k_, and the Hopf frequency @, ,. This means that vibrations can
also be used to decrease the number of convective cells at the transition from

monocellular flow to the multicellular flow.
7. 2D Numerical simulations
The averaged equations (Eq. 6) with the associated boundary conditions were solved

using the finite element method and the spectral collocation method. The influence of

vibrations on the onset of convection was investigated for a cell of aspect ratio 4 =20

for Le=30 and Le=100, £ =0.5, (B is fixed to 10™).

7.1. Stability of the equilibrium solution

11



It was observed that the critical parameters of the bifurcations differed very little between
the case A4 = 20 and the case of a cell of infinite horizontal extension. A structured mesh
150x30 was used for the finite element method for 4 = 20 and 120x20 collocation points
for the spectral method.

For the onset of stationary convection, the results for Le = 30 and Le = 100 are
presented below. For Le = 30 and ¥ = (.03 , without vibrations ( Rv = 0 ), the critical
parameters Ra, =12.92, k, = 1.356 are obtained from the linear stability analysis. For
the same values of Le and y but with vibrations (Rv = 10 ), we obtain Rg =1336,

k. =0 from the linear stability analysis, so the critical wave number is zero, which means
that the flow at the onset of convection is monocellular. To confirm this result, we used
the direct numerical simulation to study the case Le = 30 and ¥ = 0.03 for a value of
Ra close to the critical value ( Ra = 13.5) first without vibrations ( Rv = 0 ) and then with
vibrations (Rv = 10). Fig. 4(a) shows the streamlines and isoconcentrations for Rv = 0.
In this case, the flow is multicellular and we cannot use the horizontal cell to separate the
components of a binary mixture. Fig. 4(b) shows the streamlines and isoconcentrations
for the same values of all the parameters but with vibrations. It can be observed that
vibrations modify the structure of the flow from multicellular to monocellular, leading to
the stratification of the concentration field and the separation of the binary mixture
components, but this separation is not very strong because the value of Ra is close the

threshold and is far from R, =24 /(Ley ). Similar results were obtained for Le = 100

and ¥ =0.01 (Fig. 5).

7.2. Stability of the monocellular flow

In the results presented below, the values of B and € were fixed at /0™° and 0.5
respectively. As in the previous part, the results for Le = 30 and Le =100 are
presented.

For Le = 30 we obtain a monocellular flow at the onset of convection for

V=Y, =0044 if Rv=0 and for y =y, =0.013 if Rv=150. We present here
some results for a value of ¥ higher than these two values. We use ¢ =0.1. The

stability analysis shows that, without vibrations, the monocellular flow loses its

12



stability, via a Hopf bifurcation, for the critical parameters Ra,, =31.48 and
@,, =2.84 . For the same mixture (¥ = 0./ ) under vibrations characterized by a

modified vibrational Rayleigh number Rv = 50, the monocellular flow loses its stability

for Ra,, =52.09 and @, =2.21. These results were confirmed by the direct numerical

simulations.

Fig. 6(a) shows a typical instantaneous streamline pattern during the oscillation and the
corresponding isoconcentrations for Ra = 31.4 . This value of Ra corresponds to the
transition from monocellular flow to multicellular flow without vibrations (Rv=0).
Fig. 6(b) shows the isoconcentrations and the streamlines for the same mixture with the
same parameters but with vibrations ( Rv =50). It was noted that, with vibrations, the
monocellular flow could be maintained for a higher value of the Rayleigh number
leading to the separation of the species between the left and the right vertical walls of

the horizontal cell. But this separation is not very strong because the value of Raley is

94.2 and far from the optimal value 24. This monocellular flow remains stable up to
Ra=522.

Fig. 6(c) shows a typical instantaneous streamline pattern during the oscillation and the
corresponding isoconcentrations, at the transition from monocellular flow to
multicellular flow (Ra = 52.2) for Rv=50.

For Le =100, we observe the same behavior as for the case Le = 30. As shown in table
III, for Le =100, the following critical parameters are obtained from the linear stability

analysis: Ra., =27.67 and w,, =1.44 for Rv=0 and Ra_, =46.88 and w_, =1.32

for Rv=150.

Fig. 7(a) shows a typical instantaneous streamline pattern during the oscillation and the
corresponding isoconcentrations for the transition from monocellular flow to
multicellular flow for Rv =0 . Under certain conditions, the vibrations lead to a change
from multicellular to monocellular flow (Fig. 7(b)). This monocellular flow remains
stable for a Rayleigh number much higher than the one obtained without vibrations .
Thus the vibrations allow separation for high values of the Rayleigh number. When the
Rayleigh number is increased slightly, the monocellular flow loses its stability to give a
multicellular flow (Fig. 7(¢c)). The numerical results are then in good agreement with the

analytical results.

13



The Hopf bifurcation frequency was found numerically for all the cases studied. For

example for Le=30, w =0.1, Ra=52.2,and Rv =50, it was observed that the
oscillatory flow was maintained for all the computing times considered. The value of

the critical frequency obtained by the linear stability analysis is @,, = 2.21. Using the

Fourier transform of the horizontal component of the velocity at one point of the

domain, we obtained a numerical critical frequency @,,,,, = 2.19 . For all the cases

studied a good agreement is found between theoretical and numerical results.

8. Conclusion

The Soret-driven convection in a large aspect ratio horizontal porous layer, heated from
below, saturated by a binary fluid and subjected to vertical high frequency vibrations was
studied. The influence of vertical vibrations on the onset of convection and on the
stability of the monocellular flow obtained for particular ranges of the physical
parameters was investigated. We considered the case of high frequency, small amplitude
vibrations so that a formulation using time averaged equations could be used. From the
stability analysis of the rest solution obtained under the effect of vertical vibrations, it was
observed that vertical high frequency vibrations had a stabilizing effect on the convective
flow. It was found that vibrations could be used to decrease the value of the separation
ratio beyond which the flow at the onset of convection became monocellular, allowing
separation of the components in the horizontal cell for a wide range of positive
separation-ratio binary mixtures.

Analytical and numerical techniques were used to study the stability of the mono-

cellular flow obtained, for y 2y, >0, when the equilibrium solution lost its

stability. The direct nonlinear numerical simulations performed using the finite element
method and the spectral collocation method corroborate the results of the linear stability
analysis and allow the study of the flow structures which appear after the bifurcation. It
was highlighted that the monocellular flow associated with a stratified concentration
field led to a horizontal separation of the binary mixture components. It was observed
that vibrations had a stabilizing effect leading to an increase in the critical value of the
Rayleigh number corresponding to the transition between monocellular and

multicellular flow. Thus vertical vibrations allow species separation over a wider range

14



of Rayleigh numbers. It should also be noted that vibrations reduce the critical wave

number k_,, the Hopf frequency @,, and ¥,

mono *
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Fig.1. Critical Rayleigh number at the onset of convection versus separation ratio for
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Fig. 5. Streamlines and isoconcentrations for Le =100, w =0.01, Ra=12.5 (a) Rv=0

(without vibrations) (b). Rv =10 . A multicellular flow is obtained at the transition from

the equilibrium solution for Rv = 0, whereas a monocellular flow is obtained for

Rv=10.

(b)

(c)
Fig. 6. Le=30, y=0.1: Typical instantaneous streamline pattern and isoconcentrations
during the oscillation for (a), Ra=31.4, and Rv=0 (c) Ra=52.2 and Rv=1350. (b)

Streamline and isoconcentrations for Ra=31.4, and Rv = 50. The vibrations maintain

the monocellular flow for a higher value of the Rayleigh number ((a) and (b)).

Fig. 7. Le=100, w=0.1 : Typical instantaneous streamline pattern and

1soconcentrations during the oscillation for (a), Ra=27.3,and Rv=0 (c) Ra=45.3
and Rv=350. (b) Streamline and isoconcentrations for Ra=27.3,and Rv=50.
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W ono Tor W ono Tor

Rv Le=100 Le=30
0 0.0129 0.0444
10 0.0077 0.0257
20 0.0062 0.0205
30 0.0054 0.0177
40 0.0048 0.0159
50 0.0044 0.0146
60 0.0041 0.0136
70 0.0039 0.0128
80 0.0037 0.0121
90 0.0035 0.0115
100 0.0033 0.0110

Table I Effect of vibrations on the value of the separation ratio ¥

mono

beyond which the

flow at the onset of convection becomes monocellular for £=0.5, B=10"°.

Rv Ra,, k., a,,
0 31.48 2.84 2.21
10 36.51 2.63 2.25
20 40.96 2.45 2.25
30 4498 2.30 2.24
40 48.67 2.18 2.23
50 52.08 2.08 2.21
60 55.28 2.00 2.20
70 58.28 1.92 2.18
80 61.12 1.86 2.17
90 63.83 1.81 2.16

100 66.41 1.76 2.15

Table II. Effect of vibrations on the critical values of Rayleigh number Ra_,, wave

number k_, and frequency @,, associated with transition from monocellular to multicellular

flow for Le =30, £ =0.5, B=10" (Galerkin method of order 4).

Ry RacZ ka ch
0 27.67 3.04 1.44
10 32.29 2.81 1.43
20 36.44 2.61 1.40
30 40.21 2.44 1.37
40 43.67 2.3 1.34
50 46.88 2.18 1.32
60 49.88 2.08 1.30
70 52.70 2.00 1.28
80 55.37 1.92 1.26
90 57.91 1.86 1.25
100 60.33 1.81 1.24
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Table III. Effect of vibrations on the critical values of Rayleigh number Ra_,, wave
number k_, and frequency @,, associated with transition from monocellular to multicellular

flow for Le =100, € =0.5, B=10"° (Galerkin method of order 4).
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