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Capturing transition features around a wing by reduced-order modeling
based on compressible Navier—Stokes equations

Rémi Bourguet,a) Marianna Braza, Alain Sévrain, and Abdellatif Bouhad;i”
Institut de Mécanique des Fluides de Toulouse, 6 Allée du Professeur C. Soula, Toulouse 31400, France

The three-dimensional transition in the flow around a NACAO0012 wing of constant spanwise section
at Mach number 0.3, Reynolds number 800, and incidence 20° is investigated by direct numerical
simulation and reduced-order modeling. The interaction between the von Karman and the secondary
instabilities is analyzed. Irregular events in the flow transition modulating the spanwise undulation
are highlighted and quantified. These transition features, including “local intermittencies” in the
secondary instability pattern, are efficiently captured by a reduced-order model derived by means of
the Galerkin projection of the compressible flow Navier—Stokes equations onto a truncated proper

orthogonal decomposition basis.

I. INTRODUCTION

In the context of complex aerodynamic flow prediction,
the investigation of the transition to turbulence is a challeng-
ing issue, especially for design purposes. To this end, the
direct numerical simulation (DNS) is a powerful approach
for physical analysis of fundamental mechanisms of the flow
transition that appear at low Reynolds number and that per-
sist at high-Reynolds number regimes. The Reynolds number
is defined as Re=p..u..c/ u.., where p,., u.., and u., are fluid
upstream density, velocity, and dynamic viscosity, respec-
tively, and c is a characteristic length of the body, wing chord
length in the present study. However, this approach demands
a considerable number of degrees of freedom to capture the
flow physics. This is also the case for the large eddy simu-
lation (LES), as well as for hybrid (statistical-LES) turbu-
lence modeling, to achieve prediction at high Re. Therefore,
“physics-driven” reduced-order models (ROMs) are needed.
The transition to turbulence around wings at high Re was
analyzed by a great deal of works (e.g., Ref. 1), whereas it is
less studied at low and moderate Re. The period-doubling
mechanism in two-dimensional flows around a NACA0012
airfoil has been investigated in Ref. 2. In the incompressible
case, the onset of the three-dimensional transition in the
wake of a wing at high incidence has been studied in Ref. 3.
The transition induced by compressibility effects in the
high-transonic regime around a wing has been examined in
two dimensions® and in three dimensions.” These studies
quantified the predominant wavelengths concerning the
von Kéarman, shear layer, and secondary instabilities, and the
last analyzed the nature of the secondary instability by a
global oscillator model. These works reported the high com-
plexity of the flow transition in the incompressible and in the
high-transonic regimes. Therefore, in the present study,
three-dimensional transition phenomena are examined at the
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onset of compressibility effects as well as the ability of ROM
in estimating them appropriately.

During the past two decades, ROMs of low-Re periodic
and transient wall flows have been developed by means of
proper orthogonal decomposition (POD)-Galerkin approach
(e.g., Refs. 6 and 7). Recent studies have proven the effi-
ciency of such ROMs for the prediction of nearly periodic
and more chaotic three-dimensional flows on the basis of
DNS (Ref. 8) or LES,’ for example, and for turbulent flow
analysis and modeling.m’11 However, the majority of ROMs
focus on the incompressible Navier—Stokes equations and
only few studies deal with compressible flows. Assuming
isentropic conditions, ROMs for compressible cavity flows
have been developed.12 The difficulties induced by coupling
thermodynamic and kinematic state variables in the com-
pressible Navier—Stokes equations can be solved by consid-
ering an appropriate state formulation (Refs. 13 and 14, in
two dimensions). In the present study, this formulation is
utilized in the three-dimensional case and a consistent inner
product is considered for POD. The present ROM efficiency
is examined in respect of capturing three-dimensional transi-
tion features predicted by DNS, especially irregularities that
appear in space-time evolution of flow quantities. This is a
prerequisite before using ROM as a prediction tool for para-
metric studies within suitable confidence intervals. Section 11
briefly describes the numerical method. Section III focuses
on DNS results. Section IV presents the ROM and results
regarding its reliability.

Il. NUMERICAL METHOD

The complete, time-dependent Navier—Stokes equations
have been solved in three dimensions under a conservative
form, in a general nonorthogonal curvilinear coordinate sys-
tem. The ICARE/IMFT (Ref. 4) in-house finite volume soft-
ware for compressible flows around bodies has been em-
ployed. The Roe upwind scheme'® with monotonic upstream
schemes for conservative laws (MUSCL) approach16 has
been used for convection and pressure terms. Diffusion terms
have been discretized by central differences and temporal
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FIG. 1. (Color online) Instantaneous (a) isocontours of w; vorticity component at x;/c=2, (b) isosurface of Q criterion (Q=0.3) colored by isocontours of w;,
and (c) isosurfaces of Mach number (Ma=0.21/0.32/0.39). Dashed circles indicate irregularities in spanwise pattern.

terms by an explicit four-stage Runge—Kutta scheme. Space
and time schemes are second-order accurate. The computa-
tional domain is a C-type grid (369 X 89 X 101) of four chord
lengths (c) in the spanwise direction, 7¢ from the trailing
edge to the upstream outer boundary and 10c¢ from the lead-
ing edge to the downstream outer boundary. The
perfect gas equation is used as well as the Sutherland law
to define the dynamic viscosity. The boundary conditions
are no slip and constant temperature on the wing, the
upstream flow temperature 7,.,=300 K, Mach number
Ma=u,/\yRT,.=0.3, where y=1.4 is the polytropic coeffi-
cient and R=287 J kg™' K™! is the ideal gas constant, and
Reynolds number Re=800. Free stream conditions have been
imposed at the far field boundaries, except downstream of
the wing at the outlet boundary, where a first-order extrapo-
lation has been used for the unknown variables. Neumann-
type boundary conditions have been imposed on the lateral
boundaries of the computational domain at both ends of the
wing in a spanwise direction. Detailed grid convergence and
time-step studies have been previously performed in two and
three dimensions to ensure the validity of the software, as
well as numerical tests concerning the computational domain
size.*!” Moreover, the flow has been slightly perturbed by a
random field of small magnitude (107*u,,) introduced as free
stream boundary condition for the transverse velocity com-
ponent to shorten the transient phase toward appearance of
the secondary instability. This technique had been verified in
previous studies concerning similar flow conﬁgurations3’]8
where it was shown that the small perturbation magnitude
has no effect on the final instability development beyond
the transient phase. A two-dimensional simulation of the

same flow has been carried out by using the same grid
(369 X 89) in two dimensions.

lll. THREE-DIMENSIONAL TRANSITION IN THE FLOW
AROUND A WING

The flow around a NACAO0012 wing at 20° of incidence
in the above mentioned conditions exhibits a strong unsteady
character induced by the interaction between two instability
modes, the von Karman and the secondary instabilities. The
von Karman instability induces a nearly periodic alternating
leading/trailing edge vortex shedding illustrated in Fig. 1(a).
The Strouhal number associated with the fundamental fre-
quency of this instability has been evaluated on more than 40
vortex shedding events of the established three-dimensional
flow and is found equal to 0.55. This is in good agreement
with incompressible flow simulations.’ The secondary insta-
bility appears as a large spanwise wavelength undulation of
the von Karman vortex rows, accompanied by “braidlike”
structures of streamwise vorticity. This is illustrated in Fig.
1(b) by the isosurface of Q criterion.'® The spanwise wave-
length of the secondary instability is found in the range
N\;/c €[0.74,0.83]. Considering an ‘“equivalent bluff body”
length scale defined as [=c sin(20°), comparison can be
made with circular cylinder wake studies at equivalent Re
=800 sin(20°)=274. The A- and B-mode transition patterns
studied experimentally in Refs. 20 and 21 and numerically in
Ref. 18, for example, are characterized by A\;// €[3,4] and
N\3/1=1 wavelengths, respectively. In the present study, the
predicted wavelength N3/ € [2.2,2.4] could be related with
the development of the C-mode pattern set forward in Ref.
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FIG. 2. (a) u; as a function of time in 50 spanwise positions (x;/c=0.71, x,/¢=0.16). (b) us as a function of x;/c at t=10.4, same (x,,x,) location (plain
lines); predominant wavenumber « (squares). (c) Same as (b), 7=77.1. (d) PSD of u; along the span as a function of time, same (x,,x,) location; predominant

wavenumber k' (dashed line).

22. The C-mode transition, which has been observed in
wakes with forced asymmv:try,22 prescribed wavelength,23
and which was examined by a three-dimensional Floquet
analysis,zé"25 is characterized by an intermediate wavelength
N\3/1=2. The significant decrease in the Strouhal number in
the C-mode transition compared to two-dimensional case®
has not been observed in the present study. Furthermore, Fig.
1(b) shows spanwise events that modify the secondary insta-
bility pattern, as described in the following.

The present aerodynamic lift (C;) and drag (C,) coeffi-
cients are close to those reported in Ref. 3. The time-
averaged coefficients are C;=0.90 and Cd 0.45 in two di-
mensions, Cl—O 85 and C,;=0.43 in three dimensions. As in
case of previous DNS, a reduction in the time-averaged val-
ues and amplitudes of the lift and drag coefficients is ob-
served between two- and three-dimensional simulations. The
present results show that the main features of the flow con-
figuration of interest are rather similar to lower Mach num-
ber flows. However, compressibility effects arise in the
present case. In the acceleration region on the upper side of
the wing, the Mach number equals 0.45 and the relative den-
sity variations in the field are higher than 20% of the up-
stream density.

Figure 1(b) shows chaotic states in the spanwise evolu-
tion of the vortex filaments that have not been observed in

the incompressible case.” These consist of irregular appear-
ance of “rarefied” spanwise regions, where one spanwise-
periodic event is missing and an irregular vortex structure
appears instead, breaking the continuous undulation of the
von Kérman vortex rows [see indicated areas in Fig. 1(b)].
The present study aims at tracking these events and at quan-
tifying their impact in the flow transition. Figure 1(c) shows
isosurfaces of Mach number, also indicating an irregular
spanwise undulation and wavelength dispersion. The above
mentioned irregularities can be observed in the recirculation
region at the upper side of the wing, as illustrated in Fig.
2(a). In this figure and in the following, time is nondimen-
sionalized by chord length and upstream flow velocity. The
monitoring starts after approximately 20 von Karman vortex
shedding events. In Figs. 2(b) and 2(c), instantaneous span-
wise velocity profiles in the recirculation region are plotted.
Space/frequency analysis is carried out on these signals to
quantify the wavelength variation along the span. A spectral
analysis is performed along the span by considering a sliding
window of width 2Ax;=0.8c. The demodulated trans-
verse velocity signal (uf,f) is used to evaluate the predominant
wavenumbers. The demodulated signal is defined by
ul=us/A(us). The local amplitude A(us) is estimated owing
to the Hilbert transform H(us) by A(us)=|us+iH(us)|. The



predominant maximum energy wavenumbers [squares in
Figs. 2(b) and 2(c)] are plotted as functions of x;/c. These
are defined by «(x;,1)=arg max, -, P[XS—AX3,,\-3+AX3]“(3[(' ,1)
X (ko), where P, ,jv(-,7) denotes v spatial power spectrum
density (PSD) evaluated on the segment [a,b] along the span
at time 7. The Burg algorithm is applied for autoregressive
PSD estimation.”® A strong wavelength (phase) modulation
occurs along the span, as well as a large variation of the
velocity amplitude. In the region where the phase modulation
appears, there is a significant increase of the wavenumber of
the velocity signal related with irregular structure appear-
ance. Figure 2(d) shows the temporal evolution of the
spatial power spectrum of u; along the whole span within
the recirculation region. The predominant wavenumber
«'(t)=arg max, o Ppoacu3(-.1)(ko) exhibits a significant
variation as a function of time [qualitative plot, dashed line
in Fig. 2(d)]. This is closely associated with the occurrence
of phase and amplitude irregularities, as illustrated in Fig.
2(c). This phenomenon that appears randomly along the span
in time and space is called here “intermittency,” referring to
the regular pattern of the secondary instability. Local irregu-
larities can be associated with A-, B-, or C-mode transition in
bluff body wakes. In particular, the vortex dislocation
pattern21 or vortex-adhesion point22 consists of a junction of
two adjacent von Kdrmén vortex rows, as mentioned also in
the DNS study.18 Moreover, in the incompressible case,”’
depicted a “losangelike” modulation of the spanwise vortices
by using tomographic particle image velocimetry. The pres-
ently observed intermittencies have not been reported in the
incompressible case concerning the same flow” and therefore
are induced by flow compressibility. The origin of these ir-
regular events could be investigated by using elliptic stability
theory,28 on a single undulated vortex row excited by small
spanwise perturbations that could depend on Mach number.
This kind of study is beyond the objectives of the present
work that focuses on elaboration of a ROM, able to capture
the onset of compressibility, the secondary instability, and
the above mentioned intermittent irregularities.

IV. REDUCED-ORDER MODELING
FOR COMPRESSIBLE FLOWS

The ROM is constructed by performing a Galerkin pro-
jection of the compressible Navier—Stokes equations onto a
truncated POD basis. This needs an appropriate formulation
of the flow quantities, as well as a suitable, dimensionally
consistent, inner product for POD basis extraction, as explic-
ited in the following. This method was previously used to
derive ROM in the high-transonic re:gime.]4 The ROM ap-
proach relies on the assumption that the flow physics can be
described by a reduced number of degrees of freedom. The
present flow is governed by two main instabilities and shows
a strong nearly periodic character induced by the von
Karman vortex shedding. Therefore this flow is, a priori, a
good candidate for reduced-order representation. However,
the flow transition is characterized by irregular events that
are challenging to be captured by the low-dimensional ap-
proach. ROM method is detailed in Sec. IV A. ROM predic-
tion results are reported and discussed in Sec. IV B.

A. Reduced-order modeling method

In this section, a dimensionally consistent definition of
POD for compressible flows is set forward and the POD-
Galerkin approach is applied to the fully compressible flow
Navier—Stokes equations.

1. Proper orthogonal decomposition

In the context of model reduction, the POD is often used
to extract the most energetic modes that are able to recon-
struct the predominant flow structures. Assuming time-space
separation, the POD consists in expanding the vector of state
variables v as a linear combination of specific deterministic
spatial eigenfunctions,29

vix,r)=v(x) +0(x,1)

N, pod

=0(x) + > a;()®,(x) = v(x) + >, a;()D,(x).
=1

i=1
(1)

v and U are the mean and fluctuating state vectors. The state
formulation considered in the following is

v =[1/puy,uzu3.p]'. ()

p is the density, u; are velocity components, and p is the
pressure. The choice of this state formulation is justified in
Sec. IV A 2. Npoq is the number of retained POD modes. ¢;
are time-dependent functions and ®; are orthonormal spatial
modes. These are the successive solutions of the following
optimization problem:

@, =arg max (0-115,¥)’
wer2 ()¢

with (W, ¥)=1.

3)

The overline denotes time-averaging operator. QC R4 is
the spatial domain and d is the number of state variables
(d=5 in the three-dimensional case). II; is the orthogonal
projector onto the subspace spanned by the ith first modes.
(+,+) denotes the spatial inner product.

In the fully compressible case, the kinematic variables
are associated with two thermodynamic quantities. A dimen-
sionally consistent inner product is reached by a normaliza-
tion of each state variable contribution as follows:

d
1
o= = f vhondx, (4)
n=1 0-]1 Q
with
1 f()"'Ts
or=— J J o2drdx. (5)
Ts QO Ji

v' and v are two given states. ofl is the space-averaged
variance of the nth variable and 7 is the time interval of the
snapshot series. This inner product involves a systematic nor-
malization procedure previously used in Ref. 30. This ap-
proach avoids dependency on a given nondimensional for-
mulation of the governing equations. POD modes are

determined by means of “snapshot-POD” technique.31
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FIG. 3. (a) Relative statistical content of each POD mode, (b) relative sta-
tistical content of the truncated POD basis as a function of mode number,
concerning the two- and three-dimensional snapshot series.

2. POD-Galerkin model

The compressible Navier—Stokes equations are ex-
pressed as quadratic fluxes by means of the previously de-
fined state formulation (2), as reported in Ref. 13 for
i=1,2,3,

a(1/p)
ot

d(1/p)  du,
=2 _Z2(1p) =0,
ey 6xa( p)

du; du; dp dT;q
— +u,—+(1/p)— = (1/p)—=, 6
o e (1/p) ox, (1/p) o, (6)

Jap du,
—+yyp—+

ap _ yu & (plp)
y — =
ot X,

g
u —-1)— 17,3,
“ox, Pr (v )&xﬁ B

@

where 7;;=u(du;/ ox;+du;l dx;=2/3 du,/ dx,6;). Greek sub-
and superscripts are used to specify implicit summations in
previous expressions and in the following. u is the fluid dy-
namic viscosity, Pr=0.72 is the Prandtl number, and ; I is the
Kronecker symbol.

The Galerkin projection of the Navier—Stokes equations
(6) onto the truncated POD basis yields the following qua-
dratic polynomial ordinary differential equation (ODE) sys-
tem, for i=1,... ,Npod:

1.0
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FIG. 4. (Color online) Normalized two-point temporal correlation matrices
of the (a) two-dimensional and (b) three-dimensional flow simulations.

Npod Npod
a;=(C+C)+ 2 (Lij+ Li)a; + > Qjjrajay
j=1 k=1
=f{(C.L.a),

(7)
afto) = (v(-,1)) —v,®)).

Cy, L;j, and Q. coefficients are issued from the Galerkin
projection while C; and Lj; ones are additional calibration
coefficients included to ensure ROM accuracy as detailed in
the following. The constant coefficients issued from the

Galerkin projection are computed as follows:

Ci=(Fy, - A @), (8)
Lij=(F{an) + F oy = AT — Al @), )
Oijk = (Flisykst) = Al 1) i) (10)

A%, and F', terms involved in the implicit summations in
Egs. (8)—(10) are defined as follows: in the three-dimensional
case,
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, (11)

i _ : k
= | D

J (}]xi / ﬁxi
L ¥
0B 0]
/ &xi

) O Tiik
ox i
Tk

ox;

i >

H(1/p
q)j

Hle
i j
< (1) 9 T3ik
Plip 213
4 (}‘x,-

£rd(1/p) u
yu FOLD aPie
5. £ +(7_ 1) Taik

Pr (9)(12 Jax i

where 7= u(abLi/ ax;+ oD/ dx;—2/3 9D/ ax,8;)  and
(13:[3,(1)1 Y. ’(I)Npod]' In the ROM, p is assumed constant to
allow evaluation of all the ODE coefficients, once for all.
As reported in Ref. 7, dynamical systems issued from
the POD-Galerkin methodology can be structurally unstable
and even tend to be so for oscillatory flows. To ensure ROM
accuracy, different approaches have been envisaged in litera-
ture and especially calibration procedures (see, for example,

FIG. 6. (Color online) Selected POD mode isosurfaces, concerning the ki-
nematic and thermodynamic quantities: P{2=*52 m/s, P/=*9.6
X107 Pa, ®41=%7.1 m/s, ®"”==41 m/kg, d¥=%3.5 m/s, and
Pg2==*5.3 m/s. Light/dark gray: positive/negative valued isosurfaces.
Dashed circles indicate irregularities in spanwise pattern.

Ref. 32 for a review of ROM calibration approaches). A
linearized calibration method is adopted here in a similar
way to Ref. 9 in the incompressible case. This approach con-
sists in minimizing ROM prediction error with respect to
reference dynamics issued from the projection of DNS snap-
shots onto POD basis,

a'= (0.9, (13)
while controlling calibration cost. The linearized prediction
error is evaluated as

Npod to+T

E(CC,LC) = E

i=1 Y1,

(lfmd _ aFod(tO)

2

t
- J FACE,LE,a”Ydr' | dt, (14)
0]

where f; is the right-hand side of ROM (7). The error be-
tween reference dynamic derivatives and f;, that is insensi-
tive to accumulating phase errors, could also be envisaged
for large integration periods. The following normalized error
is considered in calibration procedure:

E(C,L)

—_—. (15)
E(ONpod’ONgod)

E(C,L°) =

The calibration cost measures the weight of the calibra-
tion coefficients compared to those issued from the Galerkin
projection [C; and L;; in Eq. (7)],



VR TN VNN N N W N W W N T T T T NN TN TN TN T N T TN WO T N O TN W N S T S S

0 1 2 3 4 5 6 7
Time
a
15 5 "n ’n l“ ':i' ® ®
¢ ¢ n ' b
1 ¢ ® ) @ 8 P o9
0 ) R § i)
¢ d P 0 ]
‘s 05 | ! g ® 4 1% 49
4 ) Py
0 b ¢ 4 !
Mo q P b P 1 q
0 | ! ® ¢ i)
3 -05 4 %4 P @ !
Y | ® P () O )
0“ “A” "n "0 \‘“ “"
-/ R L 4P X Qp
'1.5|||||llAlnA|||||||l|lllt||l|lllll
0 1 2 3 4 5 6 7
Time

2 o
< 15 ﬁ
(o)}
< 1
05 4
~
§ 0 ))
-0.5
3 D
-1
45 u)
'2....|.|..|.‘..|....|.O..|....|...1|.
0 1 2 3 . 4 5 6 7
Time

FIG. 7. Time-history of selected POD coefficients issued from: snapshot projection onto POD modes (a

0 1 2 3 4 5 6 7
Time

UV SO AV VNN N [N Y Y g O ] KR N | S . |

0 1 2 3 4 5 6 7
Time

asg/\/ Aag

'
-t

'
N

PR TT SNE T N T TT S N W TN TW  T T U S N  TT T I T N N WO S S W B

0 1 2 3 . 4 5 6 7
Time

rom
i

pod

Ped, circles) and ROM integration (a;°™", plain lines),

over four periods of the von Kdrman vortex shedding (snapshots temporal horizon).

2
IcTR, + IR
C(Ce L) = — 2t
ICtR,., + I,

The norms are defined by ||C||12vp dzCi and ||L||12\,2 =Liﬁ.
O d

The calibration coefficients C; and Lj; in Eq?0(7) are thus
found by minimizing the following function that balances
ROM prediction error and calibration cost by means of a
blending coefficient 0 < < 1:

J(C4,L, 6) = OE(C,LE) + (1 — O)C(C,LE).

(16)

(17)

Minimizing J is equivalent to solve N, linear systems of
size Npoq+ 1. The blending coefficient 6 can also be regarded

as a regularization parameter in the Tikhonov regularization
framework.***> ROM integration is ensured by a fourth-
order-accurate Runge—Kutta scheme.

B. ROM prediction

The time-dependent evolution of the flow transition in
two and three dimensions is studied by considering two dif-
ferent series of flow fields containing N,=400 snapshots
each. These data sets correspond to four periods of the es-
tablished von Kdrman vortex shedding. This time interval
(T,) is considered for both ROM calibration and integration.
The relative statistical content of each POD mode extracted
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from these snapshot series is measured by the relative mag-
nitude of the corresponding eigenvalue \; of the time/space
two-point correlation matrix, with Ay =0. This is shown in
Fig. 3, as well as the cumulative statistical content conveyed
by the POD basis, defined by

N
I = =B\
N

=N .
pod Ei=tl>\i

(18)

In Fig. 3(a), the first eigenvalues exhibit a pairwise coupling
as previously reported in Refs. 8 and 7 for periodic flows.
Because of the present flow nearly periodic character,
the eigenfunctions of the temporal correlation matrix are
close to real Fourier modes whose eigenvalues are pairwise
equal. The flow nearly periodic character is illustrated by
normalized  temporal  correlation  matrices  K(z,t")
=@(,0),0¢,'N/oC,)[o(-,#)|| in Fig. 4. The pairwise
coupling of the eigenvalues is less pronounced in the three-
dimensional flow that exhibits aperiodic events. Most of the
dynamic system statistical content is represented by the first
POD modes in both two- and three-dimensional cases. How-
ever, Fig. 3 shows that the three-dimensional flow, which
involves complex instability interactions compared to the
two-dimensional one, requires more POD modes for the
same /, Npod (representation quality). 7, Npod=99% is chosen as a
truncation criterion in the three-dimensional case and thus
28 modes are retained. For the two-dimensional flow, an
eight-dimensional POD basis is considered.

The statistical content captured by the present POD basis
beyond original snapshot series (1>7y+7,) is quantified
(Fig. 5). This is measured by

Npod to+T+T,
Iy =—2, f (v -v,®,)%dt (19)
d Tod 5y Jigar,
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FIG. 9. Relative L? prediction errors of (a) POD time-dependent coefficients
for each mode and (b) state vector fluctuations as a function of time, over
the time interval of the snapshot series. In (b), both POD basis truncation
and ROM errors are plotted.

since ||&7]|>=d for the original snapshot series if inner product
(4) is considered to define the norm. T, is the time interval of
the new snapshot series (one von Karman vortex shedding
cycle) and v are the new snapshots. A significant reduction
in POD basis efficiency/relevance (=~30%) is observed in the
three-dimensional case whereas the statistical content con-
veyed by the two-dimensional POD basis remains the same
because of the strictly periodic character of the two-
dimensional flow [Fig. 4(a)]. In the three-dimensional case,
this reduction is related to the appearance of the previously
mentioned aperiodic events. Considering this fact, ROM ef-
ficiency is examined over the original snapshots temporal
horizon ([ty,t,+T,]) in the present study.

Selected three-dimensional spatial POD modes are
shown in Fig. 6. Although they do not correspond to coher-
ent structures, the three-dimensional POD modes efficiently
identify the von Karmén and the secondary instabilities, in
the present case. The first pair combination in the flow-field
reconstruction yields the alternating vortex pattern. However,
this vortex pattern is highly modulated in the three-
dimensional case. This modulation is captured by the higher-
order modes, as shown in Fig. 6. For example, mode 3 is
related to the reconstruction of the secondary instability. This
mode clearly exhibits a local modification of the spanwise
pattern where intermittency of the secondary instability oc-
curs, as discussed in Sec. III (see indicated areas in Fig. 6).
Higher-order modes present less organized patterns and can
be associated with more chaotic phenomena related to the
interaction between the two instability modes.

The time histories of selected POD reference coefficients
a®® (13) are shown in Fig. 7. As expected, the first POD



FIG. 10. Unsteady aerodynamic (a) lift and (b) drag coefficients issued from
DNS, truncated POD basis representation, and ROM, as functions of time.

coefficients are close to periodic while higher-order ones are
not. The coefficients associated with the secondary instability
(modes 3 and 4) are approximately periodic at half frequency
compared to the von Karman instability. The higher-order
coefficients display significant amplitude and frequency
modulations.

While the uncalibrated three-dimensional ROM diverges
after approximately 1.5 vortex shedding periods, conver-
gence and satisfactory prediction are reached over the snap-
shots’ temporal horizon for the calibration cost C=11%. The
uncalibrated two-dimensional ROM yields qualitatively cor-
rect prediction over the four vortex shedding cycles. In the
following, a calibration cost threshold C=30% is arbitrarily
chosen for both two- and three-dimensional ROMs. Calibra-
tion diagram showing ROM linearized prediction error £
(15) as a function of the calibration cost C (16) in the three-
dimensional case is presented in Fig. 8.

As shown in Fig. 7 for the three-dimensional flow, the
calibrated ROM achieves prediction of the POD time-
dependent coefficients that provide an efficient flow recon-
struction even in case of nonperiodic evolutions, as detailed
at the end of the present section.

The relative L? prediction error of the temporal coeffi-
cients is defined by

g (20)

Ecoef(l-) - ,
( agod)z

where a;°™ are issued from ROM (7) integration. This error
remains small even for the higher order modes [Fig. 9(a)].
The accuracy of the ROM is confirmed by the low values of
the state vector prediction error over the entire spatial do

FIG. 11. (Color online) Instantaneous isocontours at final ROM integration
time (#=7.239): (a) the pressure coefficient at x;/c=2, (b) the transverse
velocity component at x,/c=1.5 [(x3,x,) plane]. Red dashed line in (a):
location of plane (x3,x,) in (b). DNS: plain isolines and isocolor contours.
ROM: dashed isolines. Instantaneous isosurfaces of w;=-1/1 and w,
=-0.5/0.5 in the wake, at final ROM integration time (r=7.239). (c) DNS;
(d) ROM.

main [Fig. 9(b)]. POD and ROM errors are defined by
EPd(r)=e(a?™,t) and E°™(f)=e(a™™, 1), respectively, where

||5("’) - Eﬁpf’dai(t)(pi”
B0

ela,n) = (21)

The difference between ROM and POD errors is very small.
This means that the major part of the ROM error with respect
to “high-fidelity” results is induced by the POD basis trun-
cation in both two- and three-dimensional cases.

The instantaneous aerodynamic coefficients can be de-
termined from the state vector predicted by the ROM since
the state vector includes both kinematic and thermodynamic
variables. These coefficients present a good comparison with
those predicted by DNS (Fig. 10). This is an interesting as-
pect concerning the use of ROM in design procedures. In-
stantaneous flow fields issued from DNS and ROM are com-
pared at the final ROM integration time (last snapshot) in
Fig. 11. The pressure coefficient is accurately estimated by
the present reduced-order approach [Fig. 11(a)]. Moreover,
the spanwise pattern including irregularities of the secondary
instability is well captured [Figs. 11(b)-11(d)].



V. CONCLUSION

The three-dimensional transition in the flow around a
NACAO0012 wing of constant spanwise section, at low Mach
number and high incidence, has been investigated. The ap-
pearance of preferential wavenumbers due to the von
Karman and secondary instabilities has been analyzed. Inter-
mittent modulations of the secondary instability have been
identified and quantified. The transition process has been
captured by an appropriate ROM derived from the compress-
ible flow Navier—Stokes equations by means of the POD-
Galerkin approach.

A consistent inner product has been set forward for POD
in compressible flow context where kinematic and thermo-
dynamic variables are coupled. A specific state formulation
allowed to derive, by Galerkin projection of the high-fidelity
model onto POD basis, a low-dimensional nonlinear ODE
system relevant to the prediction of main flow features.
ROM accuracy was ensured by a suitable calibration proce-
dure balancing ROM ability in simulating reference flow
previously resolved by DNS and respect of the high-fidelity
model.

The present ROM provides an efficient simulation of
both kinematic and thermodynamic quantities. In particular,
an accurate prediction of the irregular events occurring in the
secondary instability pattern was achieved considering a
strongly reduced number of degrees of freedom compared to
DNS. ROM reliability has been assessed for flows previously
resolved by DNS, with an emphasis on the capture of devia-
tions from periodicity. Therefore, this study demonstrates
the relevance of the POD-Galerkin approach for low-
dimensional modeling of the transition to turbulence in the
flow around a wing at the onset of compressibility.

A prospect of the present work is the investigation of
ROM reliability beyond snapshots and calibration temporal
horizon and for the prediction of flows not previously simu-
lated by DNS. In this context, low-dimensional models are
generally not expected to predict exactly all erratic perturba-
tions about dominant flow features and in that case, a further
reduction in the number of degrees of freedom could be en-
visaged in the present model toward least-order modeling. In
the domain of applications, ROM can be regarded as a pow-
erful “physics-based” interpolator for parametric studies in
optimal shape design, for example, as well as a key enabler
for multiphysics simulations, especially in fluid-structure
interaction.
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