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a b s t r a c t

In this work, we upscale a pore-scale description of mass transport in a porous medium containing bio-
film to develop the relevant Darcy-scale equations. We begin with the pore-scale descriptions of mass
transport, interphase mass transfer, and biologically-mediated reactions; these processes are then
upscaled using the method of volume averaging to obtain the macroscale mass balance equations. We
focus on the case of local mass equilibrium conditions where the averaged concentrations in the fluid
and biological phases can be assumed to be proportional and for which a one-equation macroscopic
model may be developed. We predict the effective dispersion tensor by a closure scheme that is solved
for the cases of both simple and complex unit cells. The domain of validity of the approach is clearly iden-
tified, both theoretically and numerically, and unitless groupings indicating the domain of validity are
reported.

1. Introduction

The study of biofilms in porous media have had a long history
from the environmental engineering perspective (e.g. [81]), and
more recently have been of interest in applications to bioremedia-
tion in subsurface systems (e.g. [6–8,10,54,61,64,74]). A number of
Darcy-scale mathematical models for describing the transport of
biologically reactive dissolved solutes have been proposed. The lit-
erature on this topic is extensive, but summaries of the primary
contributions in this area can be found in de Blanc et al. [14],
and the review articles by Murphy and Ginn [38] and Ginn et al.
[18]. Varying levels of sophistication in describing the underlying
mechanisms have been attempted, but most models have been
developed by first hypothesizing the important mass transfer and
reaction processes involved, and then heuristically formulating
the mathematical model at the Darcy scale by mass balancing.
Thus, Darcy-scale parameters are assumed to exist and to be
known a priori in such a formulation.

Developing the macroscale mass balance equations through a
formal upscaling process [23,70] has become more familiar to
hydrologists as we attempt to come to grips with the complexity
and uncertainty in natural (and engineered) systems. The develop-
ment of the effective dispersion tensor for heterogeneous subsur-
face systems is possibly the most successful and familiar

example. Heterogeneous subsurface systems can be hierarchical
not only in physical structure, but also in the combination of the
physical, chemical, and biological processes that influence the
transport of chemical species in the subsurface [11,12,70]. In
Fig. 1, we have illustrated an example of the levels of heterogeneity
possible in a subsurface (or engineered) system that involves
microbial biofilms. These heterogeneities are characterized by a
series of length-scales that range from the small length-scale asso-
ciated with a representative volume of biofilm (Level I) to the large
length-scale associated with applications, such as a bioreactor or
bioremediation in the subsurface (Level III). We have assumed that
the length-scales in a hierarchical heterogeneous porous medium
system are disparate so that they may be represented discretely
as indicated in the figure. At Level III, the characteristic length scale
might be the size of the reactor or the size of subsurface heteroge-
neities characterizing spatial variations of the geological materials
that comprise the aquifer. In general, these different geological
materials may have different chemical, biological, and mechanical
properties. At Level II, we have illustrated the solid and fluid that
make up a representative elementary volume (REV) of the porous
medium, and we have shown the microbes attached to the solids
as a continuum phase. At Level I, we illustrate the multiphase nat-
ure of the microbial mass attached to the solid phase at the aver-
aging volume scale of the biofilm; at this level, we treat the
microbial phase itself as a two-phase system consisting of the
intercellular region (the r-phase) and the extracellular region
including the extracellular polymeric substances (the b-phase).
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Nomenclature

Roman Letters

Acj interfacial area of the interface between the fluid and so-
lid phases in an averaging volume or unit cell (m2)

Acx(t) interfacial area of the interface between the fluid and
biofilm phases in an averaging volume or unit cell (m2)

Axj(t) interfacial area of the interface between the biofilm and
solid phases in an averaging volume or unit cell (m2)

Ace the area associated with the c-region at the boundaries of
the unit cell, (m2)

Axe the area associated with the x-region at the boundaries
of the unit cell, (m2)

bAc closure variable that relates ~cAc to sources involving
rhcAcic; defined by Eq. (46), (m)

bAx closure variable that relates ~cAx to sources involving
rhcAxix; defined by Eq. (47), (m)

b0Ac dimensionless form of the closure variable bAy; defined
by Eq. (58), (-)

b0Ax dimensionless form of the closure variable bAx; defined
by Eq. (58), (-)

hCAi superficial average concentration of species A per unit vol-
ume of the porous medium, as given by Eq. (21), (kg/m3)

fcAg equilibrium weighted average concentration of species A,
as given by Eq. (23), (kg/m3)

cAc, cBc mass concentration of species A or B (associated with
volume Vd in Fig. 1) in the fluid phase (c-region) (kg/m3)

cAx, cBx mass concentration of species A or B (associated with vol-
ume Vd in Fig. 1) in the biofilm phase (x-region) (kg/m3)

hcAci; hcBci superficial average concentration of species A or B, as
given by Eq. (9), (kg/m3)

hcAcic; hcBcic intrinsic average concentration of species A or B, as
given by Eq. (11), (kg/m3)

hcAxi; hcBxi superficial average concentration of species A or B, as
given by Eq. (8), (kg/m3)

hcAxix; hcBxix intrinsic average concentration of species A or B, as
given by Eq. (12), (kg/m3)

~cAc ¼ cAc � hcAcic, Darcy scale deviation concentration in the
fluid (c-region) (kg/m3)

~cx ¼ cAx � hcAxix, Darcy scale deviation concentration in
the biofilm (x-region) (kg/m3)

c0 injected concentration in the nodular system, defined by
Eq. (66) (kg/m3)

Cxx spatially stationary covariance function for the indicator
function of the c-phase, (-)

DaA ¼ lAxqxl
2
c=KAxDAc, a Damköhler number associated to

the species A, (-)
DAc;DBc molecular diffusion coefficient for the species A or B in

the fluid, (m2/s)
Deff.g Darcy scale (associated with volume Vd in Fig. 1) effective

diffusion coefficient for solute in the matrix (g-region),
(m2/s)

DAx;DBx effective diffusion tensor for species A or B in the biofilm
(x-region), (m2/s)

D�A;eff Darcy scale (associated with volume V in Fig. 1) effective
dispersion tensor for the substrate A, (m2/s)

D�A;xx xx-component of the Darcy scale effective dispersion ten-
sor D�A;eff , (m2/s)

DC dimensionless effective diffusion tensor for species A (x-
region), defined by Eq. (60) (m2/s)

fAc, fAx unclosed vectors defining the hydrodynamic dispersive
flux, given by Eqs. (34) and (35), (kg/m2/s)

Ixx integral scale associated to the c-phase, defined by Eq.
(64) (m)

KA,eq equilibrium partitioning coefficient between the fluid
and biofilm phases for the species A, (-)

KB,eq equilibrium partitioning coefficient between the fluid
and biofilm phases for the species B, (-)

KAx half-saturation constant for the substrate A, (-)

KBx half-saturation constant for the electron acceptor B, (-)
lg; lx characteristic lengths associated with the Darcy scale

(see Fig. 2), (m)
lcx characteristic length associated with the Darcy scale,

given by Eq. (32) (m)
L characteristic length associated with the macroscale

averaging volume (see Fig. 1, Level III), (m)
li lattice vector for the ith direction (i=l,2,3), (m)
ncj = �njc, unit normal vector, pointing from the c-phase to-

ward the j-phase, (-)
ncx = �nxc, unit normal vector, pointing from the c-phase

toward the x-phase, (-)
nxj = �njx, unit normal vector, pointing from the x-phase

toward the j-phase, (-)
PeA ¼ kmcklc=DAc, a Péclet number associated to the species

A, (-)
r0 characteristic length associated with a biofilm-scale

averaging volume (Fig. 1, Level I), (m)
R0 characteristic length associated with the Darcy-scale

averaging volume (Fig. 2), (m)
RAx nonlinear Monod kinetic reaction term, defined by

Eq. (7), (kg/m3/s)
hRAxix intrinsic average of the reaction term in the x-phase,

defined by Eq. (18), (kg/m3/s)
hRAxix average reaction rate, defined by Eq. (36), (kg/m3/s)
vc pore scale fluid velocity vector, (m/s)
hvcic intrinsic average fluid velocity vector, (m/s)
~vc ¼ vc � hvcic, fluid velocity deviation vector for the fluid,

(m/s)
V volume associated with a Darcy scale averaging volume,

as defined in Fig. 1, (m3)
VM volume associated with a macroscale averaging volume,

as defined in Fig. 1, (m3)
Vmicro volume associated with a biofilm scale averaging volume,

as defined in Fig. 1, (m3)
Vc volume associated with the fluid within an averaging

volume, (m3)
Vj volume associated with the solid within an averaging

volume, (m3)
Vx volume associated with the biofilm within an averaging

volume, (m3)

Greek Letters

b phase indicator for the extracellular polymeric sub-
stances associated with the averaging volume scale of
the biofilm (Level I of Fig. 1), (-)

c phase indicator for the fluid associated with the repre-
sentative elementary volume of the porous medium
(Level II of Fig. 1), (-)

d power-law exponent expressing the Péclet number-
dependence of the longitudinal dispersion coefficient, (-)

ec ¼ VcðtÞ=V, the volume fraction of the fluid phase, (-)
ej ¼ Vj=V, the volume fraction of the solid phase, (-)
ex ¼ VxðtÞ=V, the volume fraction of the biofilm, (-)
j phase indicator for the solid associated with the repre-

sentative elementary volume of the porous medium
(Level II of Fig. 1), (-)

lAx specific degradation rate for the substrate A, (1/s)
lBx specific degradation rate for the electron acceptor B, (1/s)
qx microbial concentration (kg/m3)
r phase indicator for the intercellular region associated

with the averaging volume scale of the biofilm (Level I
of Fig. 1), (-)

Wc(x) indicator function for the c-phase, defined by Eq. (65)
x phase indicator for the biofilm associated with the repre-

sentative elementary volume of the porous medium
(Level II of Fig. 1), (-)



The details of upscaling from the cell scale to the biofilm scale (Le-
vel I) have been developed previously [71–73,75].

In this work, we continue this study by upscaling from the
microscale, characterized by discrete fluid and biofilm phases (of
which properties have been upscaled from the lower scale), with
characteristic lengths ‘c and ‘x, respectively, to the Darcy scale (Le-
vel II), characterized by the length scale R0. The various length
scales associated with Level II are illustrated in Fig. 2.

For cases where the biological phase can be treated as a well-
defined continuum, one can identify three potentially important
regimes and hence three distinct transport models that describe
the mass transfer and reaction processes within the biofilms: (1)
a one-equation local mass equilibrium regime [29,77,78] where the
averaged concentrations of chemical species in the fluid and bio-
film can be assumed to be in equilibrium (cf. the local mass equilib-
rium assumption described by Valocchi [65]), (2) a one-equation
non-equilibrium regime, where spatial gradients may exist only in
one of both phases and the reaction can be assumed to be limited
by mass transfer or kinetics so that a one-equation model can still
be developed through the identification of a macroscopic-scale
effectiveness factor or mass exchange coefficient between phases
[15,52], and (3) a two-equation non-equilibrium regime where the
averaged concentrations in the two phases are not in equilibrium,
and the resulting description must involve two separate conserva-
tion equations (one for the biofilm phase and one for the fluid
phase). Each of these models induces some limitations and con-
straints but all of them will ultimately be necessary if one wants
to describe macroscopic-scale chemical transport and transforma-
tion in porous media under all conditions. For the purposes of this

work we will focus our efforts on the one-equation equilibrium
model.

Although mass balance equations are often posed heuristically
for describing biological processes in porous media, it is sometimes
unclear exactly what is meant by each of the parameters that ap-

Fig. 1. An example of hierarchy of scales associated with the biodegradation of aqueous species.

Fig. 2. Definition of the phases associated to the averaging volume (Darcy-scale).



pear in these equations. Moreover, the question of the validity of
such equations is rarely raised. Few studies to date have attempted
to formally upscale or homogenize the equations describing mass
transport, mass transfer, and reactions that apply at the pore scale
to develop a Darcy-scale description. Two notable exceptions are
the works by Dykaar and Kitanidis [15] and Knutson et al. [28]. Dy-
kaar and Kitanidis [15] used a Taylor–Aris moment approach to
compute the effective dispersion tensor and effective reaction rate
for the solute biodegradation in porous media. These results were
for a two-dimensional sinusoidal pore geometry. More recently,
Knutson et al. [28] determined the effective transverse dispersion
coefficient from pore-scale simulations on a two-dimensional stag-
gered array of cylinders. They observed a difference of up to 50% in
the dispersion tensor components between the passive and reac-
tive cases. Their work was limited to a scenario of transverse mix-
ing where the biofilm growth is restricted to a small part of the
pore space.

The specific goals of this work are to: (1) use volume averaging
to develop the macroscale mass balance equations transport of an
electron donor and an electron acceptor undergoing biodegrada-
tion in a porous medium; (2) define how the macroscopic effective
parameters relate to the sub-pore scale processes (which might be
measured in a laboratory batch system), and (3) determine the
associated domain of validity of such a model through a compari-
son with direct pore-scale simulations in terms of characteristic
dimensionless numbers of the process.

2. Upscaling the microscale description of biofilms in porous
media

2.1. Microscale model

We begin this investigation by introducing the set of mass bal-
ance equations that are used for describing conservation of mass at
the sub-pore scale (Fig. 2) in the fluid (c-phase) and the biofilm (x-
phase). The description of the biofilm as a continuum phase has
been described previously by Wood and Whitaker [71,73]. Note
that in these equations a convection term does not appear in the
biofilm phase because connected fluid pathways where convection
occurs are technically part of the fluid phase. If the fluid pathways
in the biofilm phase were very small compare to the Darcy-scale
pore size, an intermediate upscaling for such channelled biofilms
might be necessary. Such a case is beyond the scope of this study,
but it has been considered recently by Aspa et al. [4].

The set of conservation equations for the fluid–biofilm–solid
system takes the following form (which is consistent with a num-
ber of previous studies on biofilms, e.g. [17,76]).

2.1.1. Biofilm phase

ocAx

ot
¼ r � ðDAx � rcAxÞ þ RAx in the x-phase; ð1Þ

B:C:1 � nxj �DAx � rcAx ¼ 0 at AxjðtÞ; ð2Þ
B:C:2 � ncj �DAcrcAc ¼ 0 at Acj; ð3Þ
B:C:3 cAc ¼ KA;eqcAx at AcxðtÞ; ð4Þ
B:C:4 � ncx �DAx � rcAx ¼ �ncx �DAcrcAc at AcxðtÞ; ð5Þ

2.1.2. Fluid phase

ocAc

ot
þ vc � rcAc ¼ r � ðDAcrcAcÞ in the c-phase: ð6Þ

Here, cAc and cAx represent the mass concentration of species A
(substrate) in the fluid and biofilm phases, respectively; DAc is the
diffusion coefficient for the fluid and DAx is the effective diffusion

tensor for the biofilm; vc is the fluid velocity; KA,eq is the equilib-
rium partitioning coefficient between the fluid and biofilm phases;
and RAx is a nonlinear kinetic reaction term. We have used the ter-
minology Acj to indicate the surface area between the fluid and so-
lid phases, and (similarly) Acx(t) and Axj(t) to indicate the surface
area between the fluid and biofilm phases and between the biofilm
and solid phases, respectively. The term ncj indicates the unit nor-
mal pointing outward from the c-phase toward the x-phase; ncx
and nxj are similarly defined. In principle, the volume of biofilm,
Vx(t), within the volume V changes in time due to the biofilm
growth (or decay); hence all other parameters, such as Acx(t), asso-
ciated with this volume also change with time. This evolution of
the microbial biomass phase within the porous medium is a
complex process due mainly to growth and spatial spreading of
the cellular phase. Processes such as biofilm sloughing and attach-
ment (or detachment) of cells from the fluid phase may also con-
tribute to the biofilm volume variation. Several models [63,26,57]
have been formulated in the literature. They are usually based on
a semi-empirical description although an upscaling leading to the
macroscale equation for the biomass density in the biofilm was
considered recently by Wood and Whitaker [72]. A commonly-
adopted approach to this coupling is to utilize a quasi-steady
assumption; this implies that the evolution of the system geometry
occurs on a time scale large compared with the time scale for mass
transfer processes [58,42]. This time-evolving interface problem is
similar to the one encountered in dissolution/precipitation [20] or
in combustion in porous media [25,44,33], to cite only those, for
which the quasi-steady assumption is classically adopted.

For this analysis, we have focused on systems with a single sub-
strate (carbon and energy source) which has been denoted as spe-
cies A, and a single electron acceptor (such as oxygen) which has
been denoted as species B. We have adopted the dual-Monod form
[32] for the reaction term

RAx ¼ �lAxqx
cAx

cAx þ KAx

cBx

cBx þ KBx
; ð7Þ

where lAx is the specific degradation rate for the substrate; qx is
the microbial concentrations; KAx, and KBx are the half-saturation
constants for the substrate and electron acceptor, respectively;
and cBx is the mass concentration of electron acceptor in the biofilm
phase. In principle, the nutrient consumption rate is determined by
local conditions in the biofilm and may depend explicitly on time or
space. Although there are a wide variety of substrate uptake and
growth models in the literature (e.g. [53,5,27]), the dual-Monod
form is the most commonly-adopted model because it correctly
represents the main physical mechanisms but staying simple math-
ematically [6].

Because the biofilm is itself a multiphase system consisting of
cells and extracellular material, it is necessary to be very specific
about what is intended by the concentrations cAx, cBx, and qx. In
this case, cAx, cBx are most conveniently interpreted as spatial
average concentrations, and qx is interpreted as a superficial vol-
ume average. Interested readers can refer to Wood and Whitaker
[73] and Wood et al. [75] for more details about the development
of Eqs. (1)–(7). Note that a similar set of conservation equations
also holds for species B, but since the analysis is similar to that
for species A, we will not explicitly derive them here.

2.2. Development of the averaged equations

Referring to the averaging volume, V, illustrated in Fig. 2, we
define the superficial average concentration of species A in the x-
phase (biofilm) as

hcAxi ¼
1
V

Z
VxðtÞ

cAx dV : ð8Þ



Here, V represents the averaging volume shown in Fig. 2, and Vx(t)
represents the volume of the x-phase contained in the averaging
volume. A similar definition holds for the average concentration
of species A in the c-phase,

hcAci ¼
1
V

Z
VcðtÞ

cAc dV : ð9Þ

Often, in applications, it is preferable to work with a concentra-
tion that represents the average over the pore space rather than
the total volume of the porous medium. This concentration is the
intrinsic average concentration, and for the two averages defined
above the intrinsic averages are given by

hcAxix ¼
1

VxðtÞ

Z
VxðtÞ

cAx dV ; ð10Þ

hcAcic ¼
1

VcðtÞ

Z
VcðtÞ

cAc dV : ð11Þ

The intrinsic and superficial averages are related through the vol-
ume fractions of the two phases as follows:

hcAxi ¼ exhcAxix; ð12Þ
hcAci ¼ echcAcic; ð13Þ

where ex and ec represent the volume fractions of the x- and
c-phases, respectively, such that ec + ex + ej = 1.

In the developments that follow, we will make use of the spatial
decompositions in order to remove averaged quantities from point
values

cAx ¼ hcAxix þ ~cAx; ð14Þ
cAc ¼ hcAcic þ ~cAc: ð15Þ

The quantities ~cAx and ~cAc are referred to as spatial deviation con-
centrations. Again, we note that relations analogous to Eqs. (14)
and (15) also hold for species B.

The process of volume averaging is initiated by forming the
superficial average of phase conservation equations (1)–(7). In or-
der to interchange the time derivative and averaging operation,
one must make use of the general transport theorem [69], while
for the first term the spatial averaging theorem [21,24] is re-
quired. As emphasized previously, the geometry of the biofilm
(as represented by Vx(t)), may evolve in time due to the biofilm
growth, decay, sloughing, or accretion. However, given the large
difference between characteristic time scales for growth and for
solute transport (cf. [58,42]), movement of the fluid–biofilm inter-
face due to biofilm growth can be usually neglected relative to the
rate of diffusive transport. In this work, we have thus explicitly
adopted the approximation that mass transport due to the veloc-
ity, w, of the fluid–biofilm interface can be neglected relative to
the rates of mass transport by diffusion [71]. This quasi-steady
approximation serves to uncouple the transport process from
the biofilm growth process. By introducing the assumption of a
time-invariant microbial population, kinetic parameters and
pore-scale geometry are kept constant. Results obtained this
way would apply only to a particular biofilm configuration. In
principle, one could include the effects of an evolving biofilm
geometry by introducing one or more additional macroscopic
equations describing the growth, decay and attachment/detach-
ment of the biofilm phase.

The complete development for averaging equations (1)–(7) is
available in Appendix A, and the result is

Averaged equation for the biofilm (x-phase)

Averaged equation for the fluid (c-phase)

In Eq. (16), we have used the following relationship (cf. the par-
allel development of the reaction term at the biofilm scale de-
scribed in [73, Appendix A]), which holds for ‘c, ‘x� R0,

oðexhcAxixÞ
ot|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Accumulation

¼ r � exDAx � rhcAxix þ
1

Vx

Z
AxcðtÞ

nxc~cAx dAþ 1
Vx

Z
AxjðtÞ

nxj~cAx dA

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Diffusion

þ 1
V

Z
AxcðtÞ

nxc � ðDAx � rcAxÞdAþ 1
V

Z
AxjðtÞ

nxj � ðDAx � rcAxÞdA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interfacial Flux

þ exhRAxix|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Reaction

; ð16Þ

oðechcAcicÞ
ot|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Accumulation

þr � ðechvcichcAcicÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Convection

¼ r � ecDAc rhcAcic þ
1

Vc

Z
AxcðtÞ

ncx~cAc dAþ 1
Vc

Z
AxjðtÞ

ncj~cAc dA

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Diffusion

þ 1
V

Z
AxcðtÞ

ncx � ðDAcrcAcÞdAþ 1
V

Z
AxjðtÞ

ncj � ðDAcrcAcÞdA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interfacial Flux

� r � h~vc~cAci|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Dispersive Transport

: ð17Þ



hRAxix ¼ �lAxqx
hcAxix

hcAxix þ KAx

hcBxix

hcBxix þ KBx
: ð18Þ

Additional details about the averaging process are available in
Appendix A.

3. Local mass equilibrium

3.1. The one-equation model

When biofilms are present in porous media there exists an
essentially immobile phase in which chemical species can be en-
trained via diffusion. For the most general description of transport
at the Darcy scale, one would expect that at least a two-equation
model would be necessary. However, when the characteristic time
for transport in the fluid phase is of the same order of magnitude as
the characteristic time for diffusion within the biofilm and the
characteristic time associated to the reaction kinetics is large, it
is also possible to imagine a second regime in which a one-equa-
tion local mass equilibrium model might be a reasonable approxi-
mation. In this section, we develop such a model and present some
constraints that indicate the conditions for which a one-equation
equilibrium model is valid.

3.1.1. Local mass equilibrium
Under conditions of thermodynamic equilibrium, i.e., zero con-

centration gradients, the equilibrium relationship established only
at the fluid–biofilm interface by Eq. (4) can be extended to the en-
tire domain and we obtain

hcAcic ¼ KA;eqhcAxix at thermodynamic equilibrium: ð19Þ

Even when the condition of thermodynamic equilibrium does not
exist, Eq. (19) can be used as a reasonable approximation if the sys-
tem behaviour is close to the equilibrium. When this occurs, we say
that the condition of local mass equilibrium [65,71,73] is valid. It
must be emphasized that the local mass equilibrium assumption
does not imply a zero gradient everywhere, as ideally assumed in
Eq. (19), but a situation close to this condition, i.e., small macroscale
concentration gradients both in the fluid and biofilm phases. Under
these circumstances, the concentrations predicted by Eqs. (16) and
(17) are tied to one another, and these equations can be added to-
gether to produce a one-equation expression describing solute
transport. Adding these equations eliminates the interfacial flux
terms [through the boundary condition given by Eq. (5)] and yields
a single equation of the form

o

ot
ðexhcAxix þ echcAcicÞ þ r � ðechvcichcAcicÞ

¼ r � DAx � exrhcAxix þ
1
V

Z
AxcðtÞ

nxc~cAx dA

 "

þ 1
V

Z
AxjðtÞ

nxj~cAx dA

!
þDAc ecrhcAcic þ

1
V

Z
AxcðtÞ

ncx~cAc dA

 

þ 1
V

Z
AxjðtÞ

ncj~cAc dA

!#
�r � h~vc~cAci þ exhRAxix: ð20Þ

Although the macroscale transport equation above represents a
one-equation model, it is still not in the form that is conventionally
used to describe mass transport in biofilms. In order to put this
expression in the conventional form of a one-equation convec-
tion–dispersion–reaction model, we need to accomplish two things:
(1) the spatial deviation concentrations need to be eliminated by
expressing them in terms proportional to the volume averaged con-
centrations (through the closure problem, described furthering Sec-
tion 4), and (2) we need to define a single concentration that

characterizes the system at equilibrium. These are discussed in
the material following.

3.1.2. Spatial average and equilibrium weighted concentrations
For a system in which there are two phases in which chemical

species reside, the following spatial average concentration could
be used

hcAi �
1
V

Z
V

cA dV ¼ echcAcic þ exhcAxix: ð21Þ

In this definition, hcAi corresponds here to the mass of species A per
unit volume of the porous medium. The advantage to this formula-
tion is that it corresponds more closely to the concentration that
might be measured by most of experimental methods.

At equilibrium, the spatial average concentration is given by
[using Eq. (19)]

hcAi ¼ ½ec þ exK�1
A;eq�hcAcic: ð22Þ

One could make use of this spatial average concentration in order to
develop a one-equation model. However, it is difficult to define con-
straints indicating the conditions for validity of the one-equation
model on the basis of this definition. To find these constraints, we
propose an equilibrium weighted average concentration (e.g.
[39,71,73]) given by

fcAg �
ec

ex þ ec

� �
hcAcic þ

ex

ex þ ec

� �
KA;eqhcAxix: ð23Þ

For this definition, note that from Eqs. (22) and (23) at thermody-
namic equilibrium we have the equivalences

hcAcic ¼ KA;eqhcAxix ¼
hcAi

ðec þ exK�1
A;eqÞ
¼ fcAg

at thermodynamic equilibrium: ð24Þ

Once local mass equilibrium is established, the final conservation
equation can be expressed in terms of any of the concentrations
(equilibrium weighted average, spatial average, or extracellular
intrinsic average) appearing in Eq. (24).

3.1.3. Constraints for local mass equilibrium
If conditions of thermodynamic equilibrium were to exist, we

could use Eq. (24) directly to express Eq. (20) entirely in terms of
the equilibrium weighted concentration. However, for a system
in which transport is occurring, thermodynamic equilibrium can-
not be achieved exactly. Instead, we seek to find the conditions
for which we are close enough to equilibrium so that the assump-
tion of local mass equilibrium is valid. To develop constraints that
indicate under what conditions local mass equilibrium is valid
approximation, we first note that near equilibrium Eq. (24) is not
exactly correct, but must be expressed in the form

hcAcic ¼ fcAg þ ĉAc; ð25Þ
KA;eqhcAxix ¼ fcAg þ ĉAx; ð26Þ

where ĉAc and ĉAx represent deviations of the local volume average
concentrations (weighted by KA,eq for the biofilm phase) from the
equilibrium weighted average. When these expressions are used
in Eq. (20), one can show that the approximation of local mass equi-
librium is valid when several restrictions are verified. The interested
reader may refer to Wood et al. [78] for a presentation and analysis
of these conditions. The restrictions can be expressed in terms of
unitless parameter groupings of the problem such as the Damköhler
and the Péclet numbers associated to the species A which are
defined by



DaA ¼
lAxqx‘

2
c

KAxDAc
; ð27Þ

PeA ¼
kvck‘c
DAc

: ð28Þ

Note that in Eq. (28) we have used the notation

kvck ¼ ðhvcic � hvcicÞ
1
2; ð29Þ

and restrictions take the form [78]

ecex

ec þ ex

� �
DAc �DAx

D�A;eff

 !
‘cx
L

� �2

� 1; ð30Þ

ecex

ec þ ex

� �
DaA � 1; ð31Þ

ecex

ec þ ex

� �
‘cx
L

� �
PeA � 1; ð32Þ

where ‘2
cx ¼ davecex=ðec þ exÞ, D�A;eff is the effective dispersion ten-

sor for the species A and d represents a concentration boundary
layer thickness in the fluid phase.

Note that these kinds of order-of-magnitude estimates should
be used with caution. Such restrictions are usually more restrictive
than needed due to simplifying assumptions required for their
development. In addition, results obtained in the case of a purely
diffusive problem [47] have shown that it may be difficult to catch
geometrical effects through simple unitless groupings. Following
this work, rather than estimating the theoretical domain validity
associated to these conditions, we preferred to study the validity
of our macroscopic model through a direct comparison between
macroscopic approach and simulations at the lower scale. We will
explore this point further in Section 6.

When these constraints are met, one can use the relationship gi-
ven by Eq. (23) to express Eq. (20) entirely in terms of the equilib-
rium-weighted concentration, i.e.,

Macroscopic transport equation (unclosed).

o

ot
ððex þ K�1

A;eqecÞfcAgÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Accumulation

þr � ðechvcicfcAgÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Convection

¼ r � ½ðecDAcIþ K�1
A;eqexDAxÞ � rfcAg�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Conventional Diffusion Term

þ r � ½fAx þ fAc�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Hydrodynamic Dispersion

þ exfRAxg|fflfflfflfflffl{zfflfflfflfflffl}
Reaction

: ð33Þ

Here fAx and fAc are the unclosed vectors that define the hydrody-
namic dispersive flux, given by

fAc ¼ DAcI �
1
V

Z
AxcðtÞ

ncx~cAc dAþ 1
V

Z
AxjðtÞ

ncj~cAc dA

 !

�r � h~vc~cAci; ð34Þ

fAx ¼ DAx �
1
V

Z
AxcðtÞ

nxc~cAx dAþ 1
V

Z
AxjðtÞ

nxj~cAx dA

 !
; ð35Þ

and {RAx} is the notation for the average reaction rate

fRAxg ¼ �lAxqx
fcAg

fcAg þ KA;eqKAx

fcBg
fcBg þ KB;eqKBx

: ð36Þ

Note that, because the condition of local mass equilibrium applies,
we have that hcAcic = KA,eqhcAxix = {cA}. Using these relations in the
result above, we develop a more conventional form for the macro-
scale transport equation.

Macroscopic transport equation (unclosed), fluid-phase concentration
form.

o

ot
ððex þ K�1

A;eqecÞhcAcicÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Accumulation

þr � ðechvcichcAcicÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Convection

¼ r � ½ðecDAcIþ K�1
A;eqexDAxÞ � rhcAcic�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Conventionnal Diffusion Term

þ r � ½fAx þ fAc�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Hydrodynamic Dispersion

� exlAxqx
hcAcic

hcAcic þ KA;eqKAx

hcBcic

hcBcic þ KB;eqKBx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reaction

: ð37Þ

Here, fAx and fAc are the unclosed vectors that define the
hydrodynamic dispersive flux as defined above. In this form, the
mass balance equation is presented in terms of the fluid-phase
concentration, hcAcic, which is generally the concentration that
would be measurable in experimental work or in applications to
the field.

Although Eqs. (33) and (37) are balance equations for the mac-
roscopic concentration, they are not yet closed forms because each
also contains the quantities ~cAc and ~cAx as independent variables in
the area integrals. This is typical of upscaling procedures: one finds
that the macroscopic behavior of the system is dependent upon
certain integral measures of the microscale physics and structure.
In order to close the problem, we must develop a means of express-
ing the deviation concentrations as a function of only the volume
averaged concentrations, hcAcic and hcAxix (or {cA}), and the inde-
pendent parameters that appear in the problem. Closure of the
macroscopic transport equation is discussed in detail in the follow-
ing section.

4. Closure

4.1. Derivation of the closure problem for a periodic unit cell

The development of the macroscale transport equation via aver-
aging, as detailed above, accomplishes two important goals: (1) it
establishes the correct mathematical form of the macroscopic
transport equation, and (2) it provides constraints that indicate un-
der what conditions the averaged transport equation is valid. These
two steps are useful in themselves even without further develop-
ment; in fact, many averaging techniques posit these to objectives
as their terminal goal. However, if one is interested in also under-
standing how the microscale phenomena and geometric structure
influence the macroscale equations, one must also find a method to
eliminate explicit involvement of the microscale quantities ~cAc and
~cAx. Eliminating the explicit involvement of such microscale quan-
tities requires hypothesizing some kinds of scaling laws. Scaling
laws are axiomatic statements about some element of the struc-
ture of the microscale fields involved in the transport problem. Of-
ten scaling laws are expressed as indicating that the microscale
fields have a particular spatial or temporal statistical structure
(e.g., the fields are second-order spatially stationary or spatially
periodic); a more extensive discussion of the concepts of scaling
laws can be found in the reference by Wood [80]. Note that there
is a significant analogy here with the theory of turbulence, where
an upscaled momentum balance can be developed, but must be
subsequently closed to eliminate an explicit dependence upon
microscale velocity fluctuations.

In the present work, in order to close the macroscopic transport
equation we must have a means of relating the perturbation con-
centrations ~cAc and ~cAx in terms of the volume average concentra-
tions hcAcic and hcAxix. One can rearrange the definition of the
deviation concentrations given in Eqs. (14) and (15) to the form



~cAx ¼ cAx � hcAxix; ð38Þ
~cAc ¼ cAc � hcAcic: ð39Þ

This form suggests that we can develop the governing differential
equation for the deviation concentrations by subtracting the aver-
aged equations from the point equations. To determine the conser-
vation equations for the deviation quantities, one can subtract Eq.
(16) from Eq. (1) and Eq. (17) from Eq. (6). Under conditions of local
mass equilibrium, it can be shown (Appendix B) that the set of
equations that predicts the deviation quantities is given by

Closure problem

o~cAx

ot
¼ r � ðDAx � r~cAxÞ � e�1

x r

� exDAx �
1

Vx

Z
AxcðtÞ

nxc~cAx dAþ 1
Vx

Z
AxjðtÞ

nxj~cAx dA

 !" #

� 1
Vx

Z
AxjðtÞ

nxj � ðDAx � r~cAxÞdA

� 1
Vx

Z
AxcðtÞ

nxj � ðDAx � r~cAxÞdA; ð40Þ

B:C:1 � nxj �DAx � r~cAx ¼ nxj �DAx � rhcAxix|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dispersive source

at Axj;

ð41Þ

B:C:2 � ncj �DAcr~cAc ¼ ncj �DAcrhcAcic|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
dispersive source

at Acj; ð42Þ

B:C:3 ~cAc ¼ KA;eq~cAx at Acx; ð43Þ

B:C:4 ncx �DAx � r~cAx ¼ ncx �DAcr~cAc

þ ncx � ðDAcI� K�1
A;eqDAxÞ � rhcAcic|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dispersive source

at Acx; ð44Þ

o~cAc

ot
þ ~vc � rhcAcic þvc � r~cAc ¼r � ðDAcr~cAcÞ þ e�1

c r � h~vc~cAci

� e�1
c r� ecDAc

1
Vc

Z
AxcðtÞ

ncx~cAc dA

 "

þ 1
Vc

Z
AxjðtÞ

ncj~cAc dA

!#

� 1
Vc

Z
AxcðtÞ

ncx � ðDAcr~cAcÞdA

� 1
Vc

Z
AxjðtÞ

ncj � ðDAcr~cAcÞdA:

ð45Þ

The solutions to these equations can, in principle, be expressed by
time-space convolution integrals of the source terms with the
appropriate Greens functions. Under the conditions that have al-
ready been imposed in the analysis (cf. Section A.2, Appendix A),
the source terms can be removed from the convolutions, and this
yields solutions that take the algebraic form (cf. [76,79]; Section
B.2)

~cAx ¼ bAx � rhcAxix; ð46Þ
~cAc ¼ bAc � rhcAcic: ð47Þ

Further discussion of the solution in terms of Greens functions can
be found in the recent paper by Wood [80].

Note that in Eq. (33) the deviation concentrations ~cAx and ~cAc

appear only under the integrals associated with Eqs. (34) and
(35). Because of this, the dependence of the dispersion tensor upon
the solution to the closure problem is weak in the sense that it de-
pends only on integrated quantities [40]. Any local solution for ~cAx

and ~cAc that produces acceptable values of the area integrals can be
used to determine the effective dispersion tensor. One reasonable
model might be to impose the condition that the deviations are
identically zero on the boundaries. For our purposes, a periodic
model of a heterogeneous porous medium is convenient (and im-
poses less severe constraints on the problem than, say, a Dirichlet
condition would). In terms of the single periodic unit cell, the local
closure problem can then be specified in the dimensionless form.

Closure problem (dimensionless form)

0 ¼ r � ðDC � rb0AxÞ �
1

Vx

Z
AxcðtÞ

nxc � ðDC � rb0AxÞdA

� 1
Vx

Z
AxjðtÞ

nxj � ðDC � rb0AxÞdA; ð48Þ

B:C:1 � nxj �DC � rb0Ax ¼ nxj �DC at Axj; ð49Þ

B:C:2 � ncj � rb0Ac ¼ ncj at Acj; ð50Þ

B:C:3 b0Ac ¼ b0Ax at Acx; ð51Þ

B:C:4 � ncx �DC � rb0Ax ¼ ncx � rb0Ac

þ ncx � ðI�DCÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dispersive source

at Axj; ð52Þ

PeAð~v0c þ v0c � rb0AcÞ ¼ r2b0Ac �
1

Vc

Z
AxcðtÞ

ncx � rb0AcdA

� 1
Vc

Z
AxjðtÞ

ncj � rb0AcdA; ð53Þ

B:C:5 ðPeriodicityÞ b0AxðrÞ ¼ b0Axðrþ ‘iÞ;
i ¼ 1;2;3; at Axe; ð54Þ

B:C:6 ðPeriodicityÞ b0AcðrÞ ¼ b0Acðrþ ‘iÞ;
i ¼ 1;2;3; at Ace; ð55Þ

B:C:7 hb0Aci
c ¼ 0; ð56Þ

B:C:8 hb0Axi
x ¼ 0; ð57Þ

where Axe and Ace represent the areas of the entrances and exits of
the x- and c-phases at the boundaries of the unit cell. In these
expressions, the following dimensionless variables and parameters
have been defined by

b0Ac ¼
bAc

‘c
; b0Ax ¼

bAx

‘c
; ð58Þ

~v0c ¼
~vc

kvck
; v0c ¼

vc

kvck
; ð59Þ

DC ¼
K�1

A;eqDAx

DAc
: ð60Þ

The use of a spatially periodic model for closure is often misinter-
preted, and some additional comments about this closure scheme
are warranted. The use of spatially periodic model does not imply
that the results apply only to periodic media or that the structure
of the porous medium is actually assumed to be periodic (see the



discussions by Chrysikopoulos et al. [9], Eames and Bush [16], Pick-
up et al. [43], Renard and de Marsily [51] and Wang and Kitanidis
[68]). The periodic boundary condition is only a device for obtaining
a local solution and it is not necessarily any less suitable than the
use of the boundary conditions specified at infinity that are often
employed in ensemble averaging methods. A study of the interplay
between the unit cell length and the spatial correlation length in the
case of randomly generated heterogeneous porous media can be
found in Ahmadi and Quintard [1].

4.2. The closed form of the macroscopic transport equation

In the closure problem given by Eqs. (48)–(55), only two dimen-
sionless parameters arise, DC and PeA, that have an influence on the
calculation of the effective diffusivity for a given unit cell geome-
try. Note that the Damköhler number does not appear here. The
reason for this is that the assumption of local mass equilibrium re-
quires one to neglect the effect of the reaction term in the biofilm
phase on the macroscopic dispersion phenomenon. If we use the
representations given by Eqs. (46) and (47) we can write the mac-
roscale transport equation in its final closed form as follows:

Macroscopic scale transport equation, fluid-phase concentration form
(closed)

o

ot
ðec þ K�1

A;eqexÞhcAcic ¼ �r � ðechvcichcAcicÞ

þ r � ðD�A;eff � rhcAcicÞ

� exlAxqx
hcAcic

hcAcic þ KA;eqKAx

� hcBcic

hcBcic þ KB;eqKBx
: ð61Þ

Here, the effective dispersion tensor for the species A, D�A;eff , is given
by

D�A;eff ¼ ðecDAcIþ K�1
A;eqexDAxÞ

þDAc
1
V

Z
AxcðtÞ

ncxbAc dAþ 1
V

Z
AcjðtÞ

ncjbAc dA

 !

þ K�1
A;eqDAx �

1
V

Z
AxcðtÞ

nxcbAxdAþ 1
V

Z
AxjðtÞ

nxjbAxdA

 !

� h~vcbAci: ð62Þ

Eq. (62) begins to make it more apparent how the microscale and
macroscale properties are related. Each of the area integrals shown
above represents quantities that influence the effective diffusion
coefficient of the porous media and biofilm system; such represen-
tations have been known for literally over one hundred years
[31,50]. It has been established in numerous studies that, for spa-
tially isotropic media, the effective diffusion coefficient is a function
of primarily the volume fraction of the fluid (or, in this case, the
fluid and biofilm) phases [45]. The final term on the right-hand side
of Eq. (62) represents a volume average of the fluctuations of the
velocity field, and this quantity is associated with hydrodynamic
dispersion.

The quantities that would have to be measured, or otherwise
estimated, in order to solve the closure problem for a representa-
tive unit cell are as follows: (1) the effective diffusion coefficient
for the biofilm, (2) the diffusion coefficient for the free fluid, (3)
the partitioning coefficient, KA,eq, if it is different from unity, (4)
the geometric structure of the fluid, solid, and biofilm phases with-
in the unit cell, and (5) the velocity field within the fluid phase. The
effective diffusion coefficient in biofilms can be either measured
experimentally (e.g. [60]) or estimated from previous theoretical
developments (e.g. [75]); the diffusion coefficient for free fluid

has been tabulated in the literature for a wide variety of dilute sol-
utes. The partitioning coefficient is taken to be unity for many sol-
utes, but for some (in particular, hydrophobic solutes) a
partitioning coefficient less than unity has been measured [36]. Fi-
nally, in principle both the geometric structure and flow field are
measurable at the microscale using a variety of experimental
methods (e.g., magnetic resonance imaging, as described by Sey-
mour et al. [55]). However, as discussed below, it may also be pos-
sible to use a representative unit cell that is abstracted from the
complexities of a fully three-dimensional complex unit cell that
maps biofilm, fluid, and solids separately at high resolution. The
reason that such abstractions can be useful is that in many in-
stances (e.g., the case of diffusion in isotropic porous media) the
actual physical geometry of the system is of secondary importance
compared with, for example, achieving the correct volume fraction
for each of the phases present. The issue of simplifications to the
unit cell will be explored further in the material that follows.

5. Results and discussion

In the closed form of the transport equation given by Eq. (61),
the expression of the effective parameter D�A;eff requires the knowl-
edge of the closure variables bAc and bAx, and this requires that the
differential equations describing the closure problem [Eqs. (48)–
(55)] be solved. In this section, we describe the solution to the clo-
sure problem and the calculation for the effective dispersion tensor
for two kinds of unit cells: (1) simple, and (2) complex.

5.1. Simple unit cells

As discussed above, the effective dispersion tensor depends on
integrals of the bAc and bAx fields that are defined by the closure
problem. In the solution of closure problems, geometries that are
substantially abstracted from the complexities of the real system
often still contain enough of the important physical features such
that they produce very accurate results. The most famous exam-
ples of this is Maxwell’s [31] and Rayleigh’s [50] solutions for the
effective conductivity of a two-material conductor; this same re-
sult is used extensively in describing the effective diffusion coeffi-
cient for multiphase systems (e.g. [22,75,78]).

It has been previously recognized (e.g. [79]) that ‘simple’ unit
cells tend to underestimate the magnitude of the effective disper-
sion tensor because they do not contain important particle–parti-
cle correlation in the unit cell structure. However, there is
essentially no a priori method to determine how much geometric
structure is sufficient to adequately represent the transport pro-
cesses within a unit cell. Part of the problem is that the structure
necessary depends upon the form of the mathematical operators
involved. To address this issue, different types of unit cells, repre-
sented in Fig. 3 and denoted from (a) to (d) were examined as de-
tailed below. Most important features which characterise unit cells
are gathered in Table 1. The volume fraction of the j-phase is kept
constant in all configurations and fixed at 0.3. We assume also that
there is no concentration jump between the fluid and biofilm
phases, i.e., KA,eq = 1.

The comparison of results obtained on these geometries has led
to a better understanding of the impact of the different character-
istic features on which the dispersion tensor depends – in particu-
lar its dependence on, (1) the diffusion coefficient value, (2) the
biofilm volume fraction, (3) the geometry and, (4) the dimensional
configuration (2D versus 3D).

The closure problem under consideration in this work is math-
ematically similar to this one detailed by Wood et al. [78] for trans-
port within a porous medium containing biofilm. Thus, we follow
essentially the same procedure here.



The adopted numerical model is based on a finite volume for-
mulation. The porous medium geometry is described by assigning
fluid, biofilm or solid properties to the block of Cartesian grid. A
grid of 250 � 250 nodes (200 � 200 � 200 in 3D) is used and pro-
vides sufficient resolution for obtaining accurate results. A conver-
gence analysis has confirmed independence of the results on grid
resolution. The first step consists of computing the velocity field
over the given unit cell. The discretisation of the Stokes equations
does not pose major problems and a classical Uzawa algorithm [19]
is adopted for computing the pressure. The convective transport
terms are discretised using an upstream scheme and numerical
dispersion is limited by locally correcting the diffusion terms
[49]. Finally, the resulting linear system is solved with the algo-
rithm BI-CGSTAB [66].

Numerical computations performed further for these different
configurations are given in terms of the cell Péclet number, defined
by Eq. (28), for values varying between 0.001 and 1000. The char-
acteristic length ‘c which appears in this expression is taken equal
to the unit cell length ‘, as illustrated in Fig. 3. As a comparison

note that, for bioreactors, Péclet numbers vary typically between
0.1 and 10. All computations are made for an averaged velocity
field in the x-direction. Thus, the xx-component of the dispersion
tensor corresponds to longitudinal dispersion.

5.1.1. Impact of the diffusion ratio DC: comparison between active and
passive dispersion – configuration (a)

We examined unit cell (a) for two distinct values of the diffu-
sion ratio, DC ¼ 0:001 and DC ¼ 1. In Fig. 4 this comparison is
shown for the longitudinal dispersion. For the first case DC ! 0
(i.e., the diffusion in biofilm phase is negligible), the problem re-
duces to the case of pure passive dispersion (cf. [70; Eq.
(3.3.40)]). The second simulation corresponds to the other limit
case where the diffusion coefficient in both phases is equal. By pas-
sive dispersion we mean that there is no adsorption or reaction at
Acx interface, and there is no transport from the c-phase into the
x-phase (cf. [46]). When there is multiphase transport and/or
reactions, the literature has adopted the terminology ‘active
dispersion’.

These results feature the classical distinct regimes for the flow
rate dependency of the effective dispersion tensor. At low Péclet
number (regime I represented in Fig. 4), solute dispersion is only
driven by diffusion phenomena. Note that in this regime the influ-
ence of biofilm activity is clearly pointed out. The biofilm phase
which is usually a region of lower diffusion, reduces dispersion
within the domain. When the Péclet number increases, a transition
regime (regime II) appears where both diffusion and convection
processes affect the dispersion. Finally, at high Péclet numbers (re-
gime III), dispersion phenomena predominate over solute transport
and D�A;xx (where D�A;xx is the notation that we have adopted for the

Fig. 3. Unit cells used for making computations.

Table 1
The physical parameters associated with various unit cells.

Parameter Unit cell

(a) (b) (c) (d)

Diffusion volume fraction (ex + ec) 0.70 0.70 0.70 0.70
Biofilm volume fraction ex 0.10 0.45 0.10 0.10
Packing configuration In-line In-line Staggered In-line
Dimensional configuration 2D 2D 2D 3D



xx-component of the dispersion tensor D�A;eff ) becomes exponen-
tially dependent on Péclet number. The power-law exponent, de-
noted by d, expressing this Péclet number dependence, varies as
a function of geometry as we will see later and is close to 1.8 here.
Both curves converge practically to the same asymptotic value. Dif-
fusion in the biofilm phase contributes to the slight reduction of
the effective dispersion coefficient observed.

5.1.2. Impact of the biofilm volume fraction – configuration (a) and (b)
An example of typical results for the xx-component of the dis-

persion tensor obtained for two different volume fractions of bio-
film (configuration a and b) is illustrated in Fig. 5. The diffusion
ratio, DC, is fixed at 0.5. It is clear from this figure that the biofilm
development significantly influences the dispersion phenomena at
low Péclet number values as well as at high ones. The more biofilm
volume fraction increases, the more the dispersion tensor compo-
nent decreases compared to the one predicted for the case of no
biofilm (ex = 0). As the biofilm grows, the volume fraction of the

biofilm ex increases; because the diffusion coefficient in the bio-
film is smaller than it is for the free fluid, this impacts the diffusive
portion of the dispersion tensor. Because of growth the volume
fraction of the fluid-phase, ec, contributing to the convection, de-
creases; the result of this is that the mechanical component of
the dispersion coefficient is also decreased.

5.1.3. Impact of the geometry – configuration (a) and (c)
The results reported in Fig. 6 illustrate the impact of geometry

on the longitudinal and transverse dispersion coefficients. Two
types of structure, in-line (unit cell a) and staggered (unit cell c),
are tested here. For these simulations, the diffusion ratio, DC, re-
mains equal to 0.5.

At low Péclet numbers (PeA < 1), the same value of the effective
diffusion is obtained for both geometries. This confirms that the
effective diffusion coefficient is essentially determined by the vol-
ume fractions of the three phases (cf. [45]). When Péclet number
increases (PeA > 1), convection becomes dominant in the dispersion
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process, and this causes the two different geometries to exhibit dif-
ferent behavior for the mechanical component of the dispersion
tensor. For a Péclet number of 1000, for instance, the values of
D�A;xx for in-line systems would be more than one order of magni-
tude larger than the values of D�A;xx for more complex systems. Sim-
ilar results were obtained for passive dispersion [46] and active
dispersion during migration of a NAPL pollutant [48], and it is also
consistent with the differences observed in a staggered and square
arrays by Knutson et al. [28].

The mass transfer process for an in-line arrangement of cylin-
ders is quite similar to the Taylor dispersion in a capillary tube,
which has a Péclet number dependence of the form

D�A;xx / Ped; ð63Þ

where d = 2 for the Taylor dispersion case [62,3]. From our numer-
ical results, the Péclet number dependence obtained for the two-
dimensional unit cell (a) yields and exponent of d = 1.8. For a stag-
gered two-dimensional unit cell arrangement, the exponent is

d = 1.5. This change of the Péclet number dependence is due to
the change in geometry structure of the periodic array. Note that
d decreases when ex increases for the staggered geometry; e.g.
d = 1.2 for ex = 0.3. As a comparison, this dependence is less pro-
nounced for the square geometry; e.g., for the unit cell (b) with
ex = 0.45, we obtain d = 1.67.

As the dispersion effects for the square packing are essentially
oriented in the flow direction, i.e., longitudinal, the substrate dis-
persion along the transverse direction is driven primarily by
molecular diffusion and does not vary significantly as a function
of the Péclet number. Unit cell (c) shows a more significant
dependence upon the Péclet number. At PeA = 103, for instance, a
ratio of D�A;xx=D�A;yy ¼ 10 is observed instead of the ratio
D�A;xx=D�A;yy ¼ 104 for the in-line configuration. The transverse dis-
persion is dramatically enhanced by the staggered arrangement
due to the nature more complex of the flow, which begins to ap-
proach the structure of a random arrangement (which is explored
in more detail below).
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Fig. 7. Comparison between 2D and 3D configurations. Results for unit cell (a) and (d) are shown with DC ¼ 0:5.



5.1.4. Impact of the dimensional configuration – configuration (a) and
(d)

In Fig. 7, we have illustrated the comparison between the longi-
tudinal dispersion coefficients developed from two-dimensional
and three-dimensional unit cells, respectively (as represented by
unit cell (a) and (d)). Both unit cells have equal volume fractions,
and DC is fixed at 0.5.

The qualitative behaviour of the dispersion tensor is roughly
similar for the two configurations. Thus, Péclet number depen-
dence obtained for the three-dimensional unit cell (d) is similar
to this observed for two-dimensional case, i.e., d = 1.8. At low Péclet
numbers, although volume fractions are equivalent, one does not
recover exactly the same dispersion coefficient due to differences
of biofilm thickness. This small discrepancy is amplified with
increasing Péclet numbers for the longitudinal dispersion coeffi-
cient. The reason for this is that two-dimensional systems generate
a more intense lateral convection than does the corresponding
three-dimensional system. Similar trends have been obtained for
active dispersion of NAPL [2].

The results thus far can be summarized as follows:

1. At low Péclet numbers, dispersion coefficient is essentially
determined by volume fractions of the system.

2. The geometry of the system (e.g., staggered versus in-line con-
figurations) influences both the magnitude and the rate of
increase (as measured by the power-law exponent, d) of the dis-
persion tensor components. The increase of biofilm volume
fraction contributes to reduce the dispersion at both low and
high Péclet numbers.

3. The qualitative behavior between 2D and 3D unit cells is simi-
lar, although the value of the longitudinal dispersion can be dif-
ferent in magnitude.

5.2. Complex unit cells

Although simple unit cells can be a useful abstraction, it is ulti-
mately best to compare with the results that would be predicted by
more realistically structured unit cells. It is known from many pre-
vious studies on pure passive dispersion that simple unit cells lead
to a quantitative behavior that is different from more complex dis-
ordered unit cells once one has a significant mechanical compo-
nent to dispersion. In this section, we examine the solution to
the closure problem in unit cells whose structure is taken from
magnetic resonance microscopy (MRM) used to generate tomo-
graphic mappings of a porous medium at micron-scale resolution.
In Fig. 8a, we have shown a small (7.5 mm diameter, 8 mm packed

length) column of nominally 250 lm polystyrene beads under sat-
urated conditions. This bead pack was imaged using T2-weighted
MRM methods at 30 lm isotropic resolution [30]. Although in
principle it may be ultimately possible to simultaneously image
the solid, fluid, and biofilm phases at a high isotropic resolution
using MRM, this is currently an area of active research (e.g. [56]).
Therefore, we have adopted the following strategy to generate a
reasonable distribution of biofilm within the measured porous
medium structure. First, we numerically increased the resolution
of the porous medium map to an isotropic 4 lm and generated a
reasonable representation of the biofilm phase by using a cellular
automaton model [41]. We obtained the medium structure illus-
trated in Fig. 8b whose volume fractions are ej = 0.57, ec = 0.31
and ex = 0.12. An appropriate characteristic length ‘c for use with
the Péclet number is the integral scale, Ixx

Ixx ¼
Z k¼1

k¼0
Cxxðx; xþ kÞdk: ð64Þ

Here Cxx is the (assumed spatially stationary) covariance func-
tion for the indicator function for the c-phase, wc(x), defined by

wcðxÞ ¼
1 for x located in the c-phase;
0 otherwise:

�
ð65Þ

Longitudinal and transverse components of the dispersion tensor
calculated on such geometry are presented in Fig. 9. Results are
compared with those obtained on a three-dimensional staggered
unit cell (similar to configuration (c) but in 3D) equivalent in terms
of volume fraction. Note that for this ordered unit cell, the two
transverse components are identical.

Several interesting remarks can be extracted from closure prob-
lems solved in this complex unit cell. First of all, at low Péclet num-
bers, predicted values of the dispersion tensor components for the
simple and the complex unit cells (with equal volume fractions)
are not identical. This suggests that it is not only the volume frac-
tions of each phase, but also the interface shape between biofilm
and fluid-phases, or at least, the local biofilm thickness, that is re-
quired to predict with accuracy the effective diffusivity. Moreover,
when the Péclet number increases, the discrepancy between the
longitudinal and transverse components of the dispersion tensor
is more pronounced for the simplified unit cell. This confirms the
observations made in Section 5.1.3. A more complex disordered
unit cell leads to results less sensitive to the pore-scale geometry
[59], and hence, to the velocity orientation. As a consequence,
simple macroscale parameters such as the volume fraction of the
phases and associated correlation lengths are not sufficient to cor-

Fig. 8. (a) Experimental column with a 250 lm diameter bead pack containing S. onidensis – (b) Unit cell constructed from MRI measurements. Isosurfaces for the solid (red)
and biofilm (blue) phases are illustrated. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)



rectly describe the dispersion phenomenon at high Péclet numbers.
In other words, for a particular porous medium, it may be required
that one characterizes fully a fairly large representative volume of
the porous medium if one wants to predict the dispersion tensor
with accuracy.

6. Validity of the upscaled model

6.1. Comparison with direct numerical simulation (DNS)

In this section, we compare results from the one-equation local
equilibrium model with those from direct simulations for transient
substrate transport in a three-phase system (solid, fluid, and bio-
film). In order to test the theoretical development leading to the
macroscopic equations and determine the domain of validity of
the local mass equilibrium assumption, numerical experiments
have been performed on nodular systems. Different types of sys-
tems have been used by varying volume fractions. A typical exam-
ple of such a medium, corresponding to 10 in-line unit cells of
dimension ‘ � ‘ each, is illustrated in Fig. 10. At the microscale,
the physical process will be two-dimensional and transient
whereas at the macroscale (associated with the one-equation mod-
el), it will be transient and one-dimensional. Eqs. (1)–(6) describe
the process at the local-scale in addition to the boundary condi-
tions given below

B:C:5 cAc ¼ c0 at x ¼ 0; ð66Þ
B:C:6 ny � ðDAcrcAc þ vccAcÞ ¼ 0 at y ¼ 0; ‘; ð67Þ
B:C:7 nx �DAcrcAc ¼ 0 at x ¼ L; ð68Þ
I:C: cAx ¼ cAc ¼ 0 at t ¼ 0: ð69Þ

Note that the velocity field vc, considered to be a known field, is
found by solving the Stokes equations numerically for the geometry
under consideration. In order to simplify the complexity of the
problem, we have assumed that the problem is not limited by mass
transfer of chemical species B. As a consequence, we will have
cBc = cBx = 1 everywhere and KBx� cBx. Thus, the dimensionless
form of the set of equations for the fluid/biofilm system, Eqs. (1)
and (6), reduces to

oc0Ax

ot0
¼ r � ðDC � rc0AxÞ � DaA

c0Ax

1þ c0
Ax

K 0Ax

in the x-phase; ð70Þ

oc0Ac

ot0
þ PeAv0c � rc0Ac ¼ r2c0Ac in the c-phase; ð71Þ

where

c0Ax ¼
cAx

c0
; c0Ac ¼

cAc

c0
; K 0Ax ¼

KAx

c0
; t0 ¼ tDAc

‘2 : ð72Þ

We have also assumed that there is no jump in species A concentra-
tion between the fluid and biofilm phases (i.e., Keq = 1). The dimen-
sionless velocity field that appears in Eq. (71) is obtained by directly
solving the Stokes equations within the porous network. From a
hydrodynamic point of view, the biofilm phase is treated as a solid
where we have imposed a no slip boundary condition at the fluid–
biofilm interface; the influence of fluid shear on the biofilm struc-
ture is not considered. This appears to be valid for low Reynolds
numbers. However, the mechanical interaction between the biofilm
and fluid is an area that should be investigated in future work. Con-
vergence analyses (not reported here) were conducted for these
simulations to assure that the numerical representation of the
transport phenomena were appropriately resolved. The conver-
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Fig. 10. Illustration of the geometry of the nodular system adopted for direct numerical simulations (ej = 0.28 � ex = 0.22 � ec = 0.5).
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gence analyses suggested that mesh refinement close to the fluid–
biofilm interface was required to correctly capture concentration
gradients.

Under the limitations of the analysis above, the Péclet and Dam-
köhler numbers are the only leading parameters controlling the
substrate transport and consumption within the system. All the
simulations presented below will be given in terms of both param-
eters. From these ‘numerical experiments’, exact values of volume
averaged concentrations of species under consideration can be ex-
tracted and compared with those predicted by the theory. As we
expect to find differences between theory and numerical experi-
ments near the zone with strong gradients, i.e., x = 0, we will com-
pare the transient elution curves at the outlet obtained from the
concentration field averaged on the last unit cell on the basis of
the equilibrium-weighted average concentration. In parallel, calcula-
tion of the effective dispersion coefficient has been performed on a
representative unit cell for the Péclet and Damköhler values of
interest and introduced in the one-equation local equilibrium
model.

6.2. Validity of the one-equation model

Both the microscale (DNS) and upscaled sets of equations were
solved using the commercial finite-element code COMSOL Multi-
physics 3.3, and the results of these simulations were compared.
The result of this comparison is represented in Figs. 11–13 for three
typical numerical conditions, respectively, PeA = 10�1 � DaA = 10�2,
PeA = 10 � DaA = 10, and PeA = 50 � DaA = 10�1; DC has been arbi-
trarily fixed at 0.25 and K 0Ax fixed at 0.5. A number of such direct
comparisons were performed; only three of the most informative
results are presented here. These results suggest that the local
mass equilibrium model is valid for the conditions PeA < 1 and
DaA < 1. If the one-equation model is not valid, then non-equilib-
rium conditions apply, and a more complex analysis will ulti-
mately be required. A diagram presenting the relationship among
the possible regimes (including the results from the simulations
performed) is presented in Fig. 14.

We could expect such a result from the observation of con-
straints given by Eqs. (31) and (32). Indeed, these relationships
may be rewritten in the form

OfDaAg � 1; ð73Þ
OfPeAg � 1: ð74Þ

Note that for PeA > 1 but DaA < 1, even if local equilibrium conditions
are not met, the one-equation model captures the correct behavior
for the zeroth and first moment of the elution curve; however, the
second moment (which is related to the effective dispersion tensor)
does not match. For such cases, the one-equation model may still be
suitable for applications, depending upon the accuracy required by
the user.

7. Conclusions

In this study, we have presented the equations describing the
reactive transport in a porous medium at the Darcy-scale within
a local equilibrium one-equation model. The constraints associated
with the local equilibrium condition and the closure problem
directing the effective properties have also been developed. We

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 20 40 60 80 100 
Dimensionless time 

Direct simulation 
Local equilibrium model 

D
im

en
si

on
le

ss
 c

on
ce

nt
ra

tio
n 

Fig. 11. Comparison between direct numerical simulation and the local equilibrium
model with PeA = 10�1 � DaA = 10�2.

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.0 0.5 1.0 1.5 2.0 
Dimensionless time 

Direct simulation 
Local equilibrium model D

im
en

si
on

le
ss

 c
on

ce
nt

ra
tio

n 

Fig. 12. Comparison between direct numerical simulation and the local equilibrium
model with PeA = 10 � DaA = 10.

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 0.1 0.2 0.3 0.4 

dimensionless time 

Direct simulation 
Local equilibrium model 

D
im

en
si

on
le

ss
 c

on
ce

nt
ra

tio
n 

Fig. 13. Comparison between direct numerical simulation and the local equilibrium
model with PeA = 50 � DaA = 10�1.



could thus evaluate the effective dispersion tensor through a com-
putational analysis of the closure problem and associated labora-
tory measurements required to determine the sub-pore-scale
parameters and geometry.

Different types of unit cell geometries have been used to calcu-
late the effective dispersion tensor. For the first series of results, we
used simple unit cells to describe the problem geometry. They al-
lowed capturing significant features evident in more complex rep-
resentations and significant insight can be gained on physical
mechanisms involved. The effective dispersion tensor was deter-
mined for a wide range of dimensionless parameters, including
the Péclet number, the biofilm volume fraction ex and the normal-
ized diffusivity DC. Our results suggest that these parameters,
linked with the presence of the biofilm phase, have a strong impact
on the calculation of D0eff .

Simple unit cells are known to provide reasonable qualitative
behavior for dispersion problems, but poor quantitative results.
In a first attempt to eliminate this limitation, we have solved the
closure problems on three-dimensional realistically structured
unit cells. For this latter need, high-resolution diffusion-weighted
nuclear magnetic resonance microscopy for tomographic measure-
ment of the distributions of the solid and fluid phases has been
used. In spite of the difficulty to recover experimentally such
geometry, we have been able to reconstruct the solid surface pro-
file of a real porous medium in three dimensions whereas the bio-
film phase was extrapolated from this reconstruction through a
cellular automata model. Results have illustrated the impact of real
porous medium complexity on the predicted tensor, especially at
high Péclet numbers.

It must be emphasized that the use of our model is limited by
the assumption of local mass equilibrium which is not always a va-
lid assumption. Development of theoretical constraints and associ-
ated direct numerical simulations have helped us to identify the
domain of validity which corresponds to PeA < 1 and DaA < 1. Both
approaches led to the same conclusion. To the best of our knowl-
edge, this kind of constraint has not been clearly defined in previ-
ous models. In this context, calculations performed for the
dispersion tensor show that a unit cell including only information
at the lower scale about volume fractions is globally accurate en-
ough to describe correctly the transport phenomenon within the
framework of a local mass equilibrium assumption. In practice, this

transport model, which ultimately needs to be coupled with a bio-
film growth model if we are interested in studying the complete
process of biodegradation, can be used for many applications as
well as in natural attenuation of organic contaminants in aquifers
than in wastewater biotreatment in packed bed reactors. However,
given the constraints associated to the Péclet and Damköhler val-
ues involved, this formulation is particularly appropriate for
groundwater systems where small characteristic pore sizes are
present, and where typical velocities encountered are small so that
the Péclet number constraint is met. The typical range of dimen-
sionless numbers for this kind of system is presented in Dykaar
and Kitanidis [15] and varies between 0.1 and 103 for the Péclet
and between 0 and 104 for the Damköhler. As the DaA value varies
proportionally to the square of the pore dimension, the grain size is
here a key parameter to determine whether such a model may be
applied. If we consider for instance the classical scenario of biodeg-
radation of TCE given as an example by Dykaar and Kitanidis [15],
the consumption of this contaminant ðDAc ¼ 9:0 � 10�6 cm2=sÞ by a
methanotrophic biofilm (qx = 0.03 g/cm3; lAx = 3.1 � 10�5 s�1 and
KAx = 4.2 � 10�7 g/cm3) in a coarse sand aquifer (‘c = 5 � 10�2 cm
with an average intrinsic velocity of 5 � 10�4 cm/s) leads to values
of 600 for DaA and 2.8 for PeA. On the contrary, the same calculation
but for a fine sand aquifer (‘c = 5 � 10�3 cm) leads to Péclet and
Damköhler values of 0.6 and 0.28, respectively, for which the LEA
approximation is verified. This indicates that PeA < 1 and DaA < 1
present somewhat severe restriction which do not apply in many
relevant cases. This suggests that the development of non-equilib-
rium models would be a useful effort for the future studies [34,35].

In conclusion, this model establishes two separate but impor-
tant goals:

1. It establishes via a formal upscaling procedure the proper form
of the macroscale equations, and the associated domain of
validity of the one-equation model. Additionally, the approach
provides an explicit connection between the macroscale effec-
tive parameters that are identified with the structure of the
microscale geometry and processes.

2. The approach provides a direct method for computing the effec-
tive macroscale parameters. When one has microscale geomet-
ric and process information for a representative unit volume,
then one can compute unambiguously the effective parameters
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Fig. 14. The domain of validity of the local mass equilibrium regime (red dots – microscale simulations under conditions of local mass equilibrium; yellow dots – microscale
simulations corresponding to local mass non-equilibrium conditions). (For interpretation of the references in colour in this figure legend, the reader is referred to the web
version of this article.)



that apply to the upscaled representation. The single largest dif-
ficulty in this computation is that it is not currently possible to
tell a priori what volume constitutes a ‘representative’ one, and
that ‘representativeness’ depends strongly upon the particular
processes of interest. To address this problem, one must essen-
tially conduct a kind of convergence analysis by adopting a set
of increasingly complex unit cells, and then examine conditions
for which the effective parameter no longer depends strongly
upon additional complexity within the unit cell.

These two results are each useful, depending upon the intended
purpose of the macroscale model that is developed. If one is inter-
ested only in establishing the proper form of the mass balance
equation and the domain of validity, then no extensive closure
problem needs to be solved. In essence, in this case, the parameters
would be treated as being empirically measurable, but one at least
has the confidence that the macroscale model that is adopted takes
a self-consistent, proper form. In the second case, one hopes that
some macroscale variables will be evidently highly correlated with
the macroscale parameters. From this study, for example, the re-
sults suggest that the macroscale effective dispersion tensor is cor-
related strongly with the volume fraction of the biofilm and fluid
phases, and with the correlation structure of the medium (i.e.,
the results from periodic and random media lead to different
behaviors). The goal for this second approach is that ultimately a
handful of such parameters can be established such that the effec-
tive dispersion tensor can be predicted with reasonable accuracy
for a wide range of media. Although this study represents only
an initial foray into the various kinds of media that might be
encountered, it nonetheless lays out an approach which can be
adopted in principle for any kind of structure within a representa-
tive volume characterized at the microscale.
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Appendix A. Development of the volume averaged equations

A.1. Averaging and simplifications

Although forming the volume average equations is conceptually
straight forward, it does involve significant algebraic effort. We
have provided the details of this development in this appendix.
In Fig. 1, we have illustrated the three-phase system (biofilm, fluid,
and solid) defining the microscale physical problem. The micro-
scale equations are provided in the body of the paper, and are
rewritten here for convenience

Biofilm phase

ocAx

ot
¼ r � ðDAx � rcAxÞ þ RAx in the x-phase; ðA:1aÞ

B:C:1 � nxj �DAx � rcAx ¼ 0 at Axj; ðA:1bÞ

B:C:2 � ncj �DAcrcAc ¼ 0 at Acj; ðA:1cÞ

B:C:3 cAc ¼ KA;eqcAx at Acx; ðA:1dÞ

B:C:4 � nxc �DAx � rcAx ¼ �nxc �DAcrcAc at Axc; ðA:1eÞ

Fluid phase

ocAc

ot
þr � ðvccAcÞ ¼ r � ðDAc � rcAcÞ in the c-phase: ðA:1fÞ

In Eq. (A.1a), RAx is the nonlinear reaction kinetic term

RAx ¼ �lAxqx
cAx

cAx þ KAx

cBx

cBx þ KBx
: ðA:2Þ

In the developments that follow, we assume that within the averag-
ing volume we can ignore variations in the parameters DAx; DAc;

lAx; qx; KA;x; KB;x, and KA,eq.
We wish to determine the macroscale transport equations that

apply at the scale of the averaging volume illustrated in Fig. 1. To
develop these expressions, we form the volume average of the
two phases in which there is non-negligible transport. We begin
by forming the superficial average of the transport equation for
the x-phase, Eq. (2), yielding

ocAx

ot

� �
¼ hr � ðDAx � rcAxÞi þ hRAxi: ðA:3Þ

For the system under study, microbial growth will create conditions
where the surface of biofilm phase moves at a velocity w due to the
increasing volume of the x-phase. Under these conditions the gen-
eral transport theorem [70] is required to interchange spatial inte-
gration and time differentiation,

General transport theorem

ocAx

ot

� �
¼ ohcAxi

ot
� 1
V

Z
AxcðtÞ

nxc �wcAx dA ðA:4Þ

For interchanging spatial differentiation and integration, we need to
make use of the spatial averaging theorem [24]. For three-phase sys-
tems, the averaging theorem takes the form [70]

Spatial averaging theorems

rcAxh i ¼ rhcAxi þ
1
V

Z
AxcðtÞ

nxccAx dAþ 1
V

Z
AxjðtÞ

nxjcAx dA; ðA:5Þ

rcAc
� 	

¼ rhcAci þ
1
V

Z
AcxðtÞ

ncxcAc dAþ 1
V

Z
AcjðtÞ

ncjcAc dA: ðA:6Þ

Applying Eqs. (A.4) and (A.5) to Eq. (A.3), we find

ohcAxix

ot
¼ r � hDAx � rcAi þ

1
V

Z
AxcðtÞ

nxc �wcAx dA

þ 1
V

Z
AxcðtÞ

nxc � ðDAx � rcAxÞdA

þ 1
V

Z
AxjðtÞ

nxj � ðDAx � rcAxÞdAþ hRAxix: ðA:7Þ

Applying Eq. (A.5) a second time and using the definition of the
intrinsic average (hcAxi = exhcAxix) yields

oðexhcAxixÞ
ot

¼ r � DAx �
 
exrhcAxix þ hcAxixrex

"

þ 1
V

Z
AxcðtÞ

nxccAx dAþ 1
V

Z
AxjðtÞ

nxjcAx dA

!#

þ 1
V

Z
ArbðtÞ

nxc �wcAx dA

þ 1
V

Z
AxcðtÞ

nxc � ðDAx � rcAxÞdA

þ 1
V

Z
AxjðtÞ

nxj � ðDAx � rcAxÞdAþ exhRAxix:

ðA:8Þ

We will adopt two simplifications to the averaged transport equa-
tion for the x-phase. The first is that the term involving convection



of the boundary can be neglected. Generally, the rate of biofilm
growth will yield a boundary flux that is much smaller than the dif-
fusive interfacial flux, i.e.,

nxc �wcAx � nxc �DAx � rcAx; ðA:9Þ

or, in other words, the time-scale associated to the geometry evolu-
tion is much longer than the other physical and chemical process
time scales. A similar restriction has been discussed in more detail
by Wood and Whitaker [71]. The second simplification is that the
nonlinear reaction term can be averaged to yield a result of the form

hRAxix ¼ �lAxqx
hcAxix

hcAxix þ KAx

hcBxix

hcBxix þ KBx
: ðA:10Þ

Although the reaction rate term is nonlinear, it is a particularly be-
nign nonlinearity that is bounded by linear forms in the limits
hcAxix� KAx, hcBxix� KBx and hcAxix	 KAx, hcBxix	 KBx.

For this reason, the averaged reaction rate can be put in the
form of Eq. (A.10) under the very mild restrictions. The develop-
ment of Eq. (A.10) and the restrictions associated with its use are
developed by Wood and Whitaker [73]. The simplified averaged
transport equation takes the form

Averaged equation for the biofilm

oðexhcAxixÞ
ot

¼ r � DAx �
 
exrhcAxix þ hcAxixrex

"

þ 1
V

Z
AxcðtÞ

nxccAx dAþ 1
V

Z
AxjðtÞ

nxjcAx dA

!#

þ 1
V

Z
AxcðtÞ

nxc � ðDAx � rcAxÞdA

þ 1
V

Z
AxjðtÞ

nxj � ðDAx � rcAxÞdA

� exlAxqx
hcAxix

hcAxix þ KAx

hcBxix

hcBxix þ KBx
: ðA:11Þ

The same basic procedure can be followed to develop the average of
Eq. (A.1e), yielding

oðechcAcicÞ
ot

þhr � ðvccAcÞi ¼r �
"
DAc ecrhcAcicþhcAcicrec



þ 1
V

Z
AxcðtÞ

ncxcAc dA

þ 1
V

Z
AxjðtÞ

ncjcAc dA

!#

þ 1
V

Z
AxcðtÞ

ncx � ðDAcrcAcÞdA

þ 1
V

Z
AxjðtÞ

ncj � ðDAcrcAcÞdA; ðA:12Þ

Here we have imposed a constraint similar to the inequality (A.9)

ncx �wcAc � ncx �DAcrcAc; ðA:13Þ

that allows us to neglect the convective flux that arises from the
growth of the microbial phase.

The velocity term that appears in Eq. (A.12) requires some spe-
cial treatment. First note that by the spatial average theorem

hr � ðvccAcÞi ¼ r � hvccAci þ
1
V

Z
AcxðtÞ

ncx � vccAc dA

þ 1
V

Z
AcxðtÞ

ncj � vccAj dA: ðA:14Þ

Note that at the c–j and the c–x interfaces the normal convec-
tive flux is identically zero, allowing Eq. (A.14) to be simplified to

hr � ðvccAcÞi ¼ r � hvccAci: ðA:15Þ

To simplify further, we define the spatial decompositions

vc ¼ hvcic þ ~vc; ðA:16aÞ
cAx ¼ hcAxix þ ~cAx; ðA:16bÞ
cAc ¼ hcAcic þ ~cAc; ðA:16cÞ

so that

r � hvccAci ¼ r � hhvcichcAcic þ ~vchcAcic þ hvcic~cAc þ ~vc~cAci: ðA:17Þ

For the purposes of this analysis, we will impose the restrictions

h~vchcAcici � h~vc~cAci; ðA:18Þ
hhvcic~cAci � h~vc~cAci: ðA:19Þ

These restrictions have been examined in more detail by Whi-
taker [70, Sections 3.2.1, 3.2.3, 3.3.1]. When this restriction is valid,
Eq. (A.14) can be simplified to the form

hr � ðvccAcÞi ¼ r � ðechvcichcAcicÞ þ r � h~vc~cAci: ðA:20Þ

Substituting Eq. (A.20) into the volume averaged representation
given in Eq. (A.12) yields

Averaged equation for the fluid

Eqs. (A.11) and (A.21) represent the volume averaged equa-
tions for the x- and c-phases, respectively. One difficulty with
these expressions is that the microscale concentrations cAc and
cAx still appear on the right-hand side of the equation, so the
equations are not yet closed (i.e., the independent variables are
not yet expressed solely in terms of averages). Additionally, the
equations are nonlocal in the sense of Cushman and Ginn [13].
We will discuss the method for closing the averaged equations
in more detail below. First, however, we will examine the prob-
lem of nonlocality, and the constraints required to localize the
transport equations.

oðechcAcicÞ
ot|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Accumulation

þr � ðechvcichcAcicÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Convection

¼ r � DAcðecrhcAcic þ hcAcicrec þ
1
V

Z
AxcðtÞ

ncxcAc dAþ 1
V

Z
AxjðtÞ

ncjcAc dAÞ
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Diffusion

þ 1
V

Z
AxcðtÞ

ncx � ðDAcrcAcÞdAþ 1
V

Z
AxjðtÞ

ncj � ðDAcrcAcÞdA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interfacial Flux

�r � h~vc~cAci|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Dispersion

: ðA:21Þ



A.2. Length-scale constraints for localisation

To eliminate the microscale concentration that appears in the
area integrals in Eqs. (A.11) and (A.21), we decompose the concen-
tration using Eq. (A.16). For example, for the first two area integrals
on the right-hand side of Eq. (A.11) one finds

1
V

Z
AxcðtÞ

nxccAx dAþ 1
V

Z
AxjðtÞ

nxjcAx dA

¼ 1
V

Z
AxcðtÞ

nxchcAxix dAþ 1
V

Z
AxjðtÞ

nxjhcAxix dA

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

nonlocal terms

þ 1
V

Z
AxcðtÞ

nxc~cAx dAþ 1
V

Z
AxjðtÞ

nxj~cAx dA: ðA:22Þ

Eq. (A.22) still contains nonlocal terms because for any fixed point x,
the equation for the volume average will depend on upon averages
at all points on Axc and Axj within the averaging volume. Under
many circumstances, it may be valid to neglect the variation of
the average concentration within the averaging volume. To develop
explicit restrictions for these conditions, we expand the concentra-
tion hcAxix in a Taylor series

hcAxixjxþyx
¼ hcAxixjx þ yx � rhcAxixjx

þ 1
2

yxyx : rrhcAxix
����
x
þ � � � ðA:23Þ

Substituting this relation into Eq. (A.22) yields terms of the
form

1
V

Z
AxcðtÞ

nxchcAxix dAþ 1
V

Z
AxjðtÞ

nxjhcAxix dA

( )

¼ 1
V

Z
AxcðtÞ

nxc dAþ 1
V

Z
AxjðtÞ

nxj dA

( )
hcAxixjx

þ 1
V

Z
AxcðtÞ

nxcyx dAþ 1
V

Z
AxjðtÞ

nxjyx dA

( )
�rhcAxix

��
x þ � � �

ðA:24Þ

Quintard and Whitaker [48] have provided a detailed analysis of
the area integrals that appear on the right-hand side of Eq. (A.24).
Their analysis suggests that the second and higher terms in the

expansion are negligible relative to the first under the following
constraints

‘x � R0; ðA:25aÞ
R2

0 � L2; ðA:25bÞ

where R0 is the radius of the averaging volume, ‘x is the charac-
teristic length defining the microscale (e.g., the mean biofilm
thickness), and L is the characteristic length defining the macro-
scale (e.g., the integral scale of the x-phase indicator function).
Assuming that these constraints are met, the second and higher
terms in the expansion can be neglected relative to the first, and
Eq. (A.22) takes the form (dropping the explicit notation of the
dependence upon x)

1
V

Z
AxcðtÞ

nxccAx dAþ 1
V

Z
AxjðtÞ

nxjcAx dA

¼ 1
V

Z
AxcðtÞ

nxc dAþ 1
V

Z
AxjðtÞ

nxj dA

( )
hcAxix

þ 1
V

Z
AxcðtÞ

nxc~cAx dAþ 1
V

Z
AxjðtÞ

nxj~cAx dA: ðA:26Þ

Finally, note that the averaging theorem can be used [by setting
cAx = 1 in Eq. (A.5)] to show

1
V

Z
AxcðtÞ

nxc dAþ 1
V

Z
AxjðtÞ

nxj dA

( )
¼ �rex; ðA:27Þ

and use of this in Eq. (A.26) gives

1
V

Z
AxcðtÞ

nxccAx dAþ 1
V

Z
AxjðtÞ

nxjcAx dA

¼ �hcAxixrex þ
1
V

Z
AxcðtÞ

nxc~cAx dA

þ 1
V

Z
AxjðtÞ

nxj~cAx dA: ðA:28Þ

A similar result holds for the c-phase. When relation given by
Eq. (A.28) is substituted in the conservation equation for hcAxix,
Eq. (A.11), we obtain

Averaged equation for the biofilm (x-phase)

and after a similar substitution in the conservation equation for
hcAcic we find

oðexhcAxixÞ
ot|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Accumulation

¼ r � exDAx � rhcAxix þ
1

Vx

Z
AxcðtÞ

nxc~cAx dAþ 1
Vx

Z
AxjðtÞ

nxj~cAx dA

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Diffusion

� 1
V

Z
AxcðtÞ

nxc � ðDAx � rcAxÞdAþ 1
V

Z
AxjðtÞ

nxj � ðDAx � rcAxÞdA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interfacial Flux

þ exhRAxix|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Reaction

; ðA:29Þ



Averaged equation for the fluid (c-phase, incompressible flow)

Here we have used the definitions

ex=Vx ¼ 1=V; ðA:31Þ
ec=Vc ¼ 1=V: ðA:32Þ

Additionally, note that we have simplified the convection term in
Eq. (A.30) by assuming that the flow field is incompressible, i.e.,

r � ðechvcicÞ ¼ 0: ðA:33Þ

Eqs. (A.29) and (A.30) form the basis for our analysis of the one-
equation model.

At this point, the fundamental discussion concerns the assump-
tion of local mass equilibrium or local mass non-equilibrium. This is-
sue is common to all reactive problems. Globally, two major classes
of macroscopic models can be developed depending on the
assumption made. If local mass equilibrium models have received
a large attention in the past due their simplicity [e.g., Kansa et al.
[25]; cf. Morales-Zarate et al. [37] for the application to a reactive
three-phase system], specific precaution must be taken with reac-
tive systems for which the assumption of small gradients is some-
times hard to verify [44,33]. Intrinsically, indeed, the presence of
reactive source terms induce concentration gradients which can
be more or less important. In the case of interest, however, given
the large heterogeneity of kinetics and hydrodynamical parame-
ters values encountered in real systems [15,67] leading to varia-
tions of several orders of magnitude of characteristic
dimensionless numbers, such a simplified macroscale approach
can be useful. A practical example of biodegradation in situ based
on real data for which this assumption of local equilibrium can
be considered, is be detailed in Section 7.

Appendix B. The closure problem

B.1. Derivation of the deviation conservation equations

To develop the governing differential equation for the deviation
concentrations, we begin by subtracting the averaged equations
from the point equations. For the development of the closure prob-
lem, we will neglect variations in time of the volume fractions ex
and ec (this is consistent with our earlier assumption that the
velocity of the biofilm–fluid interface could be neglected). In other
words, we have posed the restrictions

hcAxix
oex

ot

����
����� ex

ohcAxix

ot

����
����; hcAcic

oec

ot

����
����� ec

ohcAcic

ot

����
���� ðB:1Þ

for the development of the closure problem. The resulting forms for
the microscale and averaged equations are

Microscale equations

ocAx

ot
¼ r � ðDAx � rcAxÞ þ RAx in the x-phase; ðB:2Þ

ocAc

ot
þ vc � rcAc ¼ r � ðDAc � rcAcÞ in the c-phase: ðB:3Þ

Averaged equations

ohcAxix

ot
¼ r � ðDAx � rhcAxixÞ þ ðe�1

x rexÞ � ðDAx � rhcAxixÞ

þ e�1
x r � exDAx �

1
Vx

Z
AxcðtÞ

nxc~cAx dA

 "

þ 1
Vx

Z
AxjðtÞ

nxj~cAxdA

!#

þ e�1
x

1
V

Z
AxcðtÞ

nxc � ðDAx � rcAxÞdA

þ e�1
x

1
V

Z
AxjðtÞ

nxj � ðDAx � rcAxÞdAþ hRAxix;

ðB:4Þ

ohcAcic

ot
þ hvcic � rhcAcic ¼ r � ðDAcrhcAcicÞ

þ ðe�1
c recÞ � ðDAcrhcAcicÞ

þ e�1
c r � ecDAc

1
Vc

Z
AxcðtÞ

ncx~cAc dA

 "

þ 1
Vc

Z
AxjðtÞ

ncj~cAc dA

!#

þ e�1
c

1
V

Z
AxcðtÞ

ncx � ðDAcrcAcÞdA

þ e�1
c

1
V

Z
AxjðtÞ

ncj � ðDAcrcAcÞdA

� e�1
c r � h~vc~cAci: ðB:5Þ

Before continuing, note that we can make some simplifications to
Eqs. (B.4) and (B.5). Note that in these equations area integrals that
involve the microscale concentrations are still present. We can
adopt the decompositions described in the main body of the paper,
i.e. Eqs. (15) and (16), to express these integrals in terms of the
average concentration. For example, in Eq. (B.4) we have

e�1
x

1
V

Z
AxcðtÞ

nxc � ðDAx � rcAxÞdAþ
Z

AxjðtÞ
nxj � ðDAx � rcAxÞdA

( )

¼ e�1
x

1
V

Z
AxjðtÞ

nxj dAþ
Z

AxcðtÞ
nxc dA

( )
� ðDAx � rhcAxixÞ

þ e�1
x

1
V

Z
AxjðtÞ

nxj � ðDAx � r~cAxÞdA

(

þ
Z

AxcðtÞ
nxc � ðDAx � r~cAxÞdA

)
: ðB:6Þ

Note that in this expression we have removed the average quanti-
ties from under the integrals as discussed in Appendix A (Section
A.2). In Appendix A, we also developed the relationship

1
V

Z
AxcðtÞ

nxc dAþ 1
V

Z
AxcðtÞ

nxc dA

( )
¼ �rex; ðB:7Þ

and combining this with Eq. (B.6) yields

oðechcAcicÞ
ot|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Accumulation

þ echvcic � rhcAcic|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Convection

¼ r � ecDAc rhcAcic þ
1

Vc

Z
AxcðtÞ

ncx~cAc dAþ 1
Vc

Z
AxjðtÞ

ncj~cAc dA

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Diffusion

þ 1
V

Z
AxcðtÞ

ncx � ðDAcrcAcÞdAþ 1
V

Z
AxjðtÞ

ncj � ðDAcrcAcÞdA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interfacial Flux

� r � h~vc~cAci|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Dispersive Transport

: ðA:30Þ



e�1
x
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Z
AxcðtÞ

nxc � ðDAx � rcAxÞdAþ
Z

AxcðtÞ
nxc � ðDAx � rcAxÞdA

( )

¼ �e�1
x rex � ðDAx � rhcAxixÞ

þ e�1
x

1
V

Z
AxjðtÞ

nxj � ðDAx � r~cAxÞdA

(

þ
Z

AxcðtÞ
nxc � ðDAx � r~cAxÞdA

)
: ðB:8Þ

Finally, substituting this result back into Eq. (B.4) gives the simpli-
fied averaged equation for the x-phase

ohcAxix

ot
¼ r � ðDAx � rhcAxixÞ þ e�1

x r

� exDAx �
1

Vx

Z
AxcðtÞ

nxc~cAx dAþ 1
Vx

Z
AxjðtÞ

nxj~cAx dA

 !" #

þ 1
Vx

Z
AxcðtÞ

nxc � ðDAx � r~cAxÞdA

þ 1
Vx

Z
AxjðtÞ

nxj � ðDAx � r~cAxÞdAþ hRAxix: ðB:9Þ

A similar analysis for the c-phase (Eq. (B.5)) gives

ohcAcic

ot
þ vcic � rhcAcic ¼ r � ðDAcrhcAcicÞ

þ e�1
c r � ecDAc

1
Vc

Z
AxcðtÞ

ncx~cAc dA

 "

þ 1
Vc

Z
AxjðtÞ

ncj~cAc dA

!#

þ 1
Vc

Z
AxcðtÞ

ncx � ðDAcr~cAcÞdA

þ 1
Vc

Z
AxjðtÞ

ncj � ðDAcr~cAcÞdA

� e�1
c r � h~vc~cAci: ðB:10Þ

To develop conservation equations for the deviation quantities we
subtract the macroscale equation from the microscale equation.
Subtracting Eq. (B.9) from Eq. (B.2) and Eq. (B.10) from Eq. (B.3) gen-
erates deviation equations that take the form

Deviation equation – biofilm phase

o~cAx

ot
¼r � ðDAx � r~cAxÞ � e�1

x r

� exDAx �
1

Vx

Z
AxcðtÞ

nxc~cAx dAþ 1
Vx

Z
AxjðtÞ

nxj~cAx dA

 !" #

� 1
Vx

Z
AxcðtÞ

nxc � ðDAx � r~cAxÞdA

� 1
Vx

Z
AxjðtÞ

nxj � ðDAx � r~cAxÞdAþ ðRAx � hRAxixÞ; ðB:11Þ

Deviation equation – fluid-phase

o~cAc

ot
þr � ðvccAcÞ � hvcic � rhcAcic

¼ r � ðDAcr~cAcÞ

� e�1
c r � ecDAc

1
Vc

Z
AxcðtÞ

ncx~cAc dAþ 1
Vc

Z
AxjðtÞ

ncj~cAc dA

 !" #

� 1
Vc

Z
AxcðtÞ

ncx � ðDAcr~cAcÞdA

� 1
Vc

Z
AxjðtÞ

ncj � ðDAcr~cAcÞdAþ e�1
c r � h~vc~cAci: ðB:12Þ

Although Eqs. (B.11) and (B.12) are complex, these expressions can
be additionally simplified. To begin with, we note that the reaction
deviation term is generally negligible relative to the diffusive term

ðRAx � hRAxixÞ � r � ðDAx � r~cAxÞ: ðB:13Þ

A restriction for this has been developed by Wood and Whitaker
[73], and takes the form

DAx

‘x
	 lAx

KAx

~cAc

~cBc

� �
: ðB:14Þ

Further estimates for the deviation terms that appear in this restric-
tion can be found by following developments similar to those of
Wood and Whitaker [71]. For this work, we will assume that the
restriction given by Eq. (B.14) is valid.

For the c-phase note that using the decompositions given by
Eqs. (A.16a) and (A.16c), the microscale convection term can be
put in the form

r � ðvccAcÞ ¼ vc � rcAc ¼ ðhvcic þ ~vcÞ � ðrhcAcic þr~cAcÞ
¼ hvcic � rhcAcic þ ~vc � rhcAcic þ vc � r~cAc: ðB:15Þ

Use of this result in Eq. (B.12) gives

o~cAc

ot
þ ~vc � rhcAcic þ vc � r~cAc

¼ r � ðDAcr~cAcÞ � e�1
c r

� ecDAc
1

Vc

Z
AxcðtÞ

ncx~cAc dAþ 1
Vc

Z
AxjðtÞ

ncj~cAc dA

 !" #

� 1
Vc

Z
AxcðtÞ

ncx � ðDAcr~cAcÞdA� 1
Vc

Z
AxjðtÞ

ncj

� ðDAcr~cAcÞdAþ e�1
c r � h~vc~cAci: ðB:16Þ

When the decompositions given by Eqs. (A.16a)–(A.16d) are used
with the boundary conditions given by Eqs. (3)–(6) and adopting
the simplifications described above, the closure problem can be sta-
ted as

Closure problem

o~cAx

ot
¼ r � ðDAx � r~cAxÞ � e�1

x r

� exDAx �
1

Vx

Z
AxcðtÞ

nxc~cAx dAþ 1
Vx

Z
AxjðtÞ

nxj~cAx dA

 !" #

� 1
Vx

Z
AxcðtÞ

nxc � ðDAx � r~cAxÞdA� 1
Vx

Z
AxjðtÞ

nxj

� ðDAx � r~cAxÞdA;

ðB:17aÞ

B:C:1 � nxj �DAx � r~cAx

¼ nxj � K�1
A;eqDAx � rfcAg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dispersive source

at Axj; ðB:17bÞ

B:C:2 � ncj �DAcr~cAc ¼ ncj �DAcrfcAg|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
dispersive source

; at Acj; ðB:17cÞ

B:C:3 ~cAc ¼ KA;eq~cAx; at Acx; ðB:17dÞ

B:C:4 ncx �DAx � r~cAx ¼ ncx �DAcr~cAc

þ ncx � ðIDAc � K�1
A;eqDAxÞ � rfcAg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dispersive source

at Acx; ðB:17eÞ



o~cAc

ot
þ ~vc � rhcAcic þ vc � r~cAc

¼ r � ðDAcr~cAcÞ � e�1
c r

� ecDAc
1

Vc

Z
AxcðtÞ

ncx~cAc dAþ 1
Vc

Z
AxjðtÞ

ncj~cAc dA

 !" #

� 1
Vc

Z
AxcðtÞ

ncx � DAcr~cAc

 �

dA� 1
Vc

Z
AxjðtÞ

ncj

� ðDAcr~cAcÞdAþ e�1
c r � h~vc~cAci: ðB:17fÞ

For the boundary conditions we have assumed that local mass equi-
librium is valid

hcAcic ¼ KA;eqhcAxix ¼ fcAg: ðB:18Þ

B.2. Derivation of the deviation conservation equations

~cAc ¼ bAc � rfcAg; ðB:19Þ
KA;eq~cAx ¼ bAx � rfcAg: ðB:20Þ

Closure problem

0 ¼ r � ðDAx � rbAxÞ �
1

Vx

Z
AxcðtÞ

nxc � ðDAx � rbAxÞdA

� 1
Vx

Z
AxjðtÞ

nxj � ðDAx � rbAxÞdA; ðB:21aÞ

B:C:1 � nxj � DAx � rbAx ¼ nxj �DAx|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dispersive source

at Axj; ðB:21bÞ

B:C:2 � ncj �DAcrbAc ¼ ncjDAc|fflfflfflffl{zfflfflfflffl}
dispersive source

; at Acj; ðB:21cÞ

B:C:3 bAc ¼ bAx; at Acx; ðB:21dÞ

B:C:4 ncx �DAx � rbAx ¼ ncx � KA;eqDAcrbAc

þ ncx � ðKA;eqIDAc �DAxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dispersive source

at Acx;

ðB:21eÞ

~vc þvc � rbAc ¼DAcr2bAc

�DAc

Vc

Z
AxcðtÞ

ncx � rbAcdAþ
Z

AxjðtÞ
ncj � rbAcdA

( )
;

ðB:21fÞ

Periodicity

bAcðrÞ ¼ bAcðrþ liÞ; ðB:21gÞ
bAxðrÞ ¼ bAxðrþ liÞ: ðB:21hÞ
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