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Abstract

In this chapter, we provide an introduction to Anomaly Detection
and potential applications in manufacturing using Control Charts and
Machine Learning techniques. We elaborate on the peculiarities of
process monitoring and Anomaly Detection with Control Charts and
Machine Learning in the manufacturing process and especially in the
smart manufacturing contexts. We present the main research direc-
tions in this area and summarize the structure and contribution of the
book.

1 Scope of the Research Domain

Anomaly Detection is a set of major techniques with an aim to detect rare
events or observations that deviate from normal behavior. Process moni-
toring and Anomaly Detection are becoming increasingly important to en-
hance reliability and productivity in manufacturing by detecting abnormal-
ities early. For example, a vibration level in an electric motor exceeding
the permissible threshold can be considered as an anomaly, it might not
be considered as a fault. However, if the vibration level continues to rise
and leads to motor destruction, it can be considered as faulty. Therefore,
Anomaly Detection can provide advantages to manufacturing companies by
reducing their downtime due to machine breakdowns by detecting a fail-
ure before this results in a catastrophic event that may cause degradation
of the process and product(Lindemann et al. 1). There have been various
data-driven and model-based approaches to detect anomalies occurring in
manufacturing systems. The most common approach to Anomaly Detection
includes Control Charts and Machine Learning methods. In manufacturing,
Control Charts are effective tools of Statistical Process Control(SPC) for
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continuously monitoring a process as well as detecting process abnormali-
ties to improve and optimize the process. There are many different types
of Control Charts that have been developed for this purpose. In addition,
Machine Learning methods have been used a lot in detecting anomalies with
different applications in manufacturing such as, detecting network attacks,
detecting abnormal states in machines. Finally, the interference of these two
techniques is also found in literature such as the design of Control Charts,
anomaly signal interpretation, and pattern recognition in Control Charts
using Machine Learning techniques.

In recent years, the rapid development and wide application of advanced
technologies have profoundly impacted industrial manufacturing. The re-
cent development of information and communication technologies such as
smart sensor networks and the Internet of Things (IoT) has engendered the
concept of Smart Manufacturing (SM) that adds intelligence into the man-
ufacturing process to drive continuous improvement, knowledge transfer,
and data-based decision-making. In this context, the increasing volume and
quality of data from production facilitate the extraction of meaningful in-
formation, predicting future states of the manufacturing system that would
be impossible to obtain even by human experts. Due to recent advances
in the field of SPC, there are a lot of advanced Control Charts that have
been developed, thus SPC can become a powerful tool for handling many
Big Data applications that are beyond the production line monitoring in
the context of SM Qiu 2 . Also, there are many studies on Artificial Intel-
ligence applications in SM that exploit the valuable information in data to
facilitate process monitoring, defect prediction, and predictive maintenance
Wang et al. 3 . Using multiple sensors to collect data during manufacturing
enhances real-time monitoring and decision-making, but data quality should
also be ensured before using it. In this case, we can use Anomaly Detection
algorithms to remove outliers in the dataset. This is the first application
of Anomaly Detection algorithms in smart manufacturing, in addition, it
is also used a lot in different aspects of manufacturing operations such as
Anomaly Detection in machine operations, detection of attacks in industrial
systems, detection of mechanical anomalies before they affect product qual-
ity, ...Therefore, Anomaly Detection plays a really important part in smart
manufacturing. Lopez et al. 4 categorized anomalies in machines, controllers,
and networks along with their detection mechanisms, and unify them under
a common framework to allows the identification of gaps in Anomaly Detec-
tion in SM systems that should be addressed in future studies solutions.

In summary, the existing knowledge on Anomaly Detection with the
applications in manufacturing is classified as Machine Learning and statis-
tical approach. The statistical Anomaly Detection approach like Control
Charts can be developed with little computational effort. However, their
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effectiveness has been proven during a long period of industrial application.
Therefore, an effort should be made to develop advanced Control Charts
for application in modern industrial contexts, see Tsung et al. 5 , Qiu 2 , and
Zwetsloot et al. 6 for some examples. However, in SM contexts where as-
sumptions about data distribution and independence are violated, Anomaly
Detection methods will come into play, although they require considerable
computational effort and resources. For example, Nguyen et al. 7 have de-
veloped a novel deep hybrid model for Anomaly Detection for multivariate
time series without using any assumptions for the distribution of predic-
tion errors. The autoencoder LSTM (Long Short-Term Memory networks)
is used as a feature extractor to extract important representations of the
multivariate time series input and then these features are input to OCSVM
(One Class Support Vector Machine) for detecting anomalies. This model
results in better performance compared to the performance from several
previous studies. Therefore, efforts are needed to develop Machine Learn-
ing Anomaly Detection methods that are suitable for applications in SM.
Finally, there are studies that combine both techniques to develop hybrid
methods to combine the strengths of both techniques Lee et al. 8 , Qiu and
Xie 9 .

2 Main Features of This Book

The key features of this book are given as follows:

1. Machine Learning has many applications in the development, pat-
tern recognition, and interpreting of Control Charts. Especially ap-
plying Machine Learning to design Control Charts to monitor and
detect anomalies in non-Gaussian, auto-correlated processes, or Non-
stationary processes are important topics.

2. Advanced Control Charts are designed for monitoring Time-Between-
Events-and-Amplitude Data, First-order Binomial Autoregressive Pro-
cess. All of these studies aim to address the monitoring of manufac-
turing processes where the assumption of independence is violated.

3. To monitor the processes correlated data, Machine Learning-based
Control Charts for monitoring categorical event series and monitor-
ing serially correlated data are introduced in this book. In contrast
to other methods, these new methods are more efficient in monitoring
the correlated process data.

4. To detect anomalies in processes with Machine Learning, Tree-based
approaches, autoencoder approaches, L1 SVDD (Support Vector Data
Description), and L2 SVDD approaches are given in detail.
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5. As an industrial application of Anomaly Detection, a comprehensive
review and new advances of feature engineering techniques and health
indicator construction methods for fault detection and diagnostic of
engineering systems are introduced.

6. The case studies presented and analyzed in each chapter will help
researchers, students, and practitioners understand and know how to
apply these advanced methods in practice. The design parameters, as
well as some source code of the tests and algorithms, are also shared
with readers.

3 Structure of the Book

This book uncovers fundamental principles and recent developments in the
advanced Control Charts and new Machine Learning approaches for Anomaly
Detection in the manufacturing process and especially in the smart manufac-
turing contexts. The purpose of this book is to comprehensively present re-
cent developments of Anomaly Detection techniques in manufacturing and to
systemize these developments in new taxonomies and methodological prin-
ciples with the application in SM to shape this new research domain. By ap-
proaching Anomaly Detection by both statistics and Machine Learning, this
book also promotes cooperation between the research communities on SPC
and Machine Learning to jointly develop new Anomaly Detection approaches
that are more suitable for the 4.0 industrial revolution. This book addresses
the needs of both researchers and practitioners to uncover the challenges
and opportunities of Anomaly Detection techniques with the applications
to manufacturing. The book will also provide ready-to-use algorithms and
parameter sheets so readers and practitioners can design advanced Control
Charts and Machine Learning-based approaches for Anomaly Detection in
manufacturing. Case studies will also be introduced in each chapter to help
readers and practitioners easily apply these tools to real-world manufactur-
ing processes. The book contains 10 chapters.

In the Introductory chapter ”Introduction to Control Charts and Ma-
chine Learning for Anomaly Detection in Manufacturing,” the book editor
Kim Phuc Tran elaborates on the peculiarities of Anomaly Detection prob-
lems using Control Charts and Machine Learning. He determines recent
research streams and summarizes the structure and contribution of the book.

Phuong Hanh Tran, Adel Ahmadi Nadi, Thi Hien Nguyen, Kim Duc
Tran, and Kim Phuc Tran investigate in their chapter, ”Application of Ma-
chine Learning in Statistical Process Control Charts: a survey and perspec-
tive”, a survey and perspective about the development of Machine Learning-
based Control Charts, Control Chart Pattern Recognition method using
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Machine Learning, and interpreting of out-of-control signals. This chapter
fills the gap in the literature by identifying and analyzing research on the
application of Machine Learning in statistical process Control Charts. The
authors review and discuss open research issues that are important for this
research stream.

Philippe Castagliola, Giovanni Celano, Dorra Rahali, and Shu Wu de-
velop in their chapter, “Control Charts for Monitoring Time-Between-Events-
and-Amplitude Data,” a study to investigate several Time-Between-Events-
and-Amplitude Data Control Charts and to open new research directions.

Maria Anastasopoulou and Athanasios C. Rakitzis develop in their chap-
ter, “ Monitoring a First-order Binomial Autoregressive Process with EWMA
and DEWMA Control Charts,” one-sided and two-sided EWMA (Exponen-
tially Weighted Moving Average) and Double EWMA Control Charts for
monitoring an integer-valued autocorrelated process with bounded support.

Christian H. Weiß develops in his chapter, ”On Approaches for Moni-
toring Categorical Event Series” a survey of approaches for monitoring cat-
egorical event series. Also, rule-based procedures from Machine Learning
are used for the monitoring of categorical event series, where the generated
rules are used to predict the occurrence of critical events.

Xiulin Xie and Peihua Qiu develop in their chapter, ”Machine Learn-
ing Control Charts for Monitoring Serially Correlated Data,” an approach
of using certain existing Machine Learning Control Charts together with a
recursive data de-correlation procedure.

Tommaso Barbariol, Filippo Dalla Chiara, Davide Marcato and Gian
Antonio Susto develop in their chapter, “ A review of Tree-based approaches
for Anomaly Detection,” a review of several relevant aspects of the methods,
like computational costs and interpretability traits.

Anne-Sophie Collin and Christophe De Vleeschouwer develop in their
chapter, “ Joint use of skip connections and synthetic corruption for Anomaly
Detection with autoencoders” a detection of abnormal structure in images
based on the reconstruction of a clean version of this query image.

Edgard M. Maboudou-Tchao and Charles W. Harrison develop in their
chapter,“ A comparative study of L1 and L2 norms in Support Vector Data
Descriptions” a comparative study of L1 and L2 norms in Support Vector
Data Descriptions. They apply the L1 SVDD and L2 SVDD to a real-world
dataset that involves monitoring machine failures in a manufacturing pro-
cess.
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Khanh T. P. Nguyen develops in her chapter, “Feature engineering and
health indicator construction for fault detection and diagnostic” a com-
prehensive review and new advances of feature engineering techniques and
health indicator construction methods for fault detection and diagnostic of
engineering systems.

4 Conclusion

This book, consisting of 10 chapters, aims to address both research and prac-
tical aspects in Control Charts and Machine Learning with an emphasis on
the applications. Each chapter is written by active researchers and experi-
enced practitioners in the field aiming to connect the gap between theory
and practice and to trigger new research challenges in Anomaly Detection
with the applications in manufacturing. The strong digital transformation
that has been taking place in manufacturing creates a lot of data with dif-
ferent structures from the process, Anomaly Detection with its applications
becomes more important. This book is an important reference focused on
advanced Machine Learning algorithms and Control Charts to help man-
agers extract anomalies from process data, which can aid decision-making,
early warning of failures, and help improve the quality and productivity in
manufacturing.

References

[1] B. Lindemann, F. Fesenmayr, N. Jazdi, and M. Weyrich. Anomaly detec-
tion in discrete manufacturing using self-learning approaches. Procedia
CIRP, 79:313–318, 2019.

[2] P. Qiu. Big data? Statistical process control can help! The American
Statistician, 74(4):329–344, 2020.

[3] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu. Deep learning for
smart manufacturing: Methods and applications. Journal of Manufac-
turing Systems, 48:144–156, 2018.

[4] F. Lopez, M. Saez, Y. Shao, E.C. Balta, J. Moyne, Z.M. Mao, K. Barton,
and D. Tilbury. Categorization of anomalies in smart manufacturing
systems to support the selection of detection mechanisms. IEEE Robotics
and Automation Letters, 2(4):1885–1892, 2017.

[5] F. Tsung, K. Zhang, L. Cheng, and Z. Song. Statistical transfer learning:
A review and some extensions to statistical process control. Quality
Engineering, 30(1):115–128, 2018.

6



[6] I.M. Zwetsloot, T. Mahmood, and W.H. Woodall. Multivariate time-
between-events monitoring: An overview and some overlooked underly-
ing complexities. Quality Engineering, pages 1–13, 2020.

[7] H.D. Nguyen, K.P. Tran, S. Thomassey, and M. Hamad. Forecasting and
Anomaly Detection approaches using LSTM and LSTM Autoencoder
techniques with the applications in supply chain management. Interna-
tional Journal of Information Management, 57:102282, 2021.

[8] S. Lee, M. Kwak, K.L. Tsui, and S.B. Kim. Process monitoring using
variational autoencoder for high-dimensional nonlinear processes. Engi-
neering Applications of Artificial Intelligence, 83:13–27, 2019.

[9] P. Qiu and X. Xie. Transparent Sequential Learning for Statistical Pro-
cess Control of Serially Correlated Data. Technometrics, (just-accepted):
1–29, 2021.

7



Application of Machine Learning in Statistical

Process Control Charts: a survey and perspective

Phuong Hanh Tran1, Adel Ahmadi Nadi2,4, Thi Hien Nguyen1,3, Kim
Duc Tran1, and Kim Phuc Tran*4

2Department of Statistics, Ferdowsi University of Mashhad, P. O. Box
1159, Mashhad 91775, Iran

3Laboratoire AGM, UMR CNRS 8088, CY Cergy Paris Université,
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Abstract

Over the past decades, control charts, one of the essential tools in
Statistical Process Control (SPC), have been widely implemented in
manufacturing industries as an effective approach for Anomaly Detec-
tion (AD). Thanks to the development of technologies like the Internet
of Things and Artificial Intelligence (AI), Smart Manufacturing (SM)
has become an important concept for expressing the end goal of dig-
itization in manufacturing. However, SM requires a more automatic
procedure with capabilities to deal with huge data from the contin-
uous and simultaneous process. Hence, traditional control charts of
SPC now find difficulties in reality activities including designing, pat-
tern recognition, and interpreting stages. Machine Learning (ML) al-
gorithms have emerged as powerful analytic tools and great assistance
that can be integrating to control charts of SPC to solve these issues.
Therefore, the purpose of this chapter is first to presents a survey on
the applications of ML techniques in the stages of designing, pattern
recognition, and interpreting of control charts respectively in SPC espe-
cially in the context of SM for AD. Second, difficulties and challenges
in these areas are discussed. Third, perspectives of ML techniques-
based control charts for AD in SM are proposed. Finally, a case study
of an ML-based control chart for bearing failure AD is also provided
in this chapter.
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1 Introduction

Together with the blooming flourish rapidly of data, including velocity, vol-
ume, and variety, anomaly detection (AD) has become a hot topic in recent
years. The important role of AD has demonstrated throughout various
studies in numerous different disciplines such as emergency hospital sys-
tems (Kadri et al. 1), traffic measurement (Münz and Carle 2), credit card
fraud detection (Tran et al. 3), manufacturing industry (Tran et al. 4 ; Tran
and Heuchenne 5). According to Chandola et al. 6 , AD has seen as a term
concern to find the instances that do not well conform to a defined no-
tion of normal behavior. These instances are called anomalies or outliers
or interchangeably. The beginning of the 19th century is considered as the
milestones of the AD issue that has been dealt with by the statistical science
community (Edgeworth 7).The requirement for early detection of anomalies
in the process is necessary to ensure system performance and save time as
well as cost for an organization.

It worth mentioning that statistical process control (SPC) is an essen-
tial approach for AD that is widely applied in industry. The aim of this
approach is to monitor and reduce variation in the process as soon as pos-
sible to guarantee high product quality at a minimal cost. In particular,
the control chart, one of the fundamental tools of SPC first introduced by
Shewhart 8 has been an effective tool to detect changes and anomalies of
characteristics in the procedure. The contribution of the control chart is
based on the idea to gives the producers a simple graphical tool for con-
trolling production, i.e. having correction activities in a timely manner.
This allows them to keep production centered on its target and to maintain
its dispersion within the specified tolerance interval. However, numerous
studies show that the implementation of control charts meets some disad-
vantages in particular situations including designing (Alwan 9 ; Noorossana
and Vaghefi 10 ; Costa and Castagliola 11 ; Leoni et al. 12 ; Vanhatalo and Ku-
lahci 13), trend recognition (Guh and Hsieh 14 ; Swift and Mize 15 ; Guo and
Dooley 16 ; Miao and Yang 17 ; Zan et al. 18), and interpreting (Wang and
Chen 19 ; Low et al. 20 ; S. T. A. Niaki and Abbasi 21) of control chart. A
more specific discussion is presented as follows.

It is important to note that a disadvantage of traditional control charts
have been discussed in the designing stage. One of the principles in de-
signing a control chart by statistical traditional methods is that it has to
under an assumption in which samples of the observed process are nor-
mally, independently, and identically distributed (i.i.d. assumption). For
example: in the case of univariate process, this implies that the observed
in-control process has a steady-state and is characterized by two fixed pa-
rameters as mean µ and standard deviation σ. They also lie on an assump-
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tion that the main parameters are known or estimated from the historical
data. However, this approach faces difficulties in some real activities situa-
tions of industry process when considering in the new context as dynamic
behavior environment or sampling regularly. Firstly, the normal popula-
tion distribution assumption is unreal in many cases. Secondly, a vari-
ety of researches(Alwan 9 ; Noorossana and Vaghefi 10 ; Costa and Castagli-
ola 11 ; Leoni et al. 12 ; Vanhatalo and Kulahci 13) showed the developed con-
trol charts using the assumption of independent observations have been
enormous influenced by the presence of autocorrelation. Finally, the com-
plex industry procedure could be dominated by various variables and it is
impossible to know the covariance relationships before. This leads to false
alarms appear many time. Therefore, efforts to develop advanced control
chart using ML in the mentioned cases are necessary.

Besides, control chart pattern recognition (CCPR) is an important prob-
lem in SPC. A control chart is used for detecting whether a process is in con-
trol or out of control. But one out-of-control state is found and is eliminated,
it is necessary to have an observation, i.e., abnormal pattern recognition to
well monitor the behavior of the process in the future. Numerous studies
focus on CCPR issue from the middle of 1980s (Western 22 ; Swift 23). The
aim of the CCPR task is to diagnose nine common abnormal patterns, i.e.
unnatural patterns in the process including upward trend, downward trend,
upward shift, downward shift, cycles, runs, stratification, freak patterns, and
freak points (Shewhart 24). This activity in order to find out and prevent
potential causes as soon as possible. CCPR can be performed by quality en-
gineers in small production systems. However, along with the development
of manufacturing systems especially SM, sensors are deployed everywhere
with huge data sources to be collected and monitored, the application of
Machine Learning (ML) to automating this task is an irreversible trend.
Miao and Yang 17 reveal that the analysis of the statistical characteristics
and shape features of the control chart pattern contribute to recognizing
unreal patterns of the process through the relevant algorithm was classified.
However, the application of DL methods to automatically extract features
from the control chart has proven superior in the ability to recognize pat-
terns, see Zan et al. 18 for more details. Since then, efforts in applying Deep
Learning (DL) in this field are a very important research direction.

Finally, a very important issue that needs attention in SPC is the in-
terpretation of out-of-control signals. Traditional univariate control charts
have played a significant role in the literature to monitor the characteristic
processes for ensuring the quality of the system. However, in real activ-
ities of industry, the truth is that the process was dominated by various
characteristics in some cases. This issue was often solved by the way of
using different univariate control charts. But this would lead to false alarms
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when these characteristics have a high correlation or sampling in a short
duration. Therefore, it is necessary to collect and monitor multivariate
variables simultaneously, i.e. using multivariate statistical process control
(MSPC). Hotelling’s T 2 chart (Hotelling 25), Multivariate Cumulative Sum
(MCUSUM) chart (Woodall and Ncube 26), and Multivariate Exponentially
Weighted Moving Average (MEWMA) chart (Lowry et al. 27) are common
multivariate control charts of MSPC used to solve the quality control prob-
lems. However, a challenge of these traditional multivariate control charts
is that they are just only able to detect a shift in the process mean vector,
i.e., out-of-control signals of the process. It is impossible to indicate which
variable(s) or a group of variables is responsible for out-of-control signals of
the process. Moreover, the MSPC requires more rapid identification in com-
parison with a univariate process that is beyond the capacity of traditional
multivariate control chats. The interpretation of out-of-control signals can
be considered a classification problem in ML. Therefore, the application of
ML to develop methods to automatically interpret the out-of-control sig-
nals in the multivariate control charts has attracted a lot of efforts from
researchers (Diren et al. 28).

In short, thanks to the appearance of ML methods, these difficulties are
solved. The application of ML in control charts is a new approach that is
overcome these previous disadvantages or issues. Swift 23 and Shewhart 24

have seen as the pioneer researchers published ideas combining ML in a
control chart. Recently, many pieces of research showed that recognition
control-based new ML algorithms have performance better than one based
traditional statistical methods as well as conduct to estimate pattern param-
eters (Guh and Hsieh 14 ; Guh and Tannock 29 ; Wu and Yang 30). Besides,
numerous authors also showed that ML methods are useful techniques ap-
plied to control charts to tackle the issues in the interpreting stage (Wang
and Chen 19 ; Low et al. 20 ; S. T. A. Niaki and Abbasi 21 ; Cheng and Lee 31).
Due to the various advantages of integrating ML techniques to control charts
in SPC, we would like to encourage more studies to consider this approach.
This can be seen as the alternative one to overcome the above limitations of
traditional control charts. However, this is a lack of researches that focuses
to give a general picture of these issues in literature. Therefore, the main
objective of our chapter is to fill this gap. The remainder of this chapter is
organized as follows. Section 2 briefly reviews the design of control chart-
based ML methods. Section 3 makes a literature review relevant to CCPR.
Section 5 presents the recent studies about the issue of the interpreting-based
ML of control charts. Difficulties and challenges in these areas are discussed
in Section 5. Section 6 proposed perspectives for ML techniques-based con-
trol charts for AD in SM. An experiment for a case study is proposed in
Section 7. Finally, concluding remarks of the study are outlined in Section
8.
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2 Machine Learning (ML) techniques based Con-
trol Charts for process monitoring

Control charts have been developed and applied a lot (see Fig 6, taken from
Web of Science), major publications in the fields of the engineering industry.
Control charts provide a simple method that can be used to indicate whether
the process is stable or not (in control or out-of-control). In detail, it is a
chronological graph whose dots represent the tracking of a characteristic of
the process. A horizontal line represents the central value (the average).
The lower control limit (LCL) and the upper control limit (UCL) are rep-
resented by two horizontal lines on either side of the mean. The values of
a measured characteristic must be within these limits; otherwise, the pro-
cess is out of control and must be examined. The main benefits of control
charts are: 1) they increase productivity by the proportion of ”good prod-
uct” and decrease costs because there is less waste; 2) they give an estimate
of the central tendency of the characteristic of interest, its variability, and
the limits within which it varies; 3) control charts assist in the evaluation
of the performance of a measurement system. One of the major advantages
of the control card is its ease of construction and use, an operator or engi-
neer familiar with the technique of control charts can, in general, diagnose
the cause of a problem. However, in order for the control chart to be a
reliable and effective indicator of the status of the process, the production
using the control chart should pay special attention to the type of chart used.

Figure 1: Number of publications on Control Charts from 1984

ML is a domain of Artificial Intelligence (AI), which consists of pro-
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gramming algorithms to learn automatically from data and experiences or
by interaction with the environment. What makes ML really useful is the
fact that the algorithm can ”learn” and adapt its results based on new data
without any a priori programming. There are three main branches: su-
pervised learning, unsupervised learning, and reinforcement learning. The
algorithm of supervised learning is to find correlations between input data
(explanatory variables) and output data (predictable variables), for then
infer the knowledge extracted on inputs with unknown outputs. Differ-
ent from supervised learning, the technique of unsupervised learning must
discover by itself the structure according to the data, which has only one
dataset collected as input. This technique is used to divide data into groups
of homogeneous items/datapoint. Finally, Reinforcement learning is an area
of machine learning concerned with how to make a sequence of decisions. In
literature and practice, many researchers have combined techniques of ML
and control charts. As mentioned above, by the ease of use of controls charts
and the wide application of ML, this combination is increasingly researched
and applied. This is because many types of problems that are arising during
the implementation of control charts in nowadays complex processes can be
effectively solved with the help of ML approaches (see for example Kang
et al. 32 and Qiu and Xie 33). One of the main contributions of applying ML
techniques in designing control charts is that the modern (production, in-
surance, healthcare, and etc) processes generate huge data sets with a large
degree of diversity by means of modern measurement systems like sensors.
In such situations, the traditional statistical monitoring methods fail to han-
dle the monitoring procedure of such processes while ML techniques are able
to provide impressive results (Weese et al. 34). This section will summarize
the most common techniques for designing control charts with ML methods
for process monitoring.

2.1 Kernel-based Learning Methods

Kernel-based learning methods such as the Support Vector Machine (SVM)
algorithm are extensively used and play major roles in the SPC activities,
both in developing control charts and recognition of abnormal patterns, due
to their remarkable solutions for existing problems. In brief, kernels have
been applying in the ML area because, when it is difficult to do a task in
the original problem space, the kernel method enables the practitioner to
transform the problem space into another in which they can work easier.
Recently, Apsemidis et al. 35 provided a comprehensive review on about 90
articles after 2002 that include the combination of kernel-based approaches
with other ML techniques. Mashuri et al. 36 proposed a Tr(R2) control chart
based on the squared correlation matrix with the trace operator and used
the kernel density estimation method to calculate the better control limit for
the proposed chart. Chinnam 37 demonstrates that SVMs can be extremely
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effective in minimizing both Type-I errors and Type-II errors and in detect-
ing shifts in both the non-correlated processes ou autocorrelated processes.
A comparison of SVM and Neural Network (NN) for drug/nondrug classifi-
cation has been done by Byvatov et al. 38 and it was demonstrated that the
SVMs classifier yielded slightly higher prediction accuracy than NN. By the
efficiency of SVMs, many researchers used this technique based on control
charts. For example, Li and Jia 39 proposed a SVMs based model for fault
identification in MEWMA control charts, they examined the effects of SVM
parameters on classification performance and provide a SVM parameter op-
timization method.

Although the kernel-based ML algorithms are mainly applied as classi-
fiers for dividing data into two or more classes, in most of SPC implemen-
tations training data from one class (normal state) are only available and
there is no information about the other class (abnormal state). This sit-
uation may arise from several reasons such as the general difficulties (lack
of resources or time or cost) or even impossibility of collecting enough ob-
servations for the abnormal class to learn the ML algorithm (Camci and
Chinnam 40). To handle such situations, one-class classifiers are introduced.
One-class classifier just learns from the normal training data and labelled
the newly encountered data as in-class or out-of-class observations. Several
one-class classifiers have been developed by researchers, while support vec-
tor data description (SVDD), the k nearest neighbor data description (KN-
NDD), and K means data description (KMDD) one-class classifiers were
only used to develop control charts. One of the first studies in this domain
was conducted by Sun and Tsung 41 who designed a kernel distance-based
chart (K-chart) using SVDD algorithm, as a modified version of the original
SVM for solving one-class classification problems, and concluded that the K
chart outperforms conventional charts when the data distribution departs
from normality. This work improved by Ning and Tsung 42 for non-normal
process data. Sukchotrat et al. 43 developed a K chart that integrates a
traditional control chart technique with a KNNDD algorithm, one of the
one-class classification algorithms. Later, to examine the feasibility of us-
ing one-class classification-based control charts to handle multivariate and
autocorrelated processes, Kim et al. 44 developed a K chart that uses origi-
nal observations instead of residuals to monitor autocorrelated multivariate
processes. Throughout a simulation study, they showed that the K charts
outperformed the T 2 control charts, and the performance K charts is not
significantly affected by the degrees of autocorrelation. Gani and Limam 45

examined the performance of the K chart and KNNDD chart through a real
industrial application. They investigated the effectiveness of both charts
in detecting out-of-control observations using the average run length (ARL)
criterion. The results of this study show that the K chart is sensitive to small
shifts in the mean vector, whereas the KNNDD chart is sensitive to moder-
ate shifts in the mean vector. In addition, Gani and Limam 46 introduced a
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new chart using the KMDD algorithm and reported that their chart has a
better performance in detecting small shifts of mean vector based on ARL
than the K chart and KNNDD chart. To improve the performance of K-
charts, Maboudou-Tchao et al. 47 used a one-class SVM technique based on
the SVDD method for monitoring the mean vector based on Mahalanobis
kernel. They used the Mahalanobis kernel as an alternative for Gaussian
kernel and showed that the proposed method is more sensitive than SVDD
using Gaussian kernel for detecting shifts in the mean vectors of three differ-
ent multivariate distributions. They also demonstrated that the proposed
method outperforms Hotelling’s T 2 chart in multivariate normal cases.

Zhang et al. 48 developed a general monitoring framework for detecting
location shifts in complex processes using the SVM model and multivariate
EWMA chart. Later, Wang et al. 49 developed SVM-based one-sided control
charts to monitor a process with multivariate quality characteristics. They
used the differential evolution (DE) algorithm to obtain the optimal param-
eters of the SVM model by minimizing mean absolute error. In this study,
the performance of the control charts is investigated using a multivariate
normal distribution and two non-normal distributions by considering differ-
ent process shift scenarios. In addition, through an ARL analysis using the
Monte Carlo simulations, they showed that the proposed chart has better
performance than the distance-based control charts based on SVM studied
by He et al. 50 . Recently, Maboudou-Tchao 51 introduced a least-squares
one-class SVM (LS-OCSVM) for monitoring the mean vector of processes.
They counted several advantages of their proposed monitoring approach over
the existing SVDD chart provided by Sun and Tsung 41 and Hotelling’s T 2

chart in terms of simplicity in computation and design, flexibility in implan-
tation, and superiority in performance. For example, they claimed that the
LS-OCSVM method can be easily extended to online monitoring. This fea-
ture is very beneficial when we are facing a large-scale training dataset that
updates over time. The SVDD method uses a batch learning phase in which
we learn on the entire training set and generate the best model at once. If
new additional training data arrive, SVDD must be retrained from scratch.
Using SVM techniques based on control charts to have a better performance
can be found at many works, see for example, He et al. 50 , Salehi et al. 52 , Hu
and Zhao 53 , Gani et al. 54 , Sukchotrat et al. 55 , Kakde et al. 56 , Jang et al. 57 .

Regression analysis is a technique of supervised ML. It is based on the
basic principles of physics that help predict the future from current data. It
also helps to find the correlation between two variables to define the cause
and effect relationship. However, there are different forms of regression,
ranging from linear regression and complex regression. One of the regres-
sion variants which yields very good results is the support vector regression
(SVR) method. This technique has been applied a lot in the construction
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of control charts, especially when the process variables are highly auto-
correlated. For example, Issam and Mohamed 58 apply the SVR method for
the construction of a residuals Multivariate Cumulative Sum (MCUSUM)
control chart to monitoring changes in the process mean vector. This charts
designed to detect small shifts in the process parameters and it performed
better than the time series based control chart because it can handle non-
linear relation between the controlled variables and do not use any restric-
tive assumption. In 2013, Du et al. 59 proposed one new Minimal Euclidean
Distance (MED) based control chart for recognizing the mean shifts of auto-
correlated processes. They also used SVR to predict the values of a variable
in time series. The numerical results showed that the MED chart outper-
formed those of some statistics-based charts and the neural-networks-based
(NN) control scheme for the small process mean shifts. Another example of
a combination of SVR technique and Control charts, Gani et al. 54 designed
a SVR-chart which using SVR to construct robust control charts for residu-
als. By comparing the behavior of Average Run Length (ARL), the authors
showed that the efficiency of this chart is better than ordinary least squares
(OLS), and the partial least squares method.

Besides the above-mentioned supervised learning methods, unsupervised
learning algorithms are another type of ML algorithms that applied to ana-
lyze and cluster unlabelled datasets. Clustering is one of the most important
unsupervised ML techniques, in which similar traits are used to make a pre-
diction. The algorithm measures the proximity between each element based
on defined criteria. K-Means is the most popular method of grouping input
data, which allows you to set the value of K and order the data according
to that value. The aim of the study of Silva et al. 60 is to apply the u-chart
to find out the number of clusters in the K-means method on Automatic
Clustering Differential Evolution (ACDE) in order to identify the behavior
patterns and relations between the different attributes. These results in this
work showed that the use of an u-chart increases the performance of ACDE.
Another example of application clustering technique based on control charts
in medicine, Thirumalai et al. 61 gave a prediction of diabetes disease for peo-
ple of various age groups and genders by using cost optimization and control
chart.

2.2 Dimensionality Reduction

For a given data, the higher the number of variables, the more complex the
results will be, which will make it difficult to consolidate the data. Dimen-
sionality reduction is considered a method of ML to overcome this difficulty.
Instead of studying the data involved in a grand dimension, the technique
of dimensionality reduction is to replace it with data in a smaller dimen-
sion. Roughly speaking, principal components analysis (PCA) is one of
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the most important methods of dimensionality reduction that transforms a
large dataset of (possibly) correlated observations into a smaller data set of
uncorrelated observations by minimizing information loss. Developing con-
trol charts based on the PCA method has been widely investigated in the
literature. For example, Stefatos and Hamza 62 introduced a robust mul-
tivariate statistical control chart using the Kernel PCA (KPCA) method.
They reported that the new chart is robust to outliers detection and per-
forms better than some existing multivariate monitoring and control charts.
Phaladiganon et al. 63 presented non-parametric PCA technique, kernel den-
sity estimation, and bootstrapping to establish the control limits of control
charts that. The proposed non-parametric PCA control charts performed
better than the parametric PCA control charts in non-normal situations
through the behavior of average run length. The PCA’s technique is also
used in Kullaa 64 , the author showed that the sensitivity of the control chart
to damage was substantially increased by further dimensionality reduction
applying the principal component analysis. Applying this technique, Lee
et al. 65 developed a new KPCA-based non-linear process monitoring tech-
nique for tackling the nonlinear problem. Base on T 2 and squared prediction
error (SPE) charts in the feature space, KPCA was applied to fault detection
in two example systems: a simple multivariate process and the simulation
benchmark of the biological waste-water treatment process. These examples
demonstrated that the proposed approach can effectively capture nonlinear
relationships in process variables and that, when used for process moni-
toring, it shows better performance than linear PCA. Using Hotelling’s T 2

statistic, Ahsan et al. 66 implemented the KPCA method for simultaneously
monitoring mixed (continuous and categorical) quality characteristics. In
this study, it is demonstrated that the KPCA-based control charts have a
great performance in terms of successful detection of the out-of-control ob-
servations in comparison with the conventional PCA mix charts discussed in
Ahsan et al. 67 . Another study in the area of monitoring procedures of mixed
quality characteristics based on the KPCA technique has been presented by
Mashuri et al. 68 . Recently, Lee et al. 69 presented new multivariate control
charts by Hotelling’s T 2 statistics and Q statistic based on KPCA approach
for rapidly detecting a worn cutting tool and thus avoiding catastrophic
tool failures products with unacceptable surface finish, and defective prod-
uct. Their proposed method converts raw multi-sensor data into principal
component space, and then, the KPCA-modified data are used to calculate
T 2 and Q values to develop control charts.

2.3 Neural network (NN) and deep learning (DL)

Unlike linear models, the NN is based on a complex, divisional data model.
It includes multiple layers to provide you with unique and precise output.
However, the model is still based on linear regression but uses multiple hid-
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den layers; this is why it is called a NN. In the paper of Arkat et al. 70 , they
designed a NN based model to forecast and construct residuals CUSUM
chart for multivariate Auto-Regressive of order one, AR(1), processes. The
comparison of the performance of the proposed method with the time series-
based residuals chart and the auto-correlated MCUSUM chart was made.
DL is a subset of ML, which is essentially a NN with multi layeres. Re-
cently, Lee et al. 71 proposed a variational autoencoder (VAE) approach
to monitor high-dimensional processes in the presence of non-linearity and
non-normality assumptions. They demonstrated the effectiveness and appli-
cability of the proposed VAE-based control charts in comparison with the
existing latent variable-based charts through a simulation study and also
via real data from a TFT-LCD manufacturing process. Chen and Yu 72 sug-
gested a novel recurrent neural network (RNN) residual chart with a DL
technique to recognize mean shifts in autocorrelated processes. A compari-
son study with some typical methods such as special causes control chart and
backpropagation network residual chart demonstrate that the RNN-based
chart provides the best performance for monitoring mean shifts in autocor-
related manufacturing processes. The readers can find more reference about
this technique based on control charts, for example, see Niaki and Abbasi 73 ,
Chen et al. 74 , and Diren et al. 28 .

3 Machine Learning (ML) techniques based Con-
trol Chart Pattern Recognition (CCPR)

Entering the 21st century, the world has changed dramatically with the de-
velopment of information technology, this is the beginning of the era of big
data. This comes with a marked increase in the general interest in ML. The
interpretation of control charts is mainly based on rough rules (i.e. heuris-
tics) which depend greatly on the experience and judgment of the operator.
It is therefore very important to make sure that they are well trained. Conse-
quently, expert systems were born and developed in the industry. An expert
system is software that is linked to at least two data sources: a database
that contains a set of rules and a data flow that comes from the process to
be controlled. The rules are based on the knowledge of experts in the field
and are encoded as logical conditions. Everything is connected to a motor
inference that applies the rules. The latter produces a result that is then
communicated to users through a graphical interface and is used as a deci-
sion support tool. More precisely, an expert system is a software capable
of answering questions, by reasoning from known facts and rules. However,
the period of popularity of expert systems is relatively short, from the end
of the 1980s, NNs are beginning to be used to automate the reading and
interpretation of control (see Pugh 75). Since that time, pattern recognition,
in general, is dominated by ML, is widely developed. There are several moti-
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vations for using ML algorithms for CCPR purposes. The first and probably
the main motivation is that several researchers demonstrated that the ML-
based CCPR model outperforms their alternative models in many practical
situations. For example, Li et al. 76 proposed a SVM-based CCPR frame-
work and demonstrates that this model can accurately classify the source(s)
of out-of-control signal and even outperforms the conventional multivariate
control scheme. There also other motivations for applying ML-based CCPR
models. For example, Guh 77 stated that the NN models are capable of
learning and self-organizing and hence are useful in pattern recognition and
can recall patterns learned from noisy or incomplete representations which
are practically impossible to detect by operators, even with the assistance of
an expert system. This makes the ML-based approaches suitable for CCPR
because CCPs are generally contaminated by common cause variations. In
addition, Diren et al. 28 reported that traditional CCPR models are not able
to predict unexpected new situations while ML techniques that can effec-
tively predict the unexpected new situations by learning from the historical
data. This section reviews some important references about the most popu-
lar ML algorithms used in recognition of patterns on control charts including
classification and regression tree (CART), decision trees (DTs), SVMs, NNs,
and DL.

3.1 Regression tree (CART) and Decision tree (DT) based
CCPR

A DT is a decision support tool representing a set of choices in the graphic
form of a tree. Geometrically, construct a decision tree decision is to par-
tition the space of data attributes in areas where each region represents a
class. During prediction, when data is in this region then the decision tree
assigns it the corresponding class. In literature, there are different methods
to construct one or more decision trees from a learning data set. The com-
mon goal of each method is to determine the optimal test sequence to par-
tition the space of attributes into homogeneous regions. Very recently, Za-
man and Hassan 78 demonstrate the development of fuzzy heuristics and the
CART technique for CCPR and compare their classification performance.
The results show the heuristics Mamdani fuzzy classifier performed well in
classification accuracy (95.76%) but slightly lower compared to the CART
classifier (98.58%). This study opens opportunities for deeper investigation
and provides a useful revisit to promote more studies into explainable AI.

3.2 Neural network (NN) and deep learning (DL) based CCPR

In the paper of Hachicha and Ghorbel 79 , a survey of CCPR literature, the
majority of the reviewed articles use the NN approach. It is reported that
for the period 1988 to 2000, 9% of the revised publications use NNs and that
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for the period 2001 to 2010, that number climbed to 25%. This trend then
accelerates for the period from 2010 to 2021 (see Fig. 2 and Fig. 3). This
observation is supported by the number of articles published on NN which
shows an average annual increase of 10-15% for this period (source from
Web of Science). Pugh 75 was the first author to experiment with NN and
control charts. He concludes that NN is as effective as traditional control
charts for detect changes in average values following a surge (by comparing
the ARL) and NN was found to perform reasonably well under most condi-
tions. This study constitutes the proof of concept of NN in CCPR. Pham
and Oztemel 80 were the firsts described the structures of pattern recognition
systems which made up of independent multi-layer perception. They found
that these composite pattern recognition systems have better classification
capabilities than their individual modules. Cheng 81 also concluded that
hybrid networks are more efficient than networks singular. Addeh et al. 82

proposed a CCPR procedure based on optimized radial basis function neu-
ral network (RBFNN). The proposed method consists of four main modules:
feature extraction, feature selection, classification and learning algorithm. In
addition traditional patterns that have considered in literature including the
normal, cyclic, increasing trend, decreasing trend, upward shift and down-
ward shift, they investigated the stratification and systematic patterns as
well. They tested RBFNN-based CCPR model based on a dataset contain-
ing 1600 samples (200 samples from each pattern) and the results showed
that the proposed method has a very good performance. Yu et al. 83 de-
veloped an effective and reliable DL method known as stacked denoising
autoencoder (SDAE) for CCPR in manufacturing processes. Recently, Xu
et al. 84 proposed an efficient one-dimensional Convolutional Neural Net-
work (1D-CNN) to applied for CCPR purposes. They showed that their
method achieves 98.96% average recognition accuracy after 30 repeated tests
as well as has better generalization ability when there is an error between
the estimated value and true value of mean or standard deviation, which
are satisfactory results. Yang and Zhou 85 developed online CCPR systems
using NN0 ensemble also neglecting how the correlation coefficient is biased
when abnormal patterns occur, thus training one CCPR system for each of
the studied autocorrelation levels. Fuqua and Razzaghi 86 proposed a cost-
sensitive classification scheme within a deep convolutional neural network
(CSCNN) to fill the literature gap of developing computationally-efficient
methods of CCPR classification for large time-series datasets in the pres-
ence of imbalance. To show the benefits of the method, they conducted an
extensive experimental study using both simulated and real-world datasets
based on simple and complex abnormal patterns. For more information, see
examples some publications as Pham and Wani 87 , Yang and Zhou 85 .
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Figure 2: Number of publications on NN from 1988

Figure 3: Percentage of number of publications on NN according to the
period

3.3 Support vector machines (SVM)based CCPR

SVM are new statistical learning techniques proposed by V. Vapnik in 1995.
They help to address diverse issues as classification, regression, fusion, etc.
The essential idea of SVM consists in projecting the data of the input
space (belonging to two different classes) non-linearly separable in a space
of greater dimension called space of characteristics in such a way that the

14



data becomes linearly separable. In this space, the technique construction
of the optimal hyperplane is used to calculate the function of classification
separating the two classes (see Figure 4). In other words, the algorithm
creates a line or a hyperplane which separates the data into classes.

Figure 4: Principle of SVM techniques

In this subsection, we will summarize some recent applications and ex-
tensions of SVM for the CCPR case. Ranaee et al. 88 study a novel hybrid
intelligent system that includes three main modules, in which two modules,
SVM technique is used to searching for the best value of the parameters that
tune its discriminant function (kernel parameter selection) and upstream by
looking for the best subset of features that feed the classifier. Simulation re-
sults show that the proposed algorithm has very high recognition accuracy.
A hybrid independent component analysis (ICA) and SVM is proposed for
CCPR (Lu et al. 89), the results showed that is able to effectively recog-
nize mixture control chart patterns and outperform the single SVM models,
which did not use an ICA as a preprocessor. Lin et al. 90 presented a SVM-
based CCPR model for the online real-time recognition of seven typical
types of abnormal patterns, assuming that the process observations come
from an AR(1) model. Through an extensive simulation study, they showed
that the proposed SVM-based CCPR model can effectively on-line recog-
nize unnatural patterns in both independent and autocorrelated processes.
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In addition, they indicated that the new model has a better recognition ac-
curacy and ARL performance than the existing learning vector quantization
network CCPR model provided by Guh 77 . Du et al. 59 integrated wavelet
transform and improved particle swarm optimization-based support vector
machine (P-SVM) for online recognition of concurrent CCPR. In other re-
search, original SVM demonstrates poor performance when applied directly
to these problems. Xanthopoulos and Razzaghi 91 improve SVM by using
weighted support vector machines (WSVM) for automated process moni-
toring and early fault diagnosis. They show the benefits of WSVM over
traditional SVM, compare them under various fault scenarios. Readers can
refer to many other references, see Wang 92 , Ranaee and Ebrahimzadeh 93 ,
Lin et al. 90 , Zhou et al. 94 , la Torre Gutierrez and Pham 95 .

4 Interpreting out-of-control signals using Machine
Learning (ML)

When the manufacturing process has more than two characteristics for mon-
itoring, it should be often solve with different univariate control charts.
However, when these characteristics have a high correlation or sampling in
a short duration, the false alarms may be appeared. Therefore, it is nec-
essary to use multivariable control charts for monitoring quality problems.
Hotelling’s T 2 chart (Hotelling 25), MCUSUM chart (Woodall and Ncube 26),
and MEWMA chart (Lowry et al. 27) are common multivariate charts were
used in MSPC. However, a challenge of these traditional multivariate control
charts is that they are just only able to provide the general mean shifts in
vector, i.e., out-of-control signals of the process. It is impossible for these
charts to indicate which variable(s) or a group of variables is responsible for
out-of-control signals of the process. Numerous researchers have paid atten-
tion to the topic which to find a variable or a number of variables or a set
of variables responsible for the signals when a multivariate process is in the
out-of-control state. From the past decades, the idea integrating ML to mul-
tivariate control charts as an effectively approach. Recently, this approach
seems more reasonable when the system of manufacturing has become more
automatic. Thus, this section will give a look at the literature about ML
methods for interpreting control charts in the multivariate process.

The first encouragement integrating ML methods to interpret signals
of multivariate control charts in the quality control process has been dis-
cussed from the beginning of the 2000s with the publication of Wang and
Chen 19 . Particularly, they used a neural-fuzzy model (a four-layer fully
connected feed-forward network with a back-propagation training rule) for
both detecting and classifying phases. An experiment for a bivariate pro-
cess was conducted demonstrated that the proposed method reaches higher
performance than the previous multivariate T 2 control chart. Lower out-
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of-control ARLs and more classification accuracy results of the proposed
method have been recorded. Then, Low et al. 20 continued highlight NNs
as the method contribute to detect more anomaly patterns and more sensi-
tive than traditional charts through out-of-control ARL and the numerous
abnormal instants detected. Chen and Wang 96 suggested using a model
of NNs, a three-layer fully connected feed-forward network with a back-
propagation training rule, based multivariate χ2 control chart to investigate
cause variable(s) of signals of bivariate process. The significant advantages
are showed that the model can indicate both responsible variables (s) and
the magnitude of the shifts in case the multivariate χ2 control chart has
sudden shifts in the mean vector. S. T. A. Niaki and Abbasi 21 suggested
multilayer perceptron (MLP) network, a type of NNs, to classify patterns
to explore variables or the set of variables that caused the fault of the pro-
cess. The authors also make a comparison between MLP based Hotelling’s
T 2 multivariate Shewhart (MSCH) and based multivariate Shewhart (MS)
chart, respectively. The results showed that the proposed MLP MSCH has
a stronger performance. Cheng and Cheng 97 suggested to use 3-layer fully
connected feed-forward network with a back-propagation training rule as
an algorithm of NN for classifying out-of-control signals. The authors also
recommend using SVMs which are considered as the method that has the
same performance although it has more advantages than NN. On the con-
trary, Guh and Shiue 98 suggested using DT techniques instead of NNs based
model to interpret which variable or group of variables has caused the out-
of-control signals. They also demonstrated that the implementation of the
DT approach gained results faster than 25 times than the NN one. Ac-
cording to Yu et al. 99 , a selective NN ensemble approach named Discrete
Particle Swarm Optimization (DPSOEN) algorithm has a significant perfor-
mance to provide the source(s) of out-of-control. Alfaro et al. 100 proposed
to use a multi-class exponential loss function (SAMME) algorithms, an ex-
tension of AdaBoost for classifying which variables have to responsible for
the out-of-control signals. They showed that the proposed method has more
significant performance than ones in the study of S. T. A. Niaki and Ab-
basi 21 . Verron et al. 101 presented a Bayesian network-based control chart
approach to detect and isolate fault variable(s) of a multivariate process. A
DT learning-based model for bivariate process is recommended in a study
of He et al. 102 to identify the cause of faults. Cheng and Lee 31 suggested
using a SVM-based ensemble classification model for interpreting the out-of-
control signal of a multivariate process by indicating the caused variable(s).
An experiment comparison showed the significant performance of the pro-
posed method in comparison with the single Support Vector Classification
(SVC) model, bagging and, AdaBoost. Moreover, Carletti et al. 103 proposed
Depth-based Isolation Forest Feature Importance (DIFFI) approach based
Isolation Forest (IF) algorithm, the one from the idea as the DT to inter-
pret the cause of faults in the process. The authors also make a comparison
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with the Permutation-based Importance (PIMP) approach. Recently, Song
et al. 104 recommend using a NN) method like instance-based Naive Bayes
(INB) algorithm to classify which variables are the cause of out-of-control
signals. This is well implemented for both small and large number variables.
This also overcomes two disadvantages of previous studies as independence
assumption and ignorance of the features of a test instance. Furthermore,
very recently, Diren et al. 28 conduct a study with a variety of ML techniques
including Naive Bayes-kernel (NB-k), K-Nearest Neighbor (KNN), DT, NN,
Multi-Layer Perceptron (MLP), and DL to find the variables responsible for
the out-of-control signals based types of faults. Performance comparison of
these techniques is explored. Salehi et al. 105

5 Difficulties and Challenges for application of Ma-
chine Learning in statistical process control charts

It is evident that firms and corporations are rapidly getting smarter by
adding intelligence into their process to drive continuous improvement, knowl-
edge transfer, and intelligent decision-making procedures. This increases
the demand for advanced AI and SPC tools and also effectual integrated
techniques in various production stages to decrease the cost of production,
improve overall productivity, improve product and process quality, reduce
downtime, and etc. One of the most successful integrations is using ML
algorithms, as an important subset of AI, in development, pattern recogni-
tion, and interpreting of control charts, as the main goals of SPC. To meet
this need, several ML-based approaches have been developed by researchers
and scientists that some of them are reviewed in the previous two sections.
However, most of these tools have been introduced in laboratory environ-
ments and many difficulties and challenges still exist in their applications in
practical environments. Implementation of an efficient ML algorithm that
performs well in an industrial environment as well as produces reliable re-
sults is not very easy. Accordingly, it can be said that although ML is an
efficient and widely-used technique for solving nowadays complex problems,
like any other technique, it should be implemented as a solver due to its
difficulties and challenges. Although data analysts may face a variety of
challenges during the designing and implementation of ML algorithms in
development, pattern recognition, and interpreting of control charts that we
can not address them all here, however, in what follows, we will list some of
them that are most appeared in daily operation problems.

5.1 Non-stationary Processes

Although several studies have been done for developing ML-based control
charts, CCPR frameworks in the presence of autocorrelated observations
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(see for example Lin et al. 90 , Chen and Yu 72 , Kim et al. 44 , and Yang and
Zhou 85), most of these studies are based on the assumption that the process
is stationary. However, most processes in the manufacturing industries are
non-stationary in particular for complex industrial processes which in gen-
eral show non-stationary process characteristics, revealing a time-varying
mean and/or variance or even time-varying autocovariance (Zhao et al. 106).
This phenomenon makes monitoring a complex task no matter the quality
characteristic to be monitored is univariate or multivariate. Non-stationarity
in processes’ behavior frequently occurs due to several factors such as sea-
sonal changes, processes that involve emptying and filling cycles, through-
put changes, the presence of unmeasured disturbances, and also the nature
of the process itself (Chen et al. 107). In these cases, interpreting out-of-
control points is a challenge as studies on the topic almost always make
assumptions about the distribution. Ketelaere et al. 108 presented exam-
ples of non-stationary processes from the industrial machinery monitoring
context and agriculture industry. Another examples of non-stationary pro-
cesses in industrial environments are discussed in Chen et al. 107 and Liu and
Chen 109 . Monitoring non-stationary processes have its challenges and diffi-
culties and it has to be done carefully since there are many hidden problems.
For example, it is difficult to detect the abnormal patterns of non-stationary
observations because they may be hidden by the normal non-stationary vari-
ations (Zhao et al. 106). In addition, Lazariv and Schmid 110 showed that for
some processes and change-point models the ARL does not exist. This is
a very important issue since the ARL is the most popular measure for the
performance of control charts. In such situations, the traditional SPC tech-
niques fail at monitoring such processes and it is important to have tools
that can correctly detect changes in non-stationary processes (Lazariv and
Schmid 111).

5.2 Big Data analysis

The term big data refers not only to the size or volume of data but also to
the variety of data and the velocity of data. These features impose some
challenging issues to the data analyst facing various big data monitoring
problems. One of the main challenges for monitoring big data based on ML
techniques is the training (Phase I) dataset that is expected to contain both
in-control and out-of-control process observations (Qiu 112). It is known that
completing Phase I is critical to successful Phase II monitoring and has a
strong influence on the performance and suitability of the ML algorithm to
get accurate results and to avoid false predictions. However, in SPC applica-
tions, we usually have an in-control dataset only and there is no information
about out-of-control situations in the training data. We know that it is very
important to provide a training data set that entirely represents the struc-
ture of the problem. To tackle this deficiency, the idea of artificial contrasts
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and one-class classification methods have been suggested by authors such
as Tuv and Runger 113 and Sun and Tsung 41 . Another challenge in moni-
toring high dimensional data sets is the fact that not all of the monitored
variables are likely to shift at the same time, thus, some method is neces-
sary to identify the process variables that have changed. In high dimensional
data sets, the decomposition methods used with multivariate control charts
can become very computationally expensive Reis and Gins 114 . To serve the
purpose, many scientists proposed feature selection techniques to monitor
subsets of potentially faulty variables instead of monitoring a sequence of
whole variables to improve detection performance (see for example Capizzi
and Masarotto 115). However, in such cases, the key questions that have not
to be answered yet are a) what kind(s) of features are appropriate to use
for a specific big data monitoring problem, b) how many features should be
extracted for process monitoring, and c) whether the original goals of pro-
cess monitoring have been substantially compromised by using the selected
features Qiu 112 .

5.3 Monitoring image data

Thanks to the rapid developments of digital devices like sensors and com-
puters and using them increasingly in industrial and medical applications,
intelligent decision-making tools such as machine vision systems (MVS) has
gradually taken the place of human-based inspections in many factories due
to their ability to provide not only dimensional information but also informa-
tion on product geometry, surface defects, surface finish, and other product
and process characteristics Megahed et al. 116 . A MVS is a computer-based
system for analyzing and processing image data that is provided by image-
capturing devices (e.g., cameras, X-ray devices, or vision sensors). New
studies show that implementing MVSs in industrial environments could be
fully utilized to improve the quality of the product Zuo et al. 117 . In this
regard, researchers developed a new interdisciplinary field of research by in-
tegrating MVS approaches and SPC principles. This new field applied SPC
tools for monitoring the process quality using images. There are several
applications in industrial and medical areas that image monitoring can be
used to check the stability of the process state. For instance, monitoring
the brightness of the cover in the printing process of a journal or monitoring
the changes of tumors and vascular. Through an extensive review of image-
based control charting methodologies, Megahed et al. 116 emphasized that
using MVS-based monitoring procedure is superior to visual inspection with
respect to, (1) monitoring processes with high production rates; (2) perform-
ing multiple simultaneous tasks with different objects; (3) their ability to
cover all the ranges of the electromagnetic spectrum, as in the use of mag-
netic resonance imaging (MRIs) and X-rays in medical applications; (4) the
lack of susceptibility to fatigue and distraction; and (5) in some cases, the
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use of MVSs is cheaper than the use of human inspectors and it is expected
that the cost of MVSs will continue to decrease over time. However, there
several challenges in implanting image monitoring in practical situations.
The first challenge is that the number of pixels in a simple cell phone image
nowadays is around 4 million pixels and thus, we have to monitor a process
with 4 million components over time that faces us to high-dimensional prob-
lems. Another challenge is that the neighboring pixels within an image are
often highly correlated. This correlation can result in a considerable amount
of data redundancy and ignoring the correlation can result in a high level
of false alarms as well as poor performance once a fault occurs. In addi-
tion, there are several stages for successful impersonation of an image-based
monitoring procedure such as the choice of the image-capturing device, the
frequency of imaging, the set-up of the imaging to avoid lighting, alignment,
the software to use for image analysis, the preliminary image processing.
and the type of monitoring method to employ. There are no currently ex-
isting guidelines for guiding the practitioner through all of these decisions
Megahed et al. 116 . Thus, the last challenge is providing easy- and clear-to-
used guidelines to applied an efficient image monitoring model in practical
applications.

6 Perspectives for Application of Machine Learn-
ing (ML) in statistical process control charts in
Smart Manufacturing (SM)

Making processes smart and digitized, motivate researchers and scientists
to develop effective ML strategies for anomaly detection in daily operations.
For example, startegies to keep the production systems always dynamic in
dealing with unexpected variations and abnormal patterns. variations and
abnormal patterns. Although recent studies have investigated new ML-
based techniques in the development, pattern recognition, and interpreting
of control charts in manufacturing, there still exists a significant potential for
reducing the gap between the theory and application in modern industries.
Addressing this gap will ensure that ML tools can be seamlessly integrated
into factory operations. The following topics are recommended here for
future research.

6.1 Auto-correlated processes and Non-stationary processes

Thanks to the rapid evolution of sensor technologies and the velocity of avail-
able data in modern industrial processes, a good ability has created to gather
observations instantaneously that results in a high degree of autocorrelation
within observations. In fact, the real-world data are in most cases auto-
correlated. To deal with such data, most of the existing approaches are not
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sufficient, and there is an essential need to develop new powerful ML tools to
analyze these kinds of datasets. While the effect of autocorrelation on tra-
ditional SPC tools has been investigated by several authors, see for example
Maragah and Woodall 118 and Alwan 9 , a review paper by Apsemidis et al. 35

shows that a few studies have yet been conducted in the area of kernel-based
ML methods for such data. In another comprehensive review paper, Weese
et al. 34 recommended that although some few ML-based monitoring proce-
dures have been proposed for autocorrelated data considering known time
series model by researchers like Arkat et al. 119 , Issam and Mohamed 58 , and
Kim et al. 120 , there is ample potential to develop new algorithms when
the time series model is unknown. In literature of ML techniques based
control chart pattern recognition there are also few investigations (Cuen-
tas et al. 121) that recognize relatively simple patterns such as process mean
shift (Chinnam and Kumar 122 , Hsu et al. 123 , and Hsu et al. 124) and process
variance shift (Chinnam 37), while more complex patterns including trend,
cycle, and systematic patterns only considered in the study of Lin et al. 90 .
Concurrently, the existing body of researches needs to be enhanced and im-
proved the existing techniques of monitoring auto-correlated processes. In
addition, there are several real-world examples that not only the observa-
tions are auto-correlated, but also they have non-stationary behaviors in
which they are not oscillating around a common mean or its variance and
autocovariance are changing over time. This phenomenon may happen due
to several reasons. Researchers such as Ketelaere et al. 108 , Chen et al. 107

and Chen et al. 107 presented examples of non-stationary processes in in-
dustrial environments. Up to now, most existing researches have focus on
developing ML-based control charts and CCPR techniques for monitoring
stationary processes and there is a remarkable need for developing such
tools for handling time series data from non-stationary processes. This gap
should be filled by new researches. Recently, Tran et al. 125 and Nguyen
et al. 126 proposed Long Short Term Memory networks (LSTM) and LSTM
Autoencoder techniques for monitoring multivariate time series data from
non-stationary processes. These techniques can be also employed as efficient
solutions for CCPR problems involving auto-correlated non-stationary data
for future study. Section 7 of the current chapter provides a good discussion
for bearing failure anomaly detection based on the LSTM method. Finally,
Explainable AI techniques (see Rudin 127) should also be used to develop
frameworks for interpretation of out-of-control points in this context.

6.2 Big data analysis

Nowadays in smart factories, a wide range of sensors have embedded in sev-
eral devices of production lines as well as are connected to many comput-
ers for data analysis, management, and visualization, which brings fruitful
business results in the long run. These advanced technologies created the
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concepts of high-volume, high-dimensional, and high-velocity data that are
called in brief Big data. This type of data always has complex natures as
well as often has hierarchical or nested structures. In such situations, tra-
ditional SCP methods are incapable of monitoring such data and existing
methodologies should be stretched to new limits. Although data-driven ML
algorithms have a good potential to do this end, there is poor literature
about ML-based studies for anomaly detection and pattern recognition us-
ing data sets that would be considered big data (Wang and Jiang 128 , Jin
et al. 129 , Qiu 130 , and Sparks and Chakraborti 131). Thus, there is a tremen-
dous opportunity and significant need for the development of advanced ML
tools for both anomaly detection and CCPR. For example, Qiu 112 provided
a comprehensive discussion on some recent SPC methods in the presence of
big data and recommended the following research directions as further re-
search. (i) feature selection methods have been suggested by some authors to
simplified the computations for monitoring big data sets. In such cases, the
key questions that have not been properly addressed yet in the literature and
future research is needed in this direction are a) what kind(s) of features are
appropriate to use for a specific big data monitoring problem, b) how many
features should be extracted for process monitoring, and c) whether the
original goals of process monitoring have been substantially compromised
by using the selected features. (ii) process observations in SPC literature
are widely assumed to be either independent or following some specific para-
metric time series models such as ARMA models. These assumptions are
rarely satisfied in practice, especially when we are dealing with big data
sets. More precisely, in the context of big data, process observations have
many other complicated structures. Thus, developing SPC tools to properly
accommodate such data structures will be an attractive research area. (iii)
In practice, the performance of a process is often affected by various covari-
ates that can provide some helpful information to us. Therefore, taking this
information into account in developing and designing new SPC tools can
improve the efficiency of the monitoring procedures. However, there is no
study in the SPC literature yet regarding the proper use of helpful informa-
tion in covariates. All these topics can also be investigated based on ML
methods for both anomaly detection, interpreting out-of-control signals, and
CCPR as well. More discussions on this topics can be found in Megahed
and Jones-Farmer 132 and Reis and Gins 114 .

6.3 Real word implementation and hyperparameters opti-
mization

Scientists and engineers believe that we are at the beginning of the fourth in-
dustrial revolution that is being called Industry 4.0. Broadly speaking, this
revolution has been happening by decreasing human intervention and adding
intelligence into the production processes and service operations. Digitaliza-
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tion and computerization enable manufacturers/managers to make their own
smart factories/companies as a unified digital ecosystem of all the different
works aspects using advanced technologies to organize and optimize their
production/service cycles. In this situation, companies and corporates have
begun to adapt and implement the state-of-the-art into daily operations to
improve production efficiency, flexibility, and reduce cost (See for example
Malaca et al. 133). On the other hand, Woodall and Montgomery 134 express
that “Despite the large number of papers on this topic we have not seen much
practical impact on SPC”. This is an unacceptable face of SPC literature
that may occur because of several reasons. Weese et al. 34 also stated that
there are very few discussions in the related literature that, i) address the
step-by-step procedures of selection and operation of algorithm in practical
situations, ii) conduct an illustrative Phase I analysis, and iii) provide some
advice on how to apply the methods in practice, including how to establish
an in-control training sample or how large training data size is needed to
algorithm learned effectively. As an example of concerns (i) and (iii), one
of the most important stages of ML-based algorithms implementation is hy-
perparameter optimization which is also known as hyperparameter tuning.
Hyperparameters are those that lead to the highest accuracy and/or least er-
ror in the validation set and provide the best results for the problem they are
solving. It is important to note that the hyperparameter is different from the
model parameter. Hyperparameters are the model arguments that should be
determined before the learning process begins and they are not learned from
the training data like model parameters. For example, K in KNN, kernel
type and constants in SVMs, number of layers, and neurons in neural net-
works are some of the well-known hyperparameters. These hyperparameters
can be determined by maximizing (e.g. the accuracy) or minimizing (e.g the
loss function) the specified metrics. Although these hyperparameters play a
crucial role in utilizing ML algorithms that the effectiveness of the algorithm
largely depends on selecting good hyperparameter values, surprisingly, most
of the studies applying ML in SPC have not considered hyperparameter
optimization in their studies. Bochinski et al. 135 proposed an evolutionary
algorithm-based hyper-parameter optimization approach for committees of
multiple CNNs. Trittenbach et al. 136 developed a principled approach using
the Local Active Min-Max Alignment method to estimate SVDD hyperpa-
rameter values by active learning. In a ML-based SPC investigation, Trinh
et al. 137 investigated the application of one-class SVM to detect anomalies
in wireless sensor networks with data-driven hyperparameter optimization.
Also, Wu et al. 138 proposed an effective technique for Hyperparameter tun-
ing using reinforcement learning. Based on the above-mentioned discussions,
there is a large gap between the theories and assumptions in literature and
real demands in industrial environments that should be reduced through
future research. Accordingly, it is recommended to scientists for providing
illustrative guidelines for probably non-specialist practitioners to show them
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clearly how to implement the method in their problems. Moreover, it is also
important to prepare the source code of test designs using ML because most
of them have no explicit expression of control limits and ARL. This would
make the implantation of the proposed methods easy for practitioners.

6.4 Integration of SVM and NN techniques

It is known that both SVM and NN are powerful ML algorithms in the
anomaly detection and pattern recognition contexts because of their im-
pressive results which are reported in many references. However, each of
them has its advantages and disadvantage. For example, the structural risk
minimization of SVMs benefits their performance, in contrast with the em-
pirical risk minimization of NNs, which creates problems. While NNs try to
minimize the training error, the SVMs minimize an upper bound of the er-
ror, something that enables them to generalize easier even when the dataset
is small. Furthermore, SVMs find a global solution and cannot be stuck
in local minima, in contrast with the NNs (Apsemidis et al. 35). So, their
combination may lead to aggregation of benefits to serve as a unified attrac-
tive tool for ML-based SPC activities. For example in an anomaly detection
problem, one might utilize a deep NN and have the final classification via
SVM at the output layer. It is likely to have better classification results
compared to ordinary NN. Recently, Hosseini and Zade 139 suggested a new
hybrid technique called the MGA-SVM-HGS-PSO-NN model for detection
of a malicious attack on computer networks by combining SVM and NN
techniques. Their proposed method includes two stages, a feature selec-
tion stage and an attack detection stage. The feature selection process was
performed using SVM and a Genetic Algorithm (GA). On the other side,
the attack detection process was performed using an NN approach. The
performance of the MGA-SVM-HGS-PSO-NN method was compared with
other popular techniques such as Chi-SVM, NN based on gradient descent
and decision tree, and NN based on GA based on performance metrics like
classification accuracy, training time, the number of selected features, and
testing time on the basis of the well-known NSL-KDD dataset. They showed
that the proposed method is the best performing method on all criteria. For
example, the proposed MGA-SVM-HGS-PSO-NN method can attain a max-
imum detection accuracy of 99.3%, dimension reduction of NSL-KDD from
42 to 4 features, and needs only 3 seconds as maximum training time. In
a good review paper on ML Kernel Methods in SPC, Apsemidis et al. 35

showed that while 43% of the papers compare the SVM and NN algorithms
and in 51.9% there is no reference of NN in the SVM method, only 5.1% of
the cases the SVM and NN are combined to work together in the proposed
method. Thus, there is a large room here for developing new methods and
improving existing ML-based anomaly detection and CCPR models. For
instance, investigating the possible design of control charts for monitoring
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stationary and non-stationary multivariate time series data with LSTM or
Autoencoder CNN combined with SVDD technique can be considered as a
good research topic (see Tran et al. 125 and Nguyen et al. 126).

6.5 ML algorithm in the presence of drift

One of the assumptions in supervised learning is that the mapping func-
tion f is assumed to be static, meaning that it does not change over time.
However, in some problems, but not all problems, this assumption may not
hold true. It means that the structure of data can change over time and
hence the relation between input and output would be dynamic. This phe-
nomenon in the ML literature known as concept drift and may happen due
to several reasons. Ignoring concept drift while we are selecting and learning
the predictive model can affect the prediction power of the algorithm. To
tackle this problem, many adaptive learning techniques have been proposed
by researchers like Žliobaitė et al. 140 and Gama et al. 141 . However, to the
best of our knowledge, there is no study for ML-based control charts, pat-
tern recognition, and interpreting out-of-control signals by considering the
concept drift. So, there is a large potential here for more researches.

6.6 Data fusion and feature fusion

Data fusion and features are newly developed fields in data science that deal
with the problem of the integration of data and knowledge from multiple
sources and reducing the features’ space of raw data, respectively. This
technique can improve available information of data in the sense of decreas-
ing the associated cost, increasing the data quality and veracity, gathering
more related information, and increasing the accuracy of ML-based tools.
Especially, it can be useful in smart factories with multisensor environments.
For example, the main advantages of data fusion are discussed in more de-
tail in the biosurveillance area by Shmueli and Fienberg 142 (pp. 123-133).
Castanedo 143 classified the data fusion techniques into three main cate-
gories as ,i) data association, ii) state estimation, and iii) decision fusion.
In addition, feature fusion techniques can improve the ability of mixture
CCPRs. Recently, Zhang et al. 144 proposed a CCPR model based on fusion
feature reduction (FFR), which makes the features more effective, and fire-
works algorithm-optimized MSVM. They showed that the proposed method
can significantly improve the recognition accuracy and the recognition rate
and the run time of CCPR as well as deliver satisfying prediction results
even with relatively small-sized training samples. Another CCPR technique
based on the feature fusion approach is presented in Zhang et al. 145 . In con-
clusion, developing new and refining existing ML-based control charts and
ML-based CCPR models, as well as interpreting out-of-control techniques
based on data fusion and feature fusion methods are good directions for
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future research of the scientist in the field of this chapter (Weese et al. 34).

6.7 Control chart for complex data types

Data in the smart factories are nowadays collected with a high frequency,
high dimension, complex structure, and large variety which cannot be treated
straightforwardly. These new circumstances create the concept of complex
data. Functional data, compositional data, and topological data are some
important types of complex data. To handle such data, new data analysis
methods have developed or the existing techniques have refined by some re-
searchers. For example, Topological Data Analysis (TDA) has proposed to
analyze topological data that emerges as a powerful tool to extract insights
from high-dimensional data. The core idea of TDA is to find the shape,
the underlying structure of shapes, or relevant low dimensional features of
complex structure and massive data. In Umeda et al. 146 , the application
of TDA is used to describe the time-series DL for analyzing time series
data and anomaly detection. In particular, two key technologies-Mapper
and persistent homology are applied in both supervised learning and unsu-
pervised learning. Mapper presents the distinguishing features of a set of
data as an easy-to-understand graph. Persistent homology is a technology
that numerically captures a data shape in detail. This paper developed an
anomaly detection technology for time-series to detect an abnormal state
using TDA. Besides that, the data is becoming more and more related to
functional data. The studies on monitoring functional data have drawn a
lot of attention Colosimo and Pacella 147 , Liu et al. 148 , and Flores et al. 149 .
Anomaly detection methods for functional data based on functional PCA Yu
et al. 150 , wavelet functional PCA Liu et al. 148 are developed. However, the
application of advanced ML on this type of data for development, pattern
recognition, and interpreting of control charts still needs to be discovered.
Thus, more efforts are needed to develop tests that use ML to track these
types of data, need to find more documentation on ML methods suitable for
them in order to write them correctly. For instance, although these studies
have eliminated a lot of assumptions about the distribution of data when
designing control charts with ML techniques, there are still independent
data assumptions that do not exist in the data environment collected from
IoT sensors. In general, there are still very few studies on this promising
approach and further researches needs to be carried out to discover its nu-
merous applications to the smart factory. Accordingly, developing advanced
ML techniques to eliminate most of the assumptions of traditional SPC
in development, pattern recognition, and interpreting of control charts for
monitoring complex data types such as multivariate time series data, image
data, and Big Data with complex structures is a high-potential area to carry
out more researches. This will be a promising research direction to solve the
problem of smart factory SPC implementation with Big Data.
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6.8 Monitoring image data

Although applications of MVSs in industrial and medical shop floors have
been increased dramatically and a huge number of possible applications ex-
ist here, but there are only a few papers dealing with image monitoring.
Megahed et al. 116 reviewed image-based control charts including univariate,
multivariate, profile, spatial, multivariate image analysis, and medical im-
age devices charts and addressed the capability of image-based monitoring
in a much wider variety of quality characteristics. They noted that the use
of image-based control charts differs from traditional applications of control
charts in the SPC area. These differences can be attributed to a number
of factors, which include the type of data being monitored, the rationale
behind using control charts, and how the control charts are applied. Addi-
tionally, preprocessing of image data can also become a factor with 100%
inspection since the data preprocessing time can be longer than the pro-
duction cycle time. Therefore, these factors need to be considered when
developing the control charting strategy. He et al. 151 proposed a multivari-
ate control charting method for both single and multiple faults. In their
method, each image is divided into non-overlapping regions of equal size,
and the mean intensities of these regions are monitored with a multivariate
GLR-based statistic. Later, by extending the results of He et al. 152 , Stankus
and Castillo-Villar 153 developed a multivariate generalized likelihood ratio
control chart to identify process shifts and locate defects on artifacts by
converting 3D point cloud data to a 2D image. They considered the surface
dent in addition to two ordinary types of defects, surface curvature, and
surface scratch, that does not identify by the existing methodologies. By
means of a comparative study, Stankus and Castillo-Villar 153 showed that
the new methodology has a significantly shorter out-of-control ARL than
the He et al. 152 methodology for the scratch and no significant difference
in out-of-control ARL for the incorrect surface curvature. Zuo et al. 117 re-
ported that the existing research in the image-based SPC area has focused
on either identification of fault size and/or location or detection of fault
occurrence and there is limited research on both fault detection and iden-
tification. To handle such situations, they proposed an EWMA and region
growing based control chart for monitoring of 8-bit grayscale images of in-
dustrial products. The results of the simulation study showed that the new
method is not only effective in quick detection of the fault but also accurate
in estimating the fault size and location. Recently, Okhrin et al. 154 provided
an overview of recent developments on monitoring image processes. While
we review some existing literature in this field, there are still some research
opportunities in the integration of ML-based control charting methods and
pattern recognition models with image data. It is known that with smart
manufacturing, the amount of images collected from production lines is very
big and each image may include millions of pixels that need ML approaches
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to develop new control charts and CCPR frameworks. Many authors assume
an independent residual process, while there is a natural spatial correlation
structure of the pixels in neighborhoods. Therefore, there is a consequent
need for some ML-based approaches for the successful monitoring of image
processes. The existing methods, for instance, Okhrin et al. 155 and Yuan
and Lin 156 , can be improved to developing CNN and Transformers control
charts to monitoring images in SM.

7 A Case Study: Monitoring and early fault de-
tection in bearing

In this section, we present an application of ML based control chart for mon-
itoring and early fault detection in bearing. AD in vibration signals is an
important technique for monitoring, early detection of the failure, and fault
diagnosis for rotating machinery. Very recently, Tran et al. 125 , Tran et al. 157

and, Nguyen et al. 126 have developed very efficient methods with Long Short
Term Memory networks (LSTM) and LSTM Autoencoder techniques in de-
tecting anomalies for multivariate time series data. In this case study, we will
combine both of these methods to propose a new ML based control chart that
performs anomaly detection in an industry context. According to Nguyen
et al. 126 , we suppose that the autoencoder LSTM has been trained from a
normal sequence {x1, x2, . . . ,xN}, where N is the number of samples and

xt = {x(1)t , x
(2)
t , ..., x

(k)
t }, t = 1, 2, . . . is the value of the multivariate time

series at the time t with k number of variables (these notations are from
previous section). Using a sliding window of size m, the trained autoen-
coder LSTM can read the input sequence Xi = xt, . . . ,xt−m+1, encode it
and recreate it in the output X̂i = (x̂t, . . . , x̂t−m+1), with i = m+ 1, . . . , N..
Since these values has been observed from the data, one can calculate the
prediction error ei = ‖X̂i −Xi‖, i = m+ 1, . . . , N. The anomaly detection
is then based on these prediction errors. The anomaly scores distribution
of the training dataset is shown in Figure 5. In many studies, these er-
ror vectors are supposed that follow a Gaussian distribution and then used
the maximum likelihood estimation method to estimate the parameters of
this distribution. However, one can argue that the assumption of Gaussian
distribution for error vectors may not be true in practice. To overcome
the disadvantage of this method, Tran et al. 125 proposed used the kernel
quantile estimation (KQE) control chart (Sheather and Marron 158) to au-
tomatically determines a threshold for time series anomaly detection. In
particular, at the new time t, if et > τ , xt is classified as anomaly point and
vice versa, see Tran et al. 125 for more details.

The experimental data were generated from a bearing test rig that was
able to produce run-to-failure data. These data were downloaded from the
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Prognostics Center of Excellence (PCoE) through a prognostic data repos-
itory contributed by Intelligent Maintenance System (IMS), University of
Cincinnati (Qiu et al. 159). According to (Qiu et al. 159), vibrations signals
were collected every 10 minutes with a data sampling rate was 20kHz and
the data length was 20 480 sensor data points.

Figure 5: Anomaly scores distribution of the training dataset

This ML-based control chart allows for conditional monitoring and pre-
diction of the upcoming bearing malfunction well in advance of the actual
physical failure. It allows to automatically define a threshold value for flag-
ging anomalies while avoiding too many false positives during normal op-
erating conditions. The early detection of bearing failure is shown in the
Figure 6, the bearing failure is confirmed at the end of this experiment (Qiu
et al. 159). This promising approach could provide a perfect tool to enable
predictive maintenance implementation in SM.

8 Conclusion

Along with the development of technologies and AI, leading to production
systems become more complex and modern-day by day. Therefore, the ap-
plication of ML to SPC is an interesting and necessary trend that has been
strongly developed in recent years to meet the needs of SM. In this chapter,
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Figure 6: Bearing Failure Anomaly Detection

we have introduced different applications of ML in control chart implemen-
tation including designing, recognition trend, and interpreting. A literature
review about these issues is discussed. Although there have been many
achievements in research in this field, there are still many difficulties and
problems that need to be solved in order to be able to apply control charts
to SM. There still exists a significant potential for reducing the gap between
theory and application in modern industries. A case study is also provided
to present a ML-based control chart for monitoring and early fault detection
in bearing.
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Summary. In recent years, several control charts have been developed for the simul-
taneous monitoring of the time interval T and the amplitude X of events, denoted as
the TBEA (Time Between Events and Amplitude) charts. In general, a decrease in
T and/or an increase in X can result in a negative, hazardous or disastrous situation
that needs to be efficiently monitored with control charts. The goal of this chapter
is to further investigate several TBEA control charts and to hopefully open new re-
search directions. More specifically, this chapter will 1) introduce and compare three
different statistics, denoted as Z1, Z2 and Z3, suitable for monitoring TBEA data,
in the case of four distributions (gamma, lognormal, normal, and Weibull), when the
time T and the amplitude X are considered as independent, 2) compare the three
statistics introduced in 1) for the same distributions, but considering that the time
T and the amplitude X are dependent random variables and the joint distribution
can be represented using Copulas and 3) introduce a distribution-free approach for
TBEA data coupled with an upper-sided EWMA scheme in order to overcome the
“distribution choice” dilemma. Two illustrative examples will be presented to clarify
the use of the proposed methods.
Keywords: Attributes control charts; binomail AR(1); integer-valued time series;
statistical process monitoring

1 Introduction

Today, due to the large availability of data, various kinds of processes can (and have
to) be monitored using Statistical Process Monitoring (SPM) techniques based on
advanced control charts. These kinds of processes can be of course industrial ones
but, they can also be non industrial ones like in the biological/health-care (diseases,
like the Covid-19 for instance), the geological (earthquakes or volcanic eruptions) or
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the accidental (traffic accidents, forest fires) fields. In all of these situations, people
are usually focusing on two characteristics:

1. the time T between two consecutive specific (usually, adverse) events of interest
E,

2. the amplitude X of each of these events.

The characteristics T and X defined above are the key factors to be monitored for
an event and they are usually referred to as the TBEA (Time Between Events and
Amplitude) characteristics. In general, a decrease in T and/or an increase in X can
result in a negative, hazardous or disastrous situation that needs to be efficiently
monitored with control charts.

The first TBE (i.e. without taking into account the amplitude characteristic) type
of control chart goes back to Calvin (1983), who proposed to monitor the cumula-
tive number of conforming items between two non-conforming ones. The initial idea
was to find a method to improve the traditional attribute control charts that are
known to be ineffective in the case of high-quality processes in which the occurence
of non-conforming products is very rare. This initial idea has then been investigated
by Lucas (1985) and Vardeman and Ray (1985) and, subsequently, many other re-
searchers started to contribute to this area. Radaelli (1998) proposed to design and
implement one- and two-sided Shewhart-type TBE control charts assuming that the
counts can be modeled as a homogeneous Poisson process. Gan (1998) developed
an EWMA (Exponentially Weighted Moving Average) control chart monitoring the
rate of occurrences of rare events based on the inter-arrival times of these events.
Benneyan (2001) used the geometric (“g” chart) and the negative binomial (called
“h” chart) distributions in order to monitor the number of cases between hospital-
acquired infections. Xie et al. (2002) proposed a control chart for TBE data based on
the exponential distribution while Borror et al. (2003) extended it using a CUSUM
(Cumulative Sum) scheme and evaluated its robustness in the case of the Weibull
and lognormal distributions. Liu et al. (2006) compared the ATS (Average Time to
Signal) performance of several continuous TBE charts including the CQC, CQC-r,
exponential EWMA and exponential CUSUM charts. Zhang et al. (2007) investi-
gated the case of gamma distributed TBE data and they developed a control chart
based on a random-shift model to compute the out-of-control ATS. In the case of
multistage manufacturing processes, Shamsuzzaman et al. (2009) developed a con-
trol chart for TBE data and designed it using a statistical oriented approach while
Zhang et al. (2011a) designed it using a first economic oriented approach and Zhang
et al. (2011b) developed it using a second economic oriented approach assuming
random process shifts. The use of supplementary runs rules has also been proposed
for monitoring TBE data by Cheng and Chen (2011). Qu et al. (2014) studied some
TBE control charts that can be used for sampling inspection. Shafae et al. (2015)
evaluated the performance of three TBE CUSUM charts and Fang et al. (2016) pro-
posed a generalized group runs TBE chart for a homogenous Poisson failure process.

The first paper that proposed a combined scheme for monitoring the time interval
T of an event E as well as its amplitude X has been introduced by Wu et al. (2009)
who refered it to as a TBEA (Time Between Events and Amplitude) chart. After
this paper, several single TBEA charts have been developed, see for instance Qu
et al. (2013), Cheng et al. (2017), Ali and Pievatolo (2018), Qu et al. (2018) and,
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very recently, Sanusi et al. (2020).

As it can be noticed, this stream of research is rather recent and few publications
have already been devoted to. Therefore, the goal of this chapter is to further in-
vestigate it and to hopefully open new research directions. More specifically, this
chapter will be splitted into three parts:

1. In section 2 we will introduce and compare three different statistics, denoted
as Z1, Z2 and Z3, suitable for monitoring TBEA data, in the case of four dis-
tributions (gamma, lognormal, normal and Weibull), when the time T and the
amplitude X are considered as independent random variables.

2. In section 3, we will compare the three statistics introduced in section 2, for the
same distributions, but considering that the time T and the amplitude X are
dependent random variables. A model based on three types of Copulas will be
used to define the dependence between T and X.

3. Finally, in section 4, in order to overcome the “distribution choice” dilemma, we
will introduce a distribution-free approach coupled with an upper-sided EWMA
scheme. In addition, a specific technique called “continuousify” will be presented
in order to compute the Run Length properties of the proposed upper-sided
EWMA TBEA control chart in a reliable way.

2 TBEA charts for independent Times and Amplitudes

2.1 Model

Let D0 = 0, D1, D2, . . . be the dates of occurrence of a specific negative event E, let
T1 = D1 −D0, T2 = D2 −D1, . . . be the time intervals between two consecutive oc-
currences of the event E and let X1, X2, . . . be the corresponding magnitudes of this
event occurring at times D1, D2, . . . (see Figure 1). It must be noted that D0 = 0 is
the date of a “virtual” event which has no amplitude associated with.

In this section, we assume that T and X are two mutually independent continu-
ous random variables, both defined on [0,+∞). Let FT (t|θT ) and FX(x|θX) be the
c.d.f. (cumulative distribution function) of T and X, respectively, and let fT (t|θT )
and fX(x|θX) be the p.d.f. (probability distribution function) of T and X, respec-
tively, where θT and θX are the corresponding vector of parameters. Let also define
µT = E(T ), µX = E(X), σT = σ(T ) and σX = σ(X) be the expectation and
standard-deviation of T and X, respectively. By definition, when the process is in-
control, we have θT = θT0 , θX = θX0 , µT = µT0 , µX = µX0 , σT = σT0 , σX = σX0

and, when the process is out-of-control, we have θT = θT1 , θX = θX1 , µT = µT1 ,
µX = µX1 , σT = σT1 , σX = σX1 .

Because the reference scales for the random variables T and X can be very different
and, in order to not favour one random variable over the other one, we suggest to
define (and work with) the “normalized to the mean” new random variables T ′ and
X ′ as the in-control standardized counterparts of T and X, i.e.
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D0 = 0 D1 D2 D3 · · ·

· · ·

· · ·

T1 T2 T3

X1 X2 X3
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Dates





Amplitudes





Fig. 1. Dates of occurrence D0 = 0, D1, D2, . . ., time intervals T1 = D1 − D0,
T2 = D2 −D1, . . . and amplitudes X1, X2, . . . of a negative event E

T ′ =
T

µT0

,

X ′ =
X

µX0

.

Clearly, when the process is in-control we have E(T ′) = E(X ′) = 1.

2.2 Statistics to be monitored

In order to simultaneously monitor the time T between an event E and its amplitude
X, we suggest to define several dedicated statistics Z = Z(T ′, X ′), functions of the
random variables T ′ and X ′, satisfying the following two properties:

Z ↑ if either T ′ ↓ or X ′ ↑, (1)

Z ↓ if either T ′ ↑ or X ′ ↓ . (2)

Of course, there are many possible choices for the statistic Z. A first possible choice
for the statistic Z (denoted as the Z1 statistic) satisfying properties (1) and (2) is
simply

Z1 = X ′ − T ′. (3)

This random variable is defined on (−∞,+∞) and its c.d.f. FZ1(z|θZ) and p.d.f.
fZ1(z|θZ) can be obtained by integrating (see Figure 2 (a) and (b)) over all the
couples (X ′, T ′) ∈ R+2 satisfying Z1 = X ′ − T ′ ≤ z, and they are equal to

FZ1(z|θZ) = 1− µX0

∫ +∞

0

FT ((x− z)µT0 |θT )fX(xµX0 |θX)dx, (4)

fZ1(z|θZ) = µT0µX0

∫ +∞

0

fT ((x− z)µT0 |θT )fX(xµX0 |θX)dx, (5)
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X ′ − T ′ ≤ z

X ′

T ′

0

X ′ − T ′ ≤ z

X ′

T ′

0 z

(a) (b)

X ′

T ′ ≤ z

X ′

T ′

0

X ′ +
1

T ′ ≤ z

z
X ′

T ′

0

(c) (d)

Fig. 2. Integration areas used for statistics (a) and (b) Z1, (c) Z2 and (d) Z3

where θZ = (θT ,θX) is the corresponding combined vector of parameters.

A second possible choice for the statistic Z (denoted as the Z2 statistic) satisfying
properties (1) and (2) is defining it as the ratio between the two characteristics of
an event E:

Z2 =
X ′

T ′
. (6)

This random variable is defined on [0,+∞) and its c.d.f. FZ2(z|θZ) and p.d.f.
fZ2(z|θZ) can be obtained by integrating (see Figure 2 (c)) over all the couples

(X ′, T ′) ∈ R+2 satisfying Z2 = X′

T ′ ≤ z, and they are equal to
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FZ2(z|θZ) = 1− µX0

∫ +∞

0

FT
(xµT0

z
|θT
)
fX(xµX0 |θX)dx, (7)

fZ2(z|θZ) =
µT0µX0

z2

∫ +∞

0

xfT
(xµT0

z
|θT
)
fX(xµX0 |θX)dx. (8)

Finally, a third possible choice for the statistic Z (denoted as the Z2 statistic)
satisfying properties (1) and (2) is

Z3 = X ′ +
1

T ′
. (9)

This random variable which should be considered as a hybrid of the two previous
ones is also defined on [0,+∞) and its c.d.f. FZ3(z|θZ) and p.d.f. fZ3(z|θZ) can
be obtained by integrating (see Figure 2 (d)) over all the couples (X ′, T ′) ∈ R+2

satisfying Z3 = X ′ + 1
T ′ ≤ z, and they are equal to

FZ3(z|θZ) = FX(zµX0 |θX)− µX0

∫ z

0

FT

(
µT0

z − x |θT
)
fX(xµX0 |θX)dx, (10)

fZ3(z|θZ) = µT0µX0

∫ z

0

1

(z − x)2
fT

(
µT0

z − x |θT
)
fX(xµX0 |θX)dx. (11)

More details on how to derive the c.d.f. and p.d.f. of statistics Z1, Z2 and Z3 provided
above can be found in the Appendix section of Rahali et al. (2019). Concerning these
c.d.f. and p.d.f. it has to be noted that it is generally not possible to obtain a closed
form solution for them and the only solution is to numerically compute these ones
by using quadrature techniques.

2.3 Control limit

As it is more important to detect an increase in Z (in order to avoid more damages
or injuries, for instance) rather than a decrease, we suggest to only define an upper
control limit UCLZ for the TBEA charts based on statistics Z ∈ {Z1, Z2, Z3} as

UCLZ = F−1
Z (1− α|θZ0), (12)

where α is the type I error, θZ0 = (θT0 ,θX0) and F−1
Z (. . . |θZ0) is the inverse c.d.f.

of Z numerically obtained by solving equation FZ(z|θZ0) = α for z using a one
dimension root finder.

2.4 Time to Signal properties

The type II error β of the upper-sided TBEA charts based on statistic Z ∈
{Z1, Z2, Z3} is equal to

β = FZ(UCLZ |θZ1), (13)

where θZ1 = (θT1 ,θX1). The out-of-control ATS (Average Time to Signal) and
SDTS (Standard Deviation Time to Signal) of the upper-sided TBEA charts based
on statistic Z ∈ {Z1, Z2, Z3} can be obtained using the expectation and variance
of compound random variables (see also Rahali et al. (2019) for more details) and
they are equal to
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ATS1 =
µT1

1− β , (14)

SDTS1 =

√
σ2
T1

1− β +
µ2
T1
β

(1− β)2
. (15)

When the process is in-control, we have 1 − β = α and, consequently, we have the
following equivalence for the in-control ATS

ATS0 =
µT0

α
⇔ α =

µT0

ATS0
.

2.5 Comparative studies

As in Rahali et al. (2019), in order to compare the three TBEA charts defined in
sub-section 2.2 and based on the statistics Z ∈ {Z1, Z2, Z3} we have chosen to inves-
tigate four different types of distribution that are only dependent on two parameters
a and b. The choice of the Gamma, Lognormal, Normal and Weibull distributions
is driven by the fact that these ones are very often selected to model time oriented
random variables. For this reason, the two parameters beta distribution has been
excluded from the benchmark as it is rarely selected for representing time oriented
variables. Of course, more complex distributions could have been considered (like
the four parameters Beta or Johnson’s distributions) but, due to the fact that only
the nominal mean µ0 and standard-deviation σ0 are assumed to be known, we re-
stricted our choice to a selection of two parameters distributions. These distributions
are summarized in Table 1 with their names, parameter settings and p.d.f. f(x|a, b).
In this table, fNor(. . . ) stands for the p.d.f. of the normal (0, 1) distribution.

Table 1. Distributions used for the comparison of the 3 TBEA charts

Names Parameters f(x|a, b)

Gamma a > 0, b > 0
exp(− x

b
)xa−1

baΓ (a)

Lognormal a, b > 0
(
b
x

)
fNor(a+ b ln(x))

Normal a, b > 0 1
b
fNor

(
x−a
b

)

Weibull a > 0, b > 0 a
b

(
x
b

)a−1
exp

(
−
(
x
b

)a)

More specifically, we have selected 9 different in-control configurations to be inves-
tigated for T (the normal distribution has not been considered as a possible choice
for the time between events) and 11 in-control configurations to be investigated for
X, i.e. a total of 99 scenarios for (T,X). All of them (see Table 2) are such that the
in-control mean is µ0 = 10 and the in-control standard-deviation is σ0 ∈ {1, 2, 5}
(except for the normal distribution, where σ0 ∈ {1, 2} only). In addition, Table 2
also provides the values of the in-control parameters a0 and b0 and the correspond-
ing skewness coefficient γ0.
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Table 2. In-control configurations to be investigated

Distributions T X a0 b0 µ0 σ0 γ0

Gamma • • 100 0.1 10 1 0.2
• • 25 0.4 10 2 0.4
• • 4 2.5 10 5 1

Lognormal • • -23.0334 10.0249 10 1 0.3010
• • -11.5277 5.0494 10 2 0.6080
• • -4.6382 2.1169 10 5 1.6250

Normal ◦ • 10 1 10 1 0
◦ • 10 2 10 2 0

Weibull • • 12.1534 10.4304 10 1 -0.7155
• • 5.7974 10.7998 10 2 -0.3519
• • 2.1013 11.2906 10 5 0.5664

The upper control limits UCLZ for the three TBEA charts based on statistics
Z ∈ {Z1, Z2, Z3}, satisfying ATS0 = 370.4, have been obtained in Table 3 for the 99
possible scenarios defined in Table 2. As it can be seen, regardless of the statistic Z
and the distribution of X, these upper control limits tend to be similar if σ0 is small
(say σ0 = 1) and the distribution of T is either gamma or lognormal. But, when T
follows a Weibull distribution, the control limits are larger than those of the gamma
or lognormal distributions.

When an out-of-control situation occurs in a TBEA process (corresponding to an
upper shift in Z), it can be due to i) a mean shift only in the time T from µT0 to
µT1 = δTµT0 , ii) a mean shift only in the amplitude X from µX0 to µX1 = δXµX0 ,
or iii) a combination of the two previous cases, where δT ≤ 1 and δX ≥ 1 are the
parameters quantifying the change in the time and amplitude, respectively. But, as
the actual values of δT and δX are usually unknown by the practitioner, it is therefore
difficult to evaluate the three TBEA charts based on statistics Z ∈ {Z1, Z2, Z3} using
the ATS1 criterion defined in (14) that depends on a specific values for δT and/or δX .
For this reason, it is therefore preferable to use the following more general criterion
denoted as EATS1 (Expected Average Time to Signal) and defined as

EATS1 =
∑

δT∈ΩT

∑

δX∈ΩX

fδT (δT )fδX (δX)ATS1(δT , δX),

where ΩT and ΩX are the sets of the potential shifts for δT and δX , respectively,
and fδX (δX) and fδT (δT ) are the probability mass functions of the shifts δT and δX
over the sets ΩT and ΩX . In this chapter, we adopt the classical assumption that
confines fδT (δT ) and fδX (δX) to be discrete uniform distributions over ΩT and ΩX ,
respectively. If we want to investigate i) a mean shift only due to the time T then we
suggest to fix ΩT = {0.5, 0.55, . . . , 0.9, 0.95} and ΩX = {1}, ii) a mean shift only due
to the amplitude X then we suggest to fix ΩT = {1} and ΩX = {1.1, 1.2, . . . , 1.9, 2}
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Table 3. Upper control limits UCLZ for the three TBEA charts based on statistics
Z ∈ {Z1, Z2, Z3}, satisfying ATS0 = 370.4

Statistic Z1

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 0.273 0.458 1.177 0.275 0.471 1.234 0.268 0.429 0.252 0.400 1.096
Gamma 2 0.404 0.547 1.213 0.405 0.556 1.266 0.402 0.527 0.394 0.509 1.138

5 0.755 0.852 1.395 0.755 0.855 1.431 0.754 0.844 0.752 0.836 1.341

1 0.271 0.457 1.177 0.273 0.471 1.234 0.266 0.428 0.249 0.399 1.096
Lognormal 2 0.391 0.540 1.212 0.392 0.550 1.264 0.389 0.520 0.380 0.500 1.136

5 0.682 0.794 1.369 0.682 0.799 1.408 0.681 0.783 0.678 0.772 1.312

1 0.293 0.465 1.178 0.295 0.478 1.235 0.289 0.438 0.277 0.410 1.097
Weibull 2 0.460 0.578 1.219 0.460 0.587 1.271 0.458 0.562 0.454 0.547 1.145

5 0.823 0.908 1.418 0.823 0.910 1.452 0.823 0.902 0.822 0.896 1.369

Statistic Z2

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 1.314 1.500 2.226 1.316 1.513 2.280 1.310 1.474 1.296 1.448 2.148
Gamma 2 1.590 1.735 2.422 1.591 1.742 2.463 1.588 1.720 1.583 1.706 2.359

5 3.615 3.713 4.315 3.615 3.713 4.308 3.615 3.712 3.615 3.711 4.309

1 1.310 1.498 2.225 1.312 1.511 2.279 1.306 1.472 1.291 1.445 2.147
Lognormal 2 1.555 1.708 2.405 1.556 1.715 2.447 1.553 1.692 1.547 1.677 2.341

5 2.820 2.941 3.623 2.820 2.942 3.623 2.820 2.937 2.819 2.934 3.603

1 1.356 1.524 2.238 1.358 1.537 2.291 1.353 1.500 1.343 1.476 2.160
Weibull 2 1.762 1.875 2.507 1.762 1.881 2.550 1.761 1.865 1.758 1.856 2.447

5 4.934 5.010 5.502 4.934 5.010 5.492 4.934 5.010 4.934 5.010 5.506

Statistic Z3

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 2.299 2.474 3.188 2.301 2.488 3.245 2.295 2.447 2.282 2.419 3.107
Gamma 2 2.566 2.668 3.277 2.567 2.676 3.328 2.565 2.653 2.561 2.640 3.204

5 4.587 4.604 4.764 4.587 4.605 4.807 4.587 4.604 4.587 4.603 4.738

1 2.295 2.472 3.188 2.297 2.486 3.244 2.291 2.445 2.277 2.416 3.107
Lognormal 2 2.530 2.641 3.266 2.531 2.649 3.317 2.529 2.625 2.524 2.611 3.193

5 3.787 3.817 4.084 3.787 3.818 4.127 3.787 3.815 3.787 3.813 4.043

1 2.342 2.499 3.196 2.344 2.512 3.252 2.339 2.472 2.329 2.445 3.115
Weibull 2 2.742 2.812 3.357 2.743 2.819 3.413 2.742 2.801 2.740 2.793 3.282

5 5.912 5.921 6.002 5.912 5.922 6.024 5.912 5.921 5.912 5.921 5.994
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and iii) a mean shift due to the time T and the amplitude X then we suggest to fix
ΩT = {0.5, 0.55, . . . , 0.9, 0.95} and ΩX = {1.1, 1.2, . . . , 1.9, 2}.

For the 99 possible scenarios defined in Table 2, Table 4 gives the EATS1 val-
ues of the three TBEA charts based on statistics Z ∈ {Z1, Z2, Z3} when ΩT =
{0.5, 0.55, . . . , 0.9, 0.95} and ΩX = {1.1, 1.2, . . . , 1.9, 2}. Values of EATS1 in bold
characters are the smallest ones among statistics Z1, Z2 or Z3. From Table 4, it can
be deduced that when there is a shift in both T and X, the most efficient statistic
is Z1 (in 56% of the cases with an average EATS1 value EATS1 = 14.91), followed
by statistic Z2 (in 35% of the cases with EATS1 = 29.15) and, finally, statistic Z3

(in only 5% of the cases with EATS1 = 11.74).

The cases where the mean shift is only due to the time T or the mean shift is only
due to the amplitude X have both been investigated in Rahali et al. (2019) (see
Tables 3 and 4, pages 245–246). In these cases, the conclusions are

� if the mean shift is only due to the time T , then the most efficient statistic is Z3

(in 71% of the cases with EATS1 = 59.88) followed by Z2 (in 29% of the cases
with EATS1 = 71.82) while the statistic Z1 never provides the smallest EATS1

and should not be considered here as an efficient monitoring statistic.
� if the mean shift is only due to the amplitude X, then the statistic Z1 is the

best option as it always gives the smallest EATS1 values, regardless of the com-
bination under consideration. In this case, Z2 and Z3 should not be considered
as potential efficient monitoring statistics.

2.6 Illustrative example

This illustrative example has been detailed for the first time in Rahali et al. (2019)
and it is based on a real data set concerning the time (T in days) between fires in
forests of the region “Provence - Alpes - Côte D’Azur” in the south-east of France
and their amplitudes (X measured as the burned surface in ha = 10000m2). This
data set reports a total of 92 significant fires from 2016/10 to 2017/9: the data set
has been split into m = 47 fires occuring during the “low season” from 2016/10
to mid 2017/6 (used as Phase 1 data) and n = 45 fires occuring during the “high
season” from mid 2017/6 to 2017/9 (used as Phase 2 data). The values of T and X
are recorded in Table 5 (as well as the values of the statistics Z1, Z2 and Z3) and
they are also plotted in Figure 3 where it is clear that the values of T during the
“high season” are smaller than those during the “low season” and the values of X
during the “high season” are larger than those during the “low season”.

The use of the Kendall’s and Spearman’s rank correlation tests on the whole data
set yields p-values larger than the significance level of 0.05 (0.2 for the Kendall’s
test and 0.19 for the Spearman’s test) validating the fact that the random variables
T and X are uncorrelated (a key assumption in this section). Among the four dis-
tributions considered in Table 1, the use of the Kolmogorov-Smirnov’s test shows
that the best fit for both T and X is the lognormal distribution with parameters
(a0 = −1.2648, b0 = 1.0302) for T and (a0 = −1.6697, b0 = 0.8624) for X.
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Table 4. EATS1 values when ΩT = {0.5, 0.55, . . . , 0.9, 0.95} and ΩX =
{1.1, 1.2, . . . , 1.9, 2} for the three TBEA charts based on statistics Z ∈ {Z1, Z2, Z3}

Statistic Z1

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 8.4 12.4 47.8 8.5 13.0 55.9 8.4 11.3 8.1 10.4 38.6
Gamma 2 10.5 14.5 48.7 10.5 15.0 56.2 10.4 13.6 10.2 12.8 40.1

5 16.9 21.2 52.5 16.9 21.5 58.4 16.9 20.5 16.8 19.9 45.6

1 8.4 12.4 47.8 8.5 13.0 55.9 8.3 11.3 8.1 10.3 38.6
Lognormal 2 10.2 14.3 48.6 10.2 14.8 56.1 10.1 13.3 9.9 12.5 39.9

5 14.7 19.3 52.1 14.7 19.6 58.4 14.7 18.5 14.5 17.8 44.7

1 8.8 12.7 47.9 8.9 13.3 55.9 8.8 11.6 8.5 10.7 38.7
Weibull 2 12.4 16.0 49.0 12.4 16.5 56.4 12.3 15.1 12.1 14.4 40.6

5 19.5 23.7 54.1 19.5 23.9 59.6 19.5 23.1 19.4 22.6 47.5

Statistic Z2

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 8.5 11.3 30.4 8.5 11.6 34.4 8.5 10.6 8.3 10.1 25.7
Gamma 2 12.1 15.0 32.2 12.1 15.2 34.9 12.1 14.5 12.0 14.1 28.9

5 33.6 34.9 43.0 33.6 34.9 43.1 33.6 34.9 33.6 34.9 42.6

1 8.5 11.2 30.4 8.5 11.6 34.3 8.4 10.6 8.2 10.0 25.7
Lognormal 2 11.4 14.3 31.9 11.4 14.5 34.7 11.4 13.8 11.2 13.4 28.4

5 24.5 26.5 38.2 24.5 26.5 38.6 24.5 26.4 24.4 26.3 37.1

1 9.2 11.9 30.8 9.2 12.3 34.7 9.1 11.3 9.0 10.7 26.3
Weibull 2 16.7 19.1 34.9 16.7 19.3 37.3 16.6 18.8 16.6 18.5 32.1

5 47.6 48.4 53.7 47.6 48.4 53.6 47.6 48.4 47.6 48.4 53.6

Statistic Z3

T X → Gamma Lognormal Normal Weibull
↓ σ0 1 2 5 1 2 5 1 2 1 2 5

1 8.5 11.4 38.6 8.5 11.8 44.7 8.4 10.6 8.2 9.9 31.7
Gamma 2 12.6 14.8 35.7 12.6 15.1 40.0 12.6 14.3 12.5 13.9 30.7

5 50.9 51.0 52.4 50.9 51.0 53.5 50.9 51.0 50.9 51.0 52.1

1 8.4 11.3 38.7 8.5 11.8 44.8 8.4 10.6 8.2 9.9 31.7
Lognormal 2 11.7 14.0 35.7 11.7 14.3 40.3 11.7 13.5 11.6 13.1 30.5

5 35.1 35.5 40.5 35.1 35.5 42.1 35.1 35.4 35.1 35.4 39.4

1 9.3 12.1 38.5 9.3 12.6 44.4 9.2 11.3 9.0 10.6 31.8
Weibull 2 19.0 20.3 38.3 19.0 20.6 42.4 19.0 19.9 18.9 19.7 33.7

5 73.3 73.3 73.5 73.3 73.3 73.9 73.3 73.3 73.3 73.3 73.5
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The three TBEA charts, corresponding to the statistics Z ∈ {Z1, Z2, Z3} are plotted
in Figure 4 along with their upper control limits UCLZ1 = 6.0306, UCLZ2 = 28.1209
and UCLZ3 = 19.3885 (assuming ATS0 = 730, i.e. 2 years). As it can be seen, these
charts detect several out-of-control situations during the “high season” confirming
that a decrease in the time between fires occured as well as an increase in the
amplitude of these fires.
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ha) corresponding to the data set in Table 5
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Table 5. Phase 1 and 2 data sets corresponding to time (T in days) between fires,
amplitudes (X as the burned surface in ha) and the values of the statistics Z1, Z2

and Z3.

Phase 1 Phase 2

i T X Z1 Z2 Z3 i T X Z1 Z2 Z3

1 9 3.68 -1.37 0.16 0.88 1 1 1.00 -0.11 0.40 5.54
2 17 1.99 -2.96 0.05 0.47 2 2 3.70 -0.09 0.75 3.01
3 34 6.00 -5.78 0.07 0.60 3 2 3.17 -0.13 0.64 2.97
4 7 1.19 -1.19 0.07 0.87 4 3 18.40 0.81 2.47 3.18
5 3 135.80 9.45 18.23 11.82 5 3 1.00 -0.47 0.13 1.90
6 2 14.37 0.69 2.89 3.79 6 1 2.22 -0.02 0.89 5.63
7 14 8.10 -1.96 0.23 0.99 7 2 19.09 1.04 3.84 4.14
8 2 32.31 2.01 6.51 5.11 8 1 2.00 -0.04 0.81 5.62
9 6 3.07 -0.87 0.21 1.14 9 2 34.28 2.16 6.90 5.26
10 1 10.03 0.56 4.04 6.21 10 2 3.00 -0.14 0.60 2.95
11 1 7.93 0.40 3.19 6.05 11 1 6.63 0.31 2.67 5.96
12 1 1.50 -0.07 0.60 5.58 12 1 4.47 0.15 1.80 5.80
13 6 23.30 0.62 1.56 2.63 13 7 8.24 -0.67 0.47 1.39
14 3 3.73 -0.27 0.50 2.10 14 1 769.45 56.49 309.87 62.14
15 3 4.73 -0.20 0.63 2.17 15 1 4.37 0.14 1.76 5.79
16 2 3.19 -0.13 0.64 2.97 16 1 90.70 6.50 36.53 12.15
17 2 6.25 0.09 1.26 3.19 17 1 11.49 0.66 4.63 6.31
18 1 3.60 0.08 1.45 5.73 18 6 3590.78 263.36 241.01 265.37
19 1 6.12 0.27 2.46 5.92 19 1 1427.92 104.98 575.04 110.63
20 3 1.50 -0.44 0.20 1.93 20 1 255.96 18.67 103.08 24.32
21 4 1.33 -0.63 0.13 1.46 21 1 1.00 -0.11 0.40 5.54
22 12 1.42 -2.09 0.05 0.56 22 4 13.88 0.29 1.40 2.39
23 3 5.75 -0.13 0.77 2.25 23 1 138.28 10.00 55.69 15.65
24 3 3.47 -0.29 0.47 2.08 24 2 8.90 0.29 1.79 3.39
25 2 13.31 0.61 2.68 3.71 25 3 1.50 -0.44 0.20 1.93
26 1 26.31 1.75 10.60 7.41 26 4 34.63 1.82 3.49 3.92
27 1 18.54 1.18 7.47 6.83 27 1 82.56 5.90 33.25 11.55
28 2 66.17 4.51 13.32 7.61 28 1 2.00 -0.04 0.81 5.62
29 1 9.90 0.55 3.99 6.20 29 1 162.08 11.75 65.27 17.40
30 3 4.22 -0.24 0.57 2.13 30 4 3.26 -0.49 0.33 1.61
31 7 34.28 1.24 1.97 3.31 31 2 285.91 20.69 57.57 23.79
32 4 2.23 -0.57 0.22 1.53 32 1 2.00 -0.04 0.81 5.62
33 1 1.84 -0.05 0.74 5.60 33 3 11.57 0.30 1.55 2.67
34 1 2.88 0.03 1.16 5.68 34 9 34.70 0.91 1.55 3.16
35 1 21.46 1.40 8.64 7.05 35 1 431.00 31.56 173.57 37.21
36 1 4.46 0.15 1.80 5.80 36 1 10.89 0.62 4.39 6.27
37 1 58.27 4.11 23.47 9.76 37 4 1.00 -0.66 0.10 1.44
38 1 8.84 0.47 3.56 6.12 38 6 1.50 -0.99 0.10 1.02
39 13 1.03 -2.30 0.03 0.50 39 1 1.17 -0.10 0.47 5.55
40 7 16.57 -0.06 0.95 2.00 40 2 1.27 -0.27 0.26 2.83
41 14 4.96 -2.20 0.14 0.76 41 1 26.25 1.75 10.57 7.40
42 1 1.37 -0.08 0.55 5.57 42 3 11.66 0.31 1.57 2.68
43 3 23.39 1.17 3.14 3.55 43 1 3.03 0.04 1.22 5.69
44 20 1.70 -3.53 0.03 0.40 44 1 12.00 0.70 4.83 6.35
45 22 5.30 -3.63 0.10 0.64 45 1 1.00 -0.11 0.40 5.54
46 1 15.64 0.97 6.30 6.62
47 9 5.14 -1.27 0.23 0.99
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Fig. 4. Statistics Z1, Z2 and Z3 corresponding to the data set in Table 5
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3 TBEA charts for dependent Times and Amplitudes

3.1 Motivation

In the previous section, the time T between events and their amplitudes X have
been considered as independent random variables. But, in practice, this is not al-
ways the case. For example, there are natural situations for which the amplitudes
tend to become larger when the times between events become shorter (i.e. a nega-
tive correlation). Such kind of situations is likely to occur for example in the case
of earthquakes for which, in a first phase, small amplitude earthquakes may occur
with a low frequency (large time between events) and, suddenly, in a second phase,
the occurence frequency of these earthquakes may increase (shorter time between
events) with a negatively correlated increase in their amplitudes. The same kind of
situations may also arise in the case of forest fires occuring, in a first phase during
the “humid season”, with a low frequency and small amplitudes (surfaces burned)
and becoming more disastrous during the “dry season” with shorter time between
the occurrence of forest fires and larger amplitudes (see for instance the 2019 forest
fires in Amazonia or Siberia or the 2020 forest fires in Australia and USA). Positive
correlation between T and X (i.e. the time between events becomes shorter and
the amplitude becomes smaller) is also possible as the the forthcoming illustrative
example in this section will depict it.

Until now, very few research papers have investigated TBEA control charts by con-
sidering the potential dependence between the two variables T and X. Cheng and
Mukherjee (2014) were the first to investigate a T 2 TBEA control chart by using
a bivariate SAT (Smith-Adelfang-Tubbs) Gamma distribution to model the joint
probability of T and X. This work has been extended later by Cheng et al. (2017)
who developed a similar approach based on a MEWMA (multivariate exponentially
weighted moving average) procedure.

In this section, instead of specifying a particular bivariate joint distribution for
(T,X), like the SAT distribution for instance, we will assume that the marginal
distributions of T and X are both known (and they can be almost anything) and we
will use the Copulas mechanism (popularized by Sklar (1959)) in order to model the
dependence between the time T and the amplitude X. The use of Copulas in the
Statistical Process Monitoring field is not so common. We can cite for instance Fatahi
et al. (2011), Dokouhaki and Noorossana (2013), Busababodhin and Amphanthong
(2016) and Sukparungsee et al. (2018) who all proposed various types of control
charts based on Copulas.

3.2 Model

In this section, we assume that (X,T ) ∈ R2
+ and their joint continuous c.d.f. is equal

to
F(T,X)(t, x|θT ,θX , θ) = C(FT (t|θT ), FX(x|θX)|θ), (16)

where FT (t|θT ) and FX(x|θX), as defined in section 2.1, are the marginal c.d.f. of
T and X, respectively, C(u, v|θ) is a Copula containing all information on the de-
pendence structure between T and X, and θ is a dependence parameter quantifying
the dependence between the marginals. In addition, let
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f(T,X)(t, x|θT ,θX , θ) = c(FT (t|θT ), FX(x|θX)|θ)fT (t|θT )fX(x|θX) (17)

be the joint p.d.f. of (X,T ) where fT (t|θT ) and fX(x|θX) are the marginal p.d.f.’s of

T and X, respectively, and c(u, v|θ) = ∂C(u,v|θ)
∂u∂v

is the Copula density. As explained
in section 2.1, in order to not favor one random variable over the other one, the
new random variables T ′ = T

µT0
and X ′ = X

µX0
are introduced as the in-control

standardized counterparts of T and X, where µT0 and µX0 are the (known) in-
control expectation of T and X, respectively. It is easy to show that the joint c.d.f.
F(T ′,X′)(t, x|θT ,θX , θ) and joint p.d.f. f(T ′,X′)(t, x|θT ,θX , θ) of (X ′, T ′) ∈ R2

+ are
equal to

F(T ′,X′)(t, x|θT ,θX , θ) =C(FT (tµT0 |θT ), FX(xµX0 |θX)|θ),
f(T ′,X′)(t, x|θT ,θX , θ) =µT0µX0c(FT (tµT0 |θT ), FX(xµX0 |θX)|θ)

fT (tµT0 |θT )fX(xµX0 |θX).

The closed form formulas for the c.d.f. and p.d.f. of the statistics Z1, Z2 and Z3

defined in section 2.2 are provided in Rahali et al. (2021). The definition of the upper
control limit UCLZ of the TBEA charts with dependent times T and amplitudes X is
similar to the one in equation (12) and it just requires the addition of the dependence
parameter θ, i.e. UCLZ = F−1

Z (1−α|θZ0 , θ). The formulas for computing ATS1 and
SDTS1 are the same as in equations (14) and (15), respectively.

3.3 Comparative studies

In order to compare the three TBEA charts for dependent times T and amplitudes
X based on statistic Z ∈ {Z1, Z2, Z3}, the same distributions listed in Table 1 have
been chosen and the same 99 possible scenarios defined in Table 2 have been inves-
tigated. The Archimedean bivariate Copulas of Gumbel (1960), Clayton (1978) and
Frank (1979) have been chosen in this section to model the dependence between T
and X. The Gumbel’s (also called Gumbel-Hougaard’s) and Clayton’s Copulas are
two asymmetric Copulas exhibiting a larger dependence in the positive tail than
in the negative one (for the Gumbel’s Copula) and in the negative tail than in the
positive one (for the Clayton’s Copulas). The Frank’s Copula is a symmetric one
that can be used to model dependence structures with either positive or negative
correlation. Other Archimedean bivariate Copulas could have also been investigated,
like for instance the Ali et al. (1978) and Joe (1993) Copulas but, for simplicity and
also due to their popularity, we only confined our investigations to the Gumbel’s,
Clayton’s and Frank’s Copulas. Details concerning the definition of each of these
Copulas C(u, v|θ), the domain of definition for θ and the relationship between the
Kendall’s rank correlation coefficient τ and the dependence parameter θ are pro-
vided in Table 6. In order to facilitate the use of these Copulas, Table 7 simply
provides pre-computed values of θ for several selected values of the Kendall’s rank
correlation coefficient τ ∈ {0, 0.1, 0.2, . . . , 0.9}.

When it is not possible to model a negative dependence with the Copulas de-
fined above, it is possible to use 90 or 270 degrees rotated versions C90 or C270

of these Copulas using the following transformations (see Brechmann and Schep-
smeier (2013))
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C90(u1, u2) = u2 − C(1− u1, u2),

C270(u1, u2) = u1 − C(u1, 1− u2).

Table 6. Details concerning Gumbel’s, Clayton’s and Frank’s Copulas

Name C(u, v|θ) Domain for θ τ and θ

Gumbel exp
(
−
(
(− ln(u))θ + (− ln(v))θ

) 1
θ

)
[1,∞) τ = 1− 1

θ
⇔ θ = 1

1−τ

Clayton max(0, u−θ + v−θ − 1)−
1
θ [−1,∞)\{0} τ = θ

θ+2
⇔ θ = 2τ

1−τ

Frank − 1
θ

ln
(

1 + (e−θu−1)(e−θv−1)

e−θ−1

)
R\{0} τ = 1 + 4(D1(θ)−1)

θ

Note: D1(θ) is the Debye function of the first kind defined as D1(θ) = 1
θ

∫ θ
0

t
et−1

dt.

Table 7. Pre-computed values of θ for several selected values of τ ∈
{0, 0.1, 0.2, . . . , 0.9}

θ
τ Frank Clayton Gumbel

0.0 0.00 0.00 1.00
0.1 0.91 0.22 1.11
0.2 1.86 0.50 1.25
0.3 2.92 0.86 1.43
0.4 4.16 1.33 1.67
0.5 5.74 2.00 2.00
0.6 7.93 3.00 2.50
0.7 11.41 4.67 3.33
0.8 18.19 8.00 5.00
0.9 38.28 18.00 10.00

Similarly to Table 3 (for independent times T and amplitudes X) and assuming
ATS0 = 370.4, the upper control limits UCLZ of the three TBEA charts with
dependent times T and amplitudes X are reported in Tables 3–5 of Rahali et al.
(2021) for the 99 scenarios defined in Table 2 and for the 3 Copulas defined above.
From Tables 3–5 in Rahali et al. (2021), the following conclusions can be drawn

� For a fixed statistic Z ∈ {Z1, Z2, Z3}, scenario in Table 2 and type of Copula,
the larger τ , the smaller the control limit UCLZ .
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� For a fixed scenario in Table 2, value of τ and type of Copula, the upper con-
trol limits of the statistic Z ∈ {Z1, Z2, Z3} always satisfy UCLZ1 < UCLZ2 <
UCLZ3 .

� For a fixed scenario in Table 2, value of τ and statistic Z ∈ {Z1, Z2, Z3}, the
values of UCLZ are more or less the same no matter the type of Copula consid-
ered.

As in Section 2.5 for independent times T and amplitudes X, EATS1 values (for
shifts in both T and X) have been reported in Tables 7–9 of Rahali et al. (2021) in
the case of dependent times T and amplitudes X. These Tables only consider the
Frank’s Copula and τ ∈ {0.2, 0.5, 0.8}. These results clearly show that, irrespective
of the level of dependence, when a shift in both T and X is likeky to occur, the
best option is to use the statistics Z1 or, eventually, Z2, but not the statistic Z3

which is never considered as an efficient one. These conclusions are similar to the
ones obtained in Section 2.5 and they remain identical for other Copulas like the
Clayton’s or Gumbel’s ones. More details concerning these aspects can be found in
Rahali et al. (2021).

3.4 Illustrative example

The following illustrative example has been detailed for the first time in Rahali et al.
(2021) and it is related to a company that has recorded for one of its bottleneck
machine, during about 6 years (from 08/01/2012 to 27/12/2018) all the breakdown
dates (Di in days) as well as the estimated corresponding incurred costs (Xi, in
euros) which include all the repair and restart costs (spare parts, manpower) and
the cost of manufacturing disruption, see Table 8. This data set of 44 dates is divided
into two parts

� 30 breakdowns recorded during 5 years (2012 to 2016) and used in this example
as a Phase 1 data set.

� 14 breakdowns recorded during 2 years (2017 to 2018) and used in this example
as a Phase 2 data set.

The times Ti and amplitude Xi, i = 1, . . . , 44 in Table 8 have also been plotted in
Figure 5 with ◦ (for Phase 1) and • (for Phase 2), respectively. From the scatter-
plot shown in Figure 5, it can be noted that when the time Ti between consecutive
breakdowns is smaller (larger), the corresponding cost Xi seems to be also smaller
(larger), indicating a potential slight positive correlation between T and X. Investi-
gations (during the period 2012 to 2016) about this phenomena have clarified why
such a positive correlation between T and X may occur in this situation. After the
occurrence of a breakdown, if the next one occurs after a short period of time, it is
often due to the same problem occurring to the process: consequently, the time to
looking for the breakdown causes is reduced. The spare parts costs are also reduced
as they have already been purchased for the previous breakdown. On the contrary,
when the next breakdown occurs after a long period of time, the causes are usually
different from the previous breakdown and need more time to be revealed; new spare
parts need to be purchased, thus increasing the cost. In order to evaluate if a positive
correlation significantly exists between T and X, the Kendall’s and Spearman’s rank
correlation coefficients have been estimated to τ̂ = 0.4657 and ρ̂ = 0.6129 as well
as their correponding p-values 0.00035 and 0.00032, respectively, thus confirming a
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positive correlation between T and X. In this example, a Frank’s Copula has been
chosen to model the dependence between T and X. As explained in Rahali et al.
(2021), if τ̂ = 0.4657 then an estimation of the dependence parameter is θ̂ = 5.14.

Table 8. Phase 1 and 2 data sets corresponding to the time (Ti in days) between
two consecutive breakdowns, amplitudes (Xi cost in euros) and the values of the
statistics Z1, Z2 and Z3.

Phase 1 Phase 2
Date i Ti Xi Z1,i Z2,i Z3,i Date i Ti Xi Z1,i Z2,i Z3,i

10/03/12 1 62 4890 -0.064 0.939 1.939 11/01/17 1 63 5080 -0.043 0.960 1.962
28/05/12 2 79 6180 -0.092 0.932 1.995 21/03/17 2 69 5350 -0.090 0.923 1.935
25/07/12 3 58 3730 -0.231 0.766 1.770 07/05/17 3 47 3770 -0.036 0.955 2.015
27/08/12 4 33 2930 0.032 1.057 2.377 15/07/17 4 69 4590 -0.243 0.792 1.782
20/11/12 5 85 7600 0.093 1.065 2.230 14/10/17 5 91 5940 -0.344 0.777 1.848
20/02/13 6 92 5580 -0.434 0.722 1.768 18/12/17 6 65 5420 -0.008 0.993 2.002
30/04/13 7 69 4570 -0.247 0.789 1.778 26/02/18 7 70 4580 -0.262 0.779 1.767
06/07/13 8 67 5230 -0.080 0.930 1.937 21/04/18 8 54 5430 0.181 1.197 2.189
18/08/13 9 43 4470 0.174 1.238 2.274 14/05/18 9 23 5740 0.770 2.972 3.721
28/09/13 10 41 3420 -0.005 0.993 2.128 27/06/18 10 44 6110 0.488 1.654 2.574
22/11/13 11 55 3460 -0.234 0.749 1.770 22/08/18 11 56 7340 0.533 1.561 2.536
08/02/14 12 78 5360 -0.241 0.818 1.839 29/10/18 12 68 8160 0.495 1.429 2.516
05/04/14 13 56 4470 -0.047 0.951 1.956 24/11/18 13 26 4800 0.529 2.199 3.236
28/05/14 14 53 4470 0.004 1.004 2.015 27/12/18 14 33 6570 0.768 2.371 3.113
08/07/14 15 41 3320 -0.025 0.964 2.108
27/09/14 16 81 4910 -0.382 0.722 1.720
29/10/14 17 32 5010 0.470 1.864 2.854
07/01/15 18 70 6630 0.152 1.128 2.182
30/03/15 19 82 5710 -0.238 0.829 1.873
20/05/15 20 51 5130 0.171 1.198 2.192
16/07/15 21 57 5330 0.110 1.114 2.111
01/09/15 22 47 5010 0.215 1.269 2.266
22/10/15 23 51 3660 -0.126 0.855 1.895
15/11/15 24 24 3340 0.268 1.657 3.129
12/01/16 25 58 3600 -0.257 0.739 1.743
14/03/16 26 62 5560 0.072 1.068 2.074
28/04/16 27 45 5760 0.401 1.524 2.473
25/06/16 28 58 6440 0.317 1.322 2.318
16/08/16 29 52 6310 0.393 1.445 2.408
09/11/16 30 85 6300 -0.169 0.883 1.967

Concerning the marginal distributions of T andX, the best fit using the Kolmogorov-
Smirnov’s test is to choose a Gamma distribution for the time T with parameters
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Fig. 5. Phase 1 (◦) and 2 (•) data corresponding to the time (T in days) between
breakdowns and amplitudes (X in euros) corresponding to the data set in Table 8.
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(a0 = 11.6488, b0 = 5.0562) and the Weibull distribution for the cost X with pa-
rameters (a0 = 4.8472, b0 = 5396.4958).

Assuming an in-control ATS value, ATS0 = 9125 days (i.e. 25 years), the upper
control limits of the three TBEA charts based on statistics Z1, Z2 and Z3 are found
to be UCLZ1 = 0.57, UCLZ2 = 2.06 and UCLZ3 = 3.18, respectively, see Rahali
et al. (2021) for more details. The three TBEA charts, corresponding to the statistics
Z1, Z2 and Z3, are plotted in Figure 6 along with their upper control limits. As it can
be seen, the Phase 1 part of these charts seems to confirm the fact that from 2012
to 2016, the time between consecutive breakdowns and their corresponding costs
were in stable state. But, from 2017, things seems to have changed as several out-of-
control situations (see values in bold in Table 8) have been detected by all the TBEA
charts due to more frequent breakdowns and an increasing maintenance cost (also
due to an aging machine). Every time an out-of-control situation is detected, the
production has been stopped, the root causes of the breakdown have been searched
for, analyzed and repaired. Then, the machine has been restarted.

4 A distribution-free TBEA chart

4.1 Motivation

The TBEA control charts developed in the previous sections are parametric ones,
i.e. they assume that the distributions of the Times X and their Amplitudes X are
perfectly known. However, as it is mentioned in Qiu (2014), in many practical situa-
tions, the distributions of these random variables are unknown (or their parameters
cannot be reliably estimated by means of a Phase 1 retrospective study) making the
implementation of traditional parametric control charts to be an incorrect approach.
For instance, the parametric distributions that have been investigated in Sections 2
and 3, are the Gamma, Lognormal, Normal and Weibull, but are these distributions
really appropriate in these cases? To overcome this problem, distribution-free con-
trol charts have been proposed and investigated in the literature. Among the most
recent ones, we can cite for instance Celano et al. (2016), Abid et al. (2016, 2017a,b,
2018), Castagliola et al. (2019) and Chakraborti and Graham (2019b). Most of these
approaches use nonparametric statistics like the Sign or the Wilcoxon signed-rank
statistics. Practical guidelines for the implementation of such distribution-free con-
trol charts can be found in Chakraborti and Graham (2019a).

In this Section, we present an upper-sided distribution-free EWMA control chart
for monitoring TBEA data. Moreover, as evaluating the Run Length properties of
any EWMA scheme based on discrete data is a challenging problem, we will also
introduce a specific method called “continuousify” which allows to obtain much
better and replicable results.

4.2 Model

In this Section, we assume that FT (t|θT ) and FX(x|θX) are the unknown continuous
c.d.f. of Ti and Xi, i = 1, 2, . . ., where θT and θX are known quantiles, respectively.
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Fig. 6. Statistics Z1, Z2 and Z3 corresponding to the data set in Table 8.
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As for the previous sections, when the process is in-control, we have θT = θT0 ,
θX = θX0 and, when the process is out-of-control, we have θT = θT1 , θX = θX1 .
Without loss of generality, we will consider that θT and θX are the median values
of Ti and Xi, respectively. Of course, if necessary, other quantiles can also be con-
sidered.

Let pT = P(Ti > θT0 |θT ) = 1 − FT (θT0 |θT ) and pX = P(Xi > θX0 |θX) =
1 − FX(θX0 |θX), i = 1, 2, . . ., be the probabilities that Ti and Xi are larger than
θT0 and θX0 assuming that the actual median values are θT and θX , respectively.
Let us also define qT = 1 − pT and qX = 1 − pX . If the process is in-control, we
have pT = pT0 = 1 − FT (θT0 |θT0) = 0.5, pX = pX0 = 1 − FX(θX0 |θX0) = 0.5
and, when the process is out-of-control, we have pT = pT1 = 1 − FT (θT0 |θT1),
pX = pX1 = 1− FX(θX0 |θX1).

The upper-sided distribution-free EWMA TBEA control chart that will be intro-
duced in this section is based on the following sign statistics STi and SXi, for
i = 1, 2, . . . as

STi = sign(Ti − θT0),

SXi = sign(Xi − θX0),

where sign(x) = −1 if x < 0 and sign(x) = +1 if x > 0. The case x = 0 will not
be considered here (even if it can happen in practice) because the random variables
Ti and Xi are assumed to be continuous ones. In order to simultaneously monitor
(Ti, Xi), i = 1, 2, . . ., we suggest to define the statistic Si, for i = 1, 2, . . . as

Si =
SXi − STi

2
.

Since STi ∈ {−1,+1} and SXi ∈ {−1,+1} we have Si ∈ {−1, 0,+1} and, more
precisely, we have:

� Si = −1 when Ti increases (STi = +1) and, at the same time, Xi decreases
(SXi = −1). In this case, the process seems to be in an acceptable situation.

� Si = +1 when Ti decreases (STi = −1) and, at the same time, Xi increases
(SXi = +1). In this case, the process seems to be in an unacceptable situation.

� Si = 0 when both Ti and Xi increase or when both Ti and Xi decrease. In this
case, the process seems to be in an intermediate situation.

It can be easily proven that the p.m.f. (probability mass function) fSi(s|pT , pX) =
P(Si = s|pT , pX) and the c.d.f. FSi(s|pT , pX) = P(Si ≤ s|pT , pX) of Si are equal to

fSi(s|pT , pX) =





pT qX if s = −1
pT pX + qT qX if s = 0
qT pX if s = +1
0 if s 6∈ {−1, 0, 1}

,

and

FSi(s|pT , pX) =





0 if s ∈ (−∞,−1)
pT qX if s ∈ [−1, 0)
pT + qT qX if s ∈ [0, 1)
1 if s ∈ [1,+∞)

.
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If we define an EWMA TBEA type control chart directly monitoring the statistic Si,
it is known (see Wu et al. (2021) for details) that, due to the strong discrete nature
of this statistic, an accurate computation using Markov chain or integral equation
methods, for instance, of the corresponding Run Length properties (ARL, SDRL, ...)
is impossible. Consequently, it is actually possible to define an EWMA TBEA type
control chart based on Si but it is unfortunately impossible to correctly evaluate its
properties and, therefore, it is impossible to design it in a reliable way. In order to
overcome this problem and before any implementation of an EWMA scheme, Wu
et al. (2021) suggested to define an extra parameter σ ∈ [0.1, 0.2] and to transform
the discrete random variable Si into a new continuous one, denoted as S∗i defined
as a mixture of 3 normal random variables Yi,−1 ∼ Nor(−1, σ), Yi,0 ∼ Nor(0, σ) and
Yi,+1 ∼ Nor(+1, σ), with weights w−1 = pT qX , w0 = pT pX +qT qX and w+1 = qT pX
(corresponding to the probabilities fSi(s|pT , pX), s ∈ {−1, 0,+1}), respectively, i.e.

S∗i =




Yi,−1 if Si = −1,
Yi,0 if Si = 0,
Yi,+1 if Si = +1.

This strategy has been called continuousify by Wu et al. (2021). It is easy to prove
that the c.d.f. FS∗i (s|pT , pX) = P(S∗i ≤ s|pT , pX) of S∗i is equal to

FS∗i (s|pT , pX) =pT qXFNor(s| − 1, σ)

+ (pT pX + qT qX)FNor(s|0, σ) + qT pXFNor(s|+ 1, σ),
(18)

and its expectation E(S∗i ) and variance V(S∗i ) are equal to

E(S∗i ) = pX − pT ,
V(S∗i ) = σ2 + pT qT + pXqX .

When the process is in-control, we have pT0 = qT0 = 0.5, pX0 = qX0 = 0.5 and the
expectation and variance of S∗i simplify to E(S∗i ) = 0 and V(S∗i ) = σ2 + 0.5. As
the main goal is to detect an increase in Si (in order to avoid, for instance, more
damages or injuries/costs) rather than a decrease, the following upper-sided EWMA
TBEA control chart based on the statistic Z∗i is proposed

Z∗i = max(0, λS∗i + (1− λ)Z∗i−1), (19)

with the following upper asymptotic control limit UCL defined as

UCL = E(S∗i )︸ ︷︷ ︸
=0

+K

√
λ

2− λ ×
√

V(S∗i )
︸ ︷︷ ︸
=
√
σ2+0.5

= K

√
λ(σ2 + 0.5)

2− λ , (20)

where λ ∈ [0, 1] and K > 0 are the control chart parameters to be fixed and the
initial value Z∗0 = 0. The zero-state ARL and SDRL of the proposed distribution-
free upper-sided EWMA TBEA control chart can be obtained using the standard
approach of Brook and Evans (1972) which assumes that the behavior of this control
chart can be well represented by a discrete-time Markov chain with m + 2 states,
where states i = 0, 1, . . . ,m are transient and state m+ 1 is an absorbing one. The
transition probability matrix P of this discrete-time Markov chain is
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P =




Q r

0ᵀ 1


 =




Q0,0 Q0,1 · · · Q0,m r0
Q1,0 Q1,1 · · · Q1,m r1

...
...

...
...

Qm,0 Qm,1 · · · Qm,m rm
0 0 · · · 0 1



,

where Q is the (m + 1,m + 1) matrix of transient probabilities, where 0 =
(0, 0, . . . , 0)ᵀ and where the (m+ 1, 1) vector r satisfies r = 1−Q1 (i.e. row proba-
bilities must sum to 1) with 1 = (1, 1, . . . , 1)ᵀ. The transient states i = 1, . . . ,m are
obtained by dividing the interval [0,UCL] into m subintervals of width 2∆, where
∆ = UCL

2m
. By definition, the midpoint of the i−th subinterval (representing state i)

is equal to Hi = (2i − 1)∆. The transient state i = 0 corresponds to the “restart
state” feature of our chart and it is represented by the value H0 = 0. Concerning
the proposed upper-sided EWMA TBEA control chart, it can be easily shown that
the generic element Qi,j , i = 0, 1, . . . ,m, of the matrix Q is equal to

� if j = 0,

Qi,0 = FS∗i

(
− (1− λ)Hi

λ

∣∣∣∣ pT , pX
)
, (21)

� if j = 1, 2, . . . ,m,

Qi,j = FS∗i

(
Hj +∆− (1− λ)Hi

λ

∣∣∣∣ pT , pX
)
−FS∗i

(
Hj −∆− (1− λ)Hi

λ

∣∣∣∣ pT , pX
)

(22)

Let q = (q0, q1, . . . , qm)ᵀ be the (m + 1, 1) vector of initial probabilities associated
with the m + 1 transient states. In our case, we assume q = (1, 0, . . . , 0)ᵀ, i.e. the
initial state corresponds to the “restart state”. When the number m of subintervals
is sufficiently large (say m = 300), this finite approach provides an effective method
that allows the ARL and SDRL to be accurately evaluated using the following
classical formulas

ARL = qᵀ(I−Q)−11, (23)

SDRL =
√

2qᵀ(I−Q)−2Q1 + ARL(1−ARL). (24)

In order to illustrate the “power” of the continuousify technique on the upper-
sided EWMA TBEA control chart (in the case K = 3 and λ = 0.2), Table 9
presents some ARL values obtained without (left side) and with (right side) this
technique, corresponding to 3 combinations for (pX , pT ), a number of subintervals
m ∈ {100, 120, . . . , 400} and σ = 0.125. When the continuousify technique is not
used, the random variable S∗i in (19) is replaced by Si or, equivalently, the parameter
σ is set to 0. For comparison purpose, the last row of Table 9 also provides the ARL
values obtained by simulations. As it can be seen, if the continuousify technique is
not used (left side), the ARL values obtained using the Markov chain method can
have a large variability without any clear monotonic convergence when m increases.
It turns out that with these unstable ARL values, it can be really difficult to design
and optimize the upper-sided EWMA TBEA control chart. On the other side, if
the continuousify technique is used (right side), the ARL values obtained using the
Markov chain method are clearly very stable, even for small values of m, but (and
this is the price to pay for this stability) they are a bit larger than those obtained
by simulations (compare 26.08, 12.23, 27.88 vs. 24.71, 11.66, 26.46). This property
is due to the extra term σ > 0 in (20).
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Table 9. ARL for the distribution-free EWMA TBEA chart computed with and
without the continuousify technique.

without continuousify with continuousify (σ = 0.125)
pT = 0.3 pT = 0.2 pT = 0.1 pT = 0.3 pT = 0.2 pT = 0.1

m pX = 0.8 pX = 0.9 pX = 0.6 pX = 0.8 pX = 0.9 pX = 0.6

100 32.96 12.18 40.16 26.08 12.23 27.87
120 18.57 10.89 18.55 26.08 12.23 27.87
140 28.88 11.91 31.56 26.08 12.23 27.87
160 20.31 11.08 20.81 26.08 12.23 27.87
180 28.36 11.82 31.36 26.08 12.23 27.87
200 24.47 11.55 26.42 26.08 12.23 27.87
220 17.97 10.05 18.39 26.08 12.23 27.87
240 27.98 11.88 31.36 26.08 12.23 27.87
260 57.68 16.41 77.81 26.08 12.23 27.87
280 21.17 11.41 21.75 26.08 12.23 27.87
300 26.75 11.75 29.94 26.08 12.23 27.88
320 21.69 11.43 22.43 26.08 12.23 27.88
340 26.07 11.93 27.39 26.08 12.23 27.88
360 16.68 10.43 16.5 26.08 12.23 27.88
380 29.2 13.09 29.83 26.08 12.23 27.88
400 20.33 11.02 20.7 26.08 12.23 27.88

Simu 24.71 11.66 26.46 26.09 12.23 27.87

4.3 Comparative studies

Since the continuousify technique is demonstrated to provide reliable ARL val-
ues, it is therefore possible to compute the optimal chart parameters (λ∗,K∗)
for the upper-sided EWMA TBEA control chart minimizing the out-of-control
ARL(λ∗,K∗, σ, pT , pX) for pT 6= 0.5 and pX 6= 0.5 under the constraint ARL(λ∗,K∗, σ, 0.5, 0.5) =
ARL0, where ARL0 is a predefined value for the in-control ARL. These optimal
values are listed in Table 10 with the corresponding out-of-control (ARL,SDRL)
values for pT ∈ {0.1, 0.2, . . . , 0.4} (only considering a decrease in T ), pX ∈
{0.5, 0.6, . . . , 0.9} (only considering an increase in X), for four possible choices for
σ ∈ {0.1, 0.125, 0.15, 0.2} and assuming ARL0 = 370.4. These values of (λ∗,K∗) can
be freely be used by practitioners who need to optimally detect a specific shift in
the times and/or in the amplitudes.

A comparison between the upper-sided EWMA TBEA control chart introduced in
this Section and the three parametric TBEA control charts presented in Subsection
2.1 has been investigated in Wu et al. (2021) using the EARL1 (instead of the
EATS1) for the following two scenarios

� Scenario #1: a Normal distribution for X with in-control mean µX0 = 10 and
standard-deviation σX0 = 1 and a gamma distribution for T with in-control
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Table 10. Optimal values for (λ∗,K∗) with the corresponding out-of-control val-
ues of (ARL, SDRL) for pT ∈ {0.1, 0.2, . . . , 0.4}, pX ∈ {0.5, 0.6, . . . , 0.9} and
σ ∈ {0.1, 0.125, 0.15, 0.2}

σ = 0.1

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.773) (0.025,2.174)
(105.66,74.04) (50.77,32.32)

0.3 (0.025,2.174) (0.045,2.387) (0.070,2.515)
(51.54,32.55) (30.55,18.04) (20.50,11.38)

0.2 (0.040,2.348) (0.070,2.515) (0.100,2.591) (0.145,2.639)
(31.30,17.51) (20.74,11.40) (14.85,7.67) (11.19,5.55)

0.1 (0.060,2.474) (0.090,2.571) (0.135,2.634) (0.180,2.645) (0.240,2.627)
(21.40,10.76) (15.16,7.37) (11.32,5.40) (8.76,3.84) (6.99,2.74)

σ = 0.125

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.774) (0.025,2.174)
(106.19,74.55) (51.11,32.63)

0.3 (0.025,2.174) (0.045,2.387) (0.070,2.515)
(51.88,32.87) (30.79,18.25) (20.68,11.53)

0.2 (0.040,2.348) (0.065,2.496) (0.100,2.592) (0.140,2.638)
(31.53,17.72) (20.91,11.27) (14.99,7.80) (11.32,5.57)

0.1 (0.060,2.474) (0.090,2.572) (0.135,2.634) (0.175,2.648) (0.225,2.639)
(21.57,10.92) (15.30,7.50) (11.44,5.49) (8.88,3.89) (7.10,2.75)

σ = 0.15

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.775) (0.025,2.175)
(106.83,75.16) (51.53,33.01)

0.3 (0.025,2.175) (0.045,2.387) (0.070,2.515)
(52.30,33.26) (31.08,18.51) (20.90,11.71)

0.2 (0.040,2.348) (0.065,2.496) (0.095,2.584) (0.135,2.636)
(31.82,17.97) (21.13,11.45) (15.17,7.81) (11.47,5.61)

0.1 (0.055,2.449) (0.090,2.573) (0.130,2.632) (0.170,2.651) (0.215,2.646)
(21.79,10.76) (15.47,7.64) (11.59,5.53) (9.02,3.96) (7.23,2.80)

σ = 0.2

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.777) (0.025,2.176)
(108.43,76.68) (52.57,33.96)

0.3 (0.020,2.085) (0.045,2.387) (0.065,2.496)
(53.33,32.51) (31.81,19.15) (21.44,11.90)

0.2 (0.040,2.348) (0.065,2.496) (0.090,2.574) (0.125,2.630)
(32.53,18.61) (21.66,11.92) (15.60,8.01) (11.84,5.74)

0.1 (0.055,2.449) (0.085,2.562) (0.120,2.624) (0.155,2.652) (0.195,2.658)
(22.31,11.21) (15.89,7.83) (11.95,5.64) (9.34,4.06) (7.53,2.91)
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mean µT0 = 10 and standard-deviation σT0 = 2, i.e. X ∼ Nor(10, 1) and T ∼
Gam(25, 0.4).

� Scenario #2: a Normal distribution for X with in-control mean µX0 = 10 and
standard-deviation σX0 = 2 and a Weibull distribution for T with in-control
mean µT0 = 10 and standard-deviation σT0 = 1, i.e. X ∼ Nor(10, 2) and T ∼
Wei(12.1534, 10.4304).

Based on the results in Tables 3 and 4 in Wu et al. (2021), the conclusion is that
no matter the scenario (#1 or #2) or the statistic considered Z ∈ {Z1, Z2, Z3}, the
out-of-control EARL1 values obtained for the distribution-free upper-sided EWMA
TBEA control chart are always smaller than the ones obtained for the parametric
Shewhart control charts introduced in Subsection 2.1, thus showing the advantage
of using the proposed distribution-free control chart in situations where the distri-
butions for T and X are unknown.

4.4 Illustrative example

We consider here the same illustrative example as the one already presented in
Section 2.6 concerning the days Ti between fires in forests of the french region
“Provence - Alpes - Côte D’Azur” and their amplitudes Xi (burned surface in ha =
10000m2). In order to compute the control limit UCL of the distribution-free upper-
sided EWMA TBEA chart, the following values have been fixed: pT = 0.3, pX = 0.7,
σ = 0.125 and ARL0 = 370.4. The corresponding optimal values for λ and K are
found to be λ∗ = 0.07 and K∗ = 2.515 (see results in Table 10) and the upper
control limit UCL is equal to

UCL = 2.515×
√

0.07× (0.1252 + 0.5)

2− 0.07
= 0.344.

The in-control median values for T and X have been estimated from the Phase 1
data set and they are equal to θT0 = 3 days and θX0 = 5.3 ha. These values are
used to compute the values STi, SXi, Si and S∗i in Table 11. As it can be noticed,
some dates are such that Ti − θT0 = 0. Of course, this situation is not supposed to
happen as the times Ti are supposed to be continuous random variables but, due to
the measurement scale (days), this situation actually happens. When this situation
occurs, a possible simple strategy consists in assigning STi = 0 (instead of−1 or +1).
For this reason, in Table 11, some values of Si = s = ±0.5 and the corresponding
values for S∗i are obtained by randomly generating a Nor(s, σ) random variable, as
it is already the case for values s ∈ {−1, 0,+1}. For instance, in Table 11, when
Di = 70 we have Si = 0.5 and the corresponding value for S∗i has been randomly
generated from a Nor(0.5, 0.125) distribution (S∗i = 0.552). The values Z∗i have been
computed using eqn.(19), for both Phase 1 and 2 data sets, recorded in Table 11 and
plotted in Figure 7 along with the distribution-free EWMA TBEA upper control
limit UCL = 0.344. If the distribution-free upper-sided EWMA TBEA chart does
not detect any out-of-control situations during the Phase 1 (validating the in-control
state of this phase), it nevertheless detects several out-of-control situations during
the period mid-June 2017 – end of September 2017, (see also the bold values in
Table 11), confirming that a decrease in the time between fires occurred with a
concurrent increase in the amplitude of these fires. This conclusion is consistent
with the one obtained in Section 2.6 in which a parametric approach assuming a
lognormal distribution for both Ti and Xi was used.
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Table 11. Phase 1 and 2 values of Di, Ti, Xi, STi, SXi, Si, S
∗
i and Z∗i for the forest

fires example.

Phase 1 Phase 2
Di Ti Xi STi SXi Si S∗i Z∗i Di Ti Xi STi SXi Si S∗i Z∗i

9 9 3.68 1 -1 -1.0 -0.917 0.000 258 1 1.00 -1 -1 0.0 -0.078 0.000
26 17 1.99 1 -1 -1.0 -0.802 0.000 260 2 3.70 -1 -1 0.0 0.119 0.008
60 34 6.00 1 1 0.0 -0.081 0.000 262 2 3.17 -1 -1 0.0 -0.063 0.003
67 7 1.19 1 -1 -1.0 -0.901 0.000 265 3 18.40 0 1 0.5 0.333 0.026
70 3 135.80 0 1 0.5 0.552 0.039 268 3 1.00 0 -1 -0.5 -0.145 0.014
72 2 14.37 -1 1 1.0 1.113 0.114 269 1 2.22 -1 -1 0.0 0.208 0.028
86 14 8.10 1 1 0.0 -0.104 0.099 271 2 19.09 -1 1 1.0 1.001 0.096
88 2 32.31 -1 1 1.0 0.892 0.154 272 1 2.00 -1 -1 0.0 0.027 0.091
94 6 3.07 1 -1 -1.0 -1.056 0.069 274 2 34.28 -1 1 1.0 1.086 0.161
95 1 10.03 -1 1 1.0 0.867 0.125 276 2 3.00 -1 -1 0.0 0.070 0.154
96 1 7.93 -1 1 1.0 1.033 0.189 277 1 6.63 -1 1 1.0 0.955 0.210
97 1 1.50 -1 -1 0.0 0.409 0.204 278 1 4.47 -1 -1 0.0 -0.097 0.189
103 6 23.30 1 1 0.0 -0.116 0.182 285 7 8.24 1 1 0.0 0.160 0.187
106 3 3.73 0 -1 -0.5 -0.708 0.120 286 1 769.45 -1 1 1.0 1.024 0.246
109 3 4.73 0 -1 -0.5 -0.677 0.064 287 1 4.37 -1 -1 0.0 -0.144 0.218
111 2 3.19 -1 -1 0.0 0.179 0.072 288 1 90.70 -1 1 1.0 0.961 0.270
113 2 6.25 -1 1 1.0 1.032 0.139 289 1 11.49 -1 1 1.0 1.044 0.324
114 1 3.60 -1 -1 0.0 -0.155 0.118 295 6 3590.78 1 1 0.0 0.033 0.304
115 1 6.12 -1 1 1.0 1.112 0.188 296 1 1427.92 -1 1 1.0 0.949 0.349
118 3 1.50 0 -1 -0.5 -0.740 0.123 297 1 255.96 -1 1 1.0 1.054 0.399
122 4 1.33 1 -1 -1.0 -1.009 0.044 298 1 1.00 -1 -1 0.0 -0.051 0.367
134 12 1.42 1 -1 -1.0 -1.037 0.000 302 4 13.88 1 1 0.0 -0.074 0.336
137 3 5.75 0 1 0.5 0.629 0.044 303 1 138.28 -1 1 1.0 1.117 0.391
140 3 3.47 0 -1 -0.5 -0.507 0.005 305 2 8.90 -1 1 1.0 1.153 0.444
142 2 13.31 -1 1 1.0 1.217 0.090 308 3 1.50 0 -1 -0.5 -0.342 0.389
143 1 26.31 -1 1 1.0 1.041 0.157 312 4 34.63 1 1 0.0 -0.217 0.347
144 1 18.54 -1 1 1.0 0.923 0.210 313 1 82.56 -1 1 1.0 0.811 0.379
146 2 66.17 -1 1 1.0 1.124 0.274 314 1 2.00 -1 -1 0.0 -0.019 0.351
147 1 9.90 -1 1 1.0 0.916 0.319 315 1 162.08 -1 1 1.0 1.071 0.402
150 3 4.22 0 -1 -0.5 -0.534 0.260 319 4 3.26 1 -1 -1.0 -1.056 0.300
157 7 34.28 1 1 0.0 -0.110 0.234 321 2 285.91 -1 1 1.0 0.729 0.330
161 4 2.23 1 -1 -1.0 -1.102 0.140 322 1 2.00 -1 -1 0.0 -0.283 0.287
162 1 1.84 -1 -1 0.0 0.152 0.141 325 3 11.57 0 1 0.5 0.347 0.291
163 1 2.88 -1 -1 0.0 -0.018 0.130 334 9 34.70 1 1 0.0 0.068 0.275
164 1 21.46 -1 1 1.0 1.087 0.197 335 1 431.00 -1 1 1.0 1.150 0.337
165 1 4.46 -1 -1 0.0 -0.001 0.183 336 1 10.89 -1 1 1.0 1.003 0.383
166 1 58.27 -1 1 1.0 1.034 0.243 340 4 1.00 1 -1 -1.0 -1.004 0.286
167 1 8.84 -1 1 1.0 0.863 0.286 346 6 1.50 1 -1 -1.0 -0.921 0.202
180 13 1.03 1 -1 -1.0 -0.905 0.203 347 1 1.17 -1 -1 0.0 0.100 0.195
187 7 16.57 1 1 0.0 0.156 0.199 349 2 1.27 -1 -1 0.0 0.129 0.190
201 14 4.96 1 -1 -1.0 -1.084 0.110 350 1 26.25 -1 1 1.0 1.098 0.254
202 1 1.37 -1 -1 0.0 -0.087 0.096 353 3 11.66 0 1 0.5 0.332 0.259
205 3 23.39 0 1 0.5 0.498 0.124 354 1 3.03 -1 -1 0.0 0.127 0.250
225 20 1.70 1 -1 -1.0 -1.032 0.043 355 1 12.00 -1 1 1.0 1.130 0.311
247 22 5.30 1 0 -0.5 -0.727 0.000 356 1 1.00 -1 -1 0.0 -0.206 0.275
248 1 15.64 -1 1 1.0 1.161 0.081
257 9 5.14 1 -1 -1.0 -0.921 0.011
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Fig. 7. Distribution-free EWMA TBEA chart with statistic Z∗i corresponding to
the data set in Table 11

5 Conclusions

The three contributive Sections of this Chapter have clearly demonstrated that effi-
cient solutions do exist when the aim is to simultaneously monitor the time interval
T of an event E as well as its amplitude X. These solutions can be either parametric,
for independent or dependent situations, and they can also be distribution-free if
there is no a priori knowledge about the distributions associated with T and X.

In our opinion, future researches on the monitoring of TBEA data can be undertaken
toward several directions:

� In the proposed parametric approaches, the estimation of the parameters (for the
distributions or the Copulas) is not taken into account at all in the design and
evaluation of the TBEA control charts. The impact of the parameter estimation
is known to strongly influence the efficiency of any control chart and, therefore,
researches on this topic should be done.

� Measures like times or amplitudes are obviously subject to measurement errors.
These kinds of error are also known to negatively impact the efficiency of any
control chart. Reasearches investigating the impact of the measurement errors
on T and/or X should also be undertaken in order to evaluate how much they
actually impact the performance of parametric TBEA control charts.

� Instead of considering X as univariate random variable, it could be considered in
some cases as a p-variate random vector X = (X1, . . . , Xp) where each Xk is the
amplitude of a specific characteristic and the goal would be to simultaneously
monitor (T,X). For instance, in the forest fires example, the amplitude could be
considered as a bivariate vector X = (X1, X2) where X1 would be the burned
surface and X2 would be the cost related to the fires.
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� Often, historical data availability in monitoring of adverse events is limited to
a few records. Thus, knowledge about the frequency distribution of these events
is too restricted to fit a reliable statistical model. With these scenarios, there is
room for approaching the monitoring problem with distribution-free approaches,
which, therefore, deserve a lot of attention by researchers.
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Summary. In this workwe study one-sided and two-sided EWMAandDouble EWMAcontrol
charts for monitoring an integer-valued autocorrelated process with a bounded support. The
performance of the proposed charts is studied via simulation. We compare the performance of
the proposed charts and provide aspects for the statistical design and practical implementation.
The results of an extensive numerical study, that consists of the examination of a wide variety
of out-of-control situations, show that none of the chart outperforms the other uniformly.
Specifically, both charts have a difficulty in detecting decreasing shifts in the autocorrelation
parameter. An illustrative example based on real data is also provided.
Keywords: Attributes control charts; binomail AR(1); integer-valued time series; statistical
process monitoring

1 Introduction

Statistical process monitoring (SPM) is a collection of tools that allows the monitoring of a
process. Among them the control chart is the most widely used SPM tool. Initially, its main use
was in the monitoring of manufacturing processes, aiming at the detection of abnormal (usually
unwanted) situations such as an increase in the percentage of defective items that are produced
by the process. However, nowadays, since processes become more and more complex, their
use is not restricted in industry but also on several other areas of applied science like public
health, environment and social networks (see, for example, Bersimis et al. 1 , Woodall et al. 2 ,
Aykroyd et al. 3 ).
Popular charts to monitor the proportion and the number of nonconforming units, respec-

tively, within a sample of finite size are the Shewhart 𝑝 and 𝑛𝑝 charts (Montgomery 4 ). These
monitoring schemes are developed under the assumption that the number of nonconforming
units follows a binomial distribution 𝐵(𝑛, 𝜋), where 𝑛 is the sample size and 𝜋 is the success
probability (i.e. the probability for an item or a unit to be nonconforming). Moreover, a com-
mon assumption when the 𝑝 and the 𝑛𝑝 charts are applied in practice is that the successive
counts are independent and identically distributed (iid) binomial random variables (rv).
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It is well known that Shewhart charts are control charts without memory, since they make
use of only the value of themost recent observation. Consequently, they are not very sensitive in
the detection of small and moderate changes in the values of process parameters. On the other
hand, the cumulative sum (CUSUM) and exponentially weighted moving average (EWMA)
control charts, as control charts with memory, detect this type of changes more quickly than
the Shewhart charts (Montgomery 4 ). Efficient alternative control charting procedures for
monitoring binomial counts have been proposed and studied by Gan 5 , Gan 6 , Chang and
Gan 7 , Wu et al. 8 , Yeh et al. 9 , Haridy et al. 10 and Haridy et al. 11 . All the above mentioned
control charts are based on the assumption of iid binomial rv. Even though the iid assumption
is a common assumption in practice, observations on a process will be autocorrelated when
the sampling rate is very high, which, in turn, commonly happens because of the technological
progress in automated sampling (Psarakis and Papaleonida 12 ,Kim and Lee 13 ). Therefore, in
a variety of real-life problems, the iid assumption is violated.
In that case, the previously mentioned control charts cannot be used because they demon-

strate an increased false alaram rate (FAR). This means that there are more frequent (than
expected) signals that the process is out-of-control, when actually it is in-control and nothing
has changed.
In the case of variables control charts, there are several approaches to deal with autocor-

related data. In the case of attribute (or count) data, there has been an increasing interest in the
recent years, to deal with this problem. However, the methods and techniques that are used in
the case of variables data, need first an appropriate adjustment due to the discrete nature of the
count data.
One solution to this problem is to select first an appropriate model of integer-valued time

series, and then to develop control charts based on this model. Weiß 14 provided a literature
review for the available SPC methods that are used in the monitoring of a process that it is
modelled as an integer-valued time-series model. In particular, if it is of interest to monitor the
number 𝑋 of defects in a sample of 𝑛 objects, then there is a finite number of possible values
for 𝑋 . Therefore, the appropriate integer-valued time series model must be such that 𝑋 takes a
finite number of possible values. Consequently, an appropriate model for correlated binomial
counts needs to be selected first.
The monitoring of correlated binomial counts has been considered by Weiß 15 who devel-

oped and studied Shewhart and Moving Average (MA) control charts for monitoring a process
that is properly described by the first-order binomial autoregressive model (binomial AR(1) or
BAR(1) model) of McKenzie 16 and Al-Osh and Alzaid 17 . Apart from this work, Shewhart,
CUSUM and EWMA control charts have been proposed and studied by Rakitzis et al. 18 and
Anastasopoulou and Rakitzis 19 in the case of monitoring a BAR(1) process
It is well-known that although the Shewhart-type charts are easy to use and effective

in detecting large, sudden and sustained shifts in the process parameters, they are not very
sensitive in the detection of small and moderate shifts.
Even though CUSUM and EWMA control charts are better than Shewhart charts in the

detection of small and moderate shifts in process parameters, there is an increasing interest
in improving further their performance. Sometimes this can be achieved by developing more
“sophisticated” chartswhich are control chartswithmemory and are defined bymixing different
(or the same) schemes.Amethod that belongs to this class of control charts is the doubleEWMA
(DEWMA) chart. Shamma et al. 20 and Shamma and Shamma 21 developed the DEWMA
control chart in an attempt to improve the performance of usual EWMA chart in the detection
of small shifts in process mean. The idea behind the DEWMA is on the method of double
exponentially weighted moving average, which is a common forecasting method in time series
analysis. The DEWMA chart has been studied by many authors (see, for example, Mahmoud
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and Woodall 22 , Khoo et al. 23 , Adeoti and Malela-Majika 24 , Raza et al. 25 and references
therein). Zhang et al. 26 studied the DEWMA chart in the case of monitoring and detecting
changes in a Poisson process while its performance has been also studied in the case of zero-
inflated Poisson (Alevizakos and Koukouvinos 27 ), a zero-inflated binomial (Alevizakos and
Koukouvinos 28 ) and Conway-Maxwell Poisson (Alevizakos and Koukouvinos 29 ) process.
Motivated by the previously mentioned works, in this work we study, via Monte Carlo

simulation, the performance of one- and two-sided EWMA and double EWMA (DEWMA)
control charts in the monitoring of BAR(1) process. To the best of our knowledge, the per-
formance of the DEWMA chart has not been investigated in the case of serially dependent
count data. Moreover, in order to highlight the usefulness and the applicability of the proposed
EWMA and DEWMA schemes in anomaly detection, we consider various types of shifts as
possible out-of-control cases (anomalies or abnormalities). The aim is to assess howmuch both
schemes are affected by the different types of shifts that may occur in the values of process
parameters and also, how possible is to detect these anomalies.
The rest of this work is organized as follows: In Section 2 we briefly present the main

properties of the BAR(1)model. In Section 3we demonstrate themethodology for the proposed
one- and two-sided EWMA and DEWMA control charts in the case of monitoring a BAR(1)
process (Sections 3.1 and 3.2) as well as the measures of performance for each chart and their
statistical design (Section 3.3). Section 4 consists of the results of an extensive numerical
study on the performance of the proposed charts. In Section 5, we provide an example for the
practical implementation of the proposed charts by using a real dataset of correlated counts
with bounded support. Finally, conclusions and topics for future research are summarized in
Section 6.

2 The Binomial AR(1) Model

The BAR(1) model (McKenzie 16 ) is a simple model for autocorrelated processes of counts
with a finite range. This model is based on the binomial thinning operator "◦" (Steutel and van
Harn 30 ). More specifically, if 𝑋 is a non-negative discrete rv and 𝛼 ∈ (0, 1) then, by using the
binomial thinning operator, it is possible to define the rv 𝛼 ◦ 𝑋 =

∑𝑋
𝑖=1 𝑌𝑖 , as an alternative to

the usual multiplication 𝛼 · 𝑋 . However, the result of 𝛼 ◦ 𝑋 will always be an integer value.
The rv 𝑌𝑖 , 𝑖 = 1, 2, . . ., are iid Bernoulli rv with success probability 𝛼, independent also of the
count data rv 𝑋 . Therefore, the conditional distribution of 𝛼 ◦ 𝑋 , given 𝑋 = 𝑥, is the binomial
distribution 𝐵(𝑥, 𝛼). We will refer to a process 𝑋𝑡 , 𝑡 ∈ N = {1, 2, . . .}, as a BAR(1) process if
it is of the form

𝑋𝑡 = 𝛼 ◦ 𝑋𝑡−1 + 𝛽 ◦ (𝑛 − 𝑋𝑡−1), (1)

where 𝛽 = 𝜋 · (1 − 𝜌), 𝛼 = 𝛽 + 𝜌, 𝜋 ∈ (0, 1), 𝜌 ∈ (max {−𝜋/(1 − 𝜋),−(1 − 𝜋)/𝜋}, 1) and
𝑛 ∈ N is fixed. The condition on 𝜌 guarantees that 𝛼, 𝛽 ∈ (0, 1). Moreover, all thinnings are
performed independently of each other and the thinnings at time 𝑡 are independent of 𝑋𝑠 , 𝑠 < 𝑡,
as well.
It is known (see, for example, Weiß 15 ) that the process 𝑋𝑡 , 𝑡 ∈ N0 = {0, 1, 2, . . .}, is a

stationary Markov chain with marginal distribution 𝐵(𝑛, 𝜋). Clearly, the marginal mean and
variance are, respectively, equal to

E(𝑋𝑡 ) = 𝑛𝜋, V(𝑋𝑡 ) = 𝑛𝜋(1 − 𝜋). (2)

Moreover, the transition probabilities are
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𝑝𝑘 |𝑙 = (3)
= 𝑃(𝑋𝑡 = 𝑘 |𝑋𝑡−1 = 𝑙 )

=

𝑚𝑖𝑛{𝑘,𝑙 }∑︁
𝑚=𝑚𝑎𝑥 {0,𝑘+𝑙−𝑛}

(
𝑙

𝑚

) (
𝑛 − 𝑙
𝑘 − 𝑚

)
𝛼𝑚 (1 − 𝛼)𝑙−𝑚𝛽𝑘−𝑚 (1 − 𝛽)𝑛−𝑙+𝑚−𝑘 ,

for 𝑘, 𝑙 ∈ {0, 1, 2, . . . , 𝑛}.
The conditional mean and variance, respectively, are equal to (see Weiß and Kim 31 )

E(𝑋𝑡 |𝑋𝑡−1 ) = 𝜌 · 𝑋𝑡−1 + 𝑛𝛽, (4)
V(𝑋𝑡 |𝑋𝑡−1 ) = 𝜌(1 − 𝜌) (1 − 2𝜋) · 𝑋𝑡−1 + 𝑛𝛽(1 − 𝛽),

while the autocorrelation function is given by 𝜌(𝑘) = 𝜌𝑘 for 𝑘 = 0, 1, . . ..
Parameters 𝜋 and 𝜌 of the BAR(1) model can be estimated via the method of Conditional

Maximum Likelihood (CML, see Weiß and Kim 31 ), when time series data are available. Let
us assume that 𝑥1, ..., 𝑥𝑇 , 𝑇 ∈ N, is a segment from a stationary BAR(1) process. Then the
conditional likelihood function equals

𝐿 (𝜋, 𝜌) =
(
𝑛

𝑥1

)
𝜋𝑥1 (1 − 𝜋)𝑛−𝑥1

𝑇∏
𝑡=2

𝑝𝑥𝑡−1 |𝑥𝑡 , (5)

where the probabilities 𝑝𝑥𝑡−1 |𝑋𝑡
are given in Equation (3). There is no closed-form formula

for the maximum likelihood (ML) estimators �̂�𝑀𝐿 , �̂�𝑀𝐿 of 𝜋, 𝜌 and therefore, they are
obtained by maximizing numerically the log-likelihood function 𝑙 (𝜋, 𝜌) = log 𝐿 (𝜋, 𝜌). The
corresponding standard errors can be computed from the observed Fisher’s Informationmatrix.

3 Methods

In this section, we introduce the proposed one-sided and two-sided EWMA and DEWMA
control charts for monitoring a BAR(1) process. The aim is to detect quickly and accuratelly
a change in the either parameters of the process. When the process is in-control (IC), we will
denote its IC process mean level as `0,𝑋 while in the out-of-control state (OoC), it is denoted
as `1,𝑋 . In a similar manner, the IC (OoC) parameter values of the BAR(1) model are denoted
as 𝜋0 and 𝜌0 (𝜋1 and 𝜌1).
Usually, practitioners focus on changes in the mean level ` ≡ `𝑋 = 𝐸 (𝑋𝑡 ) = 𝑛𝜋 of the

process. Specifically, in several applications, practitioners are interested in detecting increases
in the process mean level, from an IC value `0,𝑋 to an OoC value `1,𝑋 > `0,𝑋 . For example,
if 𝑋 is the number of non-conforming items produced by a manufacturing process, then the
presence of assignable causes might affect (increase) the average number of the produced
nonconforming items. This is also an indication of process deterioration. On the contrary,
when there is a decrease in the mean level of the process, i.e. when `1,𝑋 < `0,𝑋 , then
less non-conforming items are produced, which is an indication of process improvement. In
this work we consider both cases. Moreover, under certain circumstances, the presence of
assignable causes has an effect on the IC value 𝜌0 of 𝜌. Note also, that a change in 𝜌0 does
not affect directly the value of `0,𝑋 (see equation 2). Generally speaking, the presence of
assignable causes might affect both ` and 𝜌 or exactly one of them. In this work, we consider
a wide variety of possible OoC situations.
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3.1 EWMA Control Charts

The EWMA control chart was introduced by Roberts 32 . For 𝑡 = 1, 2, . . ., the vaules of the
following statistic are plotted on the chart

𝑍𝑡 = _𝑋𝑡 + (1 − _)𝑍𝑡−1, 𝑍0 = 𝑧0, (6)

where _ is a smoothing parameter such that 0 < _ ≤ 1 and the initial value 𝑍0 equals
`0,𝑋 = 𝑛𝑝0. For small values of _, is given less weight to the most recent observation 𝑋𝑡
and more weight is given to all the available observations since the beginning of process
monitoring. Usually, _ takes values in the interval [0.05, 0.30]. This is a control chart with
memory and it is more capable of than a Shewhart control chart in detecting shifts of small or
medium magnitude in the mean level of the process. For _ = 1, the EWMA chart coincides
with the usual Shewhart chart.
The two-sided EWMA chart for a BAR(1) process gives an OoC signal when for the first

time 𝑍𝑡 ∉ [𝐿𝐶𝐿ewma,𝑈𝐶𝐿ewma], where 𝐿𝐶𝐿ewma, 𝑈𝐶𝐿ewma are the control limits of the
chart. The values of these limits are determined so as the two-sided EWMA chart has the
desired performance.
One-sided control charts are recommended when the direction of the shift in known and/or

predetermined. In public-health surveillance, sometimes we are interested in monitoring the
effects that has “corrective action” (or intervention), like a vaccination programme, in the
weekly number of new cases from a disease. In this case we would like to detect a decrease in
weekly number of new cases and therefore, the use of a lower one-sided chart is recommended.
On the contrary, for the detection of an increase in the weekly number of new cases, the use of
an upper one-sided chart is more appropriate.
Therefore, in the case of an upper (resp. lower) one-sided EWMA chart, only an upper

(lower) control limit𝑈𝐶𝐿ewma (𝐿𝐶𝐿ewma) needs to be determined, for a given _ value. When
the value of the EWMA statistic crosses for the first the control limit, then the one-sided
EWMA chart gives an OoC signal.

3.2 DEWMA Control Charts

The DEWMA control chart was introduced by Shamma and Shamma 21 and for 𝑡 = 1, 2, . . .,
the values of the following statistic are plotted on it:

𝑌𝑡 = _𝑍𝑡 + (1 − _)𝑌0, 𝑡 = 1, 2, . . . , (7)

where 𝑍𝑡 is given in equation (6), 0 < _ ≤ 1 is the smoothing parameter and the initial value
𝑌0 = `0,𝑋 = 𝑛𝑝0. Therefore, the exponential smoothing is performed twice and the 𝑌𝑡 values
are extra smoothed (compared to the 𝑍𝑡 ). Similar to the case of the EWMA chart, popular
values for _ are in the interval [0.05, 0.30]. The two-sided DEWMA chart for a BAR(1)
process gives an out-of-control signal when for the first time 𝑌𝑡 ∉ [𝐿𝐶𝐿dewma,𝑈𝐶𝐿dewma],
where 𝐿𝐶𝐿dewma,𝑈𝐶𝐿dewma are the control limits of the chart. The values of these limits are
determined so as the two-sided DEWMA chart has the desired performance. The development
and implementation of the corresponding one-sided DEWMA charts is made similar to the
one-sided EWMA charts.
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3.3 Performance Measures

In order to evaluate the performance of the EWMA and DEWMA charts, it is necessary to
determine their run length distribution. For the case of a two-sided EWMA control chart, with
control limits 𝐿𝐶𝐿e,𝑈𝐶𝐿e, the run length distribution is defined as the distribution of the rv

𝑅𝐿 = min{𝑡 : 𝑍𝑡 ∉ [𝐿𝐶𝐿ewma,𝑈𝐶𝐿ewma]}

and expresses the number of points plotted on the chart until it gives for the first time an OoC
signal. In a similar manner, we define the 𝑅𝐿 distribution in the case of the two-sided DEWMA
chart, as well as for each of the one-sided schemes. In this work we use the method of Monte
Carlo simulation since the values of charting statistics (in (6) and (7)) are not integers, they
can take a variable number of possible different values. Also, it is worth mentioning that in
almost all of the works related to these “mixed” charts, like the DEWMA and its extensions,
Monte Carlo simulation is used to evaluate their performance, mainly due to their complexity.
On the contrary, in the case of the EWMA chart, it is possible to use the Markov chain method
(see, for example, Weiß 33 ) and evaluate its exact performance. However, before applying the
Markov chain method, a modification is needed for equation(6). The common modification
is to apply a rounding function in order to have integer values for 𝑍𝑡 . In this work we make
use of the increased computational power that it is available nowadays. Thus, we use the usual
EWMA statistic, without any modification, and evaluate its performance.
The most common performance measure of a control chart is the expected value E(𝑅𝐿),

the well-known average run length (𝐴𝑅𝐿). The 𝐴𝑅𝐿 expresses the average number of points
to be plotted on the chart until it gives for the first time an OoC signal. In this work, the IC
performance of the proposed schemes is evaluated in terms of the zero-state 𝐴𝑅𝐿 (𝑧𝑠𝐴𝑅𝐿)
which is the expected number of points plotted on the chart until the first (false) alarm is given.
For an OoC process, the performance of the proposed schemes is evaluated in terms of the

steady-state 𝐴𝑅𝐿 (𝑠𝑠𝐴𝑅𝐿) which gives an approximation of the true mean delay for detection
after a change in the process, from the IC state to the OoC state. We assume that a change
in process happens at an (unknown) change-point 𝜏 ∈ {1, 2, . . .}. Specifically, for 𝑡 < 𝜏, the
process is in the IC state while for 𝑡 ≥ 𝜏, the process has shifted to the OoC state. Therefore,
the 𝑠𝑠𝐴𝑅𝐿 expresses the expected number of points to be plotted on the chart until it gives
for the first time an indication of an OoC process, given that the process has been operated
for "sufficient time" in control. According to Weiß and Testik 34 , the zsARL and the ssARL are
substantially different in the case of monitoring processes with correlated counts.
The statistical design of the two-sided EWMA (or DEWMA) control chart requires the de-

termination of the values for the triple (_, 𝐿𝐶𝐿ewma,𝑈𝐶𝐿ewma) (or (_, 𝐿𝐶𝐿dewma,𝑈𝐶𝐿dewma)).
Next, we provide the steps of the algorithmic procedure that is followed in order to determine
the values of the design parameters in the case of the two-sided EWMA chart with the desired
IC 𝐴𝑅𝐿 performance.

Step 1 Choose the IC values of the process parameters 𝑛, 𝜋0, 𝜌0 and the desired in-control 𝐴𝑅𝐿0
value for the 𝑧𝑠𝐴𝑅𝐿.

Step 2 Choose the value for _
Step 3 Set the control limits of the chart equal to 𝐿𝐶𝐿ewma = 𝐶𝐿 − 𝐾 , 𝑈𝐶𝐿ewma = 𝐶𝐿 + 𝐾 ,

where 𝐶𝐿 = d𝑛𝜋0e and 𝐶𝐿 = d𝑥e denotes the minimum integer that it is greater than or
equal to 𝑥. Use as starting value 𝐾 = 0.001.

Step 4 simulate 50000 BAR(1) processes with parameters (𝑛, 𝜋0, 𝜌0) and for each sequence
record the number of samples until the first false alarm is triggered.
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Step 5 Estimate the 𝑧𝑠𝐴𝑅𝐿 as the sample mean of the 50000 𝑅𝐿 values obtained in Step 4. If
𝑧𝑠𝐴𝑅𝐿 ∉ (𝐴𝑅𝐿0 − 1, 𝐴𝑅𝐿0 + 1), increase 𝐾 by 0.001 and go back to Step 4. Otherwise,
go to Step 6.

Step 6 Use the value for 𝐾 that has been obtained in the previous step, set up the con-
trol limits for the two-sided chart and declare the process as OoC at sample 𝑡 if
𝑍𝑡 ∉ [𝐿𝐶𝐿ewma,𝑈𝐶𝐿ewma].

We mention that Steps 1-6 apply for a pre-specified _ value in [0, 1]. In this work we con-
sidered several values for _. However, our numerical analysis is focused on the most popular
values for _ that are used in practice, such as _ ∈ {0.05, 0.10, 0.20, 0.30}. Once the triple
(_, 𝐿𝐶𝐿ewma,𝑈𝐶𝐿ewma) has been determined, we evaluated the OoC performance of this
scheme, for various shifts in process parameters. Below are the steps that have been used in
order to determine the OoC 𝑠𝑠𝐴𝑅𝐿 values for the two-sided EWMA control chart (see also
Weiß and Testik 34 ).

Step 1 Choose the IC values of the process parameters 𝑛, 𝜋0, 𝜌0 and the desired in-control 𝐴𝑅𝐿0
value for the 𝑧𝑠𝐴𝑅𝐿.

Step 2 Choose the shifts in process parameters or, equivalently, the OoC values 𝜋1, 𝜌1.
Step 3 Set up a two-sided EWMA control chart by using the values (_, 𝐾) that have been obtained

during the design phase of the chart.
Step 4 Simulate 50000 BAR(1) processes as follows: For each simulation run, generate first an

IC BAR(1) process with 𝜋 = 𝜋0, 𝜌 = 𝜌0, until the 𝑡 = 199 observation. Then, the process
“shifts” to the OoC state, where 𝜋 = 𝜋1, 𝜌 = 𝜌1 and the simulation run continues. Now,
the observations from 𝑡 ≥ 200 are generated from the OoC model.

Step 5 For each of the 50000 sequences, record the number of samples until the first (true) alarm
is triggered. Use all the available data but, if an alarm is triggered on or before 𝑡 = 199,
then this simulation run is skipped. If the first alarm is triggered at some 𝑡 ≥ 200, then
compute the 𝑅𝐿 − 199, which gives the (conditional) delay in the detection of the OoC
situation.

Step 6 Average all the (conditional) delays and estimate the expected conditional delay E(𝑅𝐿 −
200 + 1 |𝑅𝐿 ≥ 200 ) which serves as an estimation of the 𝑠𝑠𝐴𝑅𝐿, since the 𝑠𝑠𝐴𝑅𝐿 is
defined as

𝑠𝑠𝐴𝑅𝐿 = lim
𝜏→∞

E(𝑅𝐿 − 𝜏 + 1 |𝑅𝐿 ≥ 𝜏 )

After some direct (but necessary) modifications in the above steps, for both the IC and the
OoC case, we may design and evaluate the performance of the two-sided DEWMA chart as
well as the performance of the upper and the lower one-sided EWMA and DEWMA charts.

4 Numerical Analysis

In this section we present the results of an extensive numerical study on the performance
of the proposed one- and two-sided EWMA and DEWMA control charts in the monitoring
of a BAR(1) process. For the IC design parameters we assume that `0 ∈ {4, 8, 12}, 𝜌0 ∈
{0.25, 0.50, 0.75} and 𝑛 ∈ {20, 50}. The desired IC 𝑧𝑠𝐴𝑅𝐿 equals 200. In addition, when the
process is OoC, we assume the following OoC scenarios:

• A shift only in `0,𝑋 with `1,𝑋 = 𝑛(𝛿 · 𝜋0).
• A shift only in 𝜌0 with 𝜌1 = 𝜌0 + 𝜏.
• A simultaneous shift in both `0,𝑋 , 𝜌0.



8 Maria Anastasopoulou and Athanasios C. Rakitzis

When 𝛿 > 1 then `0 has been increased whereas a decreasing shift occurs for 0 < 𝛿 < 1.
Also, when 𝜏 > 0 there is an increase in the correlation structure of the process while a
𝜏 < 0 denotes the case of a decreasing shift in 𝜌0. Tables 1-8 provide the chart with the best
performance (minimum 𝑠𝑠𝐴𝑅𝐿 value) in the detection of a specific OoC case. Due to space
economy we do not provide all the available results (the 𝑠𝑠𝐴𝑅𝐿 profiles for all the examined
charts) from the complete study. However, it is available from the authors upon request.
More specifically, Tables 1 and 2 consist of the best upper one-sided chart (between the

EWMA and DEWMA) in the detection of shifts only in `0 (Table 1) or only in 𝜌0 (Table 2).
The values of the design parameters (_,𝑈𝐶𝐿) chart are given in the respective columns. For
_ we pre-prespecified one value in {0.05, 0.10, 0.20, 0.30}. Then, following the steps of the
algorithmic procedure described in Section 3.3, we determined first the value for 𝐾 (either in
the two-sided or the one-sided case) and then the control limits of the charts. For each pair
(_, 𝐾), we determined next the 𝑠𝑠𝐴𝑅𝐿 value for the given shift in process parameter(s). The
column “𝛿” (Table 1) provides the shifts in `0 while the column “𝜏” (Table 2) gives the shifts
in 𝜌0. Also, the column “chart” gives the appropriate chart (EWMA or DEWMA) that has to
be used for the detection of the specific OoC case. The IC parameter values of the process are
given in the column entitled “Process”.
Table 1 reveals that, in general, the upper one-sided EWMA chart has better performance

than the DEWMA chart. In almost all cases, at a given increasing shift 𝛿, the EWMA chart
attains a 𝑠𝑠𝐴𝑅𝐿 value that it is lower than the one that it is attained by the DEWMA chart.
For small increasing shifts (e.g. 𝛿 = 1.1 or 1.2) we recommend a small value for_ (e.g. 0.05 or
0.10), while for larger shifts (e.g. 𝛿 ≥ 1.5) we suggest _ = 0.30. Note also that the difference in
the 𝑠𝑠𝐴𝑅𝐿 values, between the EWMA and the DEWMA charts can be up to a 35% difference,
especially for moderate to large shifts.
Table 2 gives the results for the upper one-sided charts in the case of increasing shifts

only in 𝜌0. Contrary to the results in Table 1, we notice that now the DEWMA chart has
better performance than the EWMA chart. Our numerical analysis reveals that when the IC
autocorrelation is of low or medium size (e.g. 𝜌0 = 0.25 or 0.5), then the recommended value
for _ is 0.3. As 𝜌0 increases, a smaller value for _ are recommended in order to achieve an
increased detection ability. For 𝜌0 = 0.75, we suggest _ = 0.05. It should be also noticed that
the difference in using the suggested chart for detecting the specific shift is about 10%-20%,
depending on shift and the IC process parameters.
In Table 3 we provide the suggested chart for the detection of simultaneous shifts in `0 and

𝜌0. The shifts in both parameters are given in the form (𝛿, 𝜏). A 20% increase is assumed for
`0 while an increasing as well as a decreasing shift in 𝜌0 are also considered. For a small `0,
the DEWMA chart has a better performance than the EWMA chart while the latter is better
when `0 increases and 𝜌0 decreases. When both shifts are on the same direction (increase),
the DEWMA chart attains a lower 𝑠𝑠𝐴𝑅𝐿 value than the EWMA chart, in almost all cases.
The difference in the 𝑠𝑠𝐴𝑅𝐿 between the two charts is 5%-20%, depending on the shifts in
`0, 𝜌0.
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Similarly, Table 4 provides the best lower one-sided chart, between the EWMA and
DEWMA, in the detection of downward shifts only in `0. The results reveal that the EWMA
chart has the best performance in almost all cases. We suggest a _ value equal to 0.20 or 0.30
for moderate to large decreasing shifts while for small decreasing shifts (up to a 20% decrease),
the recommended value is _ = 0.10. The DEWMA chart outperforms the EWMA chart only
in case of a shift 𝛿 = 0.9 (a 10% decrease in `0), for processes with a weak or moderate
correlation structure (𝜌0 = 0.25 or 0.5). Using the EWMA chart instead of the DEWMA chart
in the detection of decreasing shifts only in `0 can result even in a 50% decrease in the 𝑠𝑠𝐴𝑅𝐿
value, especially for large decreasing shifts,
Table 5 provides the suggested chart for the detection of simultaneous shifts in `0 and 𝜌0.

An 20% decrease is assumed for `0 while an increasing as well as a decreasing shift in 𝜌0 are
also considered. Similar to case of the upper one-sided charts, when `0 is small (e.g. `0 = 4),
the DEWMA chart has a better performance than the EWMA chart while the latter is better
when both `0 and 𝜌0 decrease. Thus, when both shifts are on the same direction (decrease),
the EWMA chart attains a lower 𝑠𝑠𝐴𝑅𝐿 value than the EWMA chart, in almost all cases. The
DEWMA chart outperforms the EWMA chart when shifts are on the opposite direction, i.e.
`0 decreases and 𝜌0 increases. Similar to the case of upper one-sided charts, the difference in
the 𝑠𝑠𝐴𝑅𝐿 between the two charts is at most 20%, depending on the shifts in `0, 𝜌0.
It should be also mentioned that our numerical analysis showed that both lower one-sided

EWMA and DEWMA charts are not able to detect a decrease only in 𝜌0. Specifically, we
considered 𝜏 = −0.10 (for 𝜌0 = 0.25 or 0.50) and 𝜏 = −0.2 (for 𝜌0 = 0.75) and our simulation
results showed that the 𝑠𝑠𝐴𝑅𝐿 values are larger than the 𝑧𝑠𝐴𝑅𝐿 value.
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Table 1. Suggested upper one-sided charts, shifts only in `0
Process _ 𝑈𝐶𝐿 𝛿 𝑠𝑠𝐴𝑅𝐿 chart Process _ 𝑈𝐶𝐿 𝛿 𝑠𝑠𝐴𝑅𝐿 chart
`0 = 4 0.05 4.267 1.1 54.12 DEWMA `0 = 4 0.05 4.284 1.1 57.49 DEWMA
𝜌0 = 0.25 0.05 4.651 1.2 26.69 EWMA 𝜌0 = 0.25 0.05 4.702 1.2 28.99 EWMA
𝑛 = 20 0.10 5.092 1.3 16.71 EWMA 𝑛 = 50 0.10 4.702 1.3 18.60 EWMA

0.10 5.092 1.4 11.78 EWMA 0.10 5.186 1.4 13.13 EWMA
0.20 5.757 1.5 8.93 EWMA 0.20 5.186 1.5 10.03 EWMA

`0 = 8 0.05 8.783 1.1 32.77 EWMA `0 = 8 0.05 8.936 1.1 39.71 EWMA
𝜌0 = 0.25 0.10 9.302 1.2 14.48 EWMA 𝜌0 = 0.25 0.10 8.936 1.2 18.57 EWMA
𝑛 = 20 0.20 10.056 1.3 8.56 EWMA 𝑛 = 50 0.20 9.574 1.3 11.13 EWMA

0.30 10.654 1.4 5.81 EWMA 0.30 10.512 1.4 7.72 EWMA
0.30 10.654 1.5 4.26 EWMA 0.30 11.268 1.5 5.74 EWMA

`0 = 12 0.05 12.772 1.1 20.26 EWMA `0 = 12 0.05 13.084 1.1 29.87 EWMA
𝜌0 = 0.25 0.20 13.983 1.2 8.10 EWMA 𝜌0 = 0.25 0.20 13.810 1.2 13.27 EWMA
𝑛 = 20 0.30 14.541 1.3 4.55 EWMA 𝑛 = 50 0.30 14.884 1.3 7.89 EWMA

0.30 14.541 1.4 3.13 EWMA 0.30 15.732 1.4 5.36 EWMA
0.30 14.541 1.5 2.45 EWMA 0.30 15.732 1.5 3.99 EWMA

`0 = 4 0.05 4.352 1.1 69.36 DEWMA `0 = 4 0.05 4.375 1.1 72.18 DEWMA
𝜌0 = 0.50 0.05 4.819 1.2 37.17 EWMA 𝜌0 = 0.50 0.05 4.882 1.2 40.38 EWMA
𝑛 = 20 0.05 4.819 1.3 23.99 EWMA 𝑛 = 50 0.05 4.882 1.3 26.22 EWMA

0.10 5.354 1.4 17.31 EWMA 0.10 5.472 1.4 19.13 EWMA
0.10 5.354 1.5 13.08 EWMA 0.10 5.472 1.5 14.63 EWMA

`0 = 8 0.05 8.980 1.1 44.42 EWMA `0 = 8 0.05 8.510 1.1 52.71 DEWMA
𝜌0 = 0.50 0.05 8.980 1.2 21.03 EWMA 𝜌0 = 0.50 0.05 9.177 1.2 25.88 EWMA
𝑛 = 20 0.10 9.607 1.3 12.73 EWMA 𝑛 = 50 0.10 9.941 1.3 16.37 EWMA

0.20 10.458 1.4 8.69 EWMA 0.20 9.941 1.4 11.40 EWMA
0.30 11.066 1.5 6.38 EWMA 0.30 11.003 1.5 8.58 EWMA

`0 = 12 0.05 12.965 1.1 28.24 EWMA `0 = 12 0.05 13.362 1.1 41.20 EWMA
𝜌0 = 0.50 0.10 13.562 1.2 12.20 EWMA 𝜌0 = 0.50 0.10 13.362 1.2 19.47 EWMA
𝑛 = 20 0.30 14.928 1.3 6.89 EWMA 𝑛 = 50 0.30 14.237 1.3 11.74 EWMA

0.30 14.928 1.4 4.60 EWMA 0.30 15.444 1.4 8.05 EWMA
0.30 14.928 1.5 3.55 EWMA 0.30 16.332 1.5 5.98 EWMA

`0 = 4 0.05 4.512 1.1 92.25 DEWMA `0 = 4 0.05 4.548 1.1 97.58 DEWMA
𝜌0 = 0.75 0.05 5.080 1.2 55.85 EWMA 𝜌0 = 0.75 0.05 5.168 1.2 60.05 EWMA
𝑛 = 20 0.05 5.080 1.3 38.36 EWMA 𝑛 = 50 0.05 5.168 1.3 41.34 EWMA

0.05 5.080 1.4 28.13 EWMA 0.05 5.168 1.4 30.81 EWMA
0.10 5.730 1.5 22.28 EWMA 0.10 5.168 1.5 24.47 EWMA

`0 = 8 0.05 8.632 1.1 65.90 DEWMA `0 = 8 0.05 8.742 1.1 74.70 DEWMA
𝜌0 = 0.75 0.05 9.304 1.2 33.92 EWMA 𝜌0 = 0.75 0.05 9.557 1.2 41.18 EWMA
𝑛 = 20 0.10 10.046 1.3 21.59 EWMA 𝑛 = 50 0.10 9.557 1.3 26.89 EWMA

0.20 10.946 1.4 15.28 EWMA 0.20 10.479 1.4 19.49 EWMA
0.30 11.529 1.5 11.44 EWMA 0.30 10.479 1.5 15.03 EWMA

`0 = 12 0.05 13.280 1.1 44.65 EWMA `0 = 12 0.05 13.800 1.1 61.81 EWMA
𝜌0 = 0.75 0.10 13.990 1.2 20.64 EWMA 𝜌0 = 0.75 0.10 13.800 1.2 31.42 EWMA
𝑛 = 20 0.20 14.844 1.3 12.27 EWMA 𝑛 = 50 0.20 14.850 1.3 19.88 EWMA

0.30 15.386 1.4 8.22 EWMA 0.30 16.126 1.4 14.18 EWMA
0.30 15.386 1.5 6.17 EWMA 0.30 16.942 1.5 10.60 EWMA
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Table 2. Suggested upper one-sided charts, shifts only in 𝜌0
Process _ 𝑈𝐶𝐿 𝜏 𝑠𝑠𝐴𝑅𝐿 chart Process _ 𝑈𝐶𝐿 𝜏 𝑠𝑠𝐴𝑅𝐿 chart
`0 = 4 0.30 5.500 0.15 119.41 DEWMA `0 = 4 0.30 5.63 0.15 118.51 DEWMA
𝜌0 = 0.25 0.30 5.500 0.10 76.39 DEWMA 𝜌0 = 0.25 0.30 5.63 0.10 76.63 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.30 9.78 0.15 117.47 DEWMA `0 = 8 0.30 10.15 0.15 118.20 DEWMA
𝜌0 = 0.25 0.30 9.78 0.10 72.56 DEWMA 𝜌0 = 0.25 0.30 10.15 0.10 75.88 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.30 13.73 0.15 117.85 DEWMA `0 = 12 0.30 14.48 0.15 120.49 DEWMA
𝜌0 = 0.25 0.30 13.73 0.10 71.51 DEWMA 𝜌0 = 0.25 0.30 14.48 0.10 73.65 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 4 0.20 5.37 0.15 123.29 DEWMA `0 = 4 0.20 5.48 0.15 125.17 DEWMA
𝜌0 = 0.50 0.20 5.37 0.35 83.49 DEWMA 𝜌0 = 0.50 0.20 5.48 0.35 87.17 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.20 9.63 0.15 118.83 DEWMA `0 = 8 0.20 9.97 0.15 122.03 DEWMA
𝜌0 = 0.50 0.20 9.63 0.35 81.56 DEWMA 𝜌0 = 0.50 0.20 9.97 0.35 84.42 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.30 14.15 0.15 117.60 DEWMA `0 = 12 0.20 14.26 0.15 121.17 DEWMA
𝜌0 = 0.50 0.20 13.59 0.35 79.47 DEWMA 𝜌0 = 0.50 0.20 14.26 0.35 81.88 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 4 0.10 5.05 0.10 140.16 DEWMA `0 = 4 0.10 5.14 0.10 144.90 DEWMA
𝜌0 = 0.75 0.10 5.05 0.20 134.74 DEWMA 𝜌0 = 0.75 0.10 5.14 0.20 135.85 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.20 10.168 0.10 137.87 DEWMA `0 = 8 0.10 9.52 0.10 141.61 DEWMA
𝜌0 = 0.75 0.10 9.28 0.20 129.66 DEWMA 𝜌0 = 0.75 0.10 9.52 0.20 133.00 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.10 13.26 0.10 136.24 DEWMA `0 = 12 0.10 13.76 0.10 139.86 DEWMA
𝜌0 = 0.75 0.10 13.26 0.20 123.08 DEWMA 𝜌0 = 0.75 0.10 13.76 0.20 134.34 DEWMA
𝑛 = 20 𝑛 = 50

The performance of the two-sided EWMA and DEWMA charts is presented in Tables
6-8. Specifically, from the results in Table 6 we deduce that the EWMA chart outperforms the
DEWMA in the detection of shifts only in `0, especially for moderate to large shifts, either
decreasing or increasing. The DEWMA outperforms the EWMA chart when the IC `0 is small
(e.g. `0 = 4) and there is small decreasing or increasing shift in it (e.g. a 10% decrease or a
10% increase). The suggested _ value for the DEWMA is 0.05. It should be also noted that
_ = 0.05 is a good choice for the most of the OoC cases. Thus, in practice and depending on
the shift we want to detect, we recommend the use of an EWMA (or a DEWMA) chart with
_ = 0.05, because it seems to have the best performance for a range shifts.
In the case of shifts only in 𝜌0 (Table 7), the DEWMA chart outperforms the EWMA chart,

in almost all of the considered cases. Specifically, the EWMA chart has a better performance
than the EWMA chart, only in the case of strong dependence (𝜌0 = 0.75) and large sample
size (𝑛 = 50). The suggested value for _ in the DEWMA chart is 0.20 or 0.30 (for increasing
shifts in 𝜌0) or 0.05 for decreasing shifts.
Finally, Table 8 provides the best two-sided chart, when there is a simultaneous change in

both parameters `0 and 𝜌0. The DEWMA chart outperforms the EWMA chart in the most of
the examined cases, especially when there is an increase in 𝜌0. When both `0 and 𝜌0 decrease,
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Table 3. Suggested upper one-sided charts, simultaneous shifts in `0, 𝜌0
Process _ 𝑈𝐶𝐿 (𝛿, 𝜏) 𝑠𝑠𝐴𝑅𝐿 chart Process _ 𝑈𝐶𝐿 (𝛿, 𝜏) 𝑠𝑠𝐴𝑅𝐿 chart
`0 = 4 0.30 5.500 (1.2,0.35) 26.66 DEWMA `0 = 4 0.30 5.629 (1.2,0.35) 28.31 DEWMA
𝜌0 = 0.25 0.10 4.562 (1.2,-0.10) 26.51 DEWMA 𝜌0 = 0.25 0.05 4.702 (1.2,-0.10) 28.62 EWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.30 9.778 (1.2,0.35) 16.30 DEWMA `0 = 8 0.30 10.152 (1.2,0.35) 19.65 DEWMA
𝜌0 = 0.25 0.10 9.302 (1.2,-0.10) 14.35 EWMA 𝜌0 = 0.25 0.05 8.936 (1.2,-0.10) 18.29 EWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.20 13.983 (1.2,0.35) 10.22 EWMA `0 = 12 0.30 14.476 (1.2,0.35) 15.35 DEWMA
𝜌0 = 0.25 0.20 13.983 (1.2,-0.10) 7.79 EWMA 𝜌0 = 0.25 0.10 13.810 (1.2,-0.10) 12.85 EWMA
𝑛 = 20 𝑛 = 50
`0 = 4 0.20 5.366 (1.2,0.35) 40.55 DEWMA `0 = 4 0.20 5.484 (1.2,0.35) 43.64 DEWMA
𝜌0 = 0.50 0.05 4.352 (1.2,-0.10) 37.84 DEWMA 𝜌0 = 0.50 0.05 4.375 (1.2,-0.10) 40.13 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.20 9.627 (1.2,0.35) 27.93 DEWMA `0 = 8 0.20 9.965 (1.2,0.35) 32.97 DEWMA
𝜌0 = 0.50 0.10 9.607 (1.2,-0.10) 21.06 EWMA 𝜌0 = 0.50 0.05 9.177 (1.2,-0.10) 25.09 EWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.20 13.090 (1.2,0.35) 19.12 DEWMA `0 = 12 0.20 14.264 (1.2,0.35) 26.38 DEWMA
𝜌0 = 0.50 0.10 13.562 (1.2,-0.10) 11.58 EWMA 𝜌0 = 0.50 0.05 13.362 (1.2,-0.10) 18.75 EWMA
𝑛 = 20 𝑛 = 50
`0 = 4 0.10 5.053 (1.2,0.20) 74.99 DEWMA `0 = 4 0.10 5.136 (1.2,0.25) 78.84 DEWMA
𝜌0 = 0.75 0.05 4.512 (1.2,-0.25) 52.91 DEWMA 𝜌0 = 0.75 0.05 4.548 (1.2,-0.25) 58.00 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.10 9.276 (1.2,0.20) 55.17 DEWMA `0 = 8 0.10 9.518 (1.2,0.25) 63.60 DEWMA
𝜌0 = 0.75 0.05 9.304 (1.2,-0.25) 31.03 EWMA 𝜌0 = 0.75 0.05 8.742 (1.2,-0.25) 38.54 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.10 13.259 (1.2,0.20) 40.64 DEWMA `0 = 12 0.10 13.764 (1.2,0.25) 52.89 DEWMA
𝜌0 = 0.75 0.10 13.990 (1.2,-0.25) 17.45 EWMA 𝜌0 = 0.75 0.05 13.800 (1.2,-0.25) 27.93 EWMA
𝑛 = 20 𝑛 = 50

the DEWMA chart has also better performance than the EWMA chart while when `0 increases
and 𝜌0 decreases, we recommend the EWMA chart.
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Table 4. Suggested lower one-sided charts, shifts only in `0
Process _ 𝐿𝐶𝐿 𝛿 𝑠𝑠𝐴𝑅𝐿 chart Process _ 𝐿𝐶𝐿 𝛿 𝑠𝑠𝐴𝑅𝐿 chart
`0 = 4 0.20 2.453 0.5 7.29 EWMA `0 = 4 0.20 2.375 0.5 7.90 EWMA
𝜌0 = 0.25 0.30 2.640 0.6 10.07 DEWMA 𝜌0 = 0.25 0.30 2.563 0.6 11.00 DEWMA
𝑛 = 20 0.20 3.008 0.7 15.14 DEWMA 𝑛 = 50 0.20 2.947 0.7 16.36 DEWMA

0.05 3.380 0.8 25.00 EWMA 0.20 2.947 0.8 26.87 DEWMA
0.05 3.732 0.9 52.20 DEWMA 0.05 3.712 0.9 55.50 DEWMA

`0 = 8 0.30 5.458 0.5 3.94 EWMA `0 = 8 0.30 5.119 0.5 4.65 EWMA
𝜌0 = 0.25 0.30 5.458 0.6 5.43 EWMA 𝜌0 = 0.25 0.30 5.119 0.6 6.55 EWMA
𝑛 = 20 0.20 6.013 0.7 8.18 EWMA 𝑛 = 50 0.20 5.719 0.7 9.96 EWMA

0.10 6.728 0.8 14.02 EWMA 0.10 6.529 0.8 16.82 EWMA
0.05 7.227 0.9 32.51 EWMA 0.10 7.204 0.9 37.78 DEWMA

`0 = 12 0.30 9.346 0.5 2.65 EWMA `0 = 12 0.30 8.554 0.5 3.46 EWMA
𝜌0 = 0.25 0.30 9.346 0.6 3.41 EWMA 𝜌0 = 0.25 0.30 8.554 0.6 4.66 EWMA
𝑛 = 20 0.30 9.346 0.7 4.91 EWMA 𝑛 = 50 0.20 9.303 0.7 7.05 EWMA

0.20 9.944 0.8 8.56 EWMA 0.10 10.267 0.8 12.41 EWMA
0.10 10.698 0.9 20.72 EWMA 0.05 10.944 0.9 29.13 EWMA

`0 = 4 0.20 2.178 0.5 10.79 EWMA `0 = 4 0.20 2.093 0.5 11.47 EWMA
𝜌0 = 0.50 0.10 2.771 0.6 14.76 EWMA 𝜌0 = 0.50 0.10 2.703 0.6 15.88 EWMA
𝑛 = 20 0.10 2.771 0.7 21.48 EWMA 𝑛 = 50 0.10 2.703 0.7 23.10 EWMA

0.05 3.228 0.8 34.39 EWMA 0.05 3.181 0.8 36.42 EWMA
0.05 3.643 0.9 67.40 DEWMA 0.05 3.620 0.9 70.45 DEWMA

`0 = 8 0.30 5.070 0.5 5.87 EWMA `0 = 8 0.30 4.668 0.5 6.98 EWMA
𝜌0 = 0.50 0.20 5.632 0.6 8.07 EWMA 𝜌0 = 0.50 0.20 5.307 0.6 9.66 EWMA
𝑛 = 20 0.10 6.438 0.7 12.20 EWMA 𝑛 = 50 0.10 6.196 0.7 14.57 EWMA

0.05 7.035 0.8 20.21 EWMA 0.05 6.878 0.8 24.09 EWMA
0.05 7.035 0.9 44.17 EWMA 0.05 6.878 0.9 50.19 EWMA

`0 = 12 0.30 8.931 0.5 3.85 EWMA `0 = 12 0.30 8.031 0.5 5.12 EWMA
𝜌0 = 0.50 0.30 8.931 0.6 5.02 EWMA 𝜌0 = 0.50 0.20 8.800 0.6 6.99 EWMA
𝑛 = 20 0.30 8.931 0.7 7.42 EWMA 𝑛 = 50 0.20 8.800 0.7 10.54 EWMA

0.10 10.396 0.8 12.74 EWMA 0.10 9.880 0.8 17.98 EWMA
0.05 11.020 0.9 28.68 EWMA 0.10 10.781 0.9 39.64 DEWMA

`0 = 4 0.10 2.434 0.5 18.59 EWMA `0 = 4 0.30 8.031 0.5 19.88 EWMA
𝜌0 = 0.75 0.10 2.434 0.6 25.01 EWMA 𝜌0 = 0.75 0.20 8.800 0.6 26.51 EWMA
𝑛 = 20 0.05 2.981 0.7 34.78 EWMA 𝑛 = 50 0.20 8.800 0.7 36.44 EWMA

0.05 2.981 0.8 52.63 EWMA 0.10 9.880 0.8 55.16 EWMA
0.05 3.480 0.9 88.89 DEWMA 0.05 3.445 0.9 93.75 DEWMA

`0 = 8 0.30 4.618 0.5 10.53 EWMA `0 = 8 0.20 4.756 0.5 12.50 EWMA
𝜌0 = 0.75 0.20 5.157 0.6 14.24 EWMA 𝜌0 = 0.75 0.10 5.704 0.6 16.94 EWMA
𝑛 = 20 0.10 6.010 0.7 20.63 EWMA 𝑛 = 50 0.05 6.509 0.7 24.61 EWMA

0.05 6.718 0.8 33.15 EWMA 0.05 6.509 0.8 38.38 EWMA
0.05 7.370 0.9 64.58 DEWMA 0.05 7.250 0.9 71.92 DEWMA

`0 = 12 0.30 8.468 0.5 6.77 EWMA `0 = 12 0.30 7.427 0.5 9.24 EWMA
𝜌0 = 0.75 0.30 8.468 0.6 8.85 EWMA 𝜌0 = 0.75 0.20 8.147 0.6 12.62 EWMA
𝑛 = 20 0.20 9.060 0.7 13.16 EWMA 𝑛 = 50 0.10 9.284 0.7 17.94 EWMA

0.10 9.957 0.8 21.68 EWMA 0.05 10.248 0.8 29.47 EWMA
0.05 10.701 0.9 45.67 EWMA 0.05 11.126 0.9 59.53 DEWMA
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Table 5. Suggested lower one-sided charts, simultaneous shifts in `0, 𝜌0
Process _ 𝐿𝐶𝐿 (𝛿, 𝜏) 𝑠𝑠𝐴𝑅𝐿 chart Process _ 𝐿𝐶𝐿 (𝛿, 𝜏) 𝑠𝑠𝐴𝑅𝐿 chart
`0 = 4 0.05 3.380 (0.8,-0.10) 25.06 EWMA `0 = 4 0.10 3.413 (0.8,-0.10) 26.81 DEWMA
𝜌0 = 0.25 0.30 2.640 (0.8,0.35) 23.71 DEWMA 𝜌0 = 0.25 0.30 2.563 (0.8,0.35) 24.71 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.10 6.728 (0.8,-0.10) 13.82 EWMA `0 = 8 0.10 6.529 (0.8,-0.10) 16.97 EWMA
𝜌0 = 0.25 0.30 6.266 (0.8,0.35) 15.75 DEWMA 𝜌0 = 0.25 0.30 6.005 (0.8,0.35) 17.84 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.20 9.944 (0.8,-0.10) 8.42 EWMA `0 = 12 0.10 10.267 (0.8,-0.10) 12.27 EWMA
𝜌0 = 0.25 0.30 10.221 (0.8,0.35) 10.71 DEWMA 𝜌0 = 0.25 0.30 9.639 (0.8,0.35) 14.09 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 4 0.05 3.228 (0.8,-0.10) 35.06 EWMA `0 = 4 0.05 3.181 (0.8,-0.10) 37.48 EWMA
𝜌0 = 0.50 0.20 2.743 (0.8,0.35) 34.49 DEWMA 𝜌0 = 0.50 0.10 2.703 (0.8,0.35) 35.75 EWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.10 6.438 (0.8,-0.10) 19.88 EWMA `0 = 8 0.05 6.878 (0.8,-0.10) 23.80 EWMA
𝜌0 = 0.50 0.10 6.438 (0.8,0.35) 21.52 EWMA 𝜌0 = 0.50 0.10 6.196 (0.8,0.35) 24.99 EWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.10 10.396 (0.8,-0.10) 12.07 EWMA `0 = 12 0.10 9.880 (0.8,-0.10) 17.45 EWMA
𝜌0 = 0.50 0.10 10.396 (0.8,0.35) 14.19 EWMA 𝜌0 = 0.50 0.10 9.880 (0.8,0.35) 19.27 EWMA
𝑛 = 20 𝑛 = 50
`0 = 40 0.05 3.480 (0.8,-0.25) 51.49 DEWMA `0 = 4 0.05 3.445 (0.8,-0.25) 54.16 DEWMA
𝜌0 = 0.75 0.10 2.998 (0.8,0.20) 67.63 DEWMA 𝜌0 = 0.75 0.10 2.922 (0.8,0.20) 68.91 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 8 0.05 6.718 (0.8,-0.25) 29.94 EWMA `0 = 8 0.05 6.509 (0.8,-0.25) 37.11 EWMA
𝜌0 = 0.75 0.10 6.739 (0.8,0.20) 54.10 DEWMA 𝜌0 = 0.75 0.10 6.525 (0.8,0.20) 58.86 DEWMA
𝑛 = 20 𝑛 = 50
`0 = 12 0.10 9.957 (0.8,-0.25) 17.94 EWMA `0 = 12 0.05 10.248 (0.8,-0.25) 26.66 EWMA
𝜌0 = 0.75 0.05 10.701 (0.8,0.20) 41.75 EWMA 𝜌0 = 0.75 0.10 10.273 (0.8,0.20) 50.97 DEWMA
𝑛 = 20 𝑛 = 50

As a general conclusion from Tables 1-8 we state that when there is a shift only in `0 either
increasing or decreasing, the recommended chart is the EWMA chart. The _ value depends
on the size of shift and the general rule of a “small _ for small shift” applies here, as well.
The DEWMA chart is recommended when we are interested in detecting an increasing shift
in 𝜌0. A _ equal to 0.10 or 0.20 is suggested. When both parameters shift, there is not a clear
pattern on the _ value and depends on the shift we want to detect. For the two-sided charts, the
DEWMA chart has the best performance in the most of the examined cases and we recommend
its use, especially when there is an increase in 𝜌0, no matter to which direction is the change
in `0. Finally, both charts have a difficulty to detect a downward shift only in 𝜌0.

5 A Real-Data Example

In this section, we present an example with real data, in order to demonstrate the usefulness
and practical implementation of the EWMA and DEWMA control charts. The example is
from the area of network monitoring and the data are about the number of log-ins in the 15
available workstations. The data have been collected per minute from the computer centre of
the University of Würzburg (Weiß 15 ). Clearly, the available data are counts and they constitute
a time serie that can be modelled via an appropriate integer-valued time series model.
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Table 6. Suggested Two-Sided Charts, Shifts only in `0
Process _ 𝐿𝐶𝐿 𝑈𝐶𝐿 𝛿 𝑠𝑠𝐴𝑅𝐿 chart Process _ 𝐿𝐶𝐿 𝑈𝐶𝐿 𝛿 𝑠𝑠𝐴𝑅𝐿 chart
`0 = 4 0.30 2.359 5.641 0.5 9.66 DEWMA `0 = 4 0.20 2.704 5.296 0.5 10.60 DEWMA
𝜌0 = 0.25 0.10 3.289 4.711 0.8 33.87 DEWMA 𝜌0 = 0.25 0.05 3.571 4.429 0.8 37.12 DEWMA
𝑛 = 20 0.05 3.599 4.401 0.9 72.96 DEWMA 𝑛 = 50 0.05 3.571 4.429 0.9 77.97 DEWMA

0.20 2.789 5.110 1.1 67.21 DEWMA 0.05 3.571 4.429 1.1 78.90 DEWMA
0.20 2.789 5.110 1.2 31.19 DEWMA 0.05 3.158 4.842 1.2 36.73 EWMA
0.20 2.789 5.110 1.5 9.78 DEWMA 0.20 1.997 6.003 1.5 10.94 EWMA

`0 = 8 0.30 5.109 10.891 0.5 4.71 EWMA `0 = 8 0.20 5.286 10.714 0.5 6.06 EWMA
𝜌0 = 0.25 0.05 7.039 8.961 0.8 18.01 EWMA 𝜌0 = 0.25 0.05 6.861 9.139 0.8 22.26 EWMA
𝑛 = 20 0.05 7.509 8.491 0.9 43.73 DEWMA 𝑛 = 50 0.05 7.420 8.580 0.9 52.12 DEWMA

0.05 7.509 8.491 1.1 44.14 DEWMA 0.05 7.420 8.580 1.1 53.08 DEWMA
0.10 6.495 9.505 1.2 17.86 EWMA 0.05 6.861 9.139 1.2 22.67 EWMA
0.30 5.109 10.891 1.5 4.79 EWMA 0.30 4.554 11.446 1.5 6.22 EWMA

`0 = 12 0.30 9.107 14.893 0.5 2.86 EWMA `0 = 12 0.30 7.994 16.006 0.5 4.16 EWMA
𝜌0 = 0.25 0.20 9.713 14.287 0.8 10.30 EWMA 𝜌0 = 0.25 0.10 9.926 14.074 0.8 16.08 EWMA
𝑛 = 20 0.05 11.038 12.962 0.9 26.11 EWMA 𝑛 = 50 0.05 11.324 12.676 0.9 39.76 DEWMA

0.05 11.038 12.962 1.1 26.21 EWMA 0.05 10.672 13.328 1.1 39.20 EWMA
0.30 9.986 14.014 1.2 10.19 DEWMA 0.10 9.926 14.074 1.2 16.00 EWMA
0.30 9.107 14.893 1.5 2.76 EWMA 0.30 7.994 16.006 1.5 4.35 EWMA

`0 = 4 0.10 2.479 5.521 0.5 14.53 EWMA `0 = 4 0.05 2.937 5.063 0.5 16.04 EWMA
𝜌0 = 0.50 0.05 3.467 4.533 0.8 47.86 DEWMA 𝜌0 = 0.50 0.05 3.429 4.571 0.8 50.32 DEWMA
𝑛 = 20 0.05 3.467 4.533 0.9 96.53 DEWMA 𝑛 = 50 0.05 3.429 4.571 0.9 101.76 DEWMA

0.05 3.467 4.533 1.1 97.08 DEWMA 0.30 1.038 6.962 1.1 101.73 EWMA
0.05 3.007 4.993 1.2 48.61 EWMA 0.05 2.937 5.063 1.2 51.94 EWMA
0.10 2.479 5.521 1.5 15.01 EWMA 0.20 1.595 6.405 1.5 16.43 EWMA

`0 = 8 0.20 5.255 10.745 0.5 7.21 EWMA `0 = 8 0.30 5.019 10.981 0.5 9.26 DEWMA
𝜌0 = 0.50 0.05 6.780 9.220 0.8 26.27 EWMA 𝜌0 = 0.50 0.05 6.556 9.444 0.8 32.72 EWMA
𝑛 = 20 0.05 7.346 8.654 0.9 60.36 EWMA 𝑛 = 50 0.05 7.228 8.772 0.9 70.84 DEWMA

0.05 7.346 8.654 1.1 60.83 EWMA 0.05 7.228 8.772 1.1 72.94 DEWMA
0.05 6.780 9.220 1.2 26.30 EWMA 0.05 6.556 9.444 1.2 32.94 EWMA
0.30 4.617 11.383 1.5 7.36 EWMA 0.20 4.744 11.256 1.5 9.56 EWMA

`0 = 12 0.30 8.618 15.382 0.5 4.23 EWMA `0 = 12 0.30 7.322 16.678 0.5 6.39 EWMA
𝜌0 = 0.50 0.10 10.131 13.869 0.8 15.40 DEWMA 𝜌0 = 0.50 50.00 0.05 10.319 13.681 23.42 EWMA
𝑛 = 20 0.05 10.779 13.221 0.9 38.26 DEWMA 𝑛 = 50 0.05 11.101 12.899 0.9 55.01 EWMA

0.05 10.779 13.221 1.1 38.53 EWMA 0.05 11.101 12.899 1.1 55.89 DEWMA
0.10 10.131 13.869 1.2 15.23 EWMA 0.05 10.319 13.681 1.2 23.88 DEWMA
0.30 8.618 15.382 1.5 4.06 EWMA 0.30 7.322 16.678 1.5 6.60 EWMA

`0 = 4 0.05 2.652 5.348 0.5 25.00 EWMA `0 = 4 0.05 2.558 5.442 0.5 27.30 EWMA
𝜌0 = 0.75 0.05 3.213 4.787 0.8 73.67 DEWMA 𝜌0 = 0.75 0.05 3.157 4.843 0.8 78.91 DEWMA
𝑛 = 20 0.05 3.213 4.787 0.9 128.09 DEWMA 𝑛 = 50 0.05 3.157 4.843 0.9 132.77 DEWMA

0.30 0.806 7.194 1.1 125.91 EWMA 0.30 0.574 7.426 1.1 122.61 EWMA
0.05 2.652 5.348 1.2 76.78 EWMA 0.30 0.574 7.426 1.2 77.96 EWMA
0.10 2.028 5.972 1.5 26.33 EWMA 0.30 0.574 7.426 1.5 28.19 EWMA

`0 = 8 0.20 4.628 11.372 0.5 13.47 EWMA `0 = 8 0.10 5.122 10.878 0.5 16.55 EWMA
𝜌0 = 0.75 0.05 6.338 9.662 0.8 45.15 EWMA 𝜌0 = 0.75 0.05 6.859 9.141 0.8 53.67 DEWMA
𝑛 = 20 0.05 7.031 8.969 0.9 91.40 DEWMA 𝑛 = 50 0.05 6.859 9.141 0.9 104.54 DEWMA

0.05 7.031 8.969 1.1 91.02 DEWMA 0.05 6.859 9.141 1.1 104.86 DEWMA
0.05 6.338 9.662 1.2 45.58 EWMA 0.05 6.042 9.958 1.2 55.21 EWMA
0.20 4.628 11.372 1.5 13.61 EWMA 0.20 4.028 11.972 1.5 17.45 EWMA

`0 = 12 0.30 8.058 15.942 0.5 7.65 EWMA `0 = 12 0.20 7.348 16.652 0.5 11.82 EWMA
𝜌0 = 0.75 0.05 10.340 13.660 0.8 27.33 EWMA 𝜌0 = 0.75 0.05 9.715 14.285 0.8 40.41 EWMA
𝑛 = 20 0.05 11.030 12.970 0.9 62.71 DEWMA 𝑛 = 50 0.05 10.667 13.333 0.9 84.16 DEWMA

0.05 11.030 12.970 1.1 61.88 DEWMA 0.05 10.667 13.333 1.1 86.13 DEWMA
0.05 10.340 13.660 1.2 26.74 EWMA 0.05 9.715 14.285 1.2 40.99 EWMA
0.30 8.058 15.942 1.5 7.30 EWMA 0.30 6.532 17.468 1.5 12.27 EWMA
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Table 7. Suggested Two-Sided Charts, Shifts only in 𝜌0
Process _ 𝐿𝐶𝐿 𝑈𝐶𝐿 𝜏 𝑠𝑠𝐴𝑅𝐿 chart Process _ 𝐿𝐶𝐿 𝑈𝐶𝐿 𝜏 𝑠𝑠𝐴𝑅𝐿 chart
`0 = 4 0.20 2.789 5.110 0.15 85.40 DEWMA `0 = 4 0.30 2.240 5.760 0.15 99.26 DEWMA
𝜌0 = 0.25 0.20 2.789 5.110 0.35 45.05 DEWMA 𝜌0 = 0.25 0.30 2.240 5.760 0.35 49.58 DEWMA
𝑛 = 20 0.20 2.789 5.110 -0.10 246.08 DEWMA 𝑛 = 50 0.05 3.571 4.429 -0.10 244.21 DEWMA
`0 = 8 0.30 5.988 10.012 0.15 96.00 DEWMA `0 = 8 0.30 5.618 10.382 0.15 97.85 DEWMA
𝜌0 = 0.25 0.30 5.988 10.012 0.35 48.38 DEWMA 𝜌0 = 0.25 0.20 6.244 9.756 0.35 49.17 DEWMA
𝑛 = 20 0.05 7.509 8.491 -0.10 249.25 DEWMA 𝑛 = 50 0.05 7.420 8.580 -0.10 239.72 DEWMA
`0 = 12 0.30 9.986 14.014 0.15 95.97 DEWMA `0 = 12 0.30 9.223 14.777 0.15 97.61 DEWMA
𝜌0 = 0.25 0.30 9.986 14.014 0.35 47.92 DEWMA 𝜌0 = 0.25 0.30 9.223 14.777 0.35 49.07 DEWMA
𝑛 = 20 0.05 11.510 12.490 -0.10 240.59 DEWMA 𝑛 = 50 0.05 11.324 12.676 -0.10 247.42 DEWMA
`0 = 4 0.20 2.446 5.554 0.15 92.79 DEWMA `0 = 4 0.20 2.338 5.662 0.15 94.46 DEWMA
𝜌0 = 0.50 0.20 2.446 5.554 0.35 45.71 DEWMA 𝜌0 = 0.50 0.20 2.338 5.662 0.35 46.75 DEWMA
𝑛 = 20 0.05 3.467 4.533 -0.10 259.95 DEWMA 𝑛 = 50 0.05 3.429 4.571 -0.10 263.65 DEWMA
`0 = 8 0.20 6.090 9.910 0.15 92.24 DEWMA `0 = 8 0.20 5.742 10.258 0.15 94.63 DEWMA
𝜌0 = 0.50 0.20 6.090 9.910 0.35 45.77 DEWMA 𝜌0 = 0.50 0.20 5.742 10.258 0.35 46.29 DEWMA
𝑛 = 20 0.05 7.346 8.654 -0.10 258.58 DEWMA 𝑛 = 50 0.05 7.228 8.772 -0.10 231.94 DEWMA
`0 = 12 0.20 10.090 13.910 0.15 92.49 DEWMA `0 = 12 0.20 9.367 14.633 0.15 92.10 DEWMA
𝜌0 = 0.50 0.20 10.090 13.910 0.35 46.25 DEWMA 𝜌0 = 0.50 0.20 9.367 14.633 0.35 46.16 DEWMA
𝑛 = 20 0.05 11.346 12.654 -0.10 259.63 DEWMA 𝑛 = 50 0.05 11.101 12.899 -0.10 258.34 DEWMA
`0 = 4 0.10 2.659 5.341 0.10 99.77 DEWMA `0 = 4 0.10 2.568 5.432 0.10 100.45 DEWMA
𝜌0 = 0.75 0.05 3.213 4.787 0.20 64.00 DEWMA 𝜌0 = 0.75 0.05 2.937 5.063 0.20 49.59 EWMA
𝑛 = 20 0.30 0.806 7.194 -0.25 541.67 EWMA 𝑛 = 50 0.30 1.038 6.962 -0.25 272.93 EWMA
`0 = 8 0.10 6.347 9.653 0.10 100.02 DEWMA `0 = 8 0.10 5.793 10.207 0.10 98.08 EWMA
𝜌0 = 0.75 0.05 7.031 8.969 0.20 63.38 DEWMA 𝜌0 = 0.75 0.05 6.556 9.444 0.20 49.61 EWMA
𝑛 = 20 0.30 4.060 11.940 -0.25 684.11 EWMA 𝑛 = 50 0.30 3.995 12.005 -0.25 303.14 EWMA
`0 = 12 0.10 10.347 13.653 0.10 102.33 DEWMA `0 = 12 0.10 9.421 14.579 0.10 99.96 EWMA
𝜌0 = 0.75 0.05 11.030 12.970 0.20 64.79 DEWMA 𝜌0 = 0.75 0.05 10.319 13.681 0.20 50.14 EWMA
𝑛 = 20 0.30 8.058 15.942 -0.25 711.77 EWMA 𝑛 = 50 0.30 7.322 16.678 -0.25 308.65 EWMA

We start with a time series plot with the available data on the 3rd May 2005 (Figure 1). At
this day, it is available at each minute 𝑡 the number of log-ins in 15 workstations in the computer
centre of the University of Würzburg, from 10:00 to 17:30. The total number of observations
equals 451. The possible values for the number 𝑋𝑡 of log-ins at minute 𝑡 are in {0, 1, . . . , 15}
which also supports the BAR(1) as a candidate model for capturing their stochastic behavior.
We will use these 451 values as a Phase I sample and estimate the proceed param-

eters as well as the control limits for the EWMA and DEWMA two-sided charts. By
using the function optim in R (R Core Team 35 ), we estimate the parameters 𝜋 and 𝜌
via the method of maximum likelihood. The results (which verify those in Weiß 15 ) are
�̂� = 0.36482 (0.04306) and �̂� = 0.96822 (0.00355). In the parentheses we provide the stan-
dard errors of the estimates. Therefore, the process is modelled as a BAR(1) process with
(𝑛, 𝜋, 𝜌) = (15, 0.36482, 0.96822).
Next, we apply the two-sided 𝑛𝑝 chart with control limits 𝐿𝐶𝐿 = 2 and 𝑈𝐶𝐿 = 9, as a

Phase-I method, on the data from May 3rd. The 𝑧𝑠𝐴𝑅𝐿 is around 360. The chart is given in
Figure 2. There are 6 values beyond the 𝑈𝐶𝐿, observations 297-302. Further investigation is
needed in order to verify that these signals are due to the presence of assignable causes in the
process or that they are false alarms. Here, if we assume that these are true alarms, then we
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Table 8. Suggested Two-Sided Charts, Simultaneous Shifts in `0, 𝜌0
Process _ 𝐿𝐶𝐿 𝑈𝐶𝐿 (𝛿, 𝜏) 𝑠𝑠𝐴𝑅𝐿 chart Process _ 𝐿𝐶𝐿 𝑈𝐶𝐿 (𝛿, 𝜏) 𝑠𝑠𝐴𝑅𝐿 chart
`0 = 4 0.20 2.789 5.110 (0.8, 0.35) 28.87 DEWMA `0 = 4 0.20 2.704 5.296 (0.8, 0.35) 31.86 DEWMA
𝜌0 = 0.25 0.20 2.789 5.110 (1.2, 0.35) 26.07 DEWMA 𝜌0 = 0.25 0.30 2.240 5.760 (1.2, 0.35) 30.13 DEWMA
𝑛 = 20 0.10 3.289 4.711 (0.8,−0.10) 34.15 DEWMA 𝑛 = 50 0.05 3.571 4.429 (0.8,−0.10) 36.71 DEWMA

0.20 2.789 5.110 (1.2,−0.10) 32.48 DEWMA 0.05 3.158 4.842 (1.2,−0.10) 37.28 EWMA
`0 = 8 0.10 6.495 9.505 (0.8, 0.35) 18.97 EWMA `0 = 8 0.20 6.244 9.756 (0.8, 0.35) 22.44 DEWMA
𝜌0 = 0.25 0.30 5.988 10.012 (1.2, 0.35) 18.85 DEWMA 𝜌0 = 0.25 0.30 5.618 10.382 (1.2, 0.35) 22.49 DEWMA
𝑛 = 20 0.05 7.039 8.961 (0.8,−0.10) 17.68 EWMA 𝑛 = 50 0.10 6.968 9.032 (0.8,−0.10) 22.03 DEWMA

0.05 7.039 8.961 (1.2,−0.10) 17.86 EWMA 0.05 6.861 9.139 (1.2,−0.10) 22.48 EWMA
`0 = 12 0.30 9.986 14.014 (0.8, 0.35) 11.91 DEWMA `0 = 12 0.20 9.954 14.046 (0.8, 0.35) 17.16 DEWMA
𝜌0 = 0.25 0.30 9.986 14.014 (1.2, 0.35) 11.88 DEWMA 𝜌0 = 0.25 0.30 9.223 14.777 (1.2, 0.35) 17.24 DEWMA
𝑛 = 20 0.30 9.986 14.014 (0.8,−0.10) 10.02 DEWMA 𝑛 = 50 0.10 9.926 14.074 (0.8,−0.10) 15.88 EWMA

0.10 10.494 13.506 (1.2,−0.10) 9.90 EWMA 0.10 9.926 14.074 (1.2,−0.10) 15.70 EWMA
`0 = 4 0.10 3.065 4.935 (0.8, 0.35) 37.43 DEWMA `0 = 4 0.10 2.998 5.002 (0.8, 0.35) 38.63 DEWMA
𝜌0 = 0.50 0.20 2.446 5.554 (1.2, 0.35) 36.49 DEWMA 𝜌0 = 0.50 0.20 2.338 5.662 (1.2, 0.35) 38.04 DEWMA
𝑛 = 20 0.05 3.467 4.533 (0.8,−0.10) 46.92 DEWMA 𝑛 = 50 0.05 3.429 4.571 (0.8,−0.10) 50.61 DEWMA

0.05 3.467 4.533 (1.2,−0.10) 49.78 DEWMA 0.05 2.937 5.063 (1.2,−0.10) 54.17 EWMA
`0 = 8 0.20 6.090 9.910 (0.8, 0.35) 29.30 DEWMA `0 = 8 0.20 5.742 10.258 (0.8, 0.35) 33.04 DEWMA
𝜌0 = 0.50 0.20 6.090 9.910 (1.2, 0.35) 28.86 DEWMA 𝜌0 = 0.50 0.20 5.742 10.258 (1.2, 0.35) 32.57 DEWMA
𝑛 = 20 0.05 6.780 9.220 (0.8,−0.10) 26.07 EWMA 𝑛 = 50 0.05 6.556 9.444 (0.8,−0.10) 32.48 EWMA

0.05 6.780 9.220 (1.2,−0.10) 25.96 EWMA 0.05 6.556 9.444 (1.2,−0.10) 32.87 EWMA
`0 = 12 0.20 10.090 13.910 (0.8, 0.35) 21.86 DEWMA `0 = 12 0.20 9.367 14.633 (0.8, 0.35) 27.66 DEWMA
𝜌0 = 0.50 0.20 10.090 13.910 (1.2, 0.35) 21.02 DEWMA 𝜌0 = 0.50 0.20 9.367 14.633 (1.2, 0.35) 27.50 DEWMA
𝑛 = 20 0.10 10.131 13.869 (0.8,−0.10) 14.87 EWMA 𝑛 = 50 0.05 6.556 9.444 (0.8,−0.10) 23.03 EWMA

0.10 10.131 13.869 (1.2,−0.10) 14.65 EWMA 0.05 6.556 9.444 (1.2,−0.10) 23.62 EWMA
`0 = 4 0.05 3.213 4.787 (0.8, 0.20) 58.02 DEWMA `0 = 4 0.20 1.096 6.904 (0.8, 0.20) 50.03 EWMA
𝜌0 = 0.75 0.10 2.659 5.341 (1.2, 0.20) 58.91 DEWMA 𝜌0 = 0.75 0.20 1.096 6.904 (1.2, 0.20) 40.73 EWMA
𝑛 = 20 0.05 3.213 4.787 (0.8,−0.25) 81.88 DEWMA 𝑛 = 50 0.20 1.096 6.904 (0.8,−0.25) 61.49 EWMA

0.05 3.213 4.787 (1.2,−0.25) 83.84 DEWMA 0.20 1.096 6.904 (1.2,−0.25) 36.57 EWMA
`0 = 8 0.05 7.031 8.969 (0.8, 0.20) 51.41 DEWMA `0 = 8 0.05 6.859 9.141 (0.8, 0.20) 54.66 DEWMA
𝜌0 = 0.75 0.10 6.347 9.653 (1.2, 0.20) 51.76 DEWMA 𝜌0 = 0.75 0.05 6.859 9.141 (1.2, 0.20) 54.95 DEWMA
𝑛 = 20 0.05 7.031 8.969 (0.8,−0.25) 42.44 DEWMA 𝑛 = 50 0.05 6.859 9.141 (0.8,−0.25) 50.65 DEWMA

0.05 7.031 8.969 (1.2,−0.25) 43.36 DEWMA 0.05 6.859 9.141 (1.2,−0.25) 54.24 DEWMA
`0 = 12 0.10 10.347 13.653 (0.8, 0.20) 42.74 DEWMA `0 = 12 0.05 10.667 13.333 (0.8, 0.20) 49.56 DEWMA
𝜌0 = 0.75 0.10 10.347 13.653 (1.2, 0.20) 41.90 DEWMA 𝜌0 = 0.75 0.10 9.722 14.278 (1.2, 0.20) 51.03 DEWMA
𝑛 = 20 0.05 10.340 13.660 (0.8,−0.25) 23.97 EWMA 𝑛 = 50 0.05 10.667 13.333 (0.8,−0.25) 37.62 DEWMA

0.05 10.340 13.660 (1.2,−0.25) 23.57 EWMA 0.05 9.715 14.285 (1.2,−0.25) 38.83 EWMA

have to remove them. Therefore, in order to estimate process parameters with incomplete data,
we have to use the modified maximum likelihood estimation method, provided by Weiß and
Testik 36 .
Below, in Table 5, we provide the estimates for 𝜋 and 𝜌 from the complete data and from

the data without the observations 297-302. The difference in estimates cannot be considered
as big. Therefore, we proceed with the estimates from the complete data set and control limits
at 𝐿𝐶𝐿 = 2,𝑈𝐶𝐿 = 9.
Next, we use first the log-in count data onMay 10th 2005 as the Phase II data and construct

again the two-sided 𝑛𝑝 chart with control limits at 2 and 9 as well as the two-sided EWMA and
DEWMA charts. We assume that the estimated values for 𝜋 and 𝜌 from the Phase I analysis
are the true values for the process parameters. For illustrative purposes we use _ = 0.10 and
by applying the procedure for the statistical of the EWMA and DEWMA charts (described in
Section 3) we determine their control limits so as their IC performance is comparable to that of
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Fig. 1. Log-ins data, May 3rd, 2005

Table 9. Estimates of process parameters 𝜋, 𝜌 from the Phase I data

Estimates Complete data Without Obs. 297-302
�̂�𝑀𝐿 0.36482 (0.04306) 0.36254 (0.04420)
�̂�𝑀𝐿 0.96822 (0.00355) 0.97013 (0.00345)
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Fig. 2. Log-in count data on May 3rd 2005, Phase I analysis
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the 𝑛𝑝 chart. Thus, for the two-sided EWMA chart, the control limits are 𝐿𝐶𝐿ewma = 2.30215,
𝑈𝐶𝐿ewma = 8.57414 while for the two-sided DEWMA chart, they are 𝐿𝐶𝐿dewma = 2.73414,
𝑈𝐶𝐿dewma = 8.14215. We notice that the control chart limits for the DEWMA are narrower
than the EWMA limits. This result holds in general.
The 𝑛𝑝 chart is provided in Figure 3 while in Figure 4 we provide both EWMA and

DEWMA charts. The 𝑛𝑝 chart gives for the first time an OoC signal at time 𝑡 = 15, indicating
a possible increase in the mean number of log-ins, compared to the IC baseline model (during
the 3rd of May). Also, from Figure 4 we notice that the DEWMA chart gives an OoC for the
first time at 𝑡 = 35 (about 20 minutes later than the 𝑛𝑝 chart) while the EWMA chart gives
an OoC signal for the first time at sample 161. At the same time, an OoC signal is given by
the 𝑛𝑝 chart, as well. It is worth mentioning that Weiß 15 in his analysis, concluded that there
are not statistically significant indications that the process has changed from the IC model.
However, it seems that since the estimated IC process mean level is 15 · 0.36482 ≈ 5.44, there
are indications of increased process variation, especially whithin the first 3-3.5 hours of the
day.
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Fig. 3. Two-sided 𝑛𝑝 chars for the log-ins data, May 10th, 2005



20 Maria Anastasopoulou and Athanasios C. Rakitzis

t

ch
ar

tin
g 

st
at

is
tic

s

0 100 200 300 400

0
2

4
6

8
10

UCLdewma=8.142145

LCLdewma=2.734145

EWMA

DEWMA

UCLewma=8.574149

LCLewma=2.30215

Fig. 4. Two-sided EWMA and DEWMA charts for the log-ins data, May 10th, 2005

The three charts are also applied in the log-in count data that have been obtained a week
later, on May 17 2005. The 𝑛𝑝 chart is provided in Figure 5 while both the EWMA and the
DEWMA charts are provided in Figure 6. Clearly, the 𝑛𝑝 chart gives an OoC signal even
from the first minute while almost all points are below the process mean level. There is a
clear indication that the actual process mean level has been decreased (compared to the one
under the IC model). This is also confirmed by the EWMA and DEWMA charts. However,
the EWMA chart signals for the first time at time 𝑡 = 306 (almost 5 hours after the beginning
of process monitoring) whereas the DEWMA signals for the first time at 𝑡 = 272, about 35
minutes earlier than the EWMA chart (but still, about 4.5 hours since the beginning of process
monitoring). According to Weiß 15 , this (unusual) behavior is attributed to the fact that this
day was the first day after a long-weekend (a public holiday after a weekend), and traditionally,
there were no lectures at that day. Note also that the shift here is sudden, sustained and of large
magnitude. Therefore, it is not surprising that both EWMA and DEWMA charts do not react
immediately on this change in the process.
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Fig. 5. Two-sided 𝑛𝑝 chars for the log-ins data, May 17th, 2005
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Fig. 6. Two-sided EWMA and DEWMA charts for the log-ins data, May 17th, 2005
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6 Conclusion and future work

In this work, we developed and studied one-sided and two-sided EWMA and DEWMA control
charts that are suitable for the detection of upward and downward shifts in the parameters of
a BAR(1) process. Both charts have been frequently applied in the monitoring of count (or
attributes) data, but in the case of serially dependent observation, their performance was not
investigated previously. The results of an extensive simulation study regarding the statistical
design and the performance of the proposed EWMA charts revealed that in the case of one-
sided charts, the EWMA chart is preferable than the DEWMA chart, when the interest is on
detecting shifts only in parameter `0. When we are interested in detecting shifts only in 𝜌0 or
in detecting a simultaneous shift in `0 and 𝜌0, the recommended chart is the DEWMA. Also,
both charts are not capable of detecting decreasing shifts only in 𝜌0. In the two-sided case,
our numerical analysis revealed that for small shifts in exactly one of the process parameters,
the recommended chart is the DEWMA whereas for larger shifts, the EWMA has better
performance.
Finally, the practical application of the proposed schemes was illustrated via a real-data

example. For all calculations, the R statistical software R Core Team 35 was used and the
programs are available from the authors upon request.
Topics for future research consist of the development and study of other types of control

charts, such as combined or composite charts, which are able to detect shifts in either direction
(upward or downward) in any of the process parameters. Specifically, instead of detecting the
shift, it is also important to provide some information about the parameter(s) that has been
changed. Moreover, the application of the proposed schemes needs to be investigated in the
monitoring of processes that exhibit overdispersion. It is expected that apart from autocorre-
lation on the data, the overdispersion will also affect the performance of the usual EWMA
and DEWMA charts. Therefore, proper adjustments are necessary. Finally, the performance of
other mixed-type control charts like the generally weighted moving average (GWMA) and the
double GWMA (DGWMA) charts needs to be investigated in the case of serially dependend
count data.
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On Approaches for Monitoring Categorical
Event Series

Christian H. Weiß

Abstract In many manufacturing applications, the monitoring of categorical event
series is required, i. e., of processes, where the quality characteristics are measured
on a qualitative scale. We survey three groups of approaches for this task. First,
the categorical event series might be transformed into a count process (e. g., event
counts, discrete waiting times). After having identified an appropriate model for
this count process, diverse control charts are available for the monitoring of the
generated counts. Second, control charts might be directly applied to the considered
categorical event series, using different charts for nominal than for ordinal data.
The latter distinction is also crucial for the respective possibilities of analyzing and
modeling these data. Finally, also rule-based procedures from machine learning
might be used for the monitoring of categorical event series, where the generated
rules are used to predict the occurrence of critical events. Our comprehensive survey
of methods and models for categorical event series is complemented by two real-data
examples from manufacturing industry, about nominal types of defects and ordinal
levels of quality.

Key words: attributes control charts; count time series; episode mining; nominal
time series; ordinal time series; temporal association rules.

1 Introduction

Methods from statistical process control (SPC) allow to monitor quality-related
processes as they occur, for example, in manufacturing and service industries as well
as in health surveillance. Here, the most well-known SPC tool is the control chart,
where certain quality statistics are computed sequentially in time and used to decide
about the actual state of the process. More precisely, we do not wish to intervene in
the manufacturing process as long as it is in control, i. e., if the monitored statistics

Department of Mathematics and Statistics, Helmut Schmidt University, 22043 Hamburg, Germany,
e-mail: weissc@hsu-hh.de

1

weissc@hsu-hh.de


2 Christian H. Weiß

are stationary according to a specified time series model (e. g., independent and
identically distributed (i. i. d.) with a specified marginal distribution). By contrast, if
deviations from this in-control model are present, such as shifts or drifts in some of
the model parameters, the process is called out of control. In traditional control chart
applications, we compare the plotted statistics against the given control limits. If a
statistic is plotted beyond these limits, an alarm is triggered to indicate a possible
out-of-control situation. Of course, we are interested in generating a true alarm as
soon as possible, whereas a false alarm should be avoided for as long as possible.
Here, the waiting time until the first alarm (already the first alarm requires action)
is commonly referred to as the run length of the control chart, and this should be
large (low) if the process is in control (out of control). For these and further basics
on SPC and control charts, see the textbook by Montgomery [33].

Most of the SPC literature discusses the case where the monitored quality char-
acteristics are measured on a continuous quantitative scale, such as real numbers
or real vectors; the corresponding control charts are then referred to as variables
charts. But in more and more applications, we are concerned with discrete-valued
quality characteristics, which have to be monitored using so-called attributes charts.
In this chapter, we focus on a particular type of discrete-valued process, namely on
qualitative data monitored sequentially in time, thus leading to a categorical event
series (𝑋𝑡 )𝑡 ∈N={1,2,...}. More precisely, we consider quality features 𝑋𝑡 having a
finite range consisting of either unordered but distinguishable categories (nominal
data), or categories exhibiting a natural order (ordinal data). We uniquely denote the
range of 𝑋𝑡 as S = {𝑠0, 𝑠1, . . . , 𝑠𝑑} with some 𝑑 ∈ N, where the possible outcomes
are arranged in either a lexicographical order (nominal case) or their natural order
(ordinal case). In the special case 𝑑 = 1, we refer to 𝑋𝑡 as being binary, and it is then
common to use the 0–1 coding 𝑠0 := 0 and 𝑠1 := 1. See Weiß [59] for further details
on categorical time series.

The monitoring of categorical event series is an important task in many manufac-
turing applications. For example, Mukhopadhyay [36] monitors a nominal quality
characteristic referring to six possible types of paint defect on manufactured ceiling
fan covers, while Marcucci [31] distinguishes between three ordinal quality levels
for bricks. Similar applications are reported by Spanos & Chen [45] regarding four
levels for quality features of the photoresist line profile in a plasma etching process,
Li et al. [28] on four categories of flash on the head of electric toothbrushes, or Li et
al. [29] on three levels of injected glue on the base plates of manufactured mopheads.
Non-manufacturing examples are reported by, e. g., Bashkansky & Gadrich [4], who
monitor the condition of incoming patients as well as the severity of traffic accidents
(three ordinal levels in both cases), and by Perry [39], who monitors a nominal
process as part of a network monitoring problem. Generally, many different types of
categorical event series occur in modern manufacturing systems, where the compo-
nents of the production environment permanently emit status messages, signals on
machine malfunctions, reports on quality deviations, etc. [15]. Similar challenges
exist for computer systems [64], where the computer audit data is monitored for
anomaly detection (especially intrusion detection), and for telecommunication net-
works [21], where sequences of alarm messages are analyzed for fault identification.
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Thus, obviously, there is a great need for procedures to monitor the categorical event
series in manufacturing applications (and beyond).

In this chapter, three general approaches (and corresponding methods) for moni-
toring categorical event series are surveyed. First, instead of monitoring the categor-
ical events directly, one may consider counts of events for successive time intervals.
So the original categorical data are transformed into a count time series, which is
then monitored by, e. g., control charts for count data. Setting-up such control charts
also requires to model the event counts series in an appropriate way; these aspects
are discussed in Section 2. Second, one develops control charts directly for the actual
categorical event series, see Section 3. Here, approaches for analyzing and modeling
the categorical time series are relevant, where different solutions are required for
nominal vs. ordinal data. But as criticized by Göb [15, p. 300], stochastic models and
statistical approaches for discrete-valued time series are often “insufficiently commu-
nicated and not suitably tailored for application”. Therefore, in practice, categorical
event series are commonly analyzed by machine learning procedures, which do not
suffer from narrowing assumptions and offer scalability with respect to the amount
and complexity of data. Relevant rule-based machine learning approaches for event
sequence monitoring are discussed in Section 4. Some of the presented methods are
illustrated by real-data examples in Section 5. Finally, Section 6 concludes the article
and outlines directions for future research.

2 Monitoring Time Series of Event Counts

There are several ways of transforming a categorical event series (𝑋𝑡 )N into a count
process, say (𝑌𝑡 )N, which is then monitored instead of the original qualitative data.
First, one can count the categorical events within fixed time intervals, as it was done,
for example, by Ye et al. [65] for detecting intrusions into a computer system, and by
Lambert & Liu [25] for detecting possible malfunctions in a communication network.
This is related to the traditional sampling approach, where samples or segments are
taken from the quality process and used to compute an event count, such as the
number of defective or non-conforming items in the sample [33]. While we are
usually concerned with bounded counts in the second case (with the upper bound
being given by the sample size), counts might become arbitrarily large in the first
scenario. In both cases, the dependence structure of the original categorical event
series affects the distribution of the monitored event counts [60]. Finally, it is also
common to determine the discrete waiting time until a certain event happens, such as
the number of manufactured items until the occurrence of the next defective one [8].
But also more sophisticated types of runs charts have been proposed, where one waits
for the occurrence of certain patterns in the categorical event series [56]. In any case,
one ends up with a process (𝑌𝑡 )N consisting of counts, i. e., of non-negative integers
from either the full set N0 = {0, 1, . . .} or a bounded subset thereof, {0, . . . , 𝑛} with
some 𝑛 ∈ N (in some applications, see Section 5.1, we might even be concerned with
sample size varying in time). In Section 2.1, basic concepts regarding the analysis and
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modeling of count time series are discussed, and references for further information
are provided. Afterwards in Section 2.2, some control charts are presented for the
different types of event counts outlined before.

2.1 Analysis and Modeling of Count Time Series

Let (𝑌𝑡 )N be the derived count process that is to be monitored (“Phase II”). When
developing an in-control model for setting up the control chart for (𝑌𝑡 )N, we first need
a data sample (i. e., a count time series 𝑦1, . . . , 𝑦𝑇 ) collected under in-control condi-
tions (“Phase-I data”) that is used for model fitting. While standard tools from time
series analysis such as the time series plot or the (partial) autocorrelation function
((P)ACF) can be applied to 𝑦1, . . . , 𝑦𝑇 in the usual way, the well-known autore-
gressive moving-average (ARMA) or generalized AR conditional heteroscedasticity
(GARCH) models cannot be used for describing these data, as these models are not
able to ensure the count-data range, i. e., to generate only non-negative (and possibly
bounded) integer values. Therefore, tailor-made models for count time series have
to be used, see Weiß [59, 62] for detailed surveys. To give the reader an impression
how such count time series models look like, let us briefly discuss some popular
examples.

Probably the most well-known model for unbounded counts with a Markovian
dependence structure (i. e., the upcoming count 𝑌𝑡+1 only depends on the present
count 𝑌𝑡 , but not on further past counts 𝑌𝑡−1, 𝑌𝑡−2, . . .) is the INAR(1) model dating
back to McKenzie [32], the integer-valued counterpart to the ordinary first-order
AR model. To preserve the discreteness of the range, it substitutes the AR(1)’s
multiplication by a random operator called binomial thinning, defined as 𝛼 ◦ 𝑌 |𝑌 ∼
Bin(𝑌, 𝛼) for the thinning probability 𝛼 ∈ (0, 1). Due to this conditional binomial
distribution, 𝛼 ◦ 𝑌 generates integer values from {0, . . . , 𝑌 } but having the same
mean as if we would multiply 𝑌 by 𝛼 instead, i. e., 𝐸 [𝛼 ◦𝑌 ] = 𝛼 · 𝐸 [𝑌 ] = 𝐸 [𝛼 ·𝑌 ].
Altogether, the INAR(1) model recursion is given by 𝑌𝑡 = 𝛼 ◦ 𝑌𝑡−1 + 𝜖𝑡 , where
the thinnings are executed independently, and where the innovations (𝜖𝑡 )N are an
i. i. d. count process. As a result, the INAR(1)’s ACF takes the same form as in the
AR(1) case, i. e., 𝜌(ℎ) = 𝐶𝑜𝑟𝑟 [𝑌𝑡 , 𝑌𝑡−ℎ] = 𝛼ℎ for time lags ℎ ∈ N, and its PACF
vanishes for lags ℎ ≥ 2. Furthermore, like the AR(1) model with normally distributed
innovations also has normal observations (Gaussian AR(1) model), the INAR(1)
model with Poisson-distributed innovations 𝜖𝑡 also has Poisson observations 𝑌𝑡
(Poisson INAR(1) model). But also different types of marginal distributions can be
achieved, such as geometric or negative binomial observations, see Weiß [59] for
details (there, also higher-order AR and MA counterparts are discussed). However,
as a limitation, the INAR(1) model is suitable only for unbounded counts.

A modification of the INAR(1) model for bounded counts with range {0, . . . , 𝑛}
has also been proposed by McKenzie [32]. The binomial AR(1) model substitutes
the innovation 𝜖𝑡 in the INAR(1) recursion by a further thinning operator, namely
𝑌𝑡 = 𝛼 ◦𝑌𝑡−1 + 𝛽 ◦ (𝑛 −𝑌𝑡−1). Note that the first summand is ≤ 𝑌𝑡−1, the second one



On Approaches for Monitoring Categorical Event Series 5

is ≤ 𝑛 −𝑌𝑡−1, so altogether, a count being ≤ 𝑛 is generated. The stationary marginal
distribution is binomial this time, while the ACF is still exponentially decaying,
𝜌(ℎ) = (𝛼 − 𝛽)ℎ . Again, several extensions and modifications of the basic binomial
AR(1) model exist in the literature, see Weiß [59, 62] for references.

Finally, also several regression-type models for count time series have been devel-
oped. If mimicking the ordinary AR(1) model, these regression approaches assume
a linear conditional mean 𝑀𝑡 = 𝐸 [𝑌𝑡 |𝑌𝑡−1, . . .] of the form 𝑀𝑡 = 𝑎 + 𝑏 · 𝑌𝑡−1 and
use, for example, a conditional Poisson or binomial distribution for generating the
unbounded or bounded counts, respectively. Such models are commonly referred to
as INGARCH models [13], although this name is a bit misleading as the ACF is of
ARMA-type, satisfying a set of Yule–Walker equations. Besides these conditionally
linear INGARCH models, also several non-linear regression models have been pro-
posed in the literature, e. g., models with a log-link, where ln 𝑀𝑡 is a linear expression
in past observations [59], or models using the nearly linear softplus function [63].
Such generalized linear models (GLMs) are also commonly used if deterministic
patterns such as seasonality or trend have to be considered [18].

2.2 Control Charts for Count Time Series

During the last decade, control charts for count processes received a lot of research
interest, see Weiß [57] for a survey. Since this chapter is mainly concerned with
categorical event series, we limit the subsequent discussion to such contributions
where we have a clear connection between the counts and the categorical events. For
simplicity, let us assume for the moment that there are just two possible outcomes for
the monitored event, such as “defect — yes or no” (later in Section 3.2, we consider
the general scenario of multiple event categories). So the underlying categorical event
series is in fact a binary process (𝑋𝑡 )N with a certain serial dependence structure.
Then, a possible approach for process monitoring is to take segments of length 𝑛 ∈ N
from (𝑋𝑡 )N at the inspection times 𝑡1, 𝑡2, . . . ∈ N (we focus on the constant sample
size 𝑛 here, while modifications for varying sample sizes are discussed later in
Section 5.1) and to count the number of events in each segment, i. e., to compute𝑌𝑟 =

𝑋𝑡𝑟 + . . .+𝑋𝑡𝑟+𝑛−1 for 𝑟 = 1, 2, . . . The stochastic properties of (𝑌𝑟 )N depend on those
of (𝑋𝑡 )N as well as on the exact sampling strategy. For example, if (𝑋𝑡 )N is i. i. d.,
then so is (𝑌𝑟 )N— independent of the sampling strategy. Furthermore, the counts 𝑌𝑟
follow an ordinary binomial distribution [14]. If (𝑋𝑡 )N is a Markov chain, by contrast,
then the counts 𝑌𝑟 exhibit extra-binomial variation and follow the Markov-binomial
distribution [54]. But if the inspection times 𝑡1, 𝑡2, . . . are sufficiently distant, then
(𝑌𝑟 )N is still approximately independent. In other cases, the counts (𝑌𝑟 )N might
be binomial but serially dependent, such as for the aforementioned binomial AR(1)
model [41]. In any case, we are concerned with bounded counts with range {0, . . . , 𝑛},
while unbounded counts would happen for the time-interval approach as in Lambert
& Liu [25], Ye et al. [65]. There are several well-established types of control charts
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for such bounded counts, the exact chart design of which differs for the different
scenarios outlined before.

The most basic chart for bounded counts is the 𝑛𝑝-chart (for unbounded counts,
it is called 𝑐-chart), where the counts 𝑌1, 𝑌2, . . . are directly plotted on the chart
and compared to given control limits 0 ≤ 𝑙 < 𝑢 (equivalently, we could plot the
sample fractions 𝑌𝑟/𝑛 instead, leading to the 𝑝-chart) [33]. More precisely, an alarm
is triggered for the 𝑟th count if 𝑌𝑟 > 𝑢 or 𝑌𝑟 < 𝑙 happens (the latter is only possible
if 𝑙 > 0). The limits 𝑙, 𝑢 are commonly chosen such that the resulting chart shows
a certain average run length (ARL) performance. Here, ARL refers to the mean
waiting time until the first alarm, and this should be sufficiently large (low) if the
process is in control (out of control), because we are concerned with a false (true)
alarm in this case, recall Section 1. The crucial point is how to compute the ARL.
If the (𝑌𝑟 )N are i. i. d., then the run length distribution is geometric with mean
ARL = 1

/
𝑃
(
𝑌𝑟 ∉ [𝑙; 𝑢]

)
, where the latter is calculated from, e. g., the binomial

or the Markov-binomial distribution, see the above discussion. If (𝑌𝑟 )N constitutes
a Markov chain, then the ARL can be determined by the Markov chain approach
of Brook & Evans [9]. For more complex serial dependence structures, ARLs are
typically approximated based on simulations, see Weiß [59] for a further discussion.

The 𝑛𝑝-chart, as any Shewhart chart, has the disadvantage of being rather in-
sensitive towards small shifts in the process, because the decision at time 𝑟 solely
relies on the 𝑟th sample count𝑌𝑟 . To achieve an improved ARL performance, control
charts with an inherent memory have been proposed, such as the cumulative sum
(CUSUM) chart dating back to Page [38], or the exponentially weighted moving-
average (EWMA) chart dating back to Roberts [43]. The basic (upper) CUSUM
chart is defined by the recursive scheme

C0 = 𝑐0, C𝑟 = max
{
0, 𝑌𝑟 − 𝑘 + C𝑟−1

}
for 𝑟 = 1, 2, . . . (1)

It accumulates positive deviations from the reference value 𝑘 > 0 and triggers
an alarm if the (upper) control limit ℎ > 0 is exceeded. It is thus able to detect
increases in the counts’ mean (a CUSUM chart for decreases is defined by C𝑟 =

max
{
0, 𝑘 − 𝑌𝑟 + C𝑟−1

}
instead). If the reference value 𝑘 is integer-valued (rational),

then also C𝑟 can only take integer (rational) numbers, which allows for an exact ARL
computation in some cases. Namely, if (𝑌𝑟 )N is i. i. d., then the Markov chain approach
as described in Brook & Evans [9] can be applied, while for (𝑌𝑟 )N being itself a
Markov chain (such as a binomial AR(1) process), the modifications as in Rakitzis
et al. [41] have to be used. More sophisticated types of CUSUM chart are obtained
if the statistics are derived from the process model’s log-likelihood ratio [59]; this
log-LR CUSUM approach can also be extended to GLMs having seasonality or trend
[18].

The standard EWMA chart of Roberts [43] is defined by the recursion Z𝑟 =

_ · 𝑌𝑟 + (1 − _) · Z𝑟−1 with smoothing parameter _ ∈ (0; 1] and control limits
0 ≤ 𝑙 < 𝑢. The choice _ = 1 leads to the 𝑛𝑝-chart, i. e., it corresponds to no
smoothing at all. Because of the multiplications for computing Z𝑟 , however, the
discrete nature of the counts 𝑌𝑟 evaporates as time progresses, thus making an exact
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ARL computation impossible. For this reason, it might be advantageous to consider
a discretized version such as the rounded EWMA chart proposed by Gan [14] and
used by Weiß [54] for Markov-binomial counts, which is defined by

Q𝑟 = round
(
_ · 𝑋𝑟 + (1 − _) · Q𝑟−1

)
for 𝑟 = 1, 2, . . . (2)

Here, ARLs can be computed by adapting the Markov chain approach of Brook
& Evans [9]. Another option is to use the EWMA-type recursion developed by
Morais et al. [34], where the multiplications in the EWMA recursion are substituted
by binomial thinnings, in analogy to the thinning-based count time series models
surveyed in Section 2.1.

Finally, let us discuss a completely different monitoring approach for the categor-
ical event series (𝑋𝑡 )N, which also leads to the monitoring of counts. Let us start with
the binary case (defect — yes or no), and assume that the probability for getting a
defect is rather low (high-quality process). Then, (𝑋𝑡 )N can be monitored by waiting
for the respective next defect and by applying a control chart to the obtained waiting
times 𝑅𝑖 , 𝑖 = 1, 2, . . . (run lengths), see Szarka & Woodall [48] for a review. It is
clear that the waiting times decrease if defects happen more frequently, i. e., control
charts mainly focus on possible decreases in the mean of (𝑅𝑖)N. The distribution
of (𝑅𝑖)N depends on the serial dependence structure of (𝑋𝑡 )N. If (𝑋𝑡 )N is i. i. d., then
(𝑅𝑖)N consists of independent geometric counts [8], while (𝑋𝑡 )N being a Markov
chain still leads to independent run lengths (𝑅𝑖)N, but having additional dispersion
compared to a geometric distribution [7]. In both cases, ARLs are computed via
ARL = 1

/
𝑃
(
𝑅𝑖 ∉ [𝑙; 𝑢]

)
, in analogy to the 𝑛𝑝-chart. Besides monitoring (𝑅𝑖)N

with a Shewhart chart, Bourke [8] also suggests to use a moving-sum chart (i. e., for
fixed window length 𝑤 ∈ N, the sum 𝑅𝑖−𝑤+1 + . . . + 𝑅𝑖 is plotted on the chart after
having observed the 𝑖th run) or a CUSUM chart. Furthermore, such waiting-time
charts can be applied to much more complex patterns then just a single defect. In
Weiß [56], for example, a truly categorical event series (𝑋𝑡 )N (i. e., with more than
just two categories) is considered and one waits for constant segments of specified
categories.

3 Monitoring Categorical Event Series

Although the dividing line between Sections 2 and 3 is sometimes not sharp, here,
we focus on such monitoring procedures that explicitly account for the categorical
nature of the data (𝑋𝑡 )N. Following Weiß [60], we distinguish between control charts
for statistics relying on samples or segments taken from the categorical event series,
such as the basic 𝜒2-chart dating back to Duncan [11], and charts for continuously
monitoring the process, such as the EWMA chart used by Ye et al. [66] for intrusion
detection, or the categorical CUSUM chart proposed by Ryan et al. [44]. These
and many further control chart proposals for nominal or ordinal time series data
are surveyed in Section 3.2, where the actual chart design again relies on appro-



8 Christian H. Weiß

Table 1 Statistics for analyzing categorical event series.

Nominal range Ordinal range

Marginal PMF: Marginal CDF:
𝒑 = (𝑝0, . . . , 𝑝𝑑)> ∈ [0; 1]𝑑+1 𝒇 = ( 𝑓0, . . . , 𝑓𝑑−1)> ∈ [0; 1]𝑑
with 𝑝𝑖 = 𝑃 (𝑋 = 𝑠𝑖) with 𝑓𝑖 = 𝑃 (𝑋 ≤ 𝑠𝑖)

Bivariate lag-ℎ PMF: Bivariate lag-ℎ CDF:
𝑝𝑖 𝑗 (ℎ) = 𝑃 (𝑋𝑡 = 𝑠𝑖 , 𝑋𝑡−ℎ = 𝑠 𝑗 ) 𝑓𝑖 𝑗 (ℎ) = 𝑃 (𝑋𝑡 ≤ 𝑠𝑖 , 𝑋𝑡−ℎ ≤ 𝑠 𝑗 )

Index of qualitative variation: Index of ordinal variation:
IQV = 𝑑+1

𝑑

(
1 −∑𝑑

𝑖=0 𝑝2
𝑖

)
IOV = 4

𝑑

∑𝑑−1
𝑖=0 𝑓𝑖 (1 − 𝑓𝑖)

Ordinal skewness:
skew = 2

𝑑

∑𝑑−1
𝑖=0 𝑓𝑖 − 1

Nominal Cohen’s ^: Ordinal Cohen’s ^:

^nom (ℎ) =

∑𝑑
𝑗=0

(
𝑝 𝑗 𝑗 (ℎ) − 𝑝2

𝑗

)
1 −∑𝑑

𝑖=0 𝑝2
𝑖

^ord (ℎ) =

∑𝑑−1
𝑗=0

(
𝑓𝑗 𝑗 (ℎ) − 𝑓 2

𝑗

)∑𝑑−1
𝑖=0 𝑓𝑖 (1 − 𝑓𝑖)

priate model assumptions. Basic modeling approaches are discussed in Section 3.1
and, in particular, ways of analyzing such categorical time series. As the data are
qualitative, standard tools from time series analysis cannot be used for model iden-
tification. Instead, tailor-made solutions are required, where the ordinal case has to
be distinguished from the nominal one.

3.1 Analysis and Modeling of Categorical Time Series

For a categorical event series (𝑋𝑡 )N, the range consists of qualitative categories,
denoted by S = {𝑠0, 𝑠1, . . . , 𝑠𝑑} with 𝑑 ∈ N, such that arithmetic operations cannot
be applied to S. Consequently, moments are not defined for (𝑋𝑡 )N, i. e., we cannot
compute the mean, variance, ACF, etc. if analyzing (𝑋𝑡 )N. If the range of (𝑋𝑡 )N is
ordinal, at least quantiles can be defined and a time series plot is possible by arranging
the possible outcomes in their natural order along the Y axis. In the nominal case,
by contrast, we can compute the mode(s) to infer the location of 𝑋𝑡 , and a rate
evolution graph may serve as a substitute of the time series plot [59, Section 6]. This
brief discussion already shows that the analysis of categorical event series cannot
be done with standard tools, but tailor-made solutions are required and need to be
implemented.

Analytic tools for nominal time series commonly rely on the probability mass
function (PMF), whereas for ordinal time series, one uses the cumulative distribution
function (CDF) to account for the natural order among the categories. An overview
of some popular statistics is provided by Table 1, see Klein & Doll [20], Kvålseth
[24], Weiß [59, 61] for further details. Both for nominal and ordinal random variables,
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minimal dispersion is attained in the case of a one-point distribution, expressed as

𝒑 ∈
©«

1
0
...
0

ª®¬ , ©«
0
1
...
0

ª®¬ , . . . , ©«
0
...
0
1

ª®¬ , ©«
0
...
0
0

ª®¬
 =: {𝒆0, . . . , 𝒆𝑑} ⊂ [0; 1]𝑑+1 (1)

and

𝒇 ∈
©«

1
1
...
1

ª®¬ , ©«
0
1
...
1

ª®¬ , . . . , ©«
0
...
0
1

ª®¬ , ©«
0
...
0
0

ª®¬
 =: {𝒄0, . . . , 𝒄𝑑} ⊂ [0; 1]𝑑 , (2)

respectively. By contrast, the concepts of maximal dispersion differ: maximal disper-
sion in the nominal sense happens for a uniform distribution, 𝒑 = ( 1

𝑑+1 , . . . ,
1

𝑑+1 )
>,

while maximal dispersion in the ordinal sense is given by the extreme two-point
distribution, 𝒇 = ( 1

2 , . . . ,
1
2 )

>, i. e., with probability mass 1/2 in the outer-most cate-
gories. These different dispersion concepts are taken into account by the (normalized)
dispersion measures IQV and IOV in Table 1 [see 24]. In the ordinal case, it is also
possible to define a (normalized) skewness measure, see Table 1 as well as Klein
& Doll [20], while there is no meaningful concept of (a)symmetry for a nominal
distribution. Finally, signed serial dependence at lag ℎ ∈ N can be measured in terms
of Cohen’s ^, where positive (negative) values express the extend of (dis)agreement
between 𝑋𝑡 and 𝑋𝑡−ℎ [59, 61].

The sample counterparts to the measures in Table 1 are defined by replacing all
(cumulative) probabilities by (cumulative) relative frequencies. The latter, in turn,
can be computed as sample means about appropriately defined binarizations. A
nominal event series (𝑋𝑡 )N is equivalently expressed as (𝒀𝑡 )N with 𝑌𝑡 ,𝑖 = 1{𝑋𝑡=𝑠𝑖 }
for 𝑖 ∈ {0, . . . , 𝑑}, and an ordinal event series (𝑋𝑡 )N by (𝒁𝑡 )N with 𝑍𝑡 ,𝑖 = 1{𝑋𝑡 ≤𝑠𝑖 }
for 𝑖 ∈ {0, . . . , 𝑑 − 1}. Here, 1𝐴 denotes the indicator function, which takes the
value 1 (0) if 𝐴 is true (false). So the range of the nominal binarization (𝒀𝑡 )N is
given by (1), the one of the ordinal binarization (𝒁𝑡 )N by (2). Then, the sample
PMF equals �̂� = 1

𝑇

∑𝑇
𝑡=1 𝒀𝑡 , the sample CDF �̂� = 1

𝑇

∑𝑇
𝑡=1 𝒁𝑡 , and the bivariate

(cumulative) relative frequencies are 𝑝𝑖 𝑗 (ℎ) = 1
𝑇 −ℎ

∑𝑇
𝑡=ℎ+1𝑌𝑡 ,𝑖 𝑌𝑡−ℎ, 𝑗 and 𝑓𝑖 𝑗 (ℎ) =

1
𝑇 −ℎ

∑𝑇
𝑡=ℎ+1 𝑍𝑡 ,𝑖 𝑍𝑡−ℎ, 𝑗 , respectively. The sample counterparts to the measures of

Table 1 can then be used for identifying an appropriate in-control model for the
categorical event series (𝑋𝑡 )N.

Models for categorical event series, see Weiß [59] for a survey, often suffer from
a large number of model parameters. For higher-order Markov models, this number
increases exponentially in the model order such that solutions for reducing the
model complexity are required. These might be the variable-length Markov models
by Bühlmann & Wyner [10], where the model order depends on the actual past, or the
mixture transition distribution models by Raftery [40], where parametric relations
between the transition probabilities are introduced. Markov models with a reduced
number of model parameters can also be achieved by GLM approaches such as in
Höhle [17], whereas the Hidden-Markov models dating back to Baum & Petrie [5]
lead to a non-Markovian categorical process that is generated by a latent Markov
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chain. However, the most parsimonious class of models for categorical event series
(𝑋𝑡 )N appear to be the discrete ARMA(p, q) models proposed by Jacobs & Lewis
[19], where p, q ∈ N0. These rely on a random choice mechanism, implemented by
the i. i. d. multinomial random vectors

𝑫𝑡 = (𝛼𝑡 ,1, . . . , 𝛼𝑡 ,p, 𝛽𝑡 ,0, . . . , 𝛽𝑡 ,q) ∼ Mult(1; 𝜙1, . . . , 𝜙p, 𝜑0, . . . , 𝜑q),

which are also independent of the i. i. d. categorical innovations (𝜖𝑡 )Z with range S.
Then, (𝑋𝑡 )N is defined by

𝑋𝑡 = 𝛼𝑡 ,1 · 𝑋𝑡−1 + . . . + 𝛼𝑡 ,p · 𝑋𝑡−p + 𝛽𝑡 ,0 · 𝜖𝑡 + . . . + 𝛽𝑡 ,q · 𝜖𝑡−q, (3)

where we assume 0 · 𝑠 = 0, 1 · 𝑠 = 𝑠, and 𝑠 + 0 = 𝑠 for each 𝑠 ∈ S. So 𝑋𝑡 is generated
by choosing the outcome of either one of the past observations 𝑋𝑡−1, . . . , 𝑋𝑡−p, or
one of the available innovations 𝜖𝑡 , . . . , 𝜖𝑡−q. The stationary marginal distribution
of 𝑋𝑡 is the one of 𝜖𝑡 , and both ^-measures from Table 1 satisfy the Yule–Walker
equations

^(ℎ) =
∑p

𝑗=1 𝜙 𝑗 ^( |ℎ − 𝑗 |) + ∑q−ℎ
𝑖=0 𝜑𝑖+ℎ 𝑟 (𝑖) for ℎ ≥ 1, (4)

where 𝑟 (𝑖) =
∑𝑖−1

𝑗=max {0,𝑖−p} 𝜙𝑖− 𝑗 𝑟 ( 𝑗) + 𝜑𝑖 1(0 ≤ 𝑖 ≤ q) [59]. For example, for
(p, q) = (1, 0), we get a parsimonious Markov chain with ^(ℎ) = 𝜙ℎ

1 , in analogy to
the AR(1)-like models discussed in Section 2.1.

For the particular case of ordinal event series (𝑋𝑡 )N, one may also use models
for time series of bounded counts (recall Section 2.1) in view of the rank-count
approach discussed by Weiß [61], i. e., we write 𝑋𝑡 = 𝑠𝐼𝑡 with the rank count 𝐼𝑡
having the bounded range {0, . . . , 𝑑}. Then, the rank-count process (𝐼𝑡 )N is modeled
instead of the original ordinal event series (𝑋𝑡 )N. In a similar spirit, one may assume
that 𝑋𝑡 is generated by a latent, continuously distributed random variable, say 𝐿𝑡

with range R. For the latent-variable approach, see Agresti [2] for details, we have
to specify the threshold parameters −∞ = [−1 < [0 < . . . < [𝑑−1 < [𝑑 = +∞.
Then, 𝑋𝑡 falls into the 𝑗 th category iff 𝐿𝑡 falls into the 𝑗 th interval, 𝑗 ∈ {0, . . . , 𝑑},
i. e., 𝑋𝑡 = 𝑠 𝑗 iff 𝐿𝑡 ∈ [[ 𝑗−1; [ 𝑗 ). Thus, if 𝐹𝐿 denotes the CDF of 𝐿𝑡 , we have
𝑓 𝑗 = 𝐹𝐿 ([ 𝑗 ), where the choice of the standard logistic (normal) distribution for 𝐿𝑡

leads to the cumulative logit (probit) model. These models are commonly combined
with a regression approach, such as the GLMs considered by Höhle [17], Li et al.
[29]. The latent-variable approach is also related to the step gauge discussed by
Steiner [46], Steiner et al. [47], where a real-valued quality characteristic is not
measured exactly but only classified into one of finitely many successive groups.
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3.2 Control Charts for Categorical Time Series

In what follows, we survey a couple of approaches for monitoring categorical event
series (𝑋𝑡 )N. To impose some structure, we distinguish between control charts mainly
designed for a continuous process monitoring (i. e., the monitored statistic is updated
with each incoming observation), and those for a sample-based monitoring (i. e.,
samples or segments of specified size are taken from (𝑋𝑡 )N and used to compute
the plotted statistics). But similar to the dividing line between Sections 2 and 3, this
distinction does not lead to two disjoint groups: The sample-based procedures in
Section 3.2.2 can be used for continuous process monitoring by using a moving-
window approach [56], while some of the procedures from Section 3.2.1 can also be
adapted to a sample-based monitoring.

3.2.1 Continuous Process Monitoring

A common approach for continuously monitoring a categorical event series (𝑋𝑡 )N
is to use a type of CUSUM chart, which is derived from the log-likelihood ratio
(log-LR) corresponding to (𝑋𝑡 )N. If (𝑋𝑡 )N is i. i. d. with marginal PMF 𝒑0 in the
in-control state, and if we anticipate (𝑋𝑡 )N to switch to 𝒑1 in the out-of-control case,
then Ryan et al. [44] propose to monitor

C𝑡 = max {0, ℓ𝑅𝑡 + C𝑡−1} with ℓ𝑅𝑡 =

𝑑∑︁
𝑗=0

𝑌𝑡 , 𝑗 ln
(
𝑝1, 𝑗

𝑝0, 𝑗

)
, (5)

where𝑌𝑡 , 𝑗 refers to the nominal binarization of 𝑋𝑡 discussed in Section 3.1. An alarm
is triggered if the upper control limit ℎ > 0 is violated, where ℎ is again chosen
based on ARL considerations. Weiß [60] extends this approach to the monitoring of
Markov-dependent processes (𝑋𝑡 )N, whereas Höhle [17] presents a log-LR CUSUM
chart with respect to a categorical logit regression model. For 𝑑 = 1, (5) reduces to
the Bernoulli CUSUM discussed by Reynolds & Stoumbos [42] (and by Mousavi &
Reynolds [35] in the binary Markov case).

At this point, a relation to Section 2.2 should be noted. There, we discussed
several waiting-time charts, which also allow for a continuous monitoring of (𝑋𝑡 )N
(but we discussed these charts already in Section 2.2 due to the count nature of the
waiting times). As argued by Reynolds & Stoumbos [42], their Bernoulli CUSUM
chart is essentially equivalent to the geometric CUSUM chart proposed by Bourke
[8] for monitoring runs in an i. i. d. binary process.

Two further points are worth mentioning. First, Ryan et al. [44] also proposed
a modification of (5) that can be used for a sample-based monitoring of (𝑋𝑡 )N,
see (8) in Section 3.2.2 below. Second, the CUSUM approach (5) is essentially
the same as that discussed by Steiner et al. [47], although there, it was formulated
for grouped data resulting from gauging. As the main difference, the anticipated
out-of-control PMF 𝒑1 is derived by assuming, e. g., a mean shift in the underlying
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real-valued quality characteristic. In this way, ordinal information is incorporated
into the monitored statistic (5).

Besides the waiting-time and CUSUM approaches for continuously monitoring a
categorical event series (𝑋𝑡 )N, also the EWMA chart proposed by Ye et al. [66] might
be used. They suggest to apply the EWMA approach to the nominal binarizations
(𝒀𝑡 )N, i. e., to compute the smoothed estimators 𝑷 (_)

𝑡 = _𝒀𝑡 + (1 − _) 𝑷 (_)
𝑡−1 of the

true marginal distribution 𝒑. For chart design, it is necessary to estimate the mean
and covariance of 𝑷 (_)

𝑡 from given Phase-I data, leading to the sample estimates 𝑷
and S, respectively. Then, Ye et al. [66] suggest to either plot Hotelling’s 𝑇2-statistic,
T2
𝑡 =

(
𝑷 (_)
𝑡 − 𝑷

)> S−1 (𝑷 (_)
𝑡 − 𝑷

)
, on a control chart, or Pearson’s 𝜒2-statistic given

by X2
𝑡 =

∑𝑑
𝑗=0

(
𝑃
(_)
𝑡 , 𝑗

− 𝑃𝑗
)2/

𝑃𝑗 .
Finally, let us refer to the Shewhart-type charts proposed by Bersimis et al.

[6], Koutras et al. [23] for monitoring a bivariate ordinal process. These charts
define a set of patterns among the bivariate ordinal outcomes, where an alarm is
triggered if one of the patterns occurs in the process.

3.2.2 Sample-based Process Monitoring

The large majority of proposals for monitoring a categorical event series (𝑋𝑡 )N fall
into the class of sample-based approaches. For ease of presentation, we again restrict
the subsequent presentation to the constant sample size 𝑛, while necessary modifica-
tions for varying sample sizes are later considered in Section 5.1. Using the nominal
binarizations (𝒀𝑡 )N, one first computes the vectors of (absolute) sample frequencies
(𝑵𝑟 )N, i. e., 𝑵𝑟 = 𝒀𝑡𝑟 + . . . + 𝒀𝑡𝑟+𝑛−1, which are multinomially distributed according
to Mult(𝑛, 𝒑) if (𝒀𝑡 )N is i. i. d. If the sampled 𝒀𝑡𝑟 , . . . ,𝒀𝑡𝑟+𝑛−1 are serially dependent
instead, the distribution of 𝑵𝑟 differs from a multinomial one. For example, if (𝑋𝑡 )N
is a discrete AR(1) process, recall (3), then 𝑵𝑟 follows the Markov-multinomial
distribution, see Weiß [60] for details. Note that the special case of a sample-based
monitoring of a binary process (𝑋𝑡 )N, so relying on (Markov-)binomial counts rather
the (Markov-)multinomial vectors, was already discussed in Section 2.2. Thus, here,
we concentrate on the truly categorical case (𝑑 > 1), and if not stated otherwise,
we assume that (𝑵𝑟 )N are i. i. d. multinomial vectors under in-control conditions.
Furthermore, in the case of an ordinal event series (𝑋𝑡 )N, we shall also consider the
cumulative frequencies 𝑪𝑟 = 𝒁𝑡𝑟 + . . . + 𝒁𝑡𝑟+𝑛−1 derived from the ordinal binariza-
tions (𝒁𝑡 )N, recall Section 3.1.

The most well-known approach for a sample-based monitoring of (𝑋𝑡 )N is the
𝜒2-chart proposed by Duncan [11], see Koutras et al. [22], Marcucci [31], Mukhopad-
hyay [36] for further discussions and extensions. With 𝒑0 being the marginal PMF
of (𝑋𝑡 )N under in-control conditions, it plots the Pearson statistics

X2
𝑟 =

𝑑∑︁
𝑗=0

(
𝑁𝑟 , 𝑗 − 𝑛 𝑝0, 𝑗

)2
𝑛 𝑝0, 𝑗

(6)
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derived from the sample frequencies (𝑵𝑟 )N. Pearson’s 𝜒2-statistic, which is com-
monly used for goodness-of-fit testing, measures any kind of deviation from the
hypothetical in-control distribution 𝒑0. In quality-related applications, however, one
is commonly concerned with the situation that one of the categories, say the 0th
category 𝑠0, expresses conforming items and is thus much more frequently observed
than the remaining defect categories 𝑠1, . . . , 𝑠𝑑 . So 𝒑0 is often close to the one-point
distribution 𝒆0 in (1) (low dispersion), while deteriorations of quality go along with
deviations towards, e. g., a uniform distribution (maximal nominal dispersion) or
an extreme two-point distribution (maximal ordinal dispersion). Thus, a reasonable
alternative to monitoring (6) is to monitor a categorical dispersion measure instead,
such as the IQV from Table 1 in the nominal case (this was done by Weiß [56, 60]
for i. i. d. and serially dependent data, respectively), or the IOV in the ordinal case
[see 4]. So the corresponding sample statistics compute as

IQV𝑟 = 𝑑+1
𝑑

(
1 −

𝑑∑︁
𝑗=0

𝑁2
𝑟 , 𝑗

𝑛2

)
and IOV𝑟 = 4

𝑑

𝑑−1∑︁
𝑗=0

𝐶𝑟 , 𝑗

𝑛

(
1 −

𝐶𝑟 , 𝑗

𝑛

)
, (7)

respectively. Also the “𝑝-tree method” of Duran & Albin [12] should be mentioned
here, where conditional (ordinal) events of the form 𝑋 = 𝑠 𝑗 | 𝑋 ≥ 𝑠 𝑗 are monitored
by plotting the statistics 𝑁𝑟 , 𝑗/(𝑛 −𝐶𝑟 , 𝑗−1) for 𝑗 = 1, . . . , 𝑑 − 1 as well as 𝑁𝑟 ,0/𝑛 on
multiple charts simultaneously.

At this point, let us have a more detailed look on control charts for ordinal
event series (𝑋𝑡 )N. Sometimes, people analyze ordinal data by assigning numerical
values (“scores”) to the possible outcomes and by treating the transformed data like
quantitative data [2, Section 2.1.1]. In a quality context, this happens for the demerit
control charts [33, Section 7.3.3], where the chosen demerit weights 0 = 𝑤0 <

𝑤1 < . . . < 𝑤𝑑 try to reflect the severity of the defect categories; the computed
demerit statistics are 𝐷𝑟 = 𝑤1 𝑁𝑟 ,1 + . . . + 𝑤𝑑 𝑁𝑟 ,𝑑 . In Nembhard & Nembhard
[37], for example, who also allowed for possible serial dependence between the
demerit statistics, a manufacturing process for plastic containers with three seels is
considered, where a leak in the inner seal is less critical than one in the middle seal,
and a middle-seal leak is less critical than an outer-seal one. This is accounted for
by assigning the weights 1, 3, and 10, respectively, to these events, but there is the
danger of arbitrariness in choosing the weights. In the step gauge scenario considered
by Steiner [46], the weights are derived from the gauge limits by a midpoint scheme,
while Perry [39], who considers a nominal event series (𝑋𝑡 )N, defines the weights by
statistical reasoning as 1/(𝑛 𝑝0, 𝑗 ) for 𝑗 = 0, . . . , 𝑑. Both Steiner [46] and Perry [39]
apply an EWMA approach to their weighted class counts. In a sense, also the sample
version of the log-LR CUSUM scheme (5) proposed by Ryan et al. [44], Steiner et
al. [47],

C𝑟 = max {0, ℓ𝑅𝑟 + C𝑟−1} with ℓ𝑅𝑡 =

𝑑∑︁
𝑗=0

𝑁𝑟 , 𝑗 ln
(
𝑝1, 𝑗

𝑝0, 𝑗

)
, (8)
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relies on a weighted class count, now with the weights being ln
(
𝑝1, 𝑗/𝑝0, 𝑗

)
. A

similar motivation applies to the so-called “simple ordinal categorical” (SOC) chart
proposed by Li et al. [28], which relies on likelihoods computed from a latent-
variable approach. In case of a logit model, the plotted statistics finally take a simple
form,

SOC𝑟 =

������ 𝑑∑︁
𝑗=0

( 𝑓0, 𝑗−1 + 𝑓0, 𝑗 − 1) 𝑁𝑟 , 𝑗

������ with 𝑓0,−1 := 0, (9)

where the average cumulative proportions 1
2 ( 𝑓0, 𝑗−1 + 𝑓0, 𝑗 ) are known as “ridits”

in the literature [2, p. 10]. In addition, Li et al. [28] suggest to substitute the raw
frequencies 𝑵𝑟 in (9) by smoothed frequencies resulting from an EWMA approach,
i. e., 𝑵(_)

𝑟 = _ 𝑵𝑟 + (1 − _) 𝑵(_)
𝑟−1. Such EWMA-smoothed frequencies are also used

by Wang et al. [52], whose average cumulative data (ACD) chart plots the quadratic-
form statistics

ACD𝑟 = 𝑛−1 (𝑵𝑟 − 𝑛 𝒑0
)> V

(
𝑵𝑟 − 𝑛 𝒑0

)
, (10)

where V denotes a weight matrix that needs to be specified prior to monitoring.
Note that the particular choice V−1 = diag( 𝒑0) just leads to the Pearson statistic (6).
But for ordinal data, Wang et al. [52] recommend to choose V = L> diag(𝒘) L with
weight vector 𝒘, e. g., 𝒘 = 1 = (1, . . . , 1)>, and L being of the following triangular
structure: the lower (upper) triangle is filled with 2 (0), and the main diagonal with 1.
Then, ACD𝑟 can be rewritten as

ACD𝑟 = 𝑛−1
𝑑∑︁
𝑗=0

𝑤 𝑗

(
𝐶𝑟 , 𝑗−1 + 𝐶𝑟 , 𝑗 − 𝑛 ( 𝑓0, 𝑗−1 + 𝑓0, 𝑗 )

)2
, (11)

i. e., the statistic ACD𝑟 again relies on ridits, in analogy to (9). Bai & Li [3] extend
the SOC chart (9) to the (univariate) location-scale ordinal (LSO) chart, which is also
sensitive to changes in the dispersion structure (i. e., the scale of the latent variable).
The monitored statistic is of quadratic form like in (10). For multivariate extensions
of the quadratic-form approach (10), see the multivariate ordinal categorical (MOC)
chart of Wang et al. [51] as well as the multivariate LSO chart of Bai & Li [3].

Similar to Steiner et al. [47] and Li et al. [28], also Tucker et al. [49] takes the
likelihood derived for a latent-variable model for the ordinal event series (𝑋𝑡 )N as the
starting point. But this time, the location parameter’s maximum likelihood estimate
is computed for each sample. It is then plotted on the chart after an appropriate
standardization. Finally, Li et al. [29] account for first-order serial dependence in
the ordinal event series (𝑋𝑡 )N by determining bivariate frequencies 𝑁𝑟 ,𝑖 𝑗 in the 𝑟th
sample, referring to the pairwise events (𝑋𝑡−1, 𝑋𝑡 ) = (𝑠𝑖 , 𝑠 𝑗 ). These bivariate counts
are subjected to an EWMA smoothing. Then, quadratic-form statistics similar to (10)
are computed for each sample, where the weight matrix is derived from an ordinal
log-linear model for (𝑋𝑡 )N, and which are then plotted on the serially dependent
ordinal categorical (SDOC) control chart.
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4 Machine Learning Approaches for Event Sequence Monitoring

Besides the statistically sound approach of control charts for monitoring categorical
event sequences, also machine learning approaches have been established for this
purpose. These do without explicit stochastic model assumptions1 while having the
advantage of being scalable, see Göb [15] for a critical discussion. The procedures
described in the sequel can be subsumed under the discipline of temporal data
mining, see Laxman & Sastry [26] for a survey, and they also belong to the class
of rule-based procedures, see Weiß [58] for a brief overview. More precisely, we
focus on procedures of episode mining, where rules are generated based on available
data from a single categorical event sequence (“Phase-I data”), and which are then
applied to forecasting events in the ongoing process (“Phase-II application”). While
control charts trigger an alarm once the control limits are violated, such rule-based
procedures require action once a critical event is predicted.

The task of episode mining was first considered by Mannila et al. [30] and further
developed by several authors, see the references in Zimmermann [68]. The original
motivation of Mannila et al. [30] was telecommunication alarm management, where
an online analysis of the incoming alarm stream is required, e. g., to predict severe
faults of the system. But many further applications have been reported meanwhile.
Laxman et al. [27], for example, applied episode mining to sequences of status codes
stemming from the assembly lines of a car manufacturing plant, while Yuan et al.
[67] used episode mining for failure prediction in mechatronic systems (with a case
study referring to a medical imaging system). A further example is provided by
Vasquez Capacho et al. [50], who consider alarm management systems for industrial
plant safety, which support the operators to adequately react on an “alarm flood”,
e. g., to distinguish between normal and dangerous conditions of a vacuum oven used
in a refinery.

For the illustration of episode mining, let us discuss the approaches proposed by
Mannila et al. [30] in some detail. The aim is to derive (and later to apply) rules
such as, e. g., if the segment (𝑥𝑡−2, 𝑥𝑡−1, 𝑥𝑡 ) = (𝑠0, 𝑠1, 𝑠0) is observed (“episode”),
then we expect 𝑋𝑡+1 = 𝑠2 with some given “confidence”. Let us use the notation
“𝒂 ⇒ 𝒃” with 𝒂 = (𝑠0, 𝑠1, 𝑠0) and 𝒃 = (𝑠0, 𝑠1, 𝑠0, 𝑠2) for such a rule. Here, to prevent
spurious correlation, only episodes satisfying a certain “support” requirement are
considered, i. e., the frequency (in some sense) of the episodes has to exceed a given
threshold value suppmin. The permitted episodes are not limited to single tuples
from S × S2 × . . ., but also sets of tuples are possible, which result from using
operators such as the wildcard “*” for an arbitrary symbol from S or the parallel
episode “[. . .]” allowing for an arbitrary ordering of the specified symbols. For
example,

(
𝑠0, [𝑠1, 𝑠2]

)
corresponds to the set

{
(𝑠0, 𝑠1, 𝑠2), (𝑠0, 𝑠2, 𝑠1)

}
, and

(
𝑠0, ∗

)
to

{
(𝑠0, 𝑠0), . . . , (𝑠0, 𝑠𝑑)

}
.

1 Although the presented approaches for episode mining do not explicitly use stochastic assumptions,
several connections to models from Section 3.1 have been established in the literature, namely to
Markov models by Gwadera et al. [16], to Hidden-Markov models by Laxman et al. [27], and to
variable-length Markov models by Weiß [55].
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Since episode mining targets at extremely long categorical sequences, it is crucial
to develop highly efficient algorithms for determining the “frequent episodes” as well
as the corresponding rules. In Mannila et al. [30], this is achieved by applying (among
others) the famous Apriori principle, which dates back to Agrawal & Srikant [1] and
relies on the fact that an episode 𝒂 can only be frequent (i. e., supp(𝒂) > suppmin
for fixed threshold value suppmin) if all its sub-episodes are frequent as well. So
the frequent episodes are detected in a bottom-up manner: given the set F𝑘−1 of
frequent episodes of length 𝑘 − 1, the set C𝑘 with candidate episodes of length 𝑘

is constructed by combining the episodes from F𝑘−1, and then their support is
determined to filter out the frequent episodes for F𝑘 ⊆ C𝑘 . Here, Mannila et al.
[30] consider two types of support measure: In their “Winepi” algorithm, supports
are computed by passing a moving window of fixed length 𝑤 (chosen sufficiently
large) along the categorical event sequence, and supp(𝒂) is defined as the number
of windows covering 𝒂, whereas their “Minepi” algorithm defines supp(𝒂) as the
actual number of occurrences of 𝒂 in the given event sequence (𝑥𝑡 ). In any case, for
frequent episodes 𝒂, 𝒃 with 𝒂 being a sub-episode of 𝒃, the rule 𝒂 ⇒ 𝒃 is evaluated
by computing its confidence conf(𝒂 ⇒ 𝒃) = supp(𝒃)/supp(𝒂), where this kind of
conditional frequency is interpreted as expressing the predictive power of 𝒂 ⇒ 𝒃.
Only those rules are used in Phase II, the confidence of which exceeds a specified
threshold value confmin (“interesting rules”). Note that the final set of rules is only
limited by the given support and confidence requirements, i. e., we are concerned
with unsupervised learning here. This differs from the supervised approach by Weiss
[53], where only rules regarding pre-specified target events are constructed.

Example 1 Let us illustrate the Minepi algorithm with a toy example. The range S
with 𝑑 = 2 is given by the symbols 𝑠0 = a, 𝑠1 = b, 𝑠2 = c, and the available event
series is of length 𝑇 = 11:

a, b, a, c, b, a, b, c, a, b, a.

For episodes, we require more than 10% frequency, i. e., we set suppmin = 1. Fur-
thermore, we declare rules as interesting if confmin = 0.5 is exceeded. To keep it
simple, we restrict to single tuples as the possible episodes, i. e., we do not consider
sets of tuples as originating from wildcards etc.

• The algorithm starts with episodes of length 𝑘 = 1, we get (a) with support
5 > suppmin, (b) with support 4 > suppmin, and (c) with support 2 > suppmin.
So the frequent episodes of length 1 are F1 =

{
(a), (b), (c)

}
= S1.

• For 𝑘 = 2, we first construct the candidate set C2 from F1, which simply equals
C2 = S2, i. e., it covers all possible tuples of length 2. With the next data pass,
we compute the supports 3 > suppmin for (a, b), (b, a), 1 ≤ suppmin for (a, c),
(b, c), (c, a), (c, b), and 0 otherwise. So F2 =

{
(a, b), (b, a)

}
.

Before passing to 𝑘 = 3, let us first discuss some possible variations. If we would
also allow for sets of tuples, then further episodes would be frequent, such as
[a, c] =

{
(a, c), (c, a)

}
and (c, ∗) =

{
(c, a), (c, b), (c, c)

}
, both having support 2.
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If we would use Winepi instead of Minepi, say with window length 𝑤 = 5, then
supports would be computed differently, by considering the window contents

(a, b, a, c, b), (b, a, c, b, a), (a, c, b, a, b), (c, b, a, b, c),
(b, a, b, c, a), (a, b, c, a, b), (b, c, a, b, a).

For example, the episode (a, b) would be contained in six out of seven windows
(highlighted by underlining). But let’s return to Minepi with simple episodes.

• For 𝑘 = 3, we first construct the candidate set C3 from F2 =
{
(a, b), (b, a)

}
,

leading to C3 =
{
(a, b, a), (b, a, b)

}
. Any other 3-tuple contains at least one

none-frequent sub-episode, contradicting the Apriori principle. The candidate
episodes have the supports 2 > suppmin for (a, b, a) and 1 ≤ suppmin for (b, a, b),
so F3 =

{
(a, b, a)

}
.

Since C4 = ∅, the algorithm stops with the frequent episodes in F1 ∪ F2 ∪ F3.
From these, we get the interesting rules (a) ⇒ (a, b) with confidence 3/5, (b) ⇒
(b, a) with confidence 3/4, and (a, b) ⇒ (a, b, a) with confidence 2/3, whereas
(a) ⇒ (a, b, a) has confidence 2/5 ≤ confmin = 0.5. Among the interesting rules,
(a, b) ⇒ (a, b, a) might be judged as being redundant, because the less specific rule
(b) ⇒ (b, a) leads to the same event prediction.

The “interesting” episode rules being generated such as in Example 1 can then be
applied for prospective process monitoring. In an SPC context, such an application
might look as follows. Let A ⊂ S denote those categorical events that are classified
as being critical, in the sense that immediate action is required once an event from A
is observed. Then, from the set R of all rules 𝒂 ⇒ 𝒃 generated during Phase I,
we select those rules where the precursor 𝒂 does not contain an event from A, but
where the successor 𝒃 does; let us denote this subset as RA . Then, having observed
a new event 𝑥𝑡 at time 𝑡, we take the available past . . . , 𝑥𝑡−1, 𝑥𝑡 and check if rules
from RA are applicable, i. e., if there are precursors 𝒂 in RA that match . . . , 𝑥𝑡−1, 𝑥𝑡
and end up in 𝑥𝑡 . In this case, an alarm is triggered and the relevant critical rules are
presented. The operator then decides on appropriate countermeasures to prevent the
occurrence of the critical events.

5 Real Applications: Sample-based Monitoring of Categorical
Event Series

Due to page limitations, it is not possible to provide real-data examples for each
approach being discussed in this chapter. Instead, we focus on the most common
situation of categorical event series monitoring in practice, where independent sam-
ples are taken from time to time, recall Section 3.2.2. We discuss two quite different
real applications: In Section 5.1, a nominal event sequence regarding paint defects
on ceiling fan covers [36] is discussed, where we are concerned with the additional
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difficulty of varying sample sizes. Section 5.2, by contrast, is concerned with an
ordinal event sequence regarding so-called “flash” on toothbrush heads [28], where
samples of equal size are drawn.

5.1 A Nominal Event Sequence on Paint Defects

In Table 1 of Mukhopadhyay [36], data regarding 24 samples taken from a manu-
facturing process of ceiling fan covers are presented. The manufactured items are
checked for possible paint defects (among 𝑑 = 6 defect categories), and each item
is either classified as being conforming (so state 𝑠0 = “no defect”), or it is classi-
fied according to the most predominant defect, with the non-conforming categories
being 𝑠1 = “poor covering”, 𝑠2 = “overflow”, 𝑠3 = “patty defect”, 𝑠4 = “bubbles”,
𝑠5 = “paint defect”, and 𝑠6 = “buffing”. Note that there is no ordering among the
defect categories, so we are concerned with a nominal event sequence here. For illus-
tration, like in Weiß [60], let us assume that the in-control probabilities are given by
𝒑0 = (0.769, 0.081, 0.059, 0.021, 0.023, 0.022, 0.025)>, i. e., if the 𝑟th sample has
sample size 𝑛𝑟 , then the corresponding vector 𝑵𝑟 of sample frequencies is assumed to
follow the multinomial distribution Mult(𝑛𝑟 , 𝒑0) under in-control conditions. Note
that by contrast with the discussion in Section 3.2.2, we are concerned with (heavily)
deviating sample sizes here, where 𝑛1, . . . , 𝑛24 vary between 20 and 404. This also
affects the situation discussed in Section 2.2, i. e., if we aggregate the different types
of defect into the binary situation “defect — yes or no”. Then, the 𝑟th defect count𝑌𝑟
follows the binomial distribution Bin(𝑛𝑟 , 𝜋0) with 𝜋0 = 𝑝0,1 + . . . + 𝑝0,𝑑 = 0.231 in
the in-control case.

To monitor independent samples (𝑵𝑟 ) from a nominal event sequence, the Pearson
𝜒2-chart (6) and the IQV chart (7) appear to be most relevant, while for the aggregated
defect counts (𝑌𝑟 ), the 𝑛𝑝-chart presented in Section 2.2 constitutes a further solution.
The chart design should be based on ARL considerations, where we use the popular
textbook choice ARL0 = 370.4 as the target in-control ARL. Let us start with the
most simple case, the 𝑛𝑝-chart. Using the formula ARL = 1

/
𝑃
(
𝑌 ∉ [𝑙; 𝑢]

)
for

Shewhart charts, we can compute the control limits as the 𝛼/2- and (1 − 𝛼/2)-
quantile of the in-control binomial distribution, where 𝛼 = 1/370.4 ≈ 0.00270.
But since the sample sizes 𝑛𝑟 vary, also these “probability limits” [𝑙𝑟 ; 𝑢𝑟 ] vary
and, in addition, we do not get a unique ARL performance (the same happens for the
equivalent representation as a 𝑝-chart, where𝑌𝑟/𝑛𝑟 is plotted against [𝑙𝑟/𝑛𝑟 ; 𝑢𝑟/𝑛𝑟 ]).
For discrete attributes-data processes, one generally does not meet the target ARL
exactly, and here, the extend of deviation from ARL0 changes with 𝑟. To illustrate
this issue, the first few sample sizes are 𝑛1 = 176, 𝑛2 = 160, . . . , leading to the limits
[𝑙1; 𝑢1] = [25; 58], [𝑙2; 𝑢2] = [22; 54], . . . with individual in-control ARL values
444.4, 526.6, . . . But since we do not know the system for choosing the samples
sizes, we cannot conclude on the overall in-control ARL. The situation gets even
worse for the 𝜒2- and IQV chart, because then, we do not even know the exact sample
distribution of X2

𝑟 and IQV𝑟 , respectively, but only asymptotic approximations [60]:
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Fig. 1 Control charts for paint defects data, where times of alarms are highlighted by dashed lines.

• X2
𝑟 is asymptotically 𝜒2

𝑑
-distributed;

• IQV𝑟 is asymptotically normally distributed with mean `𝑟 = (1 − 1/𝑛𝑟 ) 𝑑+1
𝑑

(1 −∑𝑑
𝑗=0 𝑝

2
0, 𝑗 ) and variance 𝜎2

𝑟 = 4/𝑛𝑟
(
𝑑+1
𝑑

)2 ( ∑𝑑
𝑗=0 𝑝

3
0, 𝑗 − (∑𝑑

𝑗=0 𝑝
2
0, 𝑗 )

2) .
In Section 3.4 of Weiß [60], it was shown that these asymptotics only lead to rough
approximations of the actually intended chart design. But since we cannot improve
the chart design based on simulations (as done in Weiß [60]) due to the lack of a
systematic choice of 𝑛𝑟 , we continue with the asymptotic chart design here. More
precisely, for the upper-sided 𝜒2-chart, the upper-limit is (uniquely) computed as
the (1 − 𝛼)-quantile of the 𝜒2

𝑑
-distribution, leading to the value 20.062, and for the

two-sided IQV chart, we compute the 𝑟th limits as `𝑟 ∓ 𝑧 𝜎𝑟 , where 𝑧 ≈ 3.000
(“3𝜎-limits”) is the (1− 𝛼/2)-quantile of the standard normal distribution, N(0, 1).

The obtained control charts are plotted in Figure 1. The 𝜒2-chart triggers an alarm
for the 5th sample (highlighted by a dashed line), but does not give further signals.
So it appears that the 5th sample was drawn under out-of-control conditions – but
which kind of out-of-control scenario exactly? It is a common problem with the
𝜒2-chart that more detailed insights cannot be gained from the plotted statistics such
that further post-hoc analyses are required here. The IQV chart in Figure 1 (where
we also added a graph of `𝑟 as the center line) is more informative, and it also
triggers two further alarms for the 11th and 17th sample. The alarm at the 5th sample
is caused by a violation of the lower limit, so the dispersion of 𝑵5/𝑛5 decreased
compared to 𝒑0. This mean that 𝑵5/𝑛5 moved towards a one-point distribution
in 𝑠0 = “no defect”, i. e., we have a quality improvement compared to the in-control
state (another explanation might be problems in quality evaluation, i. e., defects might
have been overlooked at 𝑟 = 5). The alarms at 𝑟 = 11, 17, by contrast, result from a
(slight) violation of the upper limit, so indicating a quality deterioration this time.
For the present example, the same conclusions can also be drawn from the 𝑛𝑝-chart
in Figure 1 (with additional center line 𝑛𝑟 𝜋0), where we again have a violation of
the lower (upper) limit at 𝑟 = 5 (𝑟 = 11, 17). Note that we can easily recognize the
sample size from the width of the limits of the IQV chart as well as from the center
line of the 𝑛𝑝-chart, with the smallest (largest) sample at 𝑟 = 20 (𝑟 = 22), namely
𝑛20 = 20 and 𝑛22 = 404. The 𝜒2-chart is a black box in this sense.
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Fig. 2 Control charts (without EWMA smoothing) for flash data, where times of alarms are
highlighted by dashed lines.

5.2 An Ordinal Event Sequence regarding Flash on Toothbrush Heads

In Li et al. [28], the manufacturing of electric toothbrushes is considered, where in
one of the production steps, the two parts of the brush head are welded together. In this
step, excess plastic (referred to as “flash”) might be generated, which could injure
users and should thus be avoided. Therefore, an important quality characteristic
of the manufactured toothbrush heads is given by the extent of flash, with the
𝑑 + 1 = 4 ordinal levels 𝑠0 = “slight”, 𝑠1 = “small”, 𝑠2 = “medium”, and 𝑠3 =

“large”. In their Phase-I analysis, Li et al. [28] identified the in-control PMF 𝒑0 =

(0.8631, 0.0804, 0.0357, 0.0208)>, which shall now be used for control chart design.
For Phase-II application, 30 samples of the unique sample size 𝑛 = 64 are available.

To account for the ordinal nature of the data, we do not use the nominal 𝜒2-
and IQV chart this time, although these could be applied to ordinal data as well.
Instead, we use the IOV chart (7) for monitoring the ordinal dispersion of the
samples, as well as the SOC chart (9) and the ACD chart (11) with 𝒘 = 1, both
relying on ridits. In a first step, we apply these charts without an EWMA smoothing
of the frequencies 𝑵𝑟 (corresponding to smoothing parameter _ = 1), i. e., we
use them as Shewhart charts. In this case, we could determine the control limits
of the IOV chart based on asymptotic considerations, as IOV𝑟 is asymptotically
normally distributed with mean ` = (1 − 1/𝑛) 4

𝑑

∑𝑑−1
𝑗=0 𝑓0, 𝑗 (1 − 𝑓0, 𝑗 ) and variance

𝜎2 = 16/𝑛/𝑑2 ∑𝑑−1
𝑖, 𝑗=0 (1− 𝑓0,𝑖) (1− 𝑓0, 𝑗 ) ( 𝑓min{𝑖, 𝑗 }− 𝑓0,𝑖 𝑓0, 𝑗 ), see Weiß [61]. But this

leads to an only rough approximation of the intended chart design (again with target
ARL0 = 370.4), which can be checked with simulations. Generally, since we have a
unique sample size 𝑛, the ARLs of all charts (also those with EWMA smoothing) can
be computed by simulations this time. We use 104 replications, and we approximate
the ARL by the sample mean across the 104 simulated run lengths of the considered
chart. In this way, we obtain the upper control limits of the IOV chart (we concentrate
on the upper-sided chart this time, because increased IOV values correspond to a
deterioration of quality) as 0.4915, of the SOC chart as 8.432, and of the ACD chart
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Fig. 3 Control charts (with EWMA smoothing) for flash data, where times of alarms are highlighted
by dashed lines.

as 4.638. The resulting Shewhart control charts are plotted in Figure 2. It can be seen
that all charts lead to the same results: an alarm is triggered for the 25th sample.

Before further analyzing this result, let us also look at the control charts in
Figure 3. Here, we used the same chart types as before, but with an additional EWMA
smoothing for the sample frequencies: 𝑵(_)

𝑟 = _ 𝑵𝑟 + (1−_) 𝑵(_)
𝑟−1 with 𝑵(_)

0 = 𝑛 𝒑0,
where the smoothing parameter is chosen as _ = 0.1 (the same value was also used
by Li et al. [28], Wang et al. [52]). Then, the upper control limits become 0.3021 for
the IOV chart, 1.707 for the SOC chart, and 0.1777 for the ACD chart. Because of
the smoothing, we now have more narrow control limits than in Figure 2. The charts
of Figure 3 show a slightly different behaviour: While the IOV chart again triggers
its first alarm for 𝑟 = 25, it takes until 𝑟 = 27 for the SOC chart and 𝑟 = 26 for the
ACD chart. Taking all results together, there seems to be a problem with the 25th
sample. This sudden change was rather strong such that it was immediately detected
by the Shewhart charts of Figure 2, whereas some of the EWMA charts in Figure 3
reacted with a delay (EWMA charts are well-suited for a persistent change because of
their inherent memory). In fact, we have 𝑵25/𝑛 ≈ (0.7344, 0.1094, 0.06250.0938)>;
so compared to 𝒑0 = (0.8631, 0.0804, 0.0357, 0.0208)>, the conforming probability
for 𝑠0 = “slight” is notably reduced, while especially the probability for the worst
state 𝑠3 = “large” was increased. So 𝑵25/𝑛 moved towards an extreme two-point
distribution, which explains the good performance of the IOV charts.

6 Conclusions

We surveyed three approaches for the monitoring of categorical event series. First,
control charts might be applied to counts generated from the categorical event series,
where the stochastic properties of the resulting count time series depend on those of
the original categorical process. Second, the control charts might be applied to the
categorical process itself, carefully distinguishing the cases of nominal and ordinal
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data. Third, if huge amounts of data need to be managed, rule-based procedures from
machine learning (episode mining) might be an adequate solution.

The monitoring of categorical event series is generally a quite demanding task.
During Phase I, appropriate methods for time series analysis and feasible stochastic
models need to be identified, while chart design for Phase-II application suffers from
discreteness problems. Although various control charts for i. i. d. categorical data
are meanwhile available, only few contributions exist concerning the monitoring of
serially dependent categorical event series (or the count processes derived thereof).
In particular, the development of tailored methods for ordinal time-series data seems
to be a promising direction for future research, as this type of categorical event series
is particularly relevant for real applications.
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Summary. Some control charts based on machine learning approaches have been developed
recently in the statistical process control (SPC) literature. These charts are usually designed for
monitoring processes with independent observations at different observation times. In practice,
however, serial data correlation almost always exists in the observed data of a temporal process.
It has been well demonstrated in the SPC literature that control charts designed for monitoring
independent data would not be reliable to use in applications with serially correlated data. In
this chapter, we suggest using certain existing machine learning control charts together with a
recursive data de-correlation procedure. It is shown that the performance of these charts can be
substantially improved for monitoring serially correlated processes after data de-correlation.
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1 Introduction

In recent years, machine learning approaches have attractedmuch attention in different research
areas, including statistical process control (SPC) (e.g., Aggarwal 2018,Breiman 2001,Carvalho
et al. 2019, Göb 2006, Hastie et al. 2001). Some control charts based on different machine
learning algorithms have been developed in the SPC literature. For instance, the k-nearest
neighbors (KNN), random forest (RF) and support vector machines (SVM) have been used in
developing SPC control charts.Most of these existingmachine learning control charts are based
on the assumption that process observations at different observation times are independent of
each other. In practice, however, serial data correlation almost always exists in a time series
data. It has been well demonstrated in the SPC literature that control charts designed for
monitoring independent data would not be reliable to use when serial data correlation exists
(e.g. Apley and Tsung 2002, Knoth and Schmid 2004, Lee and Apley 2011, Li and Qiu 2020,
Psarakis and Papaleonida 2007, Qiu, Li, and Li 2020, Runger andWillemain 1995, Weiß 2015,
Xue and Qiu 2020). Thus, it’s necessary to improve these machine learning control charts by
overcoming that limitation. This paper aims to address this important issue by suggesting to
apply a recursive data de-correlation procedure to the observed data before an existing machine
learning control chart is used.
In the SPC literature, there has been some existing discussion about process monitoring of

serially correlated data (e.g., Alwan and Roberts 1995, Capizzi and Masarotto 2008, Prajapati
and Singh 2012, Psarakis and Papaleonida 2007). Many such existing methods are based on
parametric time series modeling of the observed process data and monitoring of the resulting
residuals. For instance, Lee and Apley (2011) proposed an exponentially weighted moving
average (EWMA) chart for monitoring correlated data by assuming the in-control (IC) process
observations to follow an ARMA model. In practice, however, the assumed parametric time
series models may not be valid, and consequently these control charts may be unreliable to
use (e.g., Li and Qiu 2020). Recently, Qiu, Li, and Li (2020) suggested a more flexible data
de-correlation method without using a parametric time series model for univariate cases. It
only requires the serial data correlation to be stationary and short-range (i.e., the correlation
between two observations become weaker when the observation times get farther away). A
multivariate extension of that method was discussed in Xue and Qiu (2020). Numerical studies
show that such sequential data de-correlation approaches performwell in different cases. In this
paper, we suggest improving some existing machine learning control charts by applying such a
data de-correlation procedure to the observed process observations in advance. The modified
machine learning control charts can handle cases with multiple numerical quality variables,
and the quality variables could be continuous numerical or discrete. Numerical studies show
that the performance of these modified machine learning control charts is substantially better
than their original versions for monitoring processes with serially correlated data in various
different cases.
The remaining parts of this chapter are organized as follows. In Section 2, the proposed

modification for some existing machine learning control charts are described in detail. Numer-
ical studies for evaluating their performance are presented in Section 3. A real-data example
to demonstrate the application of the modified control charts is discussed in Section 4. Finally,
some remarks conclude the article in Section 5.
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2 Improve Some Machine learning Control Charts for
Monitoring Serially Correlated Data

This section is organized in three parts. In Subsection 2.1, some representative existingmachine
learning control charts are briefly described. In Subsection 2.2, a recursive data de-correlation
procedure for the observed sequential data is introduced in detail. Then, the modified machine
learning control charts, in which the recursive data de-correlation procedure is applied to the
observed data before the original machine learning control charts, are discussed in Subsection
2.3.

2.1 Description of some representative machine learning control charts

Classification is one of the major purposes of supervised machine learning, and many machine
learning algorithms like the artificial neural networks, RF and SVM have demonstrated a good
performance in accurately classifying input data after learning the data structure from a large
training data. Since an SPC problem can be regarded as a binary class classification problem,
in which each process observation needs to be classified into either the IC or the out-of-control
(OC) status during phase II process monitoring, several machine learning algorithms making
use of both IC and OC historical data have been employed for process monitoring. For instance,
Zhang, Tsung, and Zou (2015) proposed an EWMA control chart based on the probabilistic
outputs of a SVM classifier that needs to be built by using both IC and OC historical data.
Several other classifiers like the KNN and linear discriminant analysis were also proposed for
process monitoring (e.g., Li, Zhang, Tsung, and Mei 2020; Sukchotrat, Kim, Tsui, and Chen
2011). In many SPC applications, however, few OC process observations would be available
in advance. For instance, a production process is often properly adjusted during the Phase
I SPC, and a set of IC data is routinely collected afterwards for estimating the IC process
distribution or some of its parameters (Qiu 2014, Chapter 1). Thus, for such applications, an
IC data is usually available before the Phase II SPC, but the OC process observations are
often unavailable. To overcome this difficulty, some creative ideas like the artificial contrast,
real-time contrast, and one class classificationwere proposed to develop control charts without
assuming the availability of OC process observations during the design stage of the related
charts. Several representative machine learning control charts based on these ideas are briefly
introduced below.

Control chart based on artificial contrasts

Tuv and Runger (2004) proposed the idea of artificial contrast to overcome the difficulty that
only IC data are available before the Phase II process monitoring in certain SPC applications.
By this idea, an artificial dataset is first generated from a given off-target distribution (e.g.,
Uniform) and observations in that dataset are regarded as OC observations. Then, a machine
learning algorithm (e.g., RF) is applied to the training dataset that consists of the original IC
dataset, denoted as X𝐼𝐶 , and the artificial contrast dataset, denoted as X𝐴𝐶 . The classifier
obtained by the RF algorithm is then used for online process monitoring. Hwang et al. (2007)
studied the performance of such machine learning control charts by using both the RF and
SVM algorithms. These machine learning control charts suffer two major limitations. First,
their classification error rates cannot be transferred to the traditional average run length (ARL)
metric without the data independence assumption. Second, their decisions at a given time point
during phase II process monitoring are made based on the observed data at that time point only,
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and they have not made use of history data. To overcome these limitations, Hu and Runger
(2010) suggested the following modification that consisted of two major steps. i) For process
observation X𝑛 at a given time point 𝑛, the log likelihood ratio is first calculated as

𝑙𝑛 = log [𝑝1 (X𝑛)] − 𝑙𝑜𝑔 [𝑝0 (X𝑛)] ,

where 𝑝1 (X𝑛) and 𝑝0 (X𝑛) are the estimated probabilities of X𝑛 in each class obtained by
the RF classifier. ii) A modified EWMA chart is then suggested with the following charting
statistic:

𝐸𝑛 = _𝑙𝑛 + (1 − _)𝐸𝑛−1,
where _ ∈ (0, 1] is a weighting parameter. This control chart is denoted as AC, representing
“artificial contrast”. Obviously, like the traditional EWMA charts, the charting statistic 𝐸𝑛 of
AC is a weighted average of the log likelihood ratios of all available observations up to the
time point 𝑛.
As suggested by Hu and Runger (2010), the control limit of AC can be determined by the

following 10-fold cross-validation (CV) procedure. First, 90% of the IC dataset X𝐼𝐶 and the
artificial contrast dataset X𝐴𝐶 is used to train the RF classifier. Then, the 𝐸𝑛 with a control
limit ℎ is applied to the remaining 10% of the IC dataset X𝐼𝐶 to obtain a run length (RL)
value. The above CV procedure is then repeated for 𝐶 = 1, 000 times, and the average of the 𝐶
RL values is used to approximate the 𝐴𝑅𝐿0 value for the given ℎ. Finally, ℎ can be searched
by a numerical algorithm (e.g., the bisection searching algorithm) so that the assumed 𝐴𝑅𝐿0
value is reached.

Control chart based on real time contrasts

The artificial contrasts X𝐴𝐶 used in AC are generated from a subjectively chosen off-target
distribution (e.g., Uniform), and thus may not represent the actual OC observations well.
Consequently, the RF classifier trained usingX𝐼𝐶 andX𝐴𝐶 may not be effective for monitoring
certain processes. To improve the chart AC, Deng, Runger, and Tuv (2012) propose a real time
contrast (RTC) approach, in which the most recent observations within a moving window of
the current time point are used as the contrasts. In their proposed approach, the IC dataset
is first divided into two parts: a randomly selected 𝑁0 observations from X𝐼𝐶 , denoted as
X𝐼𝐶0 , is used for training the RF classifier, the remaining IC data, denoted as X𝐼𝐶1 , is used for
determining the control limit. The process observations in a window of the current observation
time point 𝑛 are treated as OC data and denoted as X𝐴𝐶𝑛

= {X𝑛−𝑤+1,X𝑛−𝑤+2, . . . ,X𝑛},
where 𝑤 is the window size. Then, the RF classifier can be re-trained sequentially over time
using the training dataset that combines X𝐼𝐶0 and X𝐴𝐶𝑛

, and the decision rule can be updated
accordingly once the new observation X𝑛 is collected at time 𝑛.
Deng et al. (2012) suggested using the following estimated “out-of-bag” correct classifi-

cation rate for observations in X𝐼𝐶0 as the charting statistic:

𝑃𝑛 =

∑
𝑃𝑂𝑂𝐵 (X𝑖)𝐼 (X𝑖 ∈ X𝐼𝐶0 )

|X𝐼𝐶0 |
,

where |X𝐼𝐶0 | denotes the number of observations in the set X𝐼𝐶0 , and 𝑃𝑂𝑂𝐵 (X𝑖) is the
estimated “out-of-bag” correct classification probability for the IC observation X𝑖 that is
obtained from the RF classification. As discussed in Deng et al. (2012), there could be several
alternative charting statistics, such as the estimated “out-of-bag” correct classification rate for
observations in X𝐴𝐶𝑛

. But, they found that the chart based on the above 𝑃𝑛, denoted as RTC,
had some favorable properties.
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The control limit of the chart RTC can be determined by the following bootstrap procedure
suggested by Deng et al. (2012). First, we draw with replacement a sample from the dataset
X𝐼𝐶1 . Then, the chart RTC with control limit ℎ is applied to the bootstrap sample to obtain a
RL value. This bootstrap re-sampling procedure is repeated 𝐵 = 1, 000 times, and the average
of the 𝐵 RL values is used to approximate the 𝐴𝑅𝐿0 value for the given ℎ. Finally, ℎ can be
empirically selected so that assumed 𝐴𝑅𝐿0 is reached. Finally, ℎ be searched by a numerical
algorithm so that the assumed 𝐴𝑅𝐿0 value is reached.

Distance based control chart using SVM

The charting statistic of the RTC chart discussed above actually take discrete values, because
the estimated “out-of-bag” correct classification probabilities {𝑃𝑂𝑂𝐵 (X𝑖)} are obtained from
an ensemble of decision trees (Breiman 2001 and He, Jiang, and Deng 2018). As an alternative,
He, Jiang, and Deng (2018) suggested a distance-based control chart under the framework of
SVM, which is denoted as DSVM. The DSVM method uses the distance between the support
vectors and the process observations in the datasetX𝐴𝐶𝑛

as a charting statistic. Unlike charting
statistic 𝑃𝑛 of the RTC chart, this distance-based charting statistic is a continuous variable.
Because the distance from a sample of process observations to the boundary surface defined
by the support vectors can be either positive or negative, He, Jiang, and Deng suggested
transforming the distance using the standard logistic function

𝑔(𝑎) = 1
1 + exp(−𝑎) .

Then, the following average value of the transformed distances from individual observations
in X𝐴𝐶𝑛

to the boundary surface can be defined to be the charting statistic:

𝑀𝑛 =

∑
𝑔(𝑑 (X𝑖))𝐼 (X𝑖 ∈ X𝐴𝐶𝑛

)
|X𝐴𝐶𝑛

| ,

where 𝑑 (X𝑖) is the distance from the observation X𝑖 to decision boundary determined by the
SVM algorithms at time 𝑛.
In the above DSVM chart, the kernel function and the penalty parameter need to be

selected properly. He, Jiang, and Deng (2018) suggested using the following Gaussian radial
basis function (RBF): for any X,X′ ∈ 𝑅𝑝 ,

𝐾 (X,X′) = exp
(
‖X − X′‖2

𝜎2

)
as the kernel function, where 𝑝 is dimension of the process observations, and the parameter
𝜎2 was chosen to be larger than 2.8. They also suggested choosing the penalty parameter to be
1. The control limit of the chart DSVM can be determined by a bootstrap procedure, similar to
the one described above for the RTC chart.

Control chart based on the KNN classification

Another approach to develop machine learning control charts is to use one-class classification
(OCC) algorithms. Sun and Tsung (2003) developed a nonparametric control chart based on
the so-called support vector data description (SVDD) approach (Tax andDuin 2004), described
below. By SVDD, the boundary surface of an IC data can be defined so that the volume within
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the boundary surface is as small as possible while the Type-I error probability is controled
within a given level of 𝛼. Then, the boundary surface is used as the decision rule for online
process monitoring as follows: a new observation is claimed to be OC if it falls outside of
the boundary surface, and IC otherwise. See Camci et al. (2008) for some modifications and
generalizations. However, determination of this boundary surface is computationally intensive.
To reduce the computation burden, Sukchotrat, Kim and Tsung (2009) suggested a control chart
based on the KNN classification, denoted as KNN. In KNN, the average distance between a
given observation X𝑖 and its 𝑘 nearest neighboring observations in the IC dataset is first
calculated as follows:

𝐾2𝑖 =

𝑘∑
𝑗=1

‖X𝑖 − 𝑁𝑁 𝑗 (X𝑖)‖

𝑘
,

where 𝑁𝑁 𝑗 (X𝑖) is the 𝑗 𝑡ℎ nearest neighboring observation of X𝑖 in the IC dataset, and ‖ · ‖
is the Euclidean distance. Then, the (1 − 𝛼)th quantile of all such distances of individual
observations in the IC data can be computed. This quantile can be used as the decision rule for
online process monitoring as follows. At the current time 𝑛, if the average distance from X𝑛 to
its 𝑘 nearest neighboring observations (i.e., 𝐾2𝑛) is less than the quantile, then X𝑛 is claimed
as IC. Otherwise, it is claimed as OC.
In the above KNN chart, the control limit (i.e., the (1−𝛼)th quantile of {𝐾2

𝑖
} of individual

observations in the IC data) can be refined by the following bootstrap procedure suggested by
Sukchotrat et al (2009). First, a total of 𝐵 = 1, 000 bootstrap samples are obtained from the
IC dataset by the simple random sampling procedure with replacement. Then, the (1 − 𝛼)th
quantile of {𝐾2

𝑖
} of individual observations in each bootstrap sample can be computed. Then,

the final control limit is chosen to be the mean of the 𝐵 such quantiles. The KNN chart assumes
that process observations at different time points are independent. Thus, its 𝐴𝑅𝐿0 value equals
1/𝛼.

2.2 Sequential Data De-Correlation

In this subsection, the sequential data de-correlation procedure for multivariate serially cor-
related data is described in detail. It is assumed that the IC process mean is µ and the serial
data correlation is stationary with the covariances γ (𝑠) = Cov(X𝑖 ,X𝑖+𝑠), for any 𝑖 and 𝑠, that
depend only on 𝑠.
For the first observation X1, its covariance matrix is γ (0). Then, its standardized vector

can be defined to be
X∗
1 = γ (0)−1/2 (X1 −µ).

After the second observation X2 is collected, let us consider the long vector (X′
1,X

′
2)

′.

Its covariance matrix can be written as Σ2,2 =

(
γ (0) σ1
σ′
1 γ (0)

)
, where σ1 = γ (1). The

Cholesky decomposition of Σ2,2 is given by Φ2Σ2,2Φ′
2 = D2, where Φ2 =

(
I𝑝 0

−σ′
1γ (0)−1 I𝑝

)
,

and D2 =

(
d1 0
0 d2

)
= 𝑑𝑖𝑎𝑔(d1, d2), d1 = γ (0), and d2 = γ (0) − σ′

1γ (0)−1σ1. There-

fore, we have Cov(Φ2e2) = D2, where e2 = [(X1 − µ)′, (X2 − µ)′] ′. Since Φ2e2 =(
I𝑝 0

−σ′
1γ (0)−1 I𝑝

) (
(X1 −µ)′
(X2 −µ)′

)
= (𝜖 ′1, 𝜖

′
2)

′, where



Machine Learning Control Charts for Monitoring Serially Correlated Data 7

𝜖1 = X1 −µ,

𝜖2 = −σ′
1Σ

−1
1,1 (X1 −µ) + (X2 −µ),

𝜖1 and 𝜖2 are uncorrelated. Therefore, the de-correlated and standardized vector of X2 can be
defined to be

X∗
2 = d−1/22 𝜖2 = d−1/22

[
−σ′
1Σ

−1
1,1 (X1 −µ) + (X2 −µ)

]
.

It is obvious that X∗
1 and X∗

2 are uncorrelated, and both have the identity covariance matrix I𝑝 .
Similarly, for the third observationX3, which could be correlated withX1 andX2, consider

the long vector (X′
1,X

′
2,X

′
3)

′. Its covariance matrix can be written as Σ3,3 =

(
Σ2,2 σ2
σ′
2 γ (0)

)
,

where σ2 = ( [γ (2)] ′, [γ (1)] ′)′. If we define Φ3 =
(

Φ2 0

−σ′
2Σ

−1
2,2 I𝑝

)
and D3 =

©«
d1 0 0
0 d2 0
0 0 d3

ª®¬ =

𝑑𝑖𝑎𝑔(d1, d2, d3), where d3 = Σ3,3−σ′
2Σ

−1
2,2σ2, then we haveΦ3Σ3,3Φ

′
3 = D3. This motivates

us to consider Φ3e3 , where e3 = [(X3 −µ)′, (X1 −µ)′, (X2 −µ)′] ′. It can be checked that
Φ3e3 = (𝜖 ′1, 𝜖

′
2, 𝜖

′
3)

′, where

𝜖3 = −σ′
2Σ

−1
2,2e2 + (X3 −µ).

Since Cov(Φ3e3) = D3, e3 is uncorrelated with e1 and e2. Therefore, the de-correlated and
standardized vector of X3 is defined to be

X∗
3 = d−1/23 𝜖3 = d−1/23 (−σ′

2Σ
−1
2,2e2 + (X3 −µ)),

which is uncorrelated with X∗
1 and X∗

2 and has the identity covariance matrix I𝑝 .
Following the above procedure, we can define the de-correlated and standardized vectors

sequentially after a new observation is collected. More specifically, at the 𝑗-th observation
time, the covariance matrix of the long vector (X′

1,X
′
2, . . . ,X

′
𝑗
)′ can be written as Σ 𝑗 , 𝑗 =(

Σ 𝑗−1, 𝑗−1 σ 𝑗−1
σ′

𝑗−1 γ (0)

)
, where σ 𝑗−1 = ( [γ ( 𝑗 − 1)] ′, . . . , [γ (2)] ′, [γ (1)] ′)′. It can be checked

that Φ 𝑗Σ 𝑗 , 𝑗Φ
′
𝑗
= D 𝑗 , where Φ 𝑗 =

(
Φ 𝑗−1 0

−σ′
𝑗−1Σ

−1
𝑗−1, 𝑗−1 I𝑝

)
, D 𝑗 = 𝑑𝑖𝑎𝑔(d1, d2, . . . d 𝑗 ), and

d 𝑗 = Σ 𝑗 , 𝑗 −σ′
𝑗−1Σ

−1
𝑗−1, 𝑗−1σ 𝑗−1. Therefore, if we define

𝜖 𝑗 = −σ′
𝑗−1Σ

−1
𝑗−1, 𝑗−1e 𝑗−1 + (X 𝑗 −µ),

then Φ 𝑗𝜖 𝑗 = (e′1, e
′
2, . . . , e

′
𝑗
)′ and Cov(Φ 𝑗𝜖 𝑗 ) = 𝐷 𝑗 , which implies that e 𝑗 is uncorrelated

with {e1, . . . , e 𝑗−1}. Therefore, the de-correlated and standardized vector of X 𝑗 is defined to
be

X∗
𝑗 = d−1/2

𝑗
𝜖 𝑗 = d−1/2

𝑗
(−σ′

𝑗−1Σ
−1
𝑗−1, 𝑗−1e 𝑗−1 + (X 𝑗 −µ)),

which is uncorrelated with X∗
1, . . . ,X

∗
𝑗−1 and has the identity covariance matrix I𝑝 .

By the above sequential data de-correlation procedure, we can transform the originally
correlated process observations to a sequence of uncorrelated and standardized observations,
each ofwhich has themean0 and the identity covariancematrix I𝑝 . In reality, the IC parameters
µ and {γ (𝑠)} are usually unknown and should be estimated in advance. To this end, µ and
{γ (𝑠)} can be estimated from the IC dataset X𝐼𝐶 = {X−𝑚0+1,X−𝑚0+2, . . . ,X0} as follows:
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µ̂ =
1
𝑚0

0∑︁
𝑖=−𝑚0+1

X𝑖 (1)

γ̂ (𝑠) = 1
𝑚0 − 𝑠

−𝑠∑︁
𝑖=−𝑚0+1

(X𝑖+𝑠 − µ̂) (X𝑖 − µ̂)′ .

2.3 Machine Learning Control Charts for Monitoring Serially Correlated Data

Tomonitor a serially correlated process with observationsX1,X2, . . . ,X𝑛, . . ., we can sequen-
tially de-correlate these observations first by using the procedure described in the previous
subsection and then apply the machine learning control charts described in Subsection 2.1.
However, at the current time point 𝑛, to de-correlate X𝑛 with all its previous observations
X1,X2, . . . ,X𝑛−1, will take much computing time, especially when 𝑛 becomes large. To re-
duce the computing burden, Qiu et al. (2020) suggested that the observation X𝑛 only need to
be de-correlated with its previous 𝑏𝑚𝑎𝑥 observations, based on the assumption that two pro-
cess observations becomes uncorrelated if their observation times are more than 𝑏𝑚𝑎𝑥 apart.
This assumption basically says that the serial data correlation is short-ranged, which should
be reasonable in many applications. Based on this assumption, a modified machine learning
control chart for monitoring serially correlated data is summarized below.

• When 𝑛 = 1, the de-correlated and standardized observation is defined to be X̂∗
1 =

γ̂ (0)−1/2 (X1 − ̂̀). Set an auxiliary parameter 𝑏 to be 1, and then apply a machine
learning control chart to X̂∗

1.
• When 𝑛 > 1, the estimated covariance matrix of (X′

𝑛−𝑏 , . . . ,X
′
𝑛)′ is defined to be

Σ̂𝑛,𝑛 =
©«
γ̂ (0) · · · γ̂ (𝑏)
.
.
.

. . .
.
.
.

γ̂ (𝑏) . . . γ̂ (0)

ª®®¬ =:
(
Σ̂𝑛−1,𝑛−1 σ̂𝑛−1
σ̂′
𝑛−1 γ̂ (0)

)
.

Then, the de-correlated and standardized observation at time 𝑛 is defined to be

X̂∗
𝑛 = d̂−1/2𝑛

[
−σ̂′

𝑛−1Σ̂
−1
𝑛−1,𝑛−1ê𝑛−1 + (X𝑛 − µ̂)

]
,

where d̂ 𝑗 = Σ̂ 𝑗 , 𝑗−σ̂′
𝑗−1Σ̂

−1
𝑛−1,𝑛−1σ̂ 𝑗−1, and ê𝑛−1 = [(X𝑛−𝑏−µ̂)′, (X𝑛−𝑏+1−µ̂)′, . . . , (X𝑛−1−

µ̂)′] ′. Apply a machine learning control chart to X̂∗
𝑛 to see whether a signal is triggered.

If not, set 𝑏 = 𝑚𝑖𝑛(𝑏 + 1, 𝑏𝑚𝑎𝑥) and 𝑛 = 𝑛 + 1, and monitor the process at the next time
point.

3 Simulation Studies

In this section, we investigate the numerical performance of the four existing machine learning
control charts AC, RTC, DSVM and KNN described in Subsection 2.1, in comparison with
their modified versions AC-D, RTC-D, DSVM-D and KNN-D discussed in Subsection 2.3,
where "-D" indicates that process observations are de-correlated before each method is used
for process monitoring. In all simulation examples, the nominal 𝐴𝑅𝐿0 values of all charts are
fixed at 200. If there is no further specification, the parameter _ in the chart AC is chosen to be
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0.2, as suggested in He et al. (2010), the moving window size 𝑤 in the charts RTC and DSVM
is chosen to be 10, as suggested in Deng et al. (2012) and He et al.(2018), and the number of
nearest observations 𝑘 in the chart KNN is chosen to be 30, as suggested in Sukchotrat et al.
(2009). The number of quality variables is fixed at 𝑝 = 10, the parameter 𝑏𝑚𝑎𝑥 is chosen to
be 20, and the IC sample size is fixed at 𝑚0 = 2, 000. The following five cases are considered:

• Case I: Process observations {X𝑛, 𝑛 ≥ 1} are i.i.d. with the IC distribution 𝑁10 (0, 𝐼10×10).
• Case II: Process observations {X𝑛, 𝑛 ≥ 1} are i.i.d. at different observation times, the 10
quality variables are independent of each other, and each of them has the IC distribution
𝜒23 , where 𝜒

2
3 denotes the chi-square distribution with the degrees of freedom being 3.

• Case III: Process observations X𝑛 = (𝑋𝑛1, 𝑋𝑛2, . . . , 𝑋𝑛10)′ are generated as follows: for
each 𝑖, 𝑋𝑛𝑖 follows the AR(1) model 𝑋𝑛𝑖 = 0.1𝑋𝑛−1,𝑖 + 𝜖𝑛𝑖 , where 𝑋01 = 0 and {𝜖𝑛1}
are i.i.d. random errors with the 𝑁 (0, 1) distribution. All 10 quality variables are assumed
independent of each other.

• Case IV: Process observations X𝑛 = (𝑋𝑛1, 𝑋𝑛2, . . . , 𝑋𝑛10)′ are generated as follows: for
each 𝑖, 𝑋𝑛𝑖 follows the ARMA(3,1) model 𝑋𝑛𝑖 = 0.8𝑋𝑛−1,𝑖 − 0.5𝑋𝑛−2,𝑖 + 0.4𝑋𝑛−3,𝑖 +
𝜖𝑛𝑖 − 0.5𝜖𝑛−1,𝑖 , where 𝑋1𝑖 = 𝑋2𝑖 = 𝑋3𝑖 = 0 and {𝜖𝑛𝑖} are i.i.d. random errors with the
distribution 𝜒23 . All 10 quality variables are assumed independent of each other.

• Case V: Process observations follow the model X𝑛 = 𝐴X𝑛−1 + ε𝑛, where {ε𝑛} are i.i.d.
random errors with the 𝑁10 (0, 𝐵) distribution, A is a diagonal matrix with the diagonal
elements being 0.5, 0.4, 0.3, 0.2, 0.1, 0.1, 0.2, 0.3, 0.4, 0.5, and B is a 10 × 10 covariance
matrix with all diagonal elements being 1 and all off-diagonal elements being 0.2.

In all five cases described above, each variable is standardized to have mean 0 and variance 1
before process monitoring. Obviously, Case I is the conventional case considered in the SPC
literature with i.i.d. process observations and the standard normal IC process distribution. Case
II also considers i.i.d. process observations, but the IC process distribution is skewed. Cases
III and IV consider serially correlated process observations across different observation times;
but the 10 quality variables are independent of each other. In Case V, process observations are
serially correlated and different quality variables are correlated among themselves as well.

Evaluation of the IC performance. We first evaluate the IC performance of the related
control charts. The control limits of the four control charts AC, RTC, DSVM and KNN are
determined as discussed in Subsection 2.1. For eachmethod, its actual 𝐴𝑅𝐿0 value is computed
as follows. First, an IC dataset of size𝑚0 = 2, 000 is generated, and some IC parameters (e.g.µ
and γ (𝑠)) are estimated from the IC dataset. Then, each control chart is applied to a sequence
of 2,000 IC process observations for online process monitoring, and the RL value is recorded.
This simulation of online process monitoring is then repeated for 1,000 times, and the actual
conditional 𝐴𝑅𝐿0 value conditional on the given IC data is computed as the average of the
1,000 RL values. Finally, the previous two steps are repeated for 100 times. The average of
the 100 actual conditional 𝐴𝑅𝐿0 values is used as the approximated actual 𝐴𝑅𝐿0 value of the
related control chart, and the standard error of this approximated actual 𝐴𝑅𝐿0 value can also
be computed. For the four modified charts AC-D, RTC-D, DSVM-D and KNN-D, their actual
𝐴𝑅𝐿0 values are computed in a same way, except that process observations are de-correlated
before online monitoring.
From Table 1, we can have the following results. First, the IC performance of the charts

AC, RTC, DSVM and KNN all have a reasonably stable performance in Cases I and II when
process observations are assumed to be i.i.d. at different observation times and different quality
variables are assumed independent as well. Second, in Cases III-V when there is a serial data
correlation across different observation times and data correlation among different quality
variables, the IC performance of the charts AC, RTC, DSVM and KNN becomes unreliable
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Table 1.Actual 𝐴𝑅𝐿0 values and their standard errors (in parentheses) of fourmachine learning
control charts and their modified versions when their nominal 𝐴𝑅𝐿0 values are fixed at 200.

Methods Case I Case II Case III Case IV Case V
RF 189(3.98) 194(4.20) 105(1.42) 119(2.05) 106(1.33)
RF-D 193(3.22) 182(3.49) 188(3.61) 193(3.70) 194(3.37)
RTC 203(4.66) 207(5.23) 252(5.97) 133(3.02) 269(6.01)
RTC-D 194(3.68) 196(3.64) 201(4.00) 188(3.49) 190(3.96)
DSVM 213(5.20) 195(4.77) 263(6.99) 118(2.87) 277(6.34)
DSVM-D 193(4.33) 198(3.50) 193(4.16) 190(3.72) 188(3.73)
KNN 196(4.77) 188(3.88) 156(3.70) 266(6.02) 134(4.03)
KNN-D 191(4.20) 194(3.69) 194(4.01) 187(3.20) 190(3.18)

since their actual 𝐴𝑅𝐿0 values are substantially different from the nominal 𝐴𝑅𝐿0 value of
200. Third, as a comparison, the IC performance of the four modified charts AC-D, RTC-D,
DSVM-D and KNN-D is stable in all cases considered. Therefore, this example confirms that
the IC performance of the machine learning control charts can be improved in a substantial
way by using the suggested modification discussed in Subsection 2.3.

Evaluation of the OC performance.Next, we evaluate the OC performance of the related
charts in the five cases discussed above. In each case, a shift is assumed to occur at the beginning
of online process monitoring with the size 0.25, 0.5, 0.75 and 1.0 in each quality variable.
Other setups are the same as those in Table 1. To make the comparison among different charts
fair, the control limits of the charts have been adjusted properly so that their actual 𝐴𝑅𝐿0
values all equal to the nominal level of 200. The results of the computed 𝐴𝑅𝐿1 values of these
charts in Cases I-V are presented in Figure 1.
From the Figure 1, it can be seen that the modified versions of the four control charts

all have a better OC performance in Cases III-V when the serial data correlation exists. In
Cases I and II when process observations are independent at different observation times, the
OC performance of the modified versions of the four charts have a slightly worse performance
than the original versions of the related charts. The main reason for the latter conclusion
is due to the “masking effect” of data de-correlation, as discussed in You and Qiu (2019).
Remember that the de-correlated process observations are linear combinations of the original
process observations. Therefore, a shift in the original data would be attenuated during data
de-correlation, and consequently the related control charts would be less effective in cases
when serial data correlation does not exist.

4 A Real-Data Application

In this section, a dataset from a semiconductor manufacturing process is used to demon-
strate the application of the modified machine learning control charts discussed in the pre-
vious sections. The dataset is available in the UC Irvine Machine Learning Repository
(http://archive.ics.uci.edu /ml/datasets/SECOM). It has a total of 590 quality variables and
1,567 observations of these variables. A total of 600 observations of five specific quality vari-
ables are selected here. The original data are shown in Figure 2. From the figure, it seems that
the first 500 observations are quite stable, and thus they are used as the IC data. The remaining
100 observations are used for online process monitoring. In Figure 2, the training and testing
datasets are separated by the dashed vertical lines.
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Fig. 1. Computed 𝐴𝑅𝐿1 values of the original and modified versions of the four control charts
AC, RTC, DSVM and KNN when their nominal 𝐴𝑅𝐿0 values are fixed at 200, the parameters
of the charts are chosen as in the example of Table 1, all quality variables have the same shift,
and the shift size changes among 0.25, 0.5, 0.75 and 1.0.

For the IC data, we first check for existence of serial data correlation. To this end, the 𝑝-
values of the Durbin-Watson test for the five quality variables are 1.789 × 10−3, 4.727 × 10−1,
4.760 × 10−4, 1.412 × 10−4, and 9.744 × 10−2. Thus, there is a significant autocorrelation
for the first, third and fourth quality variables. The Augmented Dickey-Fuller (ADF) test for
stationality of the autocorrelation gives 𝑝-values that are < 0.01 for all quality variables. This
result suggests that the stationary assumption is valid in this data. Therefore, the IC data have
a significant stationary serial data correlation in this example, and the modification for the
machine learning charts discussed in Sections 2 and 3 should be helpful.
Next, we apply the four modified control charts AC-D, RTC-D, DSVM-D and KNN-D to

this data for online process monitoring starting from the 501𝑠𝑡 observation time. In all control
charts, the nominal 𝐴𝑅𝐿0 values is fixed at 200, and their control limits are computed in
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Fig. 2. Original observations of the five quality variables of a semiconductor manufacturing
data. The vertical dashed line in each plot separates the IC data from the data for online process
monitoring.
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the same way as that in the simulation study of Section 3. All four control charts are shown
in Figure 3. From the plots in the figure, the charts AC-D, RTC-D, DSVM-D and KNN-D
give their first signals at the 539𝑡ℎ , 529𝑡ℎ , 525𝑡ℎ , and 534𝑡ℎ observation times, respectively.
In order to determine whether these signals are false alarms or not, the change-point detection
approach based on the generalized maximum likelihood estimation (cf., Qiu 2014, Section
7.5) is applied to the test data (i.e., the data between the 501𝑠𝑡 and 600𝑡ℎ observation times).
The detected change-point position is at 517. The Hotelling’s 𝑇2 test for checking whether
the mean difference between the two groups of data with the observation times in [501,516]
and [517,600] is significantly different from 0 gives the 𝑝-value of 4.426 × 10−3. Thus, there
indeed is a significant mean shift at the time point 517. In this example, it seems that all four
charts can detect the shift and the chart DSVM-D can give the earliest signal among them.

5 Concluding Remarks

Recently, several multivariate nonparametric control charts based on differentmachine learning
algorithms have been proposed for online process monitoring. Most existing machine learning
control charts are based on the assumption that the multivariate observations are independent
of each other. These control charts have a reliable performance when the data independence
assumption is valid. However, when the process data are serially correlated, they may not be
able to provide a reliable process monitoring. In this paper, we have suggested a modification
for these machine learning control charts, by which process observations are first de-correlated
before they are used for monitoring serially correlated data. Numerical studies have shown that
the modified control charts have a more reliable performance than the original charts in cases
when the serial data correlation exists.
There are still some issues to address in the future research. For instance, the “masking

effect” of data de-correlation could attenuate the shift information in the de-correlated data.
One possible solution is to use the modified data de-correlation procedure discussed in You and
Qiu (2017). By this approach, the process observation at the current time point is de-correlated
only with a small number of previous process observations within the so-called “spring length”
(cf., Chatterjee and Qiu 2009) of the current observation time. Another issue is related to the
assumption of short-range stationary serial data correlation that has been used in the proposed
modification procedure. In some applications, the serial data correlation could be long-range
and non-stationary (cf., Beran 1992). Thus, the proposed modification could be ineffective for
such applications.
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Abstract Data-driven Anomaly Detection approaches have received increasing at-
tention in many application areas in the past few years as a tool to monitor complex
systems in addition to classical univariate control charts. Tree-based approaches have
proven to be particularly effective when dealing with high-dimensional Anomaly
Detection problems and with underlying non-gaussian data distributions. The most
popular approach in this family is the Isolation Forest, which is currently one of the
most popular choices for scientists and practitioners when dealing with Anomaly De-
tection tasks. The Isolation Forest represents a seminal algorithm upon which many
extended approaches have been presented in the past years aiming at improving the
original method or at dealing with peculiar application scenarios. In this work, we
revise some of the most popular and powerful Tree-based approaches to Anomaly
Detection (extensions of the Isolation Forest and other approaches), considering both
batch and streaming data scenarios. This work will review several relevant aspects of
the methods, like computational costs and interpretability traits. To help practitioners
we also report available relevant libraries and open implementations, together with
a review of real-world industrial applications of the considered approaches.
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1 Introduction

The problem of finding novel or anomalous behaviours, often referred as Anomaly or
outlier Detection (AD), is common to many contexts: anomalies may be very critical
in many circumstances that affect our everyday life, in contexts like cybersecurity,
fraud detection and fake news [40, 56]. In science Anomaly Detection tasks can be
found in many areas, from astronomy [62] to health care [65]; moreover, Anomaly
Detection approaches have been even applied to knowledge discovery [16] and
environmental sensor networks [35].

One of the areas that mostly benefits from the employment of AD modules is
the industrial sector, where quality is a key driver of performance and success of
productions and products. With the advent of the Industry 4.0 paradigm, factories
and industrial equipment are generating more and more data that are hard to be fully
monitored with traditional approaches; on the other hand, such availability of data
can be exploited for enhanced quality assessment and monitoring [55, 78]. Moreover,
products and devices, thanks to advancements in electronics and the advent of the
Internet of Things, are increasingly equipped with sensors and systems that give
them new capabilities, like for example the ability to check their health status thanks
to embedded/cloud Anomaly Detection modules [4, 44, 89].

Despite the heterogeneous systems that may benefit from AD modules/capabilities,
there are several desiderata that are typically requested for an AD module, since ob-
viously looking for high detection accuracy is not the only important requisite. For
example, in many contexts the delay between the occurred anomaly and its detection
might be critical and the low latency of the model becomes a stringent requirement.
One way to mitigate the detection delay problem is typically to embed the AD model
in the equipment/device: this implementation scenario directly affects both the choice
of the detection model and, in some cases, the hardware. As a consequence prac-
titioners will typically have to find a compromise between detection accuracy and
computational complexity of the model: while this is true for any Machine Learn-
ing module, it is typically more critical when dealing with AD tasks. Moreover, in
presence of complex processes or products equipped with different sensors, data will
exhibit high dimensionality and therefore practitioners will tend to prefer models
that are able to efficiently handle multiple inputs. Summarizing, a good real-world
AD solution: i) has to provide high detection performances; ii) has to guarantee low
latency; iii) requires low computational resources; iv) should be able to efficiently
handle high dimensional data.

The former list of desiderata for AD solutions is not exhaustive, and other char-
acteristics can increase the model appeal in front of practitioners. In recent years,
model interpretability is an increasingly appreciated property. Detecting an anomaly
is becoming no longer enough and providing a reason why a point has been la-
belled as anomalous is getting more and more importance. This is particularly true
in manufacturing processes where the capability of quickly finding the root cause
of an anomalous behaviour can lead to important savings both in terms of time and
costs. In addition, interpretability enhances the trust of users in the model, leading
to widespread adoption of the AD solution.
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Another attractive property is the ability of the model to handle data coming from
non-stationary environments. Especially in early stages of AD adoption, available
data are few and restricted to a small subset of possible system configurations; a
model trained on such data risks to label as anomalous all the states not covered in
the training domain, even if they are perfectly normal. In order to overcome this issue,
the model should detect the changes in the underling distribution and continuously
learn new normal data. In this process, however, the AD model should not lose its
ability to detect anomalies.

Given the importance and diffusion of AD approaches, we deemed relevant to
review and compare an important class of algorithms particularly suited for the
aforementioned requirements. The subject of this investigation is the tree-based
approaches to AD, i.e. approaches that have a tree structure in their decision making
evaluation; the most popular representative of this class is the famous Isolation
Forest algorithm, originally proposed by Liu [53, 52], an algorithm that is receiving
increasing attention and sees application in many scenarios. In this work, for the first
time to our knowledge, we try to systematically review all the AD methods in this
emerging class, to discuss their costs and performances in benchmarks, to report
industrial applications and to guide readers through available implementations and
popularity of the various approaches in the scientific literature.

This review is conceived both for researchers and practitioners. The first ones
will find a comparison between the many proposed variants, while the second ones
will find useful information for practical implementation. Despite this work mainly
copes with AD algorithms designed for tabular datasets, it is important to note that
AD can be performed on a variety of data structures like images or audio signals and
algorithms dedicated for different types of data format are also present in the litera-
ture. Nevertheless, it should be remarked that any data structures can be transformed
into tabular data extracting appropriated features, making AD approaches for tabular
data applicable potentially to any scenario.

2 Taxonomy and approaches to anomaly detection

While many Anomaly Detection approaches have been developed, a simple taxonomy
divides such methods into two categories:

• Model-based - It is the most traditional Anomaly Detection category and employs
a predefined model that describes the normal or all the possible anomalous oper-
ating conditions. These approaches usually rely on physics or domain-knowledge
heuristics; unfortunately they are often unfeasible and costly to be developed since
they require extended knowledge of the system under exam.

• Data-driven - The approaches examined in this paper rely instead on data avail-
ability. More precisely, such approaches make use of two ingredients: data sam-
pled from the analyzed system and algorithms able to automatically learn the
abnormality level of those data. Such category of approaches is often referred
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as data-driven anomaly detection and its advantages are the great flexibility and
absence of strong assumptions that limit the model applicability.

Additionally, when looking at anomalous behaviours, two problem settings can be
defined: the supervised and the unsupervised one. The former consists in classifying
data, based on previously tagged anomalies. It is called supervised since training data
are collected from sensor measurements and have an associated label that identifies
them as anomalous or not; in industrial context, the supervised scenario is typically
named Fault Detection. Unfortunately, supervised settings are seldom available in
reality [13]: labelling procedures are very time consuming and typically require
domain experts to be involved.

On the contrary, the unsupervised scenario is the most common in real world
applications. In this case, data are not equipped with labels and therefore the learning
algorithm lacks a ground truth of what is anomalous and what is not. Given that, the
goal of the algorithm is to highlight the most abnormal data, assigning to each one
an Anomaly Score (AS). In this paper the focus will be on the unsupervised setting
since it is the most applicable in real-world scenarios.

To be more precise, the unsupervised setting can be further divided into two
sub-categories, based on the nature of the available data. The fully unsupervised
one relies on training set composed of both anomalies and normal data. However in
some applications obtaining training data with anomalies is quite complex, therefore
in such cases data are composed only of normal instances: in this scenario semi-
supervised approaches, sometimes named one-class setting, are the most natural
ones to be adopted.

2.1 Formal definition of anomaly

The definition of anomaly is far from trivial, and depending on it, methods that try
to detect anomalous data behave differently. The most widely accepted definition is
quite general, and it was given by Hawkins in [34]:

"Observation which deviates so much from other observations as to arouse suspicion it was
generated by a different mechanism".

This statement can refer to multiple different anomalies, and does not give a clear
indication on which way to follow to detect them. According to this definition it may
be inferred that: i) a model needs to measure (in a not-specified way) the deviation
between points; ii) each observation has an associated probability to be an outlier;
iii) a different mechanism is present in the case of anomalous samples, suggesting
that, on a data perspective, outliers follow a distribution that is different from the
one of the inliers. The reported definition does not speak about the numerosity of
outliers, but there is an hint that outliers are fewer than inliers in number. These
indications give wide space to interpretations and as it will be clear later on, they
encourage very different approaches.
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Anomalies are traditionally divided into 4 categories even if some authors suggest
different classes. Generic datasets looks like Figure 1: they are made up of normal
dense and sparse clusters, surrounded by global sparse and dense anomalies. These
can be defined global anomalies if they look anomalous w.r.t all the normal points,
or local if their abnormality is w.r.t a single normal cluster.

Fig. 1: Example of anomalies in a simple dataset composed of dense and scattered
normal clusters. Anomalies can be locally defined w.r.t a specific cluster, or global.
They can be scattered in the domain or they can group together in anomalous clusters.
Figure adapted from [6].

2.2 Static and dynamic problems

Depending on the application and the available data, different problem statements
can be defined. The anomaly detection problem is defined static if the analysis is
performed on time-independent data (static datasets, where the order of the obser-
vations do not matter), while it is dynamic if it is performed on time-dependent data
(time-series data or dynamic datasets). Another very basic discrimination is between
univariate or multivariate anomaly detection.

A more subtle distinction concerns the way in which the algorithm training is
performed. The most traditional one is the batch training where the model is trained
only once, using all the available training data. This approach might be unpractical
when the dataset is too large to fit into the memory, or when sampled data do not
cover sufficiently well the normal operating domain: in this case the model needs
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to be continuously updated as new data are collected; this is even more important
in situations where the normal data distribution undergoes a drift, and samples that
were used in the first part of the training now become anomalous. Therefore in such
case, the model has to adapt by learning the new configuration and by forgetting the
outdated distribution.

2.3 Classes of algorithms

Depending on the interpretation that each author gives to the definition in Section 2.1,
there exists different ways to measure anomaly. The only thing that brings together
all the approaches is the use of an Anomaly Score (AS) assigned to each point.
This score should serve as a proxy of the probability to be an outlier. Obviously,
each method assigns a different anomaly score to the same point since it is based on
different detection strategies.

There exists a variety of anomaly detection algorithms, but they can be categorized
into 5 classes. The distinction between classes is not strongly fixed, and some methods
could be categorized at the same time in different classes. The most intuitive class
of algorithms is the distance-based one. It is based on the assumption that outliers
are spatially far from the rest of the points [3]. Also the density-based class is quite
intuitive since assumes outliers living in rarefied areas [28]. The statistics-based
ones are conceptually simple, but often make use of heavy assumptions on the
distribution that generated training data [38]. Clustering-based employ clustering
techniques in order to find clustered data, moreover, they are strongly susceptible to
hyper-parameters and often rely on density or distance measures [39].

Unfortunately, these approaches are expensive to compute or rely on too strong
assumptions. Density and distance-based methods are hard to compute especially in
high dimensional settings and when many data are available; such approaches are
hardly applicable in scenarios where detection has to be performed online and on
fast evolving data streams. Moreover, statistical methods are often restricted to ideal
processes, rarely observed in practice.

Quite recently a new class of methods emerged: the isolation-based. This class
is very different from the previous ones: it assumes that outliers are few, different
and, above all, easier to be separated from the rest of data. This draws the attention
from normal data to anomalies and allows to obtain much more efficient anomaly
detectors. The primary goal of these methods is to quickly model the anomalies
by isolating them, rather than spending resources on the modeling of the normal
distribution. The seminal, and most popular, approach in this class is the Isolation
Forest algorithm [53] that will be extensively discussed in Section 3. The original
idea is based on tree-methods, but it has been recently extended to Nearest Neighbors
algorithm [7].
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2.4 Tree-based methods

Tree-based methods, as suggested by the class name, rely on tree structures where
the domain of the available data is recursively split in a hierarchical way, in non-
overlapping intervals named leaves. In the Anomaly Detection context, these models
are seen as a tool rather than a separate detection approach. As a matter of fact, they
are employed in both density-based and isolation-based approaches. The former
approach is perhaps the most intuitive since at high densities one expects normal
data clusters, vice-versa in low density regions. However this approach is in contrast
with the simple principle of never solving a more difficult process than is needed [68].
Density estimation is a computationally expensive task since it focuses on normal
data points, that are the majority. However, the ultimate goal of anomaly detection
problem is to find anomalies, not to model normal data. Outliers are inferenced only
at a second step. On the contrary, the isolation approach is less simple to formulate but
also less computationally expensive. It directly addresses the detection of anomalies
since points that are quickly isolated are more likely to be outliers.

The literature concerning anomaly detection using tree-based methods is quite
vast, but in the present review we decided to focus on methods that naturally apply
to the unsupervised setting, due to its relevance in industry. Not only we decided
to exclude the supervised approaches, but also we excluded the ones that artificially
create a second class of outliers like in [17]. These approaches often try to fit
supervised models into unsupervised settings at cost of inefficient computations,
especially at high dimensionality.

2.5 Structure of the paper and contribution

The aim of this review will be to describe the most salient features of unsupervised
tree-based algorithms for AD. Great attention will be devoted to the algorithms that
primarily try to isolate anomalies, and then, as a by-product, estimate density. As
stated above, to the best of our knowledge this is the first work that reviews the
methods that originated from Isolation Forest, or that are closely related to it.

Throughout this paper, we will refer to the Isolation Forest algorithm [53] as
the original algorithm, or by using the acronym IF. Moreover, the term outlier and
anomaly will be considered synonyms. Normal data will be often named inliers and
must not be confused with Gaussian data.

This paper is divided into 5 sections. After the first two introductory sections,
the third reviews the tree-based approaches: in the first part of such section the
Isolation Forest original algorithm is extensively discussed together with all the
variants applied to time independent datasets; this part prepares the ground for the
more complex time dependent datasets and their algorithms presented in Section
3.2. After this, some paragraphs are devoted to distributed and interpretable models.
The fourth section compares the performances of the methods, looking at the results
declared in the papers. A practical comparison between the methods fall outside the
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scope of this paper, but case studies and multiple source code repositories are listed
for the interested reader. In the last Section, conclusions and ideas for future research
directions are discussed.

3 Isolation tree based approaches

Fig. 2: Combined citations of IF original paper [53] and its extended version [52] by
the same authors. Source: Scopus. Retrieved on the 30th of March 2021.

Isolation forest (IF) is the seminal algorithm in the field of isolation tree-based
approaches and it was firstly described in [53]: in recent years IF has received an
increasing attention from researchers and practitioners as it can be noted in Figure
2, where the evolution of citations of the algorithm in scientific papers has increased
exponentially over the years.

As the name suggests, IF is an ensemble algorithm that resembles in some aspects
the popular Random Forest algorithm revised in the unsupervised anomaly detection
settings. Indeed, IF is a collection of binary trees: while in the popular work of
Breiman [9] we are dealing with decision trees, here the ensemble model is composed
by isolation trees, that aim at isolating a region of the space where only a data point
lies. IF is based on the idea that, since anomalies are by definition few in numbers,
an isolation procedure will be faster in separating an outlier from the rest of the data
than when dealing with inliers.

More in details, the algorithm consists in two steps: training and testing. In the
training phase, each isolation tree recursively splits data into random partitions of
the domain. As said, the core idea is that anomalies on average require less partitions
to be isolated. Therefore inliers live in a leaf in the deepest part of the tree, while
outliers in a leaf close to the root. More formally, the anomaly score is proportional
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to the average depth of the leaf where each datum lies. For the sake of clarity, we
report the training and testing pseudo-codes (Algorithm 1, 2 and 3 - adapted from
[53]).

Algorithm 1: IsolationForest(X, n, 𝜓)

Input: 𝑋 – data in R𝑑 , 𝑛 – number of trees, 𝜓 – sample size
Output: list of Isolation Trees
forest← empty list of size 𝑛;
ℎ𝑚𝑎𝑥 ← dlog2 |𝑋 |e;
for 𝑖 = 1 to 𝑛 do

�̂� ← sample(𝑋, 𝜓);
forest[𝑖] ← IsolationTree( �̂�, 0, ℎmax);

end
return forest

Algorithm 2: IsolationTree(X, h, hmax)

Input: 𝑋 – data in R𝑑 , ℎ – current depth of the tree, ℎmax – depth limit
Output: Isolation Tree (root node)
if ℎ ≥ ℎmax or |𝑋 | ≥ 1 then

return Leaf {
size← |𝑋 |

};
else

𝑞 ← randomly select a dimension from {1, 2, . . . , 𝑑};
𝑝 ← randomly select a threshold from [min 𝑋 (𝑞) , max 𝑋 (𝑞) ];
𝑋𝐿 ← filter(𝑋, 𝑋 (𝑞) ≥ 𝑝);
𝑋𝑅 ← filter(𝑋, 𝑋 (𝑞) < 𝑝);
return Node {

left← IsolationTree(𝑋𝐿 , ℎ + 1, ℎmax),
right← IsolationTree(𝑋𝑅, ℎ + 1, ℎmax),
split_dim← q,
split_thresh← p

};
end
The training phase starts subsampling the dataset composed of 𝑛 data points, in 𝑡

randomly drawn subsets of 𝜓 samples. Then, for each subset a random tree is built.
At each node of the random tree a feature is uniformly drawn. The split point is
uniformly sampled between the minimum and maximum value of the data along the
selected feature, while the split criterion is simply the inequality w.r.t the feature
split point. The splitting procedure is recursively performed until a specific number
of points are isolated or when a specific tree depth is reached. In principle, the full
isolation tree should grow until all points are separated, unfortunately risking to
grow trees with depth close to 𝑛 − 1. However data that lie deep in the tree are the
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normal ones, not the target of the detector. For efficiency reasons, this is not practical
and since anomalies are easy to be isolated, the tree only needs to reach its average
depth

⌈
log2 𝑛

⌉
.

Algorithm 3: PathLength(x, T, h)

Input: 𝑥 – instance in R𝑑 , 𝑇 – node of IsolationTree, 𝑙 – current length (to be
initialized to 0 when first called on the root node)

Output: path length of x
if T is a leaf node then

return ℎ + 𝑐(𝑇.size);
end
𝑞 ← 𝑇.split_dim;
if 𝑥 (𝑞) < 𝑇.split_tresh then

return PathLength(𝑥, 𝑇 .left, 𝑙 + 1);
else

return PathLength(𝑥, 𝑇 .right, 𝑙 + 1);
end

The testing phase is different and consists in checking the depth ℎ(·) reached by
the data point 𝑥 in all the isolation trees, and taking the average.

The anomaly score 𝑠(𝑥, 𝑛) is defined as:

𝑠(𝑥, 𝑛) = 2−
𝐸 (ℎ (𝑥) )
𝑐 (𝑛)

where 𝑐(𝑛) is a normalizing factor and 𝐸 (ℎ(𝑥)) is the average of the tree depths.
Note that when 𝑥 is an anomaly, 𝐸 (ℎ(𝑥)) −→ 0 and therefore 𝑠(𝑥) −→ 1, while when
𝐸 (ℎ(𝑥)) −→ 𝑛 − 1, 𝑠(𝑥) −→ 0. When 𝐸 (ℎ(𝑥)) −→ 𝑐(𝑛), 𝑠(𝑥) −→ 0.5.

The computational complexity of IF is𝑂 (𝑡𝜓 log𝜓) in training while𝑂 (𝑛𝑡𝜓 log𝜓)
in testing, where we recall that𝜓 is the subsampling size of the dataset. It is interesting
to note that in order to have better detection results, 𝜓 needs to be small and constant
across different datasets.

Isolation forest has many advantages compared to the methods belonging to other
classes. Firstly it is very intuitive and requires a small amount of computations. For
this reason it is particularly suited for big datasets and for applications where low
latency is a strict requirement. The use of random feature selection and bagging
allows to efficiently handle high dimensional datasets. In addition, the use of tree
collections makes the method highly parallelisable. Unfortunately the algorithm has
some issues. The most severe is the masking effect created by the axis parallel
partitions and anomalous clusters, that perturbs the anomaly score of some points.
A closely related issue is the algorithm difficulty to detect the local anomalies.

Trying to make a summary: the standard isolation forest defines anomalies as few
and different, and approaches their detection not modelling normal data but trying
to separate them as fast as possible with the aid of bagged trees. The split criterion is
based on randomly selected feature and split point, that create axis-parallel partitions.
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These characteristics will be challenged by the following methods but the structure
of the algorithms will remain quite the same.

In the following subsections the focus will be on static approaches (Section 3.1),
dynamic (Section 3.2), distributed (Section 3.3) and finally interpretable and feature
selection methods (Section 3.4).

3.1 Static learning

Static learning methods can be generally divided into two sub-categories, using two
approaches. The first one groups i) methods that directly originate from the seminal
work [53] slightly modifying the Isolation Forest, and ii) methods that start from a
different but similar algorithms like the Half-Space (HS) trees or Random Forests
(RF). The former group focuses on the importance of fast isolation, while the latter
on the density approximation. The second grouping approach subdivides the static
methods based on how is computed the anomaly score. The majority relies on the
mean leaf depth but a growing number of algorithms employs some variation of the
leaf mass.

Filtering and Refinement: A Two-Stage Approach for Efficient and Effective
Anomaly Detection

The general intuition that an AD algorithm should focus more on the detection of
anomalies than the modelisation of normal data, has been developed also in [96].
In this case, the algorithms is based on two stages: filtering and refinement. At the
first stage, the majority of normal data are filtered using a computationally cheap
algorithm, while at the second stage, the remaining data are processed by a more
refined but expensive tool. Filtering is performed by a tree based method quite
similar to IF except for the splitting criterion: here the choice is deterministic and
based on feature entropy and univariate densities computed by histograms. After
that, distance-based methods are applied to the most abnormal data points and two
anomaly scores are proposed to detect sparse global anomalies and clustered local
anomalies.

The time complexity of the filtering stage is close to the IF, while the refinement
stage is 𝑂 (𝑠2) where 𝑠 is the number of filtered samples. It is easy to see that the
filtering stage is very important to get competitive computational performances.

On detecting clustered anomalies using SCiForest (SCiForest)

SCiForest [54] takes the assumptions of IF and tries to improve it, with special
attention to clustered anomalies. Indeed Isolation Forest performs quite poorly on
them. The two most important novelties that this method introduces are: i) the use of
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oblique hyper-planes, instead of axis-aligned, and ii) the use of a split criterion that
replaces the random split. At each partition multiple hyper-planes are generated, but
only the one that maximises a certain criterion is selected.

The intuition behind this criterion is that clustered anomalies have their own
distribution and the optimal split separates normal and anomalous distributions
minimizing the dispersion. Therefore the split criterion is formalized as:

Sdgain =
std(𝑋) − average

(
std(𝑋 left), std(𝑋 right)

)
std(𝑋)

where std(·) computes the standard deviation.
Due to the new computations, the complexity of the SCiForest increases reaching

𝑂 (𝑡𝜏𝜓(𝑞𝜓 + log𝜓 + 𝜓)) in the training stage, and 𝑂 (𝑞𝑛𝑡𝜓) in the evaluation stage,
where 𝑡 is the number of trees in the forest, 𝜏 the number of hyper-plane trials and 𝑞

the number of features composing each hyper-plane dimensions.

Mass estimation (MassAD)

The authors of Mass estimation (MassAD) started in their papers [83, 84] recalling
the classic definition of the mass i.e. the number of points in a region. However
their definition of the mass of a point is slightly more complex since they consider
all the overlapping regions that cover that point. Doing that, they obtain a family of
functions that accentuates the fringe points in a data cloud. Despite its usefulness,
this sort of anomaly score is too computationally expensive. To overcome this issue
they propose an algorithm that approximates it, employing Half Space trees. These
can be thought as a simplification of isolation trees, indeed only the splitting feature is
taken at random, while the splitting value is half of the range along that feature. They
propose two variants of the same algorithm: one grows leaves of the same depth,
while the other lets them to have different depths. The latter not only estimates the
score using the leaf mass, but also improves it with a factor dependent on the tree
depth.

The authors report a time complexity 𝑂 (𝑡 (𝜓 + 𝑛)ℎ) that includes both training
and testing. The space complexity is 𝑂 (𝑡𝜓ℎ) .

Ordinal isolation: An efficient and effective intelligent outlier detection
algorithm (kpList)

The method proposed in [15] eliminates the randomness of isolation forest, parti-
tioning the space by means of successive uniform grids and at each depth the grid
doubles its resolution.

The time complexity is 𝑂 (𝑛 log 𝑛).
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Improving iforest with relative mass (ReMass IF)

ReMass IF [6] starts from quite similar premises to the SCiForest’s, but focuses on
the poor performances of IF on local anomalies. Unlike SCiForest, it does not suggest
to modify the training algorithms but the anomaly score: it proposes to substitute the
tree depth with a new function, the relative mass.

The mass of a leaf 𝑚(·) is defined as the number of data points inside the leaf
while the relative mass of the leaf is the ratio between the mass of the parent and the
mass of the leaf. More precisely, the anomaly score for each tree is defined in this
way:

𝑠𝑖 (𝑥) =
1
𝜓

𝑚(𝑋parent)
𝑚(𝑋leaf)

Note the authors suggest to modify only the anomaly score formula, keeping the
rest of the algorithm untouched. This helps improving the anomaly score, while
preserving the low computational complexity.

The time and space complexities are the same as IF.

Extended isolation forest (EIF)

In the paper [32] the authors observe the masking effect created in the IF algorithm by
the axis-aligned partitions. The intersection of multiple masks can even create some
fake normal areas of the domain, leading to completely wrong anomaly detection. In
order to overcome the described issue, the authors suggest a very simple but effective
strategy already employed in SCiForest: the use of oblique partitions. However in
this case the authors do not use a repeated split criterion, loosing its benefits but also
the additional computational overload.

The time complexity is similar to the SCiForest, except for the saving of the 𝜏

repetitions.

Identifying Mass-based local anomalies using Binary Space Partitioning

The approach presented in [26] is very similar to [84] and mainly differs in the
way the anomaly score is computed: it does not rely only on the mass and depth of
the leaf, but is weighted by the deviation between the selected split point and the
corresponding feature value of the tested point.

The authors report time and space complexities similar to MassAD, i.e. a time
complexity 𝑂 (𝑡ℎ(log 𝑛 + 𝜓)).

Functional Isolation Forest (Functional IF)

IF naturally born for static data but can also be employed for functional data. In
this case anomalies can be subdivided into shift, amplitude and shape anomalies.
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These can be transient or persistent depending on their duration. In [76] the authors
formalise this approach adapting the IF algorithm to the new setting. The set of
features are not given with the dataset, but are extracted projecting the functional
sample over a dictionary chosen by the user. This choice is arbitrary and highly
affects the resulting performances. The projection is not performed using a classical
inner product because it does not account for shape anomalies; on the contrary the
authors suggest to employ the Sobolev scalar product.

One class splitting criteria for random forests (OneClassRF)

The Random Forest algorithm naturally applies to the supervised setting, however
some attempts to adapt it to the unsupervised one has been made. As previously
discussed in the former section, the most intuitive solution is to artificially sample
the domain in order to create outlier data [17], but this has been shown to be
inefficient. Another approach described in [27] extends the split criterion based on
the Gini index to the unsupervised scenario. Intuitively, the criterion tries to generate
two children: the first that isolates the minimum number of samples in the maximum
volume, while the second the contrary. In practice, the authors suggest two strategies
to adapt the Gini index in absence of a second class: one considers the outliers
uniformly distributed, while the other at each split estimates the outliers as a fixed
fraction of inliers.

A novel isolation-based outlier detection method (EGiTree)

Sciforest is not the only one that tries to improve the algorithm using split criteria:
EgiTree [75] (a very similar approach was presented in [50]) employs heuristics
based on entropy to effectively select both attribute and split value. Indeed, the goal
is to take the randomness out of the algorithm. The authors start observing that in
practice, looking at the features individually, two kind of anomalies exist: anomalies
that are outside the normal range, and other that are inside the normal feature range
but have abnormal feature combinations. In the first case anomalous data are easier
to be detected since a gap is easily identifiable, and the disorder is lower. In the
second, it is difficult to find a gap simply looking at the projections of data over the
axes. From these observations the authors defined two heuristics. If the feature that
exhibits lower entropy has an entropy value i) less than a threshold, it is partitioned
along the biggest gap between the feature data ii) greater that this threshold, it is
partitioned along the mean feature value, creating a balanced partition. At each
splitting iteration a partition cost is computed. When the first heuristic is used, the
partition cost is roughly inversely proportional to the gap, and takes the form:

cost(𝑋) = 1 − maxgap(𝑋feature)
max(𝑋feature) −min(𝑋feature)
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On the contrary, when the second heuristic is employed, the partition cost is maximal
and equal to 1. The total partition cost of a data point is the sum on the partition costs
of each node traversed by the datapoint, and the anomaly score related to a single
tree is the inverse of the total partition costs.

LSHiForest: a generic framework for fast tree isolation based ensemble
anomaly analysis (LSHiForest)

The algorithm presented in [98] combines the isolation tree approach with the
Locality Sensitive Hashing (LSH) forest, where given a certain distance function
𝑑, neighbours samples produce the same hash with high probability while samples
far from each other produce the same hash with low probability. The probabilities
can be tuned by concatenating different hash functions, so that an isolation tree
can be constructed by concatenating a new function at each internal node. The
path from the root to a leaf node is the combined key of the corresponding data
instance. Since 𝑑 is generic, this extension allows to incorporate any similarity
measure in any data space. Moreover, the authors show that their framework easily
accommodates IF and SCiForest when particular hash functions are selected. They
adapted the method in this way: i) the sampling size is not fixed but variable, ii) the
trees are built using the LSH functions, iii) the height limit and the normalisation
factor are changed consequently and iv) the individual scores are combined after
the exponential rescaling. The average-case time complexity in the training stage is
Θ(𝜓 log𝜓), while in the evaluation phase it is Θ(log𝜓).

Hybrid Isolation Forest (HIF and HEIF)

The authors of [64] observe that IF behaves differently if the dataset has a convex
or concave shape. For example they analyze the detection performances on a dataset
composed of a toroidal normal cluster and some scattered anomalies that lie inside
and just outside the torus. It turns out that IF struggles to detect inner anomalies,
giving them a score too close to the normality. To overcome this issue the authors
propose two approaches, one of which is unsupervised: at each leaf node the centroid
of leaf training data is computed and recorded, then in the testing phase the distance
between the point and the corresponding centroid is measured. This new score
is linearly combined with the traditional leaf depth, obtaining a more robust score.
Unfortunately this approach employs euclidean distance that is not scale invariant and
therefore requires some unpractical normalizations. In [37] the approach described
in the previous paper is enhanced by the using of the Extended Isolation Forest [33],
obtaining a better detector.

The authors claim the time complexity of this algorithm is slightly higher than
IF due to the additional computations, but anyway comparable. To verify their
hypotheses they perform some simple simulations.
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A novel anomaly detection algorithm based on trident tree (T-Forest)

The method [97] is based on a very simple tree structure: the trident tree. As the
name suggests, this structure is not a binary tree but it generates three children at a
time. Like IF, a random feature is selected and a split criterion is applied. The split
criterion is simple: data that are three std to the left of the mean are sent to the left
child, the contrary for the right child, and the part in the middle of the distribution is
assigned to the central child. The anomaly score is then computed in a similar way
to ReMass IF, i.e. using the mass instead of the leaf depth.

The authors report a time complexity of 𝑂 (𝑡𝜓 log 𝑛) and space complexity of
𝑂 (𝑡𝜓𝑛) for the training phase, while the time complexity of the evaluation phase is
𝑂 (𝑚𝑡 log (𝑛𝜓))

Hyperspectral anomaly detection with kernel isolation forest

In the context of computer vision, a small modification to the original algorithm has
been shown in [49]. Here the goal is to find anomalous pixels inside a hyper spectral
image. A kernel is employed in order to extract non linear features to be used in the IF.
Then the principal components are selected, a global method is trained on the whole
image and the most anomalous pixels are detected. The connected components of
anomalous pixels are subjected to a local procedure, where a new model is trained
and tested on the pixels. This method is applied recursively until a sufficiently small
anomalous area is detected.

The authors calculate a time complexity of 𝑂 (𝑡𝜓(𝜓 + 𝑛pixels)).

A novel anomaly score for isolation forests

The classic mean leaf depth as proxy of the data anomaly is questioned in [66].
According to the authors, the information encoded in the structure of the original
isolation tree, is not fully exploited by its anomaly score. After this premise, they
suggest three different alternatives that do not change the learning algorithms but
only how is computed the anomaly score. Instead of the standard path length that adds
a unit at each traversed node, they propose a weighted path. They suggest multiple
strategies to obtain these weights. The first relies on the concept of neighborhood:
more isolated points will have smaller neighbors, therefore at each node the weight
will be the inverse of data passing through it. The second strategy starts from 3.1
where a split criterion based on Gini impurity was employed. In this context the
authors suggest to weight the node using the inverse of the split criterion value, since
it measures how well the split was performed. The last strategy simply takes the
product between the former two.
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Distribution Forest: An Anomaly Detection Method Based on Isolation Forest
(dForest)

The variant proposed in [95] does not rely on axis parallel or oblique partitions but
on elliptic ones. In this case, at each node multiple random features are selected and
the covarance is computed. Then data are divided using the Mahalanobis distance:
points that lye inside the hyper ellipsoid are sent to the left child, while the ones
outside of the elliptic boundary are sent to the right leaf. The split value is chosen
such that a fixed portion of data are outside the ellipse.

The time complexity differs from the IF one in the last step of covariance com-
puting. As the subset of selected features increases, this diversity becomes more
marked.

Research and Improvement of Isolation Forest in Detection of Local Anomaly
Points (CBIF)

Multiple approaches have been proposed to overcome the limitations of IF in detect-
ing local outliers. In [25] the authors suggest the combination of clustering based
algorithms and the original IF. Despite its efficacy, the choice of using a more
expensive model to enhance a cheaper one, seems counter intuitive.

K-Means-based isolation forest (k-means IF and n-ary IF)

In the papers [43, 42] the authors investigate the impact of the branching process in
the original isolation forest algorithm. More precisely they are interested in how the
algorithm behaves changing the number of children each node has to grow. They try
to improve the original algorithm by means of K-means clustering over the selected
splitting feature and using a score that measures the degree of membership of the
point to the each traversed node.

OPHiForest: Order Preserving Hashing Based Isolation Forest for Robust and
Scalable Anomaly Detection (OPHiForest)

The work shown in [93] improves on the core ideas of the LSHiForest by proposing
a learning to hash (LTH) method to select the hashing function which best preserve
similarities in the dataset in the projected space. The order preserving hashing
algorithm (OPH) is chosen for such task as it shows excellent performances in
nearest neighbour search. This algorithm is able to find the hash function which
minimizes the order alignment errors between original and projected data samples.
Moreover, an improved two-phases learning process for OPH is presented to enable
faster computation. An isolation forest is built based on the hashing scheme, where
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the specific hash function to use at each node is not random, but it is fine-learnt by
OPH. Finally, the evaluation phase is similar to the LSHiForest.

While this method hash higher training time complexity (Θ(𝐻𝑏𝑟𝜓
2𝑡𝑎 log𝜓))

with respect to LSHiForest due to the learning process, it shows similar performance
in the evaluation phase (Θ(𝑡𝑛𝑎 log𝜓)).

PIDForest: Anomaly detection via partial identification (PIDForest)

Classical IF relies on the concept of isolation susceptibility, which intuitively can
be outlined as the average number of random slices that are needed to fully isolate
the target data. This definition of anomaly has some great advantages, but also some
pitfalls. In particular, in high dimensional data, many attributes are likely to be
irrelevant and isolation may be sometimes very demanding.

PIDForest [29] is based on an alternative definition of anomaly. The authors
assert that an anomalous instance requires less descriptive information to be uniquely
determined from the other data. Then, they define their partial identification score
(PIDScore) in a continuous setting as a function of the maximum sparsity over all
the possible cubical subregions containing the evaluated data point 𝑥. Say 𝑋 full
data, and 𝐶 a subcube of the product space and 𝜌 a sparsity measure, PIDScore can
be formalized as

PIDScore = max
𝐶3𝑥

𝜌(𝑋,𝐶) = max
𝐶3𝑥

vol(𝐶)
|𝐶 ∩ 𝑋 |

PIDForest builds a heuristic that approximates the PIDscore. The strategy is to
recursively choose an attribute to be splitted in 𝑘 intervals, similarly to 𝑘-ary variants
of IF (authors suggest default hyperparameter 𝑘 < 5). Intuitively, we would like to
partition the space into some sparse and some dense regions. For this purpose, a
possible objective is to maximize the variance over the partitions in terms of sparsity,
that can be treated as a well-studied computational problem related to histograms
and admits efficient algorithms for its solution. For each attribute the optimal splits
are computed and the best attribute is chosen as coordinate for partitioning. Then,
the iteration is repeated on each partition, until a data point is fully isolated or a
maximum depth parameter is exceeded. Now the resulting leaf is labelled with the
sparsity of the related subregion. In the testing phase, a data point can be evaluated
on each tree of the PIDForest and the maximum score (or a robust analog, like 75%
percentile) gives an estimate of the PIDScore.

In the words of its authors, the fundamental difference between IF and PIDForest
is that the latter zooms in on coordinates with higher signal, being less susceptible to
irrelevant attributes at the cost of more expensive computation time. Each PIDTree
takes 𝑂 (𝑘ℎ𝑑𝜓 log𝜓) as training time, while testing is pretty much equivalent to IF.
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An Optimized Computational Framework for Isolation Forest

As many other methods, also [57] tries to improve the stability and accuracy of IF,
designing new split criteria. It starts observing that the separability of two distri-
butions, the anomalous and normal one, is proportional to two factors: the distance
between peaks and the dispersion of the distributions. The authors developed a sim-
ple index, named separability index roughly similar to the one described in [54]
but considering also the distance between distributions a feature at a time. Another
difference relies in the choice of the best splitting value: instead of trying multiple
random values and taking the best out of them, an optimization procedure based on
the gradient of separability function is chosen.

The time complexity is 𝑂 (𝑘𝑛(log 𝑛)2).

Anomaly Detection Forest (ADF)

In [77] the authors observe that IF is specifically suited for the unsupervised setting
previously discussed in Section 2, where the training set is composed both of normal
and anomalous samples. However, in case of normal-only training data, this model
does not create leaves representing the anomalous feature space, and tends to give
high scores to inliers. To overcome this issue the authors introduce a new structure
based on two new concepts: i) the anomaly leaves that should model the feature
values not contained in the range of training samples, and ii) the isolation level
that is the node size below which the anomaly leaves are created. The authors also
define a special kind of internal node, named anomaly catcher: when the node size
is less than the isolation level threshold, it generates a generic child and an anomaly
leaf. Two kinds of split criteria are used: one for the partition of generic internal
nodes, and one for the partition of anomaly leaves. The first is quite similar to
the uniformly random criteria of IF, with the difference it tries to guarantee a less
unbalanced split. The second generates the empty (anomaly) leaf by splitting the
feature between the extreme value of the dataset and the extreme value of the node
space. These modifications require a small adjustment on the anomaly score since
in this new settings the original normalising factor does not make sense anymore.
As a consequence the observed average path length has been preferred.

The time complexity in the testing phase is similar to IF, but the one in the training
phase is higher due to additional sortings done in the split value computation.

usfAD: a robust anomaly detector based on unsupervised stochastic forest
(usfAD)

The work presented in [5] addresses the issue of different units/scales in data, starting
by showing some examples where different non-linear scales lead to completely
different anomalies. To solve this issue the authors propose usfAD, a method that
combines Unsupervised Stochastic Forest (USF) with IF, and naturally born for the
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semi-supervised task. This hybrid model recursively splits the subsample until all
the samples are isolated. However it is different from the IF since it grows balanced
trees with leaf of the same depth. This is accomplished using a splitting rule that
uses the median value as split point. The core idea is that the median, since relies on
ordering, is more robust to changes in scale or units. After the tree growth, normal
and anomalous regions are associated to each node: the former consists in the hyper-
rectangle containing the training points, while the latter is the complementary region.
All these modifications lead to a quite different testing phase. The anomaly score of
a test point is the depth of the first node where it falls outside the normal region.

The time complexity is slightly higher than IF: the training is𝑂 (𝑛𝑡ℎ+ 𝑡2ℎ𝑑) while
the testing 𝑂 (𝑡 (ℎ + 𝑑)). Moreover, it needs 𝑂 (𝑡2ℎ𝑑) memory space.

Fuzzy Set-Based Isolation Forest (Fuzzy IF)

Attempts to improve the IF algorithm have been made also by using Fuzzy Sets
approaches [41]. The anomaly score is simply measured by the so called degree of
membership, i.e. at each node a function of the distance between the point and the
centroid is incrementally added.

Integrated Learning Method for Anomaly Detection Combining KLSH and
Isolation Principles

In the paper [70] a method based on Kernelized Locality-Sensitive Hashing (KLSH)
combined with IF is proposed, with the aim of improving the detection of local
anomalies. A gaussian kernel function is used to map features to a higher dimensional
feature space to map local anomalies in the original space into global anomalies,
which are easy to isolate and detect. IF is then used to isolate anomalies in the
kernelized dataset. Furtheremore, two improvements on IF are proposed: a random
non-repeating subsampling technique and a mean optimization strategy to optimally
select the segmentation attributes and values.

RMHSForest: Relative Mass and Half-Space Tree Based Forest for Anomaly
Detection (RMHSForest)

The algorithm presented in [59] tries to combine the advantages of the Half-Space
tree described also in [83] and the anomaly score proposed in the ReMass-IF [6]
algorithm. In this context the authors employ Half-Spaces for the tree construction
and modify the ReMass score function adding the depth and taking a logarithmic
function of the relative mass.

The time and space complexity are respectively 𝑂 (𝑡 (𝜓 + 𝑛)ℎ) and 𝑂 (𝑡𝜓ℎ).



A review of Tree-based approaches for Anomaly Detection 21

Anomaly detection by using random projection forest (RPF)

Many works in anomaly detection with tree-based methods still refer to Random
Forests. One of them is [14] where a revised splitting rule based on the Kullback-
Leibler divergence and oblique projections instead of axis aligned are used to model
the dataset density distribution.

Randomized outlier detection with trees (GIF)

The method proposed in [11] focuses on two aspects. Firstly it proposes a theoretical
framework that interprets the isolation forest variants from a distributional point of
view. More precisely, it interprets isolation as a density estimation heuristic in which
the algorithm reckons the weights of a mixture distribution, where the dominant
component characterizes normal data, while the minor ones can be considered as
anomalous. The authors conclude that any tree-based algorithm with sufficiently
many fine-grained splits can guarantee some approximation quality of the underlying
probability distribution.

Afterwards, starting from these premises a new method is developed, named
Generalized Isolation Forest. The proposed algorithm makes use of non-binary
partitions and the data are divided based on the maximization of a custom inner
kernel function, in order to produce regions that are small and dense enough, as
the theoretical dissertation suggests. As in the original IF, the tree is not required
to be fully grown, but the partitioning process stops when a sufficient level of the
distribution approximation is reached. Then, a density function, like frequency of
observations, is used in testing phase, instead of path length.

Despite its name, GIF turns to be pretty much different than original IF. Never-
theless, it promises interesting performances and a solid foundation, the downside
resides on the need of fine-tuning of many hyperparameters and an arguably expen-
sive computational time for big datasets.

PIF: Anomaly detection via preference embedding (PIF)

As discussed above, anomaly definition varies across the papers: in this approach
[47] the authors point out the difference between general statistical anomalies and
pattern anomalies (Figure 3). The former are typically defined as samples falling
in regions where the density is low, while the latter are samples that deviate from
some structured pattern. Finding and fitting these structures to find the anomalies is
extremely expensive, therefore the authors suggest a new method, named Preference
IF, to directly tackle the problem.

The proposed method consists mainly in two steps: i) the embedding of data in
a new space, named preference space and ii) the adoption of tree based isolation
approach specifically suited for this new space. In particular, the adoption of a nested
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Voronoi tessellation and the Tanimoto distance allows much better performances
than simply using the original IF in the preference space.

The complexity of this algorithm is 𝑂 (𝜓𝑡𝑏 log𝜓) in the training phase, and
similarly 𝑂 (𝑛𝑡𝑏 log𝜓) in the testing one, where 𝑏 is the branching factor of the
PI-tree.

Fig. 3: Statistical vs pattern anomalies. The latter are very complex since they are
defined as points not belonging to a specific but unknown pattern. Figure adapted
from [47].

An explainable outlier detection method using region-partition trees

Another tree-based approach employed in anomaly detection is described in [67],
where Region-Partition trees are employed. It is quite different from the IF. A tree
with maximum height ℎ has the same amount of randomly selected features used
at each depth level to split data. At each level a feature is selected and divided into
𝑘 intervals. This tabular structure is used to build the actual tree, starting from the
empty root intervals and adding recursively a new a data point, creating a new child
when needed. This training procedure is performed only with normal data, therefore
all nodes correspond only to regions where the distribution is expected to be normal.
The detection of anomalies is quite simple since if a new sample arrives to a leaf
node it is marked normal, if instead it gets stuck in a node it is labelled as outlier.
In order to get an intuition about the cause that generated that anomaly, the authors
suggest to count the number of times a feature is responsible to the internal node
stop. To get the anomalous range, the intersection between the anomalous feature
intervals for each tree can be easily performed.
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3.2 Dynamic Datasets

Dynamic datasets are made up of infinite data streams [81]. This poses new challenges
that previously described methods cannot tackle. The most simple challenge is the
continuous training: since the stream is infinite, the training data may be insufficient
to fully describe it. In order to do that, the model should continuously learn from the
incoming data stream, and at the same moment detect anomalous points. The most
complex setting is represented by the distributional drift. In this case, the stream is
not stationary and its distribution experiences time-dependent variations. Here, the
model must adapt to the evolving data stream, but at the same time discern anomalies
from new normal data points.

The weak point of these methods is the assumption about the rarity of anomalies. If
they are too numerous, they can be confused with a change in the normal distribution
of data points, leading to an erroneous adaptation of the model. Doing this the model
will consider them as normal and it will not raise the necessary alarm.

An anomaly detection approach based on isolation forest algorithm for
streaming data using sliding window (iForestASD)

The method proposed in [20] is an adaptation of the original algorithm to the
streaming settings. It is very simple: it splits the stream in windows, and checks each
window to detect anomalies. If the ratio between normal data and anomalies is too
high (exceeds the expected anomaly ratio), it assumes a concept drift is happening.
In this case the model is re-trained on the new window. Obviously, the threshold on
the anomaly ratio and the width of the window are delicate hyper-parameters that
highly depend on the specific application.

Fast anomaly detection for streaming data (Streaming HS)

In the paper [81] an adaptation of [84] to data streams is presented. Unlike other
tree based approaches, it is not built starting from training data but its structure is
induced only by the feature space dimension. It doesn’t need split point evaluation,
and therefore it is fast and able to continuously learn from new data. Contrary to the
basic Isolation Forest, this method employs the concept of mass to determine the
anomaly score. In practice, this method works segmenting the stream in windows,
and working with two of them: reference and the latest windows (despite their name,
they are immediately consecutive). The reference window is used to record the mass
profile, while the latest one is used for testing. When this is done, the latest becomes
the reference and a new mass profile is recorded.

The authors show a time complexity of 𝑂 (𝑡 (ℎ + 𝜓)) in the worst case.
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RS-forest: A rapid density estimator for streaming anomaly detection
(RS-Forest)

The method published in [91] relies on a type of tree quite similar to the isolation
one, that is let growing until a maximum depth is reached independently on the
data. Before the tree construction, the feature space is enlarged in order to cope with
possible feature drifts. The score is based on the density of the points in the leaf
volume and the model update relies on dual node profiles similarly to the previous
method.

The time complexity of the method is 𝑂 ( 𝑛
𝜓
𝑚2(ℎ+1) ) while space complexity is

constant since is 𝑂 (2ℎ).

An online anomaly detection method for stream data using isolation principle
and statistic histogram (AHIForest)

Isolation Forest is a light-weighted method only designed for batch data, furthermore
it suffers of slow convergence having no knowledge on the distribution of data.

In the paper [21] both these limitations are inspected, and a new method called
AHIForest is proposed. This is identical to Isolation Forest, except for the selection
step of the splitting point. Indeed, after a dimension is randomly picked, the choice
of the threshold is not drawn from a uniform distribution, but it is based on the
histogram that approximates the distribution of data projected on the given axis. The
idea of histogram-based has the advantage to fasten the convergence, at the price of
adding a new critical parameter, the bin size, to be carefully chosen.

On the other hand, AHIForest deals with streaming data using a sliding window
strategy. Firstly, a forest is built by data sampled from the first window, and new
observations are judged in real time. Then, if anomaly rate exceeds a pre-defined
threshold (as in iForestASD) or the buffer is full, the forest is updated, growing new
trees from the last window and pruning old estimators.

The time complexity of this algorithm is 𝑂 (𝑀𝑁), where 𝑁 is the number of
individual detectors and 𝑀 is the maximum number of leaves of each tree. Space
complexity is 𝑂 (𝑀𝑁), too.

Robust random cut forest based anomaly detection on streams (RRCF)

RRCF [30] presents exactly the same structure and anomaly scoring of isolation
forest, except for the mechanism how the splitting dimension is chosen. The intuition
of the authors was to pick what they called "robust random cuts" proportionally to
the span of data in each dimension, instead of uniformly at random, as in the original
version. In this manner, the method loses the property of scaling invariance of the
Isolation Forest, but achieves some sense of self-consistency after addition or deletion
of data, i.e. any tree preserves the same distributional properties independently if
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constructed given the whole dataset in a batch fashion and if dynamically grown
from a stream of data.

Naturally, RRCF is a straightforward solution to propose the same key-ideas of
Isolation Forest in a suitable way for online anomaly detection, without the need of
rebuilding the model from scratch.

When a new data instance arrives, it runs across the tree, starting from the root.
At each node, a candidate cut is randomly proposed in the subregion represented by
the node, following the same mechanism as described above. If the new point is fully
isolated by the candidate cut, this is kept and a new leaf is there inserted, otherwise
the cut is discharged and the data instance moves the next node through the branch.
Instance by instance, new branches grow up, making evolve the shape of trees in
RRCF with respect to concept drift phenomena of data stream.

Fast anomaly detection in multiple multi-dimensional data streams
(Streaming LSHiForest)

The model presented in [79] extends the LSHiForest algorithm for streaming data
exploiting a dynamic isolation forest. The procedure can be split into three main
phases: i) a dataset of historical data points is used to build a LSHiForest data
structure, as presented in the original paper, then ii) the data points collected from
multiple data streams are preprocessed to find "suspicious" samples, which are
outlier candidates. Finally, iii) the suspicious data are updated into the LSHiForest
structure and the anomaly scores of the updated data points are recalculated. To
effectively extract suspicious points from the streaming data, Principal Component
Analysis (PCA) and the weighted Page-Hinckley Test (PHT) are applied to a sliding
window, to cope with the challenges of high dimensionality and concept drift. An
update mechanism is proposed to iteratively update the LSHiForest by replacing the
previous data points observed on a stream with suspicious ones.

Isolation Mondrian Forest for Batch and Online Anomaly Detection (Isolation
Mondrian Forest)

The Mondrian Forest [60] represents a family of random hierarchical binary parti-
tions, based on the Mondrian Process, that tessellates the domain in a tree-like data
structure. This random process recursively generates a series of axis-aligned slices
that recall the abstract grid-based paintings by Piet Mondrian (1872 - 1944). Each
slice is associated with a split time and the partitioning process can be eventually
stopped after a given budget time. In the past few years, the interest upon Mondrian
Forest raised up in machine learning, both for regression and classification purposes.
Only recently, an application of Mondrian Forest has been proposed in anomaly
detection, that exploits the similarities with the data structure from Isolation Forest,
and uses the same depth-based anomaly score of the latter.
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The advantage of Mondrian Forest lies on its nice self-consistency property, in
particular a Mondrian Tree can be infinitely extended performing new partitions on
its sub-domains, preserving the same distributional properties. Therefore a Mondrian
Forest can be dynamically updated by the arrival of new data and this makes the
algorithm particularly suitable for online / streaming applications.

The update mechanism is very similar to the one described for Robust Random
Cut Forest. Again, each novel data point travels through the trees in the forest, and
a candidate split is picked at each node. In this case, the candidate is maintained if
its split time is lower than the one of the node; this can be interpreted as a split that
is occurred before; otherwise it is discarded and the data instance moves to the next
node until it reaches a leaf, which is associated with an infinite time.

The training and evaluation time complexities for online processing of 𝑚 new
points are 𝑂 (𝑡𝑑 (𝑛 + 𝑚) log(𝑛 + 𝑚)) and 𝑂 (𝑡 (𝑛 + 𝑚)) respectively.

Interpretable Anomaly Detection with Mondrian Polya Forests on Data
Streams (Mondrian Polya Forest)

Mondrian Polya Forest (MPF) [18] is another example of a method based on the
Mondrian Process, that seems one of the most promising research paths in tree-based
approaches for anomaly detection.

As the previously described Isolation Mondrian Forest, Mondrian Polya Forest
grows a tree partition based on Mondrian Process. The difference lies on the evalu-
ation procedure, that estimates the density function of data instead of inferring their
isolation scores. As the name suggests, MPF makes use of Polya Trees for model-
ing the distribution of the mass in the nested binary partition constructed by each
Mondrian Tree, each cut is then associated with a beta-distributed random variable,
which reflects the probability of a data point to lie in one of the sub-partitions in the
hierarchical structure of the tree. In this setting, an anomaly is identified by the fact
it occurs in a region with lower density than normal data.

Alike Isolation Mondrian Forest, this method takes advantages of the properties
of the Mondrian Forest, then it is able to efficiently update by nesting of new slices,
instead of rebuilding the tree structure from scratch, when new data instances are
available. A streaming version of the method has been proposed by the same authors
of MPF with interesting results.

Anomalies Detection Using Isolation in Concept-Drifting Data Streams

In the paper [85] the authors review several isolation-based techniques in streaming
anomaly detection, in particular iForestASD and Half-Space Trees, both previously
introduced. The main differences are remarked, like the strong dependency by data
of the first, versus the lack of knowledge in the building phase of the latter, and the
different approaches for handling drift.
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Moreover, a couple of new strategies are proposed, based on iForestASD. ADWIN
(ADaptive WINdowing) is a well-known solution, that maintains a variable-length
window of data, which increases with incoming observations. The algorithm com-
pares any subset of the window until it detects a significant difference between data,
then the new information is kept while the old one is erased. Slight variants are
PADWIN (Prediction based ADWIN) and SADWIN (Scores based ADWIN), which
take predictions and scores as input of ADWIN for detecting drift, respectively.
KSWIN (Kolmogorov-Simirnov WINdowing) is a more innovative approach, based
on Kolmogorov–Simirnov statistic test. KS is a non-parametric test, originally suit-
able for one-dimensional data only. The authors propose to overcome this restriction
by declaring the occurrance of drift if it is detected in at least one dimension.

Empirical experiments show the inefficiency of vanilla iForestASD in real-world
scenarios and the need of explicit concept drift detection methods, such as the
proposed ones.

3.3 Distributed approaches

Wireless Senor Networks (WSNs) pose new and more challenging constraints to
Anomaly detection. Indeed sensor nodes are usually quite cheap but have multiple
constrains on energy consumption, communication bandwidth, memory and com-
putational resources. Moreover they are often deployed in harsh environments that
can corrupt sensor measurements and communication [19]. Despite the distributed
nature of the network, Anomaly Detection on such applications should minimize
the communication burden as much as possible, since data transmission is the most
energy intensive process.

Distributed Isolation for WSN

The authors of [19] suggest the adaptation of IF to this distributed problem, con-
sidering the spatial correlation between neighbor sensor nodes in a local and global
manner. They chose this base algorithm due to its already mentioned properties, that
fits perfectly in this settings. However in the WSN context, data can be anomalous
w.r.t. the single sensor node or w.r.t. the whole network. The local detector consists
in a collection of isolation trees trained on a group of neighbouring nodes while the
global one is made up of local detectors. When an anomaly is locally detected, it is
marked as an error if is not detected by neighbor sensors, otherwise it is considered
an event.

The space and time complexity is 𝑂 (𝑘𝑚), where 𝑘 is the number of trees on a
local node, and 𝑚 the number of leaves.
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Robust Distributed Anomaly Detection Using Optimal Weighted One-Class
Random Forests (OW-OCRF)

A similar approach has been exploited in [87], where a one-class random forest has
been chosen as base detector. Here each sensor node builds his own model, but it
is also augmented with the models belonging to neighbouring devices. In addition,
a strategy to weight the most effective neighbor models has been implemented,
based on the minimization of the model uncertainty. Uniform voting is reasonable in
circumstances where all the learners arise from the same distribution, but when mod-
els come from heterogeneous data distributions this strategy shows its weaknesses.
Larger weights are assigned to trees that are in accordance with the majority, while
trees that increase the overall uncertainty are penalized. The optimization of these
weights is performed in a fully unsupervised fashion. In presence of distributional
drifts, the overall model can be easily adapted to the new conditions, optimising new
weights or substituting the trees with lower weight importance. The communication
between the node is employed just at early stages for the sharing of the detecting
models, not for the sampled data sharing.

The time and space complexity of this approach are 𝑂 (𝑡ℎ) and 𝑂 (𝑡2ℎ+1) respec-
tively.

3.4 Interpretability and feature selection

The detection of anomalies is an important activity in manufacturing processes but
it is useless if a corresponding action does not take place. That action is expected to
be proportional to the gravity of the anomaly (encoded by the anomaly score), and to
the cause that generated it. For doing that a tool to interpret that anomaly is needed.
It is easy to understand that if unsupervised anomaly detection is challenging, inter-
pretable models face even more complex issues. In real word scenarios anomalies
are unlabelled and lack of proper interpretations.

Moreover [12] observes that interpretable models enhance the trust of the user in
the anomaly detection algorithms, leading to a more systematic use of these tools.

Interpretable Anomaly Detection with DIFFI: Depth-based Feature
Importance for the Isolation Forest (DIFFI)

IF is a highly randomised algorithm and therefore the logic behind the model pre-
dictions is very hard to grasp. In the paper [12], a model specifically designed for the
interpretability of IF outcomes is presented. In particular the authors developed two
variants: i) a global interpretability method able to describe the general behaviour
of the IF on the training set, and ii) a local version able to explain the individual
IF predictions made on test points. The central idea of this method, named DIFFI,
relies on the following two intuitions: the split of an important feature should a)
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induce faster isolation at low levels (close to the root) and b) produce higher unbal-
ance w.r.t splits of less important features. This is encoded in a new index named
cumulative feature importance. With this in mind, the authors formulate the global
feature importance as the weighted ratio between the cumulative feature importance
computed for outliers and inliers. The local interpretation of single detected anoma-
lies is sightly different but relies on the same intuitions. DIFFI can also be exploited
for unsupervised feature selection in the context of anomaly detection.

Anomaly explanation with random forests

Authors in [46] developed an algorithm able to explain the outcome of a generic
anomaly detector by using sets of human understandable rules. More specifically,
the proposed model consists in a special random forest trained to separate the single
anomaly from the rest of the dataset. This algorithm provides two kinds of expla-
nations: the minimal and the maximal. The first is performed isolating the anomaly
using the minimal number of necessary features. On the contrary the maximal ex-
planation looks for all the features in which the anomaly is different, employing
a recursive feature reduction. Once the forest are trained and the explanations are
obtained, the decision rules are extracted in a human readable manner.

The time complexity of the algorithm is 𝑂 (𝑛𝑡𝑇sel𝑇train) where 𝑇sel is linear with
the number of normal samples in the data. For the minimal explanation 𝑛𝑡 is the
number of trees trained for each anomaly and 𝑇train = 𝑂 (𝑑 |𝑇 |2), where 𝑑 is the
number of features and 𝑇 is the size of the training set. For the maximal explanation
𝑛𝑡 = 𝑂 (𝑑 − 1) while 𝑇train = 𝑂 (𝑑2 |𝑇 |2).

Isolation-Based Feature Selection for Unsupervised Outlier Detection (IBFS)

In settings where the dimensionality of data is very high, even the most efficient
anomaly detection algorithm may suffer. Methods of feature selection are used to
the purpose of reducing the computational and memory cost. Isolation-based feature
selection (IBFS) described in [94] computes an unbalanced score each time a node
is split, based on the resulting entropy weighted by fraction of data samples in each
leaf. Adding all the scores of the traversed nodes, it is possible to obtain a global
features score that highlights the best features for anomaly detection.

4 Experimental comparison

4.1 Methods comparison and available implementations

Unfortunately a small subset of authors provided an open implementation of the
methods presented in the previous Section: for this reason it is hard to have a com-
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prehensive overview of performances for the overall plethora of isolation-based and
tree-based methods. Most of the authors report some performance scores (commonly
ROC AUC) for their proposed methods, using as benchmarks only the original IF
and few of the most popular close variants, such as Split-Criteria IF, Robust Random
Cut Forest or Extended IF and other density or distance-based anomaly detection
approaches.

To the best of our knowledge, an extended comparison between all the variants of
tree-based AD has never been realised. To cope with this issue, we have worked to
collect results available in literature on various AD benchmarks, in order to provide
an easier comparison between the different approaches also in terms of accuracy.

We selected a subset of the datasets where we could have a consistent amount of
outcomes, that turn out to be all from UCI Machine Learning Repository [23]. For this
reason, we excluded all the methods that are intended to work on a specific scope,
for instance image detection or functional-based anomaly detection. A schematic
description of datasets is in Table 1.

Table 1: Description of test data sets.

Dataset Size Dim. % anomalies

HTTP 567497 3 0.4%

SMTP 95156 3 0.03%

Forest Cover 286048 10 0.9%

Shuttle 49097 9 7%

Mammography 11183 6 2%

Satellite 6435 36 32%

Pima 768 8 35%

Breastw 683 9 35%

Arrhytmia 452 274 15%

Ionosphere 351 32 32%

Moreover, we limited to the static approach, since testing for streaming algorithms
allows a variety of different setups and it is hard or impossible to achieve a fair
comparison with existing results.

Table 2 contains the result from our survey. In all the cases it was possible, we
used the ROC AUC scores from the original papers, thus we suppose each method is
tuned at the best of author’s expertise. For many of the algorithms that were publicly
available, we filled the eventually missing scores by running the tests ourselves. In
this case, we consider those hyperparameters indicated in the original IF paper [53]
(number of trees = 100, sample size = 256) as the most appropriate universal setup.
Finally, we avoided to fill missing outcomes for such methods, like GIF, where the
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authors provided a fine-tuning of their algorithms, since our last assumptions would
not replicate the same performances.

Table 2: ROC AUC score of a selection of methods from literature.

Code available HTTP SMTP Forest C. Shuttle Mammogr. Satellite Pima Breastw Arrhytmia Ionosph.

IF X 1.00 0.88 0.88 1.00 0.86 0.71 0.67 0.99 0.80 0.85

SCIForest X 1.00 - 0.74 [98] 1.00 [98] 0.59 [11] 0.71 [98] 0.65 [98] 0.98 [98] 0.72 [98] 0.91 [93]

EIF X 0.99 0.85 [37] 0.92 0.99 [37] 0.86 0.78 0.70 0.99 0.80 [37] 0.91

RRCF X 0.99 [29] 0.89 [29] 0.91 0.91 [18] 0.83 [18] 0.68 [18] 0.59 [18] 0.64 [18] 0.74 [18] 0.90 [18]

IMF X 1.00 0.87 0.90 0.99 0.74 0.74 0.64 0.97 0.80 0.86

MPF 1.00 0.84 0.77 0.51 0.87 0.70 0.66 0.97 0.81 0.88

PIDForest X 0.99 0.92 0.84 0.99 0.84 0.70 0.70 [18] 0.99 - 0.84 [18]

OPHiForest - - - 0.99 - 0.77 0.72 0.96 0.78 0.93

LSHiForest X - - 0.94 0.97 - 0.77 0.71 0.98 0.78 0.91

HIF X - 0.90 - 1.00 0.88 0.74 0.70 0.98 0.80 0.86

HEIF - 0.90 - 0.99 0.83 0.73 0.72 - 0.80 -

OneClassRF X 0.98 0.92 0.85 0.95 - - 0.71 - 0.70 0.90

T-Forest 0.99 - - 0.99 - 0.68 0.71 - 0.84 0.94

EGiTree - - 0.97 0.94 - 0.73 - - - 0.94

GIF X - - 0.94 - 0.87 0.86 0.84 - - -

dForest 1.00 - - 1.00 - - 0.75 0.99 - 0.97

ReMass IF 1.00 0.88 0.96 1.00 0.86 0.71 - 0.99 0.80 0.89

HSF X 1.00 0.90 0.89 1.00 0.86 - 0.69 0.99 0.84 0.80

Selected algorithms are: Isolation Forest (IF) [53], Split-Criteria Isolation Forest (SCIForest) [54], Extended Isolation Forest (EIF)
[33], Robust Random Cut Forest (RRCF) [30], Isolation Mondrian Forest (IMF) [60], Mondrian Polya Forest (MPF) [18], Partial
Identification Forest (PIDForest) [29], Order Preserving Hashing Based Isolation Forest (OPHIF) [93], Locality Sensitive Hashing
Isolation Forest (LSHiForest) [98], Hybrid Isolation Forest (HIF) [64], Hybrid Extended Isolation Forest (HEIF) [37], One-class
Random Forest (OneClassRF) [27], Trident Forest (T-Forest) [97], Entropy-based Greedy Isolation Tree (EGiTree) [50], Generalized
Isolation Forest (GIF) [11], Distribution Forest (dForest) [95], Re-Mass Isolation Forest (ReMass IF) [6], Half-Spaces Forest (HSF)
[84].
Scores are referenced when are provided by a different source than the original paper for the method. If scores were not available in
the original paper, we have performed the missing experiments when an implementation of the algorithm was available or by using
our own implementation: such cases were reported by using Italic entries; in these circumstances we always performed testing with
100 trees and sample size equals to 256. If scores were not available in the original paper and no implementation of the algorithm
were available, the entries were left blank ’-’. Finally, we highlighted by bold entries the best performances for each dataset.

From the collected scores, we have not found a method consistently outperforming
all the others, and it’s not clear how to build a hierarchy between all the variants. We
can conclude that IF is an efficient baseline that shows good performance in many
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cases, however each method may be the most appropriate in any specific real-life
scenario and the final choice it can only be up to the practitioner.

One of the limitations of the proposed comparison is related to the choice of the
Area Under Receiver Operating Characteristic Curve (ROC AUC) as main perfor-
mance indicator used in most of the reviewed papers. In fact, [73] already highlights
the inefficiency of ROC AUC if data are strongly unbalanced, and suggests the usage
of other metrics, such as Area Under Precision-Recall Curve (PR AUC): ROC curve
is drawn by plotting the true positive rate (or recall) against the the false positive rate;
however, when positive labelled data are rare, ROC AUC can be misleading since
even a poor skilled models can achieve high scores. For such reasons, the validity
of the reported results for strongly unbalanced datasets like HTTP, SMTP or Forest
Cover should be considered with some skepticism.

On the contrary, PR curve represents the precision over the recall for a binary
classifier, and it would be more informative when normal instances outnumber
anomalies. A slightly different alternative is Precision-Recall-Gain (PRG) curve [24].
Specifically, PRG AUC maintains the pros of the PR AUC, but allows to evaluate the
model against a baseline binary classifier, i.e. the always-positive classifier, as ROC
AUC does with the random classifier model.

In order to promote reproducibility, and to help practitioners in developing real-
word applications, we provide a list of the available source codes about the previously
discussed methods (Table 3). Unfortunately, as stated above, we were able to retrieve
just a portion of the reviewed methods but we hope as anomaly detection becomes
a more mature field, authors will be more used to share their code for enhancing
adoption and comparisons of the proposed approaches.

Table 3: Source code repositories.

Model Repository Language

DIFFI [12] github.com/mattiacarletti/DIFFI Python
EIF [33] github.com/sahandha/eif Python
Functional IF [76] github.com/GuillaumeStaermanML/FIF Python
GIF [11] github.com/philippjh/genif Python
HIF [71] github.com/pfmarteau/HIF Python
IF [53] scikit-learn.org Python
iForestASD [20, 85] github.com/Elmecio/IForestASD_based_methods_in_scikit_Multiflow Python
Isolation Mondrian Forest [60] github.com/bghojogh/iMondrian Python
LSHiForest [98] github.com/xuyun-zhang/LSHiForest Python
MassAD [84] sourceforge.net/projects/mass-estimation MATLAB
OneClassRF [27] github.com/ngoix/OCRF Python
PIDForest [29] github.com/vatsalsharan/pidforest Python
RRCF [30] github.com/kLabUM/rrcf Python
SCiForest [54] github.com/david-cortes/isotree Python
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4.2 Industrial Case Studies

Tree based AD approaches have been extensively employed in industry because
of their nice properties. Some of the relevant industrial applications of tree based
methods are summarized in Table 4. Despite the existence of multiple tree-based
algorithms, the large majority of applications concerns the original Isolation Forest
and a big part of them are applications in the power industry. Fraud detection
and cybersecurity examples, while being really popular in the literature, were not
considered in this list since they are not strictly industrial applications.

In some of the reported cases, authors used the reported anomaly detection
method as part of a more complex pipeline that typically involve a feature extraction
procedure when dealing with non-tabular data for example: for the sake of simplicity,
we didn’t report such ’evolutions’ of the methods in our classification.

Table 4: Industrial applications of tree-based approaches for Anomaly Detection.

Work Year Sector/Equipment Type Method

Ahmed ed at. [1] 2019 Smart Grid IF
Alsini et al. [2] 2021 Construction Industry IF
Antonini et al. [4] 2018 IoT audio sensors IF
Barbariol et al. [8] 2020 Multi-phase Flow Meters IF
Brito et al. [10] 2021 Rotating Machinery DIFFI
Carletti et al. [13] 2019 Home Appliances Manufacturing DIFFI
De Santis et al. [74] 2020 Power Plants EIF
Du et al. [22] 2020 Sensor Networks IF
Hara et al. [31] 2020 Hydroelectric Generators IF
Hofmockel et al. [36] 2018 Vehicle Sensors IF
Li et al. [48] 2021 Machine Tools IF
Lin et al. [51] 2020 Power Plants IF
Luo et al. [58] 2019 Eletricity Consuption IF
Kim et al. [45] 2017 Energy & Smart Grids IF
Maggipinto et al. [61] 2019 Semiconductor Manufacturing IF
Mao et al. [63] 2018 Power Consumption IF
Puggini et al. [69] 2018 Semiconductor Manufacturing IF
Riazi et al. [72] 2019 Robotic Arm IF
Susto et al. [80] 2017 Semiconductor Manufacturing IF
Tan et al. [82] 2020 Marine Gas Turbines IF
Tran et al. [86] 2020 Fashion Industry IF
Wang et al. [88] 2019 Power Transformers & Gas-insulated Swithchgear IF
Wetzig et al. [90] 2019 IoT-Gateway Streaming HS
Wu et al. [92] 2018 Energy & Smart Grid IF
Zhang et al. [99] 2019 Cigarette Production IF
Zhong et al. [100] 2019 Gas Turbine IF
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In this review, many approaches have been listed and it might be hard to get a
feeling on their actual importance for the research community, also given the fact
that many approaches have been only recently submitted. To mitigate such issue,
some statistic related to the method citations have been collected in Table 5 and
6. Given that citations are only a proxy of the relevance of an AD method and
that it is somehow unfair to compare citation of recently introduced methods versus
established ones, the proposed list should be taken as a loose reference for listed
methods importance.

Table 5: Static methods. The ’*’ highlights methods published in 2020 or 2021 for
which the reported statistics at the time of the writing of this work (March 2021) is
of course not reliable.

Paper Acronym Citations in 2020 Total citations Annual rate

Liu et al. (2010) [54] SCIForest 10 49 4.1
Aryal et al. (2014) [6] ReMass 7 20 2.5
Li et al. (2020) [49] *7 *7 *3.5
Ting et al. (2010) [84] MassAD 6 53 4.4
Zhang et al. (2017) [98] 6 26 5.2
Karczmarek et al. (2020) [43] K-Means IF *5 *7 *3.5
Liu et al. (2018) [57] 4 9 2.2
Marteau et al. (2017) [64] HIF 4 6 1.2
Staerman et al. (2019) [76] Functional IF 3 5 1.7
Goix et al. (2017) [27] OneClassRF 2 4 0.8
Yu et al. (2009) [96] 1 26 2.0
Zhang et al. (2018) [97] T-Forest 1 4 1.0
Chen et al. (2015) [14] RPF 1 3 0.4
Shen et al. (2016) [75] EGiTree 1 2 0.3
Hariri et al. (2021) [32] EIF *1 *1 *1.0
Mensi et al. (2019) [66] 1 1 0.3
Gopalan et al. (2019) [29] PIDForest 1 1 0.3
Liao et al. (2019) [50] E-iForest 0 5 1.7
Chen et al. (2011) [15] kpList 0 4 0.4
Aryal et al. (2021) [5] usfAD *0 *1 *1.0
Buschjager et al. (2020) [11] GIF *0 *1 *0.5
Park et al. (2021) [67] *0 *0 *0.0
Holmer et al. (2019) [37] HEIF 0 0 0.0
Ghaddar et al. (2019) [26] 0 0 0.0
Yao et al. (2019) [95] dForest 0 0 0.0
Karczmarek et al. (2020) [42] n-ary IF *0 *0 *0.0
Sternby et al. (2020) [77] ADF *0 *0 *0.0
Xiang et al. (2020) [93] OPHIForest *0 *0 *0.0
Gao et al. (2019) [25] CBIF 0 0 0.0
Leveni et al. (2021) [47] PIF *0 *0 *0.0
Lyu et al. (2020) [59] RMSHForest *0 *0 *0.0
Karczmarek et al. (2020) [41] Fuzzy IF *0 *0 *0.0
Qu et al. (2020) [70] *0 *0 *0.0

MassAD gathers the citations from Ting et al. (2010) [84] and Ting et al. (2013) [83].
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Table 6: Dynamic methods. The ’*’ highlights methods published in 2020 or 2021
for which the reported statistics at the time of the writing of this work (March 2021)
is of course not reliable.

Paper Acronym Citations in 2020 Total citations Annual rate

Ding et al. (2013) [20] iForestASD 25 69 7.7
Tan et al. (2011) [81] Streaming HS 17 82 7.5
Guha et al. (2016) [30] RRCF 9 23 3.8
Wu et al. (2014) [91] RS-Forest 7 39 4.9
Ding et al. (2015) [21] AHIForest 1 3 0.4
Sun et al. (2019) [79] Streaming LSHiForest 0 2 0.7
Ma et al. (2020) [60] Isolation Mondrian Forest *0 *0 *0.0
Dickens et al. (2020) [18] Mondrian Polya Forest *0 *0 *0.0
Togbe et al. (2021) [85] *0 *0 *0.0

5 Conclusion and future work

In this work we focused on anomaly detection, a practical problem that many times
arises in industrial applications. Indeed, the detection of product defects or produc-
tion instruments faults can be quickly addressed by this kind of techniques.

This review dealt with a particular type of algorithms based on tree structure.
These have many advantages, like fast computations, low latency, low memory
requirements, parallelism and high detection performances. Moreover, they can cope
with the streaming data scenario where the model has to adapt to new incoming data.
Moreover, recent efforts have been made by the scientific community to equip such
methods with interpretable traits, making them particularly appealing in real-world
contexts where root cause analysis is also of paramount importance.

The main procedural differences between the different methods have been dis-
cussed and the performances declared by their authors have been compared.

Use cases and a list of ready to use implementations has been made in order to
provide practitioners an effective review. The methods performances over different
datasets have been grouped together in a unique table.

This paper has highlighted the many advantages of tree-based approaches over
competing alternatives, and the different strategies proposed by the authors.

Some of them are very similar but others introduced very interesting novelties.
Just to name a few, the authors found very promising the isolation principle, the
anomaly score based on the mass in addition to tree depth, the weighted trees,
the pattern anomalies, the continuous training made on data streams and the split
criterions that try to accelerate the isolation.

On the other side, criteria that rely on distances other than 𝐿1, or that try to
directly estimate the density, risk to quickly lose the advantage over more traditional
methods.
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The present study has some limitations, mainly due to the fact that many methods
are recent or do not have public implementations provided by the proposing authors,
nevertheless this work is intended to be a stating point for future investigations. The
most important one lies in the performance comparison; moreover the provided tables
have been assembled using results declared in the reviewed papers, so caution must
be taken when looking at this comparison and the time complexities. To solve these
issues the authors created a public repository at https://github.com/fdallac/
treebasedAD where researchers and practitioners can find the codes implemented
by us and quantitatively compare the methods. We also invite developers to share
the implementations of their approaches in such repository to foster research in the
field.
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Joint use of skip connections and synthetic
corruption for anomaly detection with
autoencoders

Anne-Sophie Collin and Christophe De Vleeschouwer

Abstract - In industrial vision, the anomaly detection problem can be addressed
with an autoencoder trained to map an arbitrary image, i.e. with or without any
defect, to a clean image, i.e. without any defect. In this approach, anomaly detection
relies conventionally on the reconstruction residual or, alternatively, on the recon-
struction uncertainty. To improve the sharpness of the reconstruction, we consider
an autoencoder architecture with skip connections. In the common scenario where
only clean images are available for training, we propose to corrupt them with a
synthetic noise model to prevent the convergence of the network towards the identity
mapping, and introduce an original Stain noise model for that purpose. We show
that this model favors the reconstruction of clean images from arbitrary real-world
images, regardless of the actual defects appearance. In addition to demonstrating the
relevance of our approach, our validation provides the first consistent assessment of
reconstruction-based methods, by comparing their performance over the MVTec AD
dataset [1], both for pixel- and image-wise anomaly detection. Our implementation
is available at https://github.com/anncollin/AnomalyDetection-Keras.

1 Introduction

Anomaly detection can be defined as the task of identifying all diverging samples that
does not belong to the distribution of regular, also named clean, data. This task could
be formulated as a supervised learning problem. Such an approach uses both clean
and defective examples to learn how to distinguish these two classes or even to re-
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fine the classification of defective samples into a variety of subclasses. However, the
scarcity and variability of the defective samples make the data collection challenging
and frequently produce unbalanced datasets [2]. To circumvent the above-mentioned
issues, anomaly detection is often formulated as an unsupervised learning task. This
formulation makes it possible to either solve the detection problem itself or to ease
the data collection process required by a supervised approach.
Anomaly detection has a broad scope of application, which implies that processed
data can differ in nature. It typically corresponds to speech sequences, time series,
images or video sequences [3]. Here, we consider the automated monitoring of pro-
duction lines through visual inspection to detect defective samples. More specifically,
we are interested in identifying abnormal structures in a manufactured object based
solely on the analysis of one image of the considered item. Computer vision sensors
offer the opportunity to be easily integrated in a production line without disturbing
the production scenarios [4]. To handle such high-dimensional data, Convolutional
Neural Networks (CCNs) provide a solution of choice, due to their capacity to extract
rich and versatile representations.

The unsupervised anomaly detection framework considered in this work is de-
picted in Figure 1. It builds on the training of an autoencoder to project an arbitrary
image onto the clean distribution of images (blue block). The training set is consti-
tuted exclusively of clean images. Then, defective structures can be inferred from
the reconstruction (red block), following a traditional approach based on the residual
[2], or even from an estimation of the prediction uncertainty [5].
During training, the autoencoder is constrained to minimize the reconstruction error
of clean structures in the images. Several loss functions, presented later in Section 2,
can be considered to quantify this reconstruction error. With the objective of building
our method on the Mean Squared Error (MSE) loss for its simplicity and widespread
usage, we propose a new non-parametric approach that addresses the standard issues
related to the use this loss function. To enhance the sharpness of the reconstruc-
tion, we consider an autoencoder equipped with skip connections, which allow the
information to bypass the bottleneck. In order to prevent systematic transmission
of the image structures through these links, the network is trained to reconstruct a
clean image out of a corrupted version of the input, instead of an unmodified version
of it. As discussed later, the methodology used to corrupt the training images has
a huge impact on the overall performances. We introduce a new synthetic model,
named Stain, that adds an irregular elliptic structure of variable color and size to
the input image. Despite its simplicity, the Stain model is by far the best performing
compared to the scene-specific corruption investigated in a previous study [6]. Our
Stain model has the double advantage of performing consistently better, while being
independent of the image content. We demonstrate that adding skip connections
to the autoencoder architecture when simultaneously corrupting the training clean
images with our Stain noise model addresses the blurry reconstruction issue related
to the use of the MSE loss.
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1. Train an autoencoder with skip connections to reconstruct a clean version of an input image
corrupted with the Stain model

Stain noise

Encoder

D
ecoder

2. Test on arbitrary images, i.e. with or without real defect

Encoder

D
ecoder

-

Anomaly map

Pixel-wise
detection

L2 Norm Image-wise
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Fig. 1 We improve the quality of the reconstructed images by training an autoencoder with skip
connections on corrupted images. 1. Blue block. Corrupting the training images with our Stain
noise model avoids the convergence of the network towards an unwanted identity operator. 2. Red
block. The two anomaly detection strategies. In the upper part, the anomaly map is generated by
subtracting the input image from its reconstruction. In the lower part, the anomaly map is estimated
by the variance between 30 reconstructions inferred with Monte Carlo dropout (MCDropout) [7]. It
relies on the hypothesis that structures that are not seen during training (defective areas) correlate
with higher reconstruction uncertainty.

The present work extends our conference paper [8] by providing an extensive
study of the internal statistics of the network. This analysis reveals the natural trend
of the network to distinguish between the representations of regular and irregular
samples, which is even more explicit in the bottleneck layer. Moreover, we show
that, when applied simultaneously, the two modifications of the autoencoder-based
reconstruction framework studied in this work, namely :

1. the corruption of the training images with our Stain-noise model, and
2. the addition of skip connections to the autoencoder architecture,

lead to a better separation of the internal representations associated to initial and
reconstructed versions of irregular samples than regular ones. This phenomenon is
observed even though the network has not been explicitly trained to separate these
two classes.

In Section 2, we provide an overview of previous reconstruction-based methods
addressing the anomaly detection problem, and motivate the use of the MSE loss to
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train our auto-encoder. Details of our method, including network architecture and the
Stain noise model description, are provided in Section 3. In Section 4, we provide a
comparative study of residual- and uncertainty-based anomaly detection strategies,
both at the image and pixel level. This extensive comparative study demonstrates
the benefit of our proposed framework, combining skip connections and our original
corruption model. Section 5 further investigates and compares the internal repre-
sentations of clean and defective images in an autoencoder with and without skip
connections. This analysis provides insight into the variety of performance observed
in our comparative study, and allows to develop intuition regarding the obtained
results. Moreover, this study highlights the discrepancies observed across image cat-
egories of the MVTec AD dataset, and raises questions for future research. Section
6 concludes.

2 Related Work

Anomaly detection is a long-standing problem that has been considered in a variety
of fields [2, 3] and the reconstruction-based approach is one popular way to address
the issue. In comparison to other methods for which the detection of abnormal sam-
ples is performed in another domain than the image [9–13], reconstruction-based
approaches offer the opportunity to identify the pixels that lead to the rejection of the
image from the normal class. This section presents a literature review organized into
three subsections, each one focusing on the main issues encountered when working
with a reconstruction-based approach.

Low contrast defects detection. Conventional reconstruction-based methods in-
fer anomaly based on the reconstruction error between an arbitrary input and its
reconstructed version. It assumes that clean structures are perfectly conserved while
defective ones are replaced by clean content. However, when a defect contrasts poorly
with its surroundings, replacing abnormal structures with clean content does not lead
to a sufficiently high reconstruction error. In such cases, this methodology reaches
the limit of its underlying assumptions. A previous study [5] detected anomalies by
quantifying the prediction uncertainty with MCDropout [7] instead of the recon-
struction residual.

Reconstruct sharp structures. To obtain a clean reconstruction out of an arbi-
trary image, an autoencoder is trained on clean images to perform an image-to-image
identity mapping under the minization of a loss function. The bottleneck forces the
network to learn a compressed representation of the training data that is expected to
regularize the reconstruction towards the normal class. In the literature, the use of the
MSE loss to train an hourglass CNN, without skip connections, has been criticized
for its trend to produce blurry output images [14, 15]. Since anomaly detection is
based on the reconstruction residual, this behavior is detrimental because it alters
the clean structures of an image as well as the defective ones.
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A lot of effort has been made to improve the quality of the reconstructed images by
the introduction of new loss functions. In this spirit, unsupervised methods based
on Generative Adversarial Networks (GANs) have emerged [16–20]. If GANs are
known for their ability to produce realistic high-quality synthetic images [21], they
have major drawbacks. Usually, GANs are difficult to train due to their trend to con-
verge towards mode collapse [22]. Moreover, in the context of anomaly detection,
some GAN-based solutions fail to exclude defective samples from the generative
distribution [19] and require an extra optimization step in the latent space during
inference [17]. This process ensures that the defective structures of the input image
are replaced by clean content. Performances of AnoGAN [17] over the MVTec AD
dataset have been reported by Bergmann et al. [1]. Those are significantly lower than
the method proposed in this work.
To improve the sharpness of the reconstruction, Bergmann et al. proposed a loss
derived from the Structural SIMilarity (SSIM) index [15]. The use of the SSIM loss
has been motivated by its ability to produce well looking images from a human
perceptual perspective [14, 23]. The SSIM have shown some improvement over the
MSE loss for the training of an autoencoder in the context of anomaly detection.
However, the SSIM loss formulation does not generalize to color images and is
parametric. Traditionally, these hyper-parameters are tuned based on a validation
set. However, in a real-life scenarios of anomaly detection, samples with real defects
are usually not available. For this reason, our paper focuses on the MSE rather than
on the parametric SSIM.

Prevent the reconstruction of defective structures. It is usually expected that
the compression induced by the bottleneck is sufficient to regularize the recon-
struction towards the clean distribution of images. In practice, the autoencoder is
not explicitly constrained to not reproduce abnormal content and often reconstructs
defective structures. A recent method proposed to mitigate this issue by iteratively
projecting the arbitrary input towards the clean distribution of images. The projection
is constrained to be similar, in the sense of the L1 norm, to the initial input [24].
Instead of performing this optimization in the latent space as made with AnoGAN
[17], they propose to find an optimal clean input image. If this practice enhances the
sharpness of the reconstruction, the optimization step is resource consuming.
Also, the reconstruction task can be formulated as an image completion problem
[25, 26]. To make the inference and training phases consistent, it is assumed that the
defects are entirely contained in the mask during inference, which limits the prac-
tical usage of the method. Random inpainting maks have been considered to deal
with this issue [27]. Mei et al. [28] also proposed to use a denoising autoencoder
to reconstruct training images corrupted with salt-and-pepper noise. However they
did not discuss the gain brought by this modification, and only considered it for an
hourglass CNN, without skip connections.
The reconstruction of clean structures has also been promoted by constraining the
latent representation. Practically, Gong et al. [29] learned a dictionary to describe
the latent representation of clean samples based on a sparse linear combination of
dictionary elements. In contrast, defective samples are assumed to require more
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complex combinations of the dictionary items. Based on this hypothesis, enforcing
sparsity during inference prevents the reconstruction of defective structures. In a
similar spirit, Wang et al. [30] considered the use of a VQ-VAE [31]. Their method
incorporates a specific autogressive model in the latent space which can be used to
enforce similarity between encoded vectors of the training and the test sets, thereby
preventing the reconstruction of defective structures.

The methodology proposed in this work presents a simple approach to enhance the
sharpness of the reconstructed images. The skip connections allow the preservation of
high frequency information by bypassing the bottleneck. However, we show that this
practice penalizes anomaly detection when the model is trained to perform identity
mapping on uncorrupted clean images. Nevertheless, the introduction of an original
noise model allows to significantly improve the anomaly detection accuracy for the
skipped architecture, which eventually outperforms the conventional one in many
real-life cases. Also, we compare anomaly detection based on the reconstruction
residual or uncertainty estimation. This second option appears to be of particular
interest for the detection of low contrast defective structures.

3 Our anomaly detection framework

Our method addressed anomaly detection based on the regularized reconstruction
performed by an autoencoder. This section presents the different components of our
approach, ranging from the training of the autoencoder to the strategies considered to
detect defects based on the reconstruction residual or the reconstruction uncertainty.

3.1 Model configuration

The reconstruction of a clean version of any input image is based on a CNN. Our
architecture, referred to as Autoencoder with Skip connections (AESc) and shown
in Figure 2, is a variant of U-Net [32]. AESc takes input images of size 256×256 and
projects them onto a latent space of 4 × 4 × 512 dimension. The projection towards
the lower dimensional space is performed by six consecutive convolutional layers
strided by a factor two. The back projection is performed by six layers of convolution
followed by an upsampling operator of factor two. All convolutions have a 5 × 5
kernel. Unlike the original U-Net version, our skip connections perform an addition,
not a concatenation, of feature maps of the encoder to the decoder.
For the sake of comparison, we also consider the Autoencoder (AE) network which
follows the same architecture but from which we removed the skip connections.

All models have been trained during 250 epochs to minimize the MSE loss over
batches constituted of 16 images. We used the Adam optimizer [33] with an initial
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Fig. 2 AESc architecture performing the projection of an arbitrary 256 × 256 image towards the
distribution of clean images with the same dimension. Note that the AE architecture shares the
same specifications with the exception of the skip connections that have been removed.

learning rate of 0.01. This learning rate is is decreased by a factor of 2 when the
PSNR over a validation set, constituted by 20% of the training images, reaches a
plateau for at least 30 epochs. No additional data augmentation than the synthetic
corruption model presented in Section 3.2 is applied on the training set.

3.2 Corruption model

Ideally, the autoencoder should preserve clean structures while modifying those that
are not. To this end, it is wanted that defective structures are excluded from the
generative model, eventhough the training task is an identity mapping. Due to the
impossibility of collecting pairs of clean and defective versions of the same sample,
we propose to introduce synthetic corruption during training to explicitly constrain
the autoencoder to remove this additive noise. Our Stain noise model, illustrated in
Figure 1 and explained in Figure 3, corrupts images by adding a structure whose
color is randomly selected in the grayscale range and whose shape is an ellipse with
irregular edges.

The intuition behind the definition of this noise model is that occluding large area
of the training images is a data augmentation procedure that helps to improve the
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Add the irreg-
ular structure
to the image

Randomize the
size, the color,

the location and
thegeneral shape

3 real-life examples (Grid imagecategory)

Fig. 3 The Stain noise model is a cubic interpolation between 20 points (orange dots), arranged in
ascending order of polar coordinates, located around the border of an ellipse of variable size (blue
line). The axes of the ellipse are comprised between 1 and 12% of the smallest image dimension
and its eccentricity is randomly initialized.

network training [34, 35]. Due to the skip connections in our network architecture,
this form of data augmentation is essential to avoid the convergence of the model
towards the identity operator. However, we noticed that the use of regular shapes,
like a conventional ellipse, leads to overfitting to this additive noise structure, as also
pointed out in a context of inpainting with rectangular holes [36].

3.3 Anomaly detection strategies

We compare two approaches to obtain the anomaly map representing the likelihood
that a pixel is abnormal. On the one hand, the residual-based approach evaluates
the abnormality by measuring the absolute difference between the input image x and
its reconstruction x̂. On the other hand, the uncertainty-based approach relies on
the intuition that structures that are not seen during training, i.e. the anomalies, will
correlate with higher uncertainties. This is estimated by the variance between 30
output images inferred with the MCDropout technique. Our experiments revealed
that more accurate detection is obtained by applying an increasing level of dropout
for deepest layers. More specifically, the dropout levels are [0, 0, 10, 20, 30, 40]
percent for layers ranging from the highest spatial resolution to the lowest.

Out of the anomaly map, it is either possible to classify the entire image as
clean/defective or to classify each pixel as belonging to a clean/defective structure.
In the first case, referred to as image-wise detection, it is common to compute the
L 𝑝 norm of the anomaly map given by

L 𝑝 (x, x̂) = ©«
𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

|x𝑖, 𝑗 − x̂𝑖, 𝑗 |𝑝
ª®¬

1/𝑝

(1)

with x𝑖, 𝑗 denoting the pixel belonging to the 𝑖th row and the 𝑗 th column of the image
x of size 𝑚 × 𝑛. Based on our experiments, we present results obtained for 𝑝 = 2
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since they achieve the most stable accuracy values across the experiments. Hence, all
images for which the L2 norm of the abnormality map exceeds a chosen threshold
are considered as defective. In the second case, referred to as pixel-wise detection,
the threshold is applied directly on each pixel value of the anomaly map.

To perform image-wise or pixel-wise anomaly detection, a threshold has to be
determined. Since this threshold value is highly dependent on the application, we
present the performances in terms of Area Under the receiver operating characteristic
Curve (AUC), obtained by varying over the full range of threshold values.

4 Anomaly detection on the MVTec AD dataset

Experiments have been conducted on grayscale images of the MVTec AD dataset [1],
containing five categories of textures and ten categories of objects. In this dataset,
defects are real and have various appearance. Their location is defined with a binary
segmentation mask. All images have been scaled to a 256 × 256 size. Anomaly
detection is performed at this resolution.

4.1 AESc + Stain: qualitative and quantitative analysis

In this section, we compare qualitatively and quantitatively the results obtained with
our AESc + Stain model for both image- and pixel-wise detection. This analysis fo-
cuses on the residual-based detection approach to emphasize the benefits of adding
skip connections to the AE architecture. The comparison of the results obtained with
residual- versus uncertainty-based strategies is discussed later in Section 4.2.

Qualitatively, Figure 4 reveals the trends of the AE and AESc models trained with
and without the Stain noise corruption. On the one hand, the AE network produces
blurry reconstructions as depicted by the overall higher residual intensities. If the
global structure of the object (Cable and Toothbrush) are properly reconstructed, the
AE network struggles to infer the finer details of the texture images (Carpet sample).
On the other hand, the AESc model shows finer reconstruction of the image details
depicted by a nearly zero residual over the clean areas of the images. However,
when ASEc is trained without corruption, the model converges towards an identity
operator, as revealed by the close-to-zero residuals of defective structures. The cor-
ruption of the training images with the Stain model alleviates this unwanted behavior
by leading to high reconstruction residuals in defective areas while simultaneously
keeping low reconstruction residuals in clean structures.

Quantitatively, Table 1 presents the image-wise detection performances obtained
with the AESc and AE networks trained with and without our Stain noise model.
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Fig. 4 Predictions obtained with the AESc and AE networks trained with and without our Stain
noise model. Two defective textures are considered, namely a Carpet (first sample) and a Grid
(second sample), as well as two defective objects, namely a Cable (third sample) and a Toothbrush
(fourth sample). First column show the image fed in the networks and the mask locating the defect.
Odd rows show the reconstructed images and even rows show the anomaly maps obtained with the
residual-based strategy.
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The last column provides a comparison with the ITEA method, introduced by Huang
et al. [6]. ITAE is also a reconstruction-based approach which relies on an autoen-
coder with skip connections trained with images corrupted by random rotations and
a graying operator (averaging of pixel value along the channel dimension) selected
based on prior knowledge about the task.
This table highlights the superiority of our AESc + Stain noise model to solve the
image-wise anomaly detection. The improvement brought by adding skip connec-
tions to an autoencoder trained with corrupted images is even more important for
texture images than for object images. We also observe that, if the highest accuracy
is consistently obtained with the residual-based approach, the uncertainty-based de-
cision derived from the AESc + Stain model generally provides the second best
(underlined in Table 1) performances among tested networks, attesting the quality
of the AESc + Stain model for image-based decision.

Table 1 Image-wise detection AUC obtained with the residual- and uncertainty-based
detection methods𝑎 .

Uncertainty Residual

Network AE AESc AE AESc ITAE [6]

Corruption None Stain None Stain None Stain None Stain

Te
xt

ur
es

Carpet 0.41 0.30 0.44 0.80 0.43 0.43 0.48 0.89 0.71
Grid 0.69 0.66 0.12 0.97 0.80 0.84 0.52 0.97 0.88
Leather 0.86 0.57 0.88 0.72 0.45 0.54 0.56 0.89 0.87
Tile 0.73 0.50 0.72 0.95 0.49 0.57 0.88 0.99 0.74
Wood 0.87 0.86 0.78 0.78 0.92 0.94 0.92 0.95 0.92

Mean𝑏 0.71 0.58 0.59 0.84 0.62 0.66 0.67 0.94 0.82

O
bj

et
s

Bottle 0.72 0.41 0.71 0.82 0.98 0.97 0.77 0.98 0.94
Cable 0.64 0.48 0.52 0.87 0.70 0.77 0.55 0.89 0.83
Capsule 0.55 0.49 0.44 0.71 0.74 0.64 0.60 0.74 0.68
Hazelnut 0.83 0.60 0.68 0.90 0.90 0.88 0.85 0.94 0.86
Metal Nut 0.38 0.33 0.41 0.62 0.57 0.59 0.24 0.73 0.67
Pill 0.63 0.48 0.55 0.62 0.76 0.76 0.70 0.84 0.79
Screw 0.45 0.77 0.13 0.80 0.68 0.60 0.30 0.74 1.00
Toothbrush 0.36 0.44 0.51 0.99 0.93 0.96 0.78 1.00 1.00
Transistor 0.67 0.59 0.55 0.90 0.84 0.85 0.46 0.91 0.84
Zipper 0.44 0.41 0.70 0.93 0.90 0.88 0.72 0.94 0.80

Mean𝑐 0.57 0.50 0.52 0.82 0.80 0.79 0.60 0.87 0.84

Global mean𝑑 0.62 0.53 0.54 0.83 0.74 0.75 0.62 0.89 0.84
𝑎 For each row, the best performing approach is highlighted in boldface and the second

best is underlined.
𝑏 Mean AUC obtained over the classes of images belonging to the texture categories.
𝑐 Mean AUC obtained over the classes of images belonging to the object categories.
𝑑 Mean AUC obtained over the entire dataset.
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Table 2 presents the pixel-wise detection performances obtained with our ap-
proaches and compares them with the method reported in [1], referred to as AEL2.
This residual-based method relies on an autoencoder without skip connections, and
provides state of the art performance in the pixel-wise detection scenario. Similarly
to our AE model, AEL2 is trained to minimize the MSE of the reconstruction of im-
ages that are not corrupted with synthetic noise. AEL2 however differs from our AE
model in several aspects, including a different network architecture, data augmenta-
tion, patch-based inference for the texture images, and anomaly map post-processing
with mathematical morphology. Despite our efforts, in absence of public code, we
have been unable to reproduce the results presented in [1]. Hence, our table just
copy the results from [1]. For fair comparison between AE and AESc + Stain, the
table also provides the results obtained with our AE, since our AE and AESc +
Stain models adopt the same architecture (up to the skip connections) and the same
training procedure.

Table 2 Pixel-wise detection AUC obtained with the residual- and uncertainty-based
detection methods𝑎 .

Uncertainty Residual

Network AE AESc AE AESc AEL2 [1]

Corruption None Stain None Stain None Stain None Stain

Te
xt

ur
es

Carpet 0.55 0.54 0.43 0.91 0.57 0.62 0.52 0.79 0.59
Grid 0.52 0.49 0.50 0.95 0.81 0.82 0.57 0.89 0.90
Leather 0.86 0.52 0.58 0.87 0.79 0.82 0.71 0.95 0.75
Tile 0.54 0.50 0.53 0.79 0.45 0.54 0.62 0.74 0.51
Wood 0.61 0.48 0.51 0.84 0.64 0.71 0.65 0.84 0.73

Mean𝑏 0.62 0.51 0.51 0.87 0.65 0.70 0.61 0.84 0.70

O
bj

ec
ts

Bottle 0.68 0.63 0.64 0.88 0.85 0.88 0.47 0.84 0.86
Cable 0.54 0.70 0.66 0.84 0.62 0.83 0.72 0.85 0.86
Capsule 0.92 0.89 0.65 0.93 0.87 0.87 0.63 0.83 0.88
Hazelnut 0.95 0.91 0.60 0.89 0.92 0.93 0.79 0.88 0.95
Metal Nut 0.79 0.73 0.50 0.62 0.82 0.84 0.52 0.57 0.86
Pill 0.82 0.82 0.61 0.85 0.81 0.81 0.64 0.74 0.85
Screw 0.94 0.94 0.61 0.95 0.93 0.93 0.72 0.86 0.96
Toothbrush 0.84 0.83 0.79 0.93 0.92 0.93 0.73 0.93 0.93
Transistor 0.79 0.64 0.51 0.78 0.79 0.82 0.56 0.80 0.86
Zipper 0.78 0.77 0.60 0.90 0.73 0.75 0.60 0.78 0.77

Mean𝑐 0.81 0.79 0.62 0.86 0.83 0.86 0.64 0.81 0.88

Global mean𝑑 0.74 0.69 0.58 0.86 0.77 0.81 0.63 0.82 0.82
𝑎 For each row, the best performing approach is highlighted in boldface and the second

best is underlined.
𝑏 Mean AUC obtained over the classes of images belonging to the texture categories.
𝑐 Mean AUC obtained over the classes of images belonging to the object categories.
𝑑 Mean AUC obtained over the entire dataset.
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In the residual-based detection strategy, our AESc + Stain method obtains similar
performances as the AEL2 approach when averaged over all the image categories of
the MVTec AD dataset. However, as already pointed in the image-wise detection
scenario, AESc + Stain performs better with texture images and worse with object
images. Regarding the decision strategy, we observe an opposite trend than the one
encountered for image-wise detection: the uncertainty-based approach performs a
bit better than the residual-based strategy when it comes to pixel-wise decisions.
This difference is further investigated in the next section.

4.2 Residual- vs. uncertainty-based detection strategies

Figure 5 provides a visual comparison between residual- and uncertainty-based
strategies. Globally, we observe that the reconstruction residual mostly correlates
with the uncertainty. However, the uncertainty indicator is usually more widespread.
This behavior can sometimes lead to a better coverage of the defective structures
(Bottle and Pill) or to an increase of the number of false positive pixels that are
detected (Carpet and Cable).
One important observation concerns the relationship between the detection of a
defective structure and its contrast with its surroundings. In the residual-based ap-
proach, regions of an image are considered as defective if their reconstruction error
exceeds a threshold. In the proposed formulation, the network is explicitly con-
strained to replace synthetic defective structures with clean content. No constraint is
introduced regarding the contrast of the reconstructed structure and its surroundings.
Hence, defects that are poorly contrasted lead to small residual intensities. On the
contrary, the intensity of the uncertainty indicator does not depend on the contrast
between a structure with the surroundings. For low contrast defects, it enhances their
detection as illustrated (Bottle and Pill). On the contrary, it can deteriorate the loca-
tion of high contrast defects for which the residual map is an appropriate anomaly
indicator (Carpet and Cable). In theses cases, the sharp prediction obtained with the
residual-based approach is preferred over the uncertainty-based one.

As reported in Section 4.1, we observe that the uncertainty-based detection per-
form generally worse than the residual-based approach for image-wise detection. We
explain this drop of performance by an increase of the intensities of the uncertainty
maps inferred from the clean images belonging to the test set. As the image-wise
detection is based on the L2 norm of the anomaly map, the lowest the anomaly
maps of clean images, the better the detection of defective images. For image-wise
detection, the performances are less sensitive to the optimal coverage of the defective
area as long as the overall intensity of the clean anomaly maps is low.
On the contrary, the uncertainty-based strategy improves the pixel-wise detection of
the AESc + Stain model. For this use case, a better coverage of the defective struc-
ture is crucial. As previously mentioned, AESc + Stain model used usually leads to
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reconstruction residual constituted of sporadic spots and misses low contrast defects.
The uncertainty-based strategy compensates these two issues.

Mask Input Prediction Residual Uncertainty

Fig. 5 Predictions obtained with the AESc network trained with our Stain noise model. One
defective texture is considered, namely a Carpet (third row) as well as three defective objects,
namely a Bottle (first row), a Pill (second row) and a Cable (fourth row). From left to right, columns
represent the ground-truth, the image fed to the network, the prediction (without MCDropout), the
reconstruction residual and the reconstruction uncertainty.

4.3 Comparative study of corruption models

Up to now, we considered only the Stain noise model to corrupt training data. In this
comparative study we consider other noise models to confirm the relevance of our
previous approach over other types of corruption that could have been considered.
We provide here a comparison with three other synthetic noise models represented
in Figure 6:

a- Gaussian noise. Corrupt by adding white noise applied uniformly over the entire
image. For normalized intensities between 0 and 1, a corrupted pixel value
𝑥 ′, corresponding to an initial pixel value 𝑥, is the realization of a random
variable given by a normal distribution of mean 𝑥 and variance 𝜎2 in the set:
[0.1, 0.2, 0.4, 0.8].
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b- Scratch. Corrupt by adding one curve connecting two points whose coordinates
are randomly chosen in the image and whose color is randomly selected in the
gray scale range. The curve can follow a straight line, a sinusoidal wave or the
path of a square root function.

c- Drops. Corrupt by adding 10 droplets whose color are randomly selected in the
gray scale range and whose shape are circular with a random diameter (chosen
between 1 and 2% of the smallest image dimension). The droplets partially
overlap.

In addition, we have also considered the possibility to corrupt the training images
with a combination of several models. We propose two hybrid models:

d- Mix1. This configuration corrupts training images with a combination of the
Stain, Scratch and Drops models. We fix that 60% of the training images are
corrupted with the Stain model while the remaining 40% are corrupted with the
Scratch and Drops models in equal proportions.

e- Mix2. This configuration corrupts training images with a combination of the
Stain and the Gaussian noise models. We fix that 60% of the training images are
corrupted with the Stain model while the remaining 40% are corrupted with the
Gaussian noise model.

(a) Gaussian noise. (b) Scratch. (c) Drops.

Fig. 6 Illustration of the Gaussian noise, Scratch and Drops models. The original clean image is
the one presented in Figure 1.

Figure 7 allows to compare reconstructions obtained when the AESc network is
trained over images corrupted with the newly introduced noise models with respect
to the Stain noise model. First, these examples illustrate the convergence of the model
towards the identity mapping when the Gaussian noise model is used as synthetic
corruption. An analysis of the results obtained over the entire dataset reveals that the
AESc + Gaussian noise model does almost not differ from the AESc network trained
with unaltered images.
Compared to the the Gaussian noise, other models introduced before improve the
identification of defective areas in the images. This is reflected by higher intensities
of the reconstruction residual in the defective areas and close-to-zero reconstruction
residual in the clean areas. With the exception of the Gaussian noise model, the
Scratch model is the most conservative, among those considered, in the sense that
most of the structures of the input images tend to be reconstructed identically. This
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practice increases the number of false negative. Also, the Drops model restricts the
structures detected as defective to sporadic spots. Finally, the three models based on
the Stain noise (Stain, Mix1 and Mix2) provide the residuals that correlate the most
with the segmentation mask.
Generally, models based on the Stain noise (Stain, Mix1 and Mix2) lead to the most
relevant reconstruction for anomaly detection, i.e. lower residual intensities in clean
areas and higher residual intensities in defective areas. More surprisingly, this state-
ment remains true even if the actual defect looks more similar to the Scratch model
than the Stain noise (Bottle sample in Figure 7). We recall that defects contained
in the MVTec AD dataset are real observations of an anomaly. This reflects that
models trained with synthetic corruption models that look similar to real ones do
not necessarily generalize well to real defects.
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Fig. 7 Reconstructions obtained with the AESc network trained with different noise models. We
consider here one defective object, namely a Bottle (first sample) and a defective texture, namely a
Wood (second sample). Rows and columns are defined as in Figure 4.

Table 3 quantifies the impact of the synthetic noise model on the performances
of the ASEc network to solve the image-wise detection task with a residual-based
approach. The AESc + Stain configuration is the best performing in all use cases
when considering the mean performances that are obtained over the entire dataset, as
revealed by the previous qualitative study. The two hybrid models (Mix1 and Mix2)
lead usually to slightly lower performances than those obtained with the Stain model.
Those observations attest that the Stain model is superior to others and justify the
choice of the Stain noise as our newly introduced approach to corrupt the training
images with synthetic noise.
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Table 3 Image-wise AUC obtained with the AESc network trained with different noise models
with the residual-based problem formulation𝑎 .

Corruption None Drops Gaussian noise (𝜎) Scratch Stain Mix1 Mix2
0.1 0.2 0.4 0.8

Te
xt

ur
es

Carpet 0.48 0.87 0.52 0.46 0.51 0.53 0.63 0.89 0.84 0.84
Grid 0.52 0.94 0.55 0.69 0.59 0.72 0.79 0.97 0.91 0.96
Leather 0.56 0.87 0.72 0.71 0.74 0.71 0.77 0.89 0.88 0.89
Tile 0.88 0.94 0.94 0.92 0.90 0.92 0.95 0.99 0.98 0.96
Wood 0.92 0.99 0.89 0.90 0.91 0.85 0.96 0.95 0.94 0.79

Mean𝑏 0.67 0.92 0.72 0.74 0.73 0.75 0.82 0.94 0.91 0.89

O
bj

et
s

Bottle 0.77 0.99 0.82 0.85 0.81 0.75 0.91 0.98 0.98 0.97
Cable 0.55 0.60 0.58 0.53 0.49 0.46 0.60 0.89 0.87 0.90
Capsule 0.60 0.71 0.58 0.68 0.57 0.59 0.66 0.74 0.74 0.53
Hazelnut 0.85 0.98 0.75 0.73 0.92 0.73 0.96 0.94 0.93 0.81
Metal Nut 0.24 0.54 0.32 0.27 0.28 0.24 0.44 0.73 0.71 0.86
Pill 0.70 0.79 0.69 0.71 0.73 0.68 0.78 0.84 0.77 0.78
Screw 0.30 0.46 0.91 0.99 0.78 0.65 0.71 0.74 0.22 0.72
Toothbrush 0.78 1.00 0.99 0.98 0.79 0.82 0.87 1.00 1.00 1.00
Transistor 0.46 0.83 0.55 0.49 0.48 0.50 0.68 0.91 0.92 0.92
Zipper 0.72 0.93 0.66 0.63 0.69 0.58 0.79 0.94 0.90 0.98

Mean𝑐 0.60 0.78 0.68 0.69 0.65 0.60 0.74 0.87 0.80 0.85

Global mean𝑑 0.62 0.83 0.70 0.70 0.68 0.65 0.77 0.89 0.84 0.86
𝑎 For each row, the best performing approach is highlighted in boldface and the second best

is underlined.
𝑏 Mean AUC obtained over the classes of images belonging to the texture categories.
𝑐 Mean AUC obtained over the classes of images belonging to the object categories.
𝑑 Mean AUC obtained over the entire dataset.

5 Internal representation of defective images

The choice of an autoencoder network architecture, with or without skip connections,
has been motivated by the willingness to compress the input image representation in
order to regularize the reconstruction towards clean images only.
This section analyzes the latent representation of clean and defective images for
both the AE + Stain and the AESc + Stain methods. The purpose of this study
is to supplement the results presented in Section 4 by introducing a new problem
formulation. A strong relation will be highlighted between our previous approach
and this new study. In comparison to the initial reconstruction-based approach,
this discussion addresses the anomaly detection task as the identification of out-of-
distribution samples. In this formulation, each input image is represented in a another
domain. This step has for purpose to produce tensors whose definition is particularly
suited for this task. Then, a new metric quantifies the likelihood of a tensor to be
sampled from the clean data distribution or not.
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5.1 Formulating anomaly detection as an out-of-distribution sample
detection problem

In this section, two fundamental notions are introduced in order to formulate the
anomaly detection task as the identification of out-of-distribution samples. First,
each sample is represented in every layer, by the layer feature map tensors. The
originality of our formulation lies in the use of the output image of the network to
represent each image as a tensor. As a reminder, this output is assumed to be a clean
reconstruction of the arbitrary input image. Second, a measure allows to evaluate the
distance of the input to the clean distribution, in each tensor space.

Definition of the tensor space. Let’s denote an input image by x and the
output of the network by x̂, with both x, x̂ ∈ R256×256. Note that we fixed the
image resolution to 256 × 256 for the MVTev AD dataset, but the equations can be
adapted to handle any other image spatial dimension. We also define the operator
𝑙𝑖 (·) : R256×256 → R𝑛𝑖×𝑛𝑖×𝑐𝑖 which projects an input image to its activation tensor in
the 𝑖th layer. In this notation, 𝑛𝑖 and 𝑐𝑖 respectively denote the spatial dimension and
the number of channels in layer 𝑖. As depicted in Figure 8, 𝑙1 (x) corresponds to the
activation tensor obtained after one convolutional layer while 𝑙6 (x) is the activation
tensor in the bottleneck.
For each layer of the encoder, a Δ𝑙𝑖 tensor is computed for any input image x by
subtracting the activation maps of x̂ from those of x:

Δ𝑙𝑖 (x) = 𝑙𝑖 (x) − 𝑙𝑖 (x̂) , (2)

with x̂ being the closest clean reconstruction of x, obtained by inferring x through
the AE or AESc autoencoder. If x is sampled from the clean distribution, the images
x and x̂ should be almost identical, as their activation tensors. This implies that the
resulting Δ𝑙𝑖 tensor of x should contains close-to-zero values. On the contrary, if x is
sampled from the defective distribution, the corresponding Δ𝑙𝑖 tensor should deviate
from the zero tensor.

Definition of the distance to the clean distribution. It is expected that all theΔ𝑙𝑖
tensors of a clean image contain close-to-zero values. However, it has been observed
that, for a set of clean images, the components diverge more or less from this zero
value depending on the input image. In order to take this phenomenon into account,
we propose to represent each component of the Δ𝑙𝑖 tensors, denoted by the index 𝑗 ,
by the mean (`𝑖, 𝑗 ) and variance (𝜎𝑖, 𝑗 ) observed across the training set as described in
Figure 9. The activation of the 𝑗 th component in each Δ𝑙𝑖 is considered as abnormal
(or out-of-distribution) if its value is not contained in the range `𝑖, 𝑗 ± 3𝜎𝑖, 𝑗 .
Then, we quantify the level of anomaly affecting an image, by the number of out-
of-distribution activations divided by the tensor dimension. This value is referred as
the Out-of-Distribution Ratio (OoDR):
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OoDR𝑖 (x) =
𝑛𝑖×𝑛𝑖×𝑐𝑖∑︁

𝑗=1

[
Δ𝑙𝑖, 𝑗 (x)

]
OoD

𝑛𝑖 × 𝑛𝑖 × 𝑐𝑖
(3)

with

{[
Δ𝑙𝑖, 𝑗 (x)

]
OoD = 0, if `𝑖, 𝑗 − 3𝜎𝑖, 𝑗 ≤ Δ𝑙𝑖, 𝑗 (x) ≤ `𝑖, 𝑗 + 3𝜎𝑖, 𝑗[

Δ𝑙𝑖, 𝑗 (x)
]

OoD = 1, else.

The principal motivation behind this definition lies in a metric which scales well
when dealing with high dimensional tensors.

x

x̂

ENCODER

𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙6

For each input image, we compute six Δ𝑙𝑖 tensors (1 per layer in the encoder)

Δ𝑙1(x) = 𝑙1(x) − 𝑙1(x̂) Δ𝑙𝑖 (x) = 𝑙𝑖 (x) − 𝑙𝑖 (x̂) Δ𝑙6(x) = 𝑙6(x) − 𝑙6(x̂)

128×128×16 64×64×32 32×32×64 16×16×128 8×8×256
4×4×512

Fig. 8 For each input image x, we infer both this image and its closest clean version x̂ obtained by
passing x through AE or AESc. Hence, we obtain two activation tensors per layer 𝑖 denoted by the
operator 𝑙𝑖 ( ·) , one corresponding to x and the other to x̂. The six Δ𝑙𝑖 tensors of an input image are
obtained by computing the difference between the activation tensor of the input image and the ones
of its reconstructed clean version.

Δ𝑙𝑖 (x1) Δ𝑙𝑖 (x2) Δ𝑙𝑖 (xN)

...

...

For each component 𝑗 in the Δ𝑙𝑖 ten-
sor with dimension 𝑛𝑖 × 𝑛𝑖 × 𝑐𝑖:

• `𝑖, 𝑗 =
∑𝑁

𝑛=1
Δ𝑙𝑖, 𝑗 (xn)

𝑁

• 𝜎𝑖, 𝑗 =

√︂∑𝑁
𝑛=1(Δ𝑙𝑖, 𝑗 (xn) − `𝑖, 𝑗)2

𝑁

𝑁 clean images in the training set

Fig. 9 For each component 𝑗 of the activation tensors, we compute the mean and the standard
deviation of the neuron values across all clean images in the training set. Then, ` 𝑗 and 𝜎 𝑗 represent
the normal clean distribution of an activation value for a given component.
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5.2 Out-of-distribution ratio for clean and defective samples

As introduced in Section 3, our networks are trained to minimize the reconstruc-
tion error over clean structures in the image. Despite training does not explicitly
encourage the separation of clean and defective image tensors, we observe that this
separation naturally emerges. This is revealed by the proximity/distance to zero of
the OoDR𝑖 distributions associated to clean/defective images. Moreover, the OoDR𝑖

distributions appear to provide insightful justifications of the various anomaly detec-
tion performance obtained for different categories of images in Table 1. This analysis
summarizes the results obtained over the image categories of the MVTec AD dataset
by presenting three illustrative cases.

Case 1: Image category for which both AESc + Stain and AE + Stain achieve
high performance. This first case focuses on the Bottle image category, for which
both networks achieve close to 0.98 image-wise detection AUC (see Table 1). The
OoDR𝑖 distributions in both AE and AESc networks over the Bottle category are
shown in Figure 10. As expected, we observe that the OoDR𝑖 of clean images (blue)
lead to smaller values than those of the corrupted/defective images (red). In the
training set, the clean OoDR𝑖 distributions are peaky in zero, while the corrupted
ones are spread over a larger range of values. In the test set, the sharpness of the
clean distributions is reduced which increases the overlap between the clean and the
defective distributions.
With respect to the layer index, we observe that the OoDR𝑖 distribution separation
increases as we go deeper into the network, which is even more evident with the
AESc architecture. Particularly, in the bottleneck (𝑖 = 6) of the AESc network, the
two image distributions are almost perfectly separable.

Case 2: Image categories for which high performance is achieved with AESc
+ Stain but not with AE + Stain. This second case focuses on two texture image
categories, Tile and Carpet. The AESc + Stain method achieves accurate detection of
defective images (0.99 and 0.89 on Tile and Carpet, respectively) while image-wise
detection AUC obtained with the AE + Stain methods are poor (0.57 and 0.43 on
Tile and Carpet, respectively).
As shown in Figure 10, the clean (blue) and corrupted/defective (red) OoDR𝑖 distri-
butions of the AE + Stain method obtained over the Tile category follow the same
trend. Moreover, the OoDR𝑖 distributions of the clean images sampled from the test
set are shifted to the right in comparison to those of the training set. Such trend is
not visible with the AESc + Stain method, for which the OoDR𝑖 distributions follow
a similar behavior to the one observed for the Bottle dataset.
Regarding the Carpet category, the poor anomaly detection performance achieved
by the AE + Stain model is also reflected by overlapping OoDR𝑖 distributions. The
OoDR𝑖 distributions on test samples appear to be bi-modal and widely spread pat-
terns. Again, those trends are not present with the AESc + Stain method where blue
and red distributions appear to be more separable.
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Fig. 10 Distribution of the OoDR𝑖 in each layer (only the encoder part) of the AESc and AE
networks trained over images of the Bottle (up left), Screw (up right), Tile (down left) and Carpet
(down right) categories and corrupted with the Stain noise model. For both architectures, the
distribution for the training set (odd columns) and those for the test set (even columns) are presented
apart. In each graph, OoDR𝑖 distributions related to clean images are represented in blue while
OoDR𝑖 distributions related to corrupted (training)/defective (test) images are represented in red.
The ratio of overlapping area between the two curves is provided in the gray rectangles (0 for non
overlapping curves, 1 for identical curves).
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Case 3: Image category for which poor performance is achieved both with
AESc + Stain and AE + Stain compared to the state of the art. This third case
focuses on the Screw category due to the poor image-wise detection AUC achieved
(0.74 for AESc + Stain and 0.6 for AE + Stain) with respect to the perfect (1.00)
detection obtained with the state of the art method. As shown in Figure 10, we observe
an unexpected inversion of the clean and defective OoDR𝑖 distributions over the test
set for both AE and AESc networks. One possible explanation for this phenomenon
is the variation of the luminosity between the clean images of the training set and the
clean images of the test set. By carefully looking at the dataset, we have observed
a dimming of the lightning in the clean image test set leading to a global change of
the screws appearance characterized by less reflection and shading.

5.3 Analyzing out-of-distribution activations at the tensor component
level

The objective of this section is to study whether some specific tensor components
contribute more than others to the increase of the OoDR𝑖 for defective images. This
is of interest to potentially identify a subset of tensor components that are particularly
discriminant to determine whether an image is clean or not.
In Section 5.2, we observed that the separation between the clean and defective
OoDR𝑖 distributions was more evident in the bottleneck than in the previous layers.
For this reason, we focus the rest of our analysis on the samples separation achieved
exclusively in the bottleneck.

In Figure 11, we provide a partial visualization of the Δ𝑙6 and [Δ𝑙6]OoD tensors
computed in the bottleneck for both AE and AESc networks. The image category
chosen for this experiment is the Bottle one, for which our method performs well. The
tendency of the AESc + Stain model to produce near-to-zero Δ𝑙6 tensors for clean
images is strongly marked in this situation. Comparatively, the Δ𝑙6 tensors obtained
with AE + Stain for clean images are more noisy. This observation confirms the
ability of the AESc + Stain model to separate better the clean and defective images
than the AE + Stain model.
A more detailed analysis of this figure does not allow to state that some specific ten-
sor components are particularly relevant to distinguish clean and defective images.
If this were the case, vertical stripes would have been visible on the "unit blocks"
obtained from the [Δ𝑙6]OoD tensors.
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(a) Legend describing how the dataset is summarized in one "unit block". Out of a Δ𝑙6 or [Δ𝑙6 ]OoD
tensor of dimension 4 × 4 × 512, only one one spatial resolution in considered by keeping only
one 1 × 1 × 512 vector per input image. This procedure is repeated for each image in the training
clean/corrupted and the test clean/defective sets. All the vectors obtained from images belonging
to the same class label are stacked together. Finally, one dataset is summarized by one "unit block"
which is the ensemble of the training clean, test clean, training corrupted and test defective stacked
vectors.
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(b) According to the legend described above, the subfigure presents the "unit blocks" corresponding
to the Bottle category. In the first row, the "unit blocks" are constructed from the Δ𝑙6 tensors. The
color map varies from the blue (negative activation values) to the red (positive activation values).
In the second row, the "unit blocks" are constructed from the [Δ𝑙6 ]OoD tensors. A black value
indicates that the corresponding component 𝑗 of the Δ𝑙6 ranges between `6, 𝑗 ± 3 𝜎6, 𝑗 , while a
white value stands for an out-of-distribution component.

Fig. 11 Visualization of the "unit blocks" obtained both from the Δ𝑙6 and the [Δ𝑙6 ]OoD tensors
at two spatial locations in the bottleneck: (1, 2) and (3, 3) . Those results are generated from the
images of the Bottle category.

5.4 Using the out-of-distribution ratio as a measure quantifying the
level of abnormality

Despite the fact that our networks are not explicitly trained to address the anomaly
detection task as an out-of-distribution problem, it is possible to study the detection
performances obtained when using the OoDR𝑖 as a criterion to distinguish clean
from defective images. Since we have observed previously that the best OoDR𝑖

separation is achieved in the bottleneck, we carry out this analysis exclusively on
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the OoDR6 values. Results for all image categories are represented in Figure 12.
In general, AESc + Stain achieves better image-wise detection AUC values than
AE + Stain, which is consistent with previous observations. In comparison with the
reconstruction-based approach (involving the computation of the L2-norm between
an input image and its reconstruction), the out-of-distribution formulation achieves
lower detection rates in general.
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Fig. 12 Distribution of the OoDR6 values obtained on the test clean (blue) and test defective (red)
images on all image categories. Values below each box plot provide the image-wise detection AUC
obtained when using the OoDR6 as a decision rule. Upper graph provides the results obtained with
the AE + Stain method and lower graph for the AESc + Stain method.

Intuitively, the design of a detector that would combine both the out-of-distribution
and the reconstruction-based approaches into account could be used to enhance
the detection of defective samples. Nevertheless, an improvement of the detection
performance will be obtained only if the two decision criteria are complementary.
Figure 13 however reveals that, in the current training configuration, the two criteria
are strongly correlated. In this figure, the L2-norm is plotted as a function of the
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OoDR6 value. Generally, there is no decision boundary that performs significantly
better than a vertical or an horizontal line. Hence, using a single criterion is sufficient,
and there is no significant gain to expect from their combination.
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Fig. 13 For the test clean images (blue) and test defective images (red), we show the OoDR6 value
depending on the L2-norm of the reconstruction error. We performed this analysis for the four
image categories addressed in Section 5.2 (Bottle, Screw, Tile and Capet).

5.5 Related works and perspectives

Multiple recent works have studied the internal representation of an image by a CNN
to address anomaly detection [37, 38] or adversarial attacks detection [39, 40]. In
the particular context of detecting adversarial samples, Granda et al. [40] revealed
that only a limited subset of neurons is relevant to predict the class label. Hence,
adversarial samples can be detected by observing how the state of those relevant
neurons change compared to a class centroid. In comparison, since no class label
is available during training in our case, our formulation relies on the comparison
between the internal representations associated to the input and to its reconstructed
clean image. It complements [40] by showing that, in absence of class supervision,
all neurons of a layer are likely to change in presence of an anomaly.
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Another recent work has considered the internal CNN representation for anomaly
detecion, and has shown that constraining the latent representation of clean samples
to be sparse improves the detection performance [41]. This is in line with our
observations, since increased sparsity of the clean representation is also expected to
favor a better separation of the OoDR𝑖 distributions. This suggests that an interesting
path for future research could consist in promoting OoDR𝑖 separation explicitly
during training.

6 Conclusion

Our work considers the detection of abnormal structure in an images based on the
reconstruction of a clean version of this query image. Similarly to previous works,
our framework builds on convolutional autoencoder and relies on the reconstruction
residual or the prediction uncertainty, estimated with the Monte Carlo dropout tech-
nique, to detect anomalies. As an original contribution, we demonstrated the benefits
of considering an autoencoder architecture equipped with skip connections, as long
as the training images are corrupted with our Stain noise model to avoid convergence
towards an identity operator. This new approach performs significantly better than
traditional autoencoders to detect real defects on texture images of the MVTec AD
dataset.
Furthermore, we also provided a fair comparison between the residual- and
uncertainty-based detection strategies relying on our AESc + Stain model. Unlike
the reconstruction residual, the uncertainty indicator is independent of the contrast
between the defect and its surroundings, which is particularly relevant for low con-
trast defects localization. However, in comparison to the residual-based detection
strategy, the uncertainty-based approach increases the false positive rate in the clean
structures.

To better understand our evaluation, we conducted a throughout analysis of the in-
ternal representations of clean and defective samples. For this purpose, the anomaly
detection task has been formulated as the identification of out-of-distribution sam-
ples. In other words, it identifies the samples for which the internal representations
of the input and reconstructed image significantly differ, compared to an estimated
normal variation level observed among clean samples. Our study revealed that some
correlation exists between the performance of our initial approach and the natural
trend of the network to separate clean from defective samples in this new problem
formulation. This suggests that controlling explicitly the separation of clean and cor-
rupted image representations during training could help in improving the anomaly
detection performance on datasets where our approach is now ineffective.
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Abstract

The Support Vector Data Description (L1 SVDD) is a non-parametric one-class

classification algorithm that utilizes the L1 norm in its objective function. An alterna-

tive formulation of SVDD, called L2 SVDD, uses a L2 norm in its objective function

and has not been extensively studied. L1 SVDD and L2 SVDD are formulated as

distinct quadratic programming (QP) problems and can be solved with a QP-solver.

The L2 SVDD and L1 SVDD’s ability to detect small and large shifts in data gener-

ated from multivariate normal, multivariate t, and multivariate Laplace distributions is
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evaluated. Similar comparisons are made using real-world datasets taken from various

applications including oncology, activity recognition, marine biology, and agriculture.

In both the simulated and real-world examples, L2 SVDD and L1 SVDD perform sim-

ilarly, though, in some cases, one outperforms the other. We propose an extension of

the SMO algorithm for L2 SVDD, and we compare the runtimes of four algorithms: L2

SVDD (SMO), L2 SVDD (QP), L1 SVDD (SMO), and L1 SVDD (QP). The runtimes

favor L1 SVDD (QP) versus L2 SVDD (QP), sometimes substantially; however using

SMO reduces the difference in runtimes considerably, making L2 SVDD (SMO) feasi-

ble for practical applications. We also present gradient descent and stochastic gradient

descent algorithms for linear versions of both the L1 SVDD and L2 SVDD. Exam-

ples using simulated and real-world data show that both methods perform similarly.

Finally, we apply the L1 SVDD and L2 SVDD to a real-world dataset that involves

monitoring machine failures in a manufacturing process.

Key Words: One-class classification, Support Vector Data Description, sequential

minimum optimization, L1-norm, L2-norm, SVDD, L2-SVDD, L1-SVDD, quadratic

programming, gradient descent, stochastic gradient descent, monitoring, manufacturing

control chart, machine failure.

1 Introduction

One-class classification (OCC) refers to the problem of constructing a classifier using only

data with a single label, called the target class, in order to distinguish between target class

data and non-target class data. If the target class data are assumed to be, in some sense,
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typical, then the non-target class may be viewed as atypical and thus one-class classification

can be viewed as a form of outlier detection.

Although there are a variety of methods that can be used for OCC [8], this chapter focuses

on two OCC techniques called L1 Norm Support Vector Data Description (L1 SVDD) and

L2 Norm Support Vector Data Description (L2 SVDD) [21, 3]. Both methods are based on

constructing a description of the target class data using support vectors. The description is

a set of observed data vectors that together form a hypersphere that encompasses the target

class data. This description is then utilized in order to determine if unlabeled data should

be classified as either the target class or non-target class. L1 and L2 SVDD have a number

of advantages that make them useful in practical settings where important characteristics

of the data, such as its distribution, are unknown. Crucially, both methods do not need to

make assumptions about the underlying probability distribution of the data, can be used

when the number of variables exceeds the number of observed data vectors, and can model

nonlinear boundaries using a kernel function.

L1 SVDD, typically referred to as just SVDD, is the most commonly used version of SVDD

and has been utilized in numerous applications. Sun and Tsung [20] proposed a control chart

based on the L1 SVDD, called the k-chart, to monitor data in a Statistical Process Control

(SPC) context and then applied the k-chart to monitor chemical process data. Maboudou-

Tchao [13] suggested a L1 SVDD control chart using a Mahalanobis kernel. L1 SVDD was

used by Duan, Liu, and Gao [7] to monitor structural health. Sanchez-Hernandez, Boyd, and

Foody [18] applied L1 SVDD in a remote sensing context for fenland classification whereas
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Chaki et al. [2] used L1 SVDD for water well saturation classification. Camerini, Coppotelli,

and Bendisch [1] used L1 SVDD to detect faults in helicopter drivetrain components whereas

Luo, Wang, and Cui [10] used L1 SVDD for analog circuit fault detection. L1 SVDD was

also used as a component in a methodology to detect anomalies in network logs [9]. Mod-

ifications of L1 SVDD have been successfully applied for one-class classification of tensor

datasets. Maboudou-Tchao, Silva, and Diawara [15] proposed Support Matrix Data De-

scription (SMDD) to monitor changes in matrix datasets. Maboudou-Tchao [12] used tensor

methods to construct control charts to monitor high-dimensional data. Maboudou-Tchao

[14] suggested support tensor data description (STDD) for change-point detection in second-

order tensor datasets with an application to image data. Note that least-squares one-class

classification methods are also available. Choi [4] proposed least-squares one-class support

vector machines (LS-OCSVM) and Maboudou-Tchao [11] used LS-OCSVM to detect change-

points in the mean vector of a process.

In practice, the number of data vectors available to train a one-class classifier may be large.

Larger datasets, which can range from thousands of records to millions of records, can pose

a challenge for obtaining solutions for the L1 and L2 SVDD depending on the algorithm used

to compute the solution. Both the L1 and L2 SVDD require a numerical method to obtain

a solution and a common algorithm for doing so is called quadratic programming (QP).

Unfortunately, QP becomes infeasible as the number of data vectors increases, so Platt [17]

proposed a fast method called sequential minimum optimization (SMO) as an alternative

to obtaining solutions using QP. Originally the SMO was proposed to obtain solutions for

4



a support vector machine (SVM) and then SMO was later extended to L1 SVDD. To our

knowledge, SMO has not been extended to L2 SVDD, and thus we propose an extension to

the SMO algorithm for L2 SVDD.

In cases where the data are linearly separable, the use of a non-linear kernel function is

unnecessary. The linear L1 SVDD and linear L2 SVDD may be solved via unconstrained

optimization of the primal problem using gradient descent and stochastic gradient descent.

Gradient descent is an iterative optimization method for finding the minimum of a differen-

tiable function. Gradient descent uses the entire training dataset in each epoch to accomplish

its goal, but a disadvantage is that sometimes it can be trapped in local minima. Stochastic

gradient descent attempts to circumvent this problem by instead using a randomly drawn

observation in each epoch to update the gradient.

As implied above, the L2 SVDD has not been as well studied as L1 SVDD, and this fact

motivates an evaluation of the L2 SVDD in comparison to its more popular counterpart.

This chapter makes the following contributions. We provide a comparison of the Type II

error rate of the L1 and L2 SVDD for detecting small and large shifts in an underlying

statistical process using data generated from the multivariate normal, multivariate t, and

multivariate Laplace distributions. We propose a SMO algorithm for fitting the L2 SVDD

and compare the runtimes of four algorithms including L1 SVDD (QP), L1 SVDD (SMO),

L2 SVDD (QP), and L2 SVDD (SMO) using simulated and real-world datasets.

The remainder of this chapter is structured as follows. Section 2 and Section 3 review the

L1 SVDD and L2 SVDD, respectively. Section 4 presents a simulation study to evaluate the
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performance of the L1 and L2 SVDD. Section 5 provides a review of the SMO algorithm for L1

SVDD and presents the SMO algorithm for L2 SVDD. Section 5 also compares the SMO algo-

rithms to their corresponding quadratic programming counterparts. Section 6 presents both

gradient descent and stochastic gradient descent algorithms for solving the unconstrained

(linear) L1 SVDD as well as the unconstrained (linear) L2 SVDD; their performance is com-

pared on both simulated and real-world datasets. Section 7 presents a real-world application

of L1 and L2 SVDD for monitoring machine failures in a manufacturing process. Section 8

provides a brief summary of this chapter.

2 L1 Norm Support Vector Data Description (L1 SVDD)

Let xi, i = 1, 2, . . . , N be a sequence of p−variate training (or target) observations. The

Support Vector Data Description with a L1 norm [21] tries to find a sphere with minimum

volume containing all (or most of) of the observations and can be formulated as an opti-

mization problem:

min
r,a,ξi

r2 + C
N∑
i=1

ξi,

subject to ||φ(xi)− a||2 = (φ(xi)− a)′(φ(xi)− a) ≤ r2 + ξi (2.1)

ξi ≥ 0, i = 1, 2, . . . , N

where a is the center of the sphere, r is the radius of the sphere, ξi are the slack variables,

C > 0 is a parameter introduced to control the influence of the slack variables, and φ(·)

is a mapping that takes an input x ∈ X ⊆ Rp and maps it to a feature space F ; that is,
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φ : X −→ F where F is a Hilbert space. The corresponding dual problem after applying the

kernel trick k(xi,xj) = φ(xi)
′φ(xj) is given by

max
β

N∑
i=1

βik(xi,xi)−
N∑
i=1

N∑
j=1

βiβjk(xi,xj),

subject to
N∑
i=1

βi = 1 (2.2)

0 ≤ βi ≤ C, i = 1, 2, . . . , N.

Note that the dual problem (2.2) is a convex QP problem and can be solved using a quadratic

programming solver. The solution β is used to compute the optimal center a, and the

observed data vectors xi where βi > 0 for i = 1, 2, . . . , N are referred to as support vectors.

The support vectors xt that correspond to vectors located on the sphere boundary have

0 < βt < C and are referred to as boundary support vectors whereas support vectors xk such

that βk = C are called non-boundary support vectors. Let N1 be the number of boundary

support vectors, then the squared radius r2 is the squared distance from the center of the

hypersphere a to the boundary support vectors xt:

r2 =
1

N1

N1∑
t=1

(
k(xt,xt)− 2

N1∑
j=1

βjk(xt,xj) +

N1∑
j=1

N1∑
l=1

βjβlk(xj,xl)

)
(2.3)

For classification, a test vector u is in the target class if the following condition is true

du = k(u,u)− 2
N∑
j=1

βjk(u,xj) +
N∑
j=1

N∑
l=1

βjβlk(xj,xl) ≤ r2 (2.4)

If condition (2.4) is false, then the test vector u is declared to be in the non-target class.
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3 L2 Norm Support Vector Data Description (L2 SVDD)

Let xj, j = 1, 2, . . . , N be a sequence of p−variate training (or target) observations. The

Support Vector Data Description with a L2 norm, referred to here as L2 SVDD, is given by

the following optimization problem:

min
R2,c,ξ

R2 +
C

2

N∑
j=1

ξ2j ,

subject to ||φ(xj)− c||2 = (φ(xj)− c)′(φ(xj)− c) ≤ R2 + ξj, j = 1, 2, . . . , N (3.1)

where c is the center of the sphere, R is the radius of the sphere, ξj are the slack variables,

C > 0 is a parameter that controls influence of the slack variables, and φ(·) is a mapping

that takes an input x ∈ X ⊆ Rp and maps it to a feature space F ; that is, φ : X −→ F where

F is a Hilbert space. Introducing Lagrange multipliers αj for j = 1, 2, . . . , N yields:

L = R2 + C
N∑
j=1

ξ2j −
N∑
j=1

αj
(
R2 + ξj − (φ(xj)− c)′(φ(xj)− c)

)

= R2

(
1−

N∑
j=1

αj

)
+ C

N∑
j=1

ξ2j −
N∑
j=1

αjξj +
N∑
j=1

αj (φ(xj)− c)′(φ(xj)− c) (3.2)

Differentiating equation (3.2) with respect to R2, c, ξj yields the following three equations.

Each is set equal to zero and we obtain the following expressions:

∂L

∂R2
= 0 =⇒

N∑
j=1

αj = 1 (3.3)

∂L

∂c
= 0 =⇒ c =

N∑
j=1

αjφ(xj) (3.4)

∂L

∂ξj
= 0 =⇒ ξj =

αj
2C

(3.5)
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Substituting equations (3.3), (3.4), and (3.5) into equation (3.2) and applying the kernel

trick k(xi,xj) = φ(xi)
′φ(xj) yields the dual problem.

N∑
j=1

αjk(xj,xj)−
N∑
i=1

N∑
j=1

αiαj

(
k(xi,xj) +

1

2C
δij

)
,

subject to
N∑
j=1

αj = 1

0 ≤ αj <∞ (3.6)

where δij is the Kronecker Delta function.

δij =


0 if i 6= j

1 if i = j

Similarly to L1 SVDD, the dual problem (3.6) can be solved using a QP-solver, and the

solution α is used to compute the optimal center c. The Karush-Kuhn-Tucker (KKT)

conditions are necessary and sufficient conditions for any optimal solution. For the L2 SVDD,

these conditions are

(i) Stationarity

1. 1 -
N∑
j=1

αj = 0

2. c−
N∑
i=1

αjφ(xj) = 0

3. 2Cξj − αj = 0

(ii) Primal feasibility

1. ||φ(xj)− c||2 ≤ R2 + ξj
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(iii) Dual feasibility

1. αj ≥ 0

(iv) Complementary Slackness

1. αj (||φ(xj)− c||2 −R2 − ξj) = 0

From the complementary slackness of the KKT conditions, the observed data vectors xj

where αj > 0 for j = 1, 2, . . . , N are the support vectors. Let N2 be the number of support

vectors for the L2 SVDD, then R2 is the squared kernel distance from the center of the

hypersphere c to the support vectors xs:

R2 =
1

N2

N2∑
s=1

(
k(xs,xs)− 2

N2∑
j=1

αjk(xs,xj) +

N2∑
j=1

N2∑
l=1

αjαlk(xj,xl)

)
(3.7)

For classification, an unseen vector z is in the target class if the following condition is true

dz = k(z, z)− 2
N∑
j=1

αjk(z,xj) +
N∑
j=1

N∑
l=1

αjαlk(xj,xl) ≤ R2 (3.8)

If condition (3.8) is false, then the unseen vector z is declared to be in the non-target class.

4 Simulation Study

In this section, the ability of L1 SVDD and L2 SVDD to detect small and large changes

is assessed. Quadratic programming is used to obtain the solution in the simulations, and

each simulation proceeds as follows. The data used to train the model are generated from

a specified distribution with sample size 100. A test vector zi is generated from the spec-

ified distribution but the first component of the distribution’s mean vector is shifted by

10



δ. The kernel distance for zi is computed using the left-hand side of either condition (2.4)

or condition (3.8), respectively. This process is repeated 25,000 times and yields a set

of 25, 000 kernel distance values. Using a control limit h, the percentage of kernel dis-

tance values falling below h is computed to yield the false positive rate for the specified

distribution for a shift in the first component of the mean vector of size δ. We choose

δ ∈ [0.0, 0.1, 0.2, . . . , 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0] to account for both small and large

shifts. The control limit h is determined via the same procedure except that δ = 0; h is

computed as the 1−α percentile of the distributions of test kernel distances where α = 0.05.

Three distributions are evaluated in this simulation: multivariate normal, multivariate t, and

multivariate Laplace. The training data used in each simulation are generated as a random

draw of N = 100 vectors xi ∈ Rp for i = 1, 2, . . . , N where p is the number of predictor vari-

ables. The training data for the multivariate normal and multivariate Laplace have the mean

vector equal to 0 and the covariance matrix equal to the identity matrix I. The training

data for the multivariate t-distribution has the mean vector equal to 0 and the covariance

matrix equal to ν−2
ν
I with ν = 3 degrees of freedom. The multivariate Laplace simulations

use p = 5, 10; the multivariate normal and multivariate t simulations use p = 5, 10, and 100.

The kernel function used in the simulations is the Gaussian kernel function:

k(xi,xj) =
1√
2π

exp

(
−(xi − xj)

′(xi − xj)

2σ2

)
(4.1)
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4.1 Simulation Results

The results for p = 5 are provided in Figure 1 and show that the L1 SVDD and L2 SVDD

perform similarly for all values of δ for both the multivariate normal and multivariate Laplace

distributions. For the multivariate t-distribution, L2 SVDD outperforms L1 SVDD when

when δ ∈ {1.0, 1.5, 2.0, 2.5, 3.0}. The results for p = 10 are shown in Figure 2. The L2

SVDD marginally outperforms the L1 SVDD for the multivariate normal data when δ ∈

{1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0} and both models perform similarly for the multivariate t-

distribution. For the multivariate Laplace distribution, the L1 SVDD outperforms L2 SVDD

for δ ∈ {1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0}. The results for p = 100 are shown in Figure 3. Both

models have a similar performance for the multivariate normal distribution whereas the L2

SVDD marginally outperforms the L1 SVDD for the multivariate t-distribution.
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Figure 1: Simulation results for p = 5. The L1 SVDD and L2 SVDD perform similarly

for both the multivariate normal and the multivariate Laplace distributions, though the L2

SVDD outperforms the L1 SVDD when δ ∈ {1.0, 1.5, 2.0, 2.5, 3.0} for the multivariate t-

distribution.
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Figure 2: Simulation results for p = 10. The L2 SVDD marginally outperforms the L1

SVDD for the multivariate normal data when δ ∈ {1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0}, both

perform similarly for the multivariate t-distribution, and L1 SVDD outperforms L2 SVDD

for δ ∈ {1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0} for the multivariate Laplace distribution.
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Figure 3: Simulation results for p = 100. The L2 SVDD and L1 SVDD both have a similar

performance for both the multivariate t-distribution whereas L2 SVDD marginally outper-

forms the L1 SVDD for the multivariate normal distribution when δ ∈ {3, 3.5, 4, 5}.

5 Sequential Minimum Optimization (SMO)

Quadratic programming (QP) does not scale well as the number of observations N increases.

Consequently, sequential minimum optimization (SMO) was proposed by Platt [17] as a

fast alternative for computing the solutions for a support vector machine (SVM). The key

insight of SMO is that the smallest optimization problem for a SVM contains two Lagrange

multipliers that adhere to a linear equality constraint, so the resulting solution of this small

problem has a closed-form. SMO proceeds by iteratively solving a series of the smallest

possible optimization at each step.
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5.1 SMO for L1 SVDD

Consider two Lagrange multipliers β1 and β2 corresponding to two observations while treating

the remaining N − 3 Lagrange multipliers as constants. At this step in the SMO algorithm,

the dual problem can be expressed as the following:

max
βi,βj

2∑
i=1

βik(xi,xi)−
2∑
i=1

2∑
j=1

βiβjk(xi,xj)−
2∑
i=1

βiµi +
N∑
i=3

βik(xi,xi)−
N∑
i=3

N∑
j=3

βiβjk(xi,xj),

subject to
2∑
i=1

βi = 4 (5.1)

0 ≤ β1, β2 ≤ C

where µi =
N∑
j=3

βjk(xi,xj) and 4 = 1−
N∑
i=3

βi. Let kij = k(xi,xj). Using the fact β1 = 4−β2

and focusing only on terms that involve β1 and β2, the following optimization problem is

obtained:

max
β2

(
(4− β2)− (4− β2)2

)
k11 − 2(4− β2)β2k12 + (β2 − β2

2)k22 (5.2)

Differentiating with respect to β2 and setting the expression equal to zero yields

−k11 + k22 − (−2(4− β2)k11) + µ1 − µ2 − 2(4− 2β2)k12 − 2β2k22 = 0

Solving for β2 yields:

β2 =
24(k11 − k12)− k11 + k22 + µ1 − µ2

2(k11 + k12)− 4k12
(5.3)

where µi =
N∑
j=3

βjkij. Since 0 ≤ βi ≤ C for i = 1, 2, . . . , N and β1 + β2 = 4, there

are additional constraints on β2. If C > 4, then 0 ≤ β2 ≤ 4 whereas if C ≤ 4, then

4− C ≤ β2 ≤ C. Equivalently, the lower and upper bound for β2 is given by

Lβ2 = max(0, β1 + β2 − C) (5.4)
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Hβ2 = min(C, β1 + β2). (5.5)

A graphical depiction of the constraints, similar to that of Platt [17], is provided in Figure

4.

Figure 4: The constraints for β2 in SMO for L1 SVDD.

Using equation (5.3) and the fact that β1 + β2 = 4, the expression for β1 is given by

β1 = 4− β2 (5.6)

5.2 SMO for L2 SVDD

The derivation of the SMO for the L2 SVDD follows the same approach as that of the L1

SVDD. Consider two Lagrange multipliers α1 and α2 corresponding to two observations while

treating the remaining N − 3 Lagrange multipliers as constants. The dual problem can be

expressed as the following:

max
αi,αj

2∑
i=1

αik(xi,xi)−
2∑
i=1

2∑
j=1

αiαj (k(xi,xi) + δij)−
2∑
i=1

αiHi+
N∑
i=3

αik(xi,xi)−
N∑
i=3

N∑
j=3

αiαj (k(xi,xi) + δij) ,

17



subject to
2∑
i=1

αi = 4 (5.7)

0 ≤ α1, α2 <∞

where Hi =
N∑
j=3

αjk(xi,xj) and 4 = 1−
N∑
i=3

αi. Let Hij = k(xi,xj) + δij and kii = k(xi,xi).

Using the fact α1 = 4 − α2 and focusing only on terms that involve α1 and α2 yields the

following optimization problem:

max
α2

(4−α2)k11+α2k22−(4−α2)
2H11−2(4−α2)α2H12−α2

2H22−(4−α2)H1−α2H2 (5.8)

Differentiating with respect to α2 and setting the expression equal to zero yields

−k11 + k22 + H1 − H2 + 24H11 − 24H12 − 2α2H11 + 4α2H12 − 2α2H22 = 0

Solving for α2 yields:

α2 =
24(H11 − H12) + H1 − H2 − k11 + k22

2H11 − 4H12 + 2H22

(5.9)

Since 0 ≤ αi <∞ for i = 1, 2, . . . , N and α1 + α2 = 4, the lower and upper bound for α2 is

given by:

Lα2 = 0 (5.10)

Hα2 = α1 + α2 (5.11)

A graphical depiction of the constraints is provided in Figure 5.
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Figure 5: The constraints for α2 in SMO for L2 SVDD.
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Using equation (5.9) and the fact that α1 + α2 = 4, the expression for α1 is given by

α1 = 4− α2 (5.12)

5.3 Performance Study

In this section a comparison of four algorithms is presented: L1 SVDD (QP), L1 SVDD

(SMO), L2 SVDD (QP), and L2 SVDD (SMO). The timing of any individual model depends

primarily on the training sample size N and the set of hyperparmaeters such as the SVDD

parameter C and parameters used in the kernel function. We present the training times

corresponding to the optimal parameters as determined by the model’s accuracy on unseen

test data. The datasets used include data simulated from a multivariate normal distribution

and four real world dataset concerning activity recognition [16], breast cancer [19], Abalone

sea snails [22], and rice varieties [5]; all datasets were accessed through the UCI machine

learning repository [6]. The kernel function here is the Gaussian kernel (4.1), so there are

two hyperparmaeters: the SVDD parameter C and the Gaussian kernel function parameter

σ. The timing results are displayed in Table 1. For a fixed optimization algorithm (i.e. QP

or SMO), L1 SVDD tends to be faster than L2 SVDD, especially for QP when the sample

size is larger. However, the difference in runtimes becomes smaller with the use of SMO.

For example, L2 SVDD’s runtime for the Rice dataset is almost twice that of L1 SVDD

(approximately 53 seconds longer), but using the SMO reduces the difference in runtime to

approximately 30% (just over 8 seconds).

Next, we evaluate the accuracy of the four methods. For the multivariate normal datasets,
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Dataset n p L2 (QP) L2 (SMO) L1 (QP) L1 (SMO)

1 MVN 1,000 10 23.56 18.26 21.07 13.79

2 MVN 750 10 12.24 10.61 11.01 7.80

3 MVN 500 10 5.24 4.33 4.36 3.48

4 MVN 250 10 1.23 1.10 0.91 0.91

5 MVN 100 10 0.24 0.18 0.16 0.14

6 Activity Recognition 1110 7 120.56 64.33 113.73 58.66

7 Breast Cancer 347 30 2.35 2.28 2.19 1.77

8 Abalone 1297 8 74.70 25.10 49.80 21.03

9 Rice 1620 7 118.38 39.47 65.42 31.29

Table 1: The model runtimes (seconds) of the L2 SVDD (QP), L2 SVDD (SMO), L1 SVDD

(QP), and L1 SVDD (SMO), respectively, for various simulated and real-world datasets.

the test set consists of 20 observations where the first 10 observations are generated from

the in-control distribution N(0, I) whereas the next 10 observations are generated from the

out-of-control distribution N(µ1, I) where the first component of the mean vector µ1 is 5 and

the other components are 0. In the real world examples the test dataset is comprised of 10

observations from the in-control class and 10 from the out-of-control class. The breast cancer

dataset consists of two classes of interest: malignant and benign tumors; the in-control class

(target class) is taken to be the benign tumors. In the activity recognition dataset, people are

monitored via sensors on their bodies while they perform a variety of physical, emotional,

mental, or neurtral activities; the in-control class (target class) is taken to be a physical
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activity. In the Abalone sea snail dataset, the in-control class is taken to be female Abalones

whereas the out-of-control class are the male Abalones. In the rice dataset, two types of

rice, Osmancik and Cammeo, are photographed and then seven features are extracted; the

target class is taken to be Cammeo. The results are contained in Table 2. For the simulated

multivariate normal data, all methods perform similarly and classify all or most of the testing

observations correctly. For the activity recognition dataset, all methods classify only half of

the records correctly whereas in the breast cancer dataset, all four methods perform similarly.

For the abalone dataset, L2 SVDD (SMO) has the best performance followed by L1 SVDD

(SMO), L2 SVDD (QP), and L1 SVDD (QP). For the rice dataset the L2 SVDD (SMO) has

the best performance by a small margin (1 additional record classified correctly) followed by

a tie between L1 SVDD (SMO) and L2 SVDD (QP) which both outperform L1 SVDD (QP).
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Dataset n p L2 (QP) L2 (SMO) L1 (QP) L1 (SMO)

1 MVN 1,000 10 100% 100% 100% 100%

2 MVN 750 10 100% 95% 100% 100%

3 MVN 500 10 100% 100% 100% 100%

4 MVN 250 10 100% 100% 100% 100%

5 MVN 100 10 100% 100% 100% 100%

6 Activity Recognition 1110 7 50% 50% 50% 50%

7 Breast Cancer 347 30 100% 90% 95% 100%

8 Abalone 1297 7 85% 95% 75% 90%

9 Rice 1620 7 75% 80% 65% 75%

Table 2: The model accuracy of the L2 SVDD (QP), L2 SVDD (SMO), L1 SVDD (QP), and

L1 SVDD (SMO), respectively, for various simulated and real-world datasets.
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6 Stochastic sub-gradient descent solutions

SVDD models often use a non-linear kernel function to map the training vectors into some

high-dimensional space in order to solve the dual problem. In some cases, data in the

original input space contain a lot of information so that fitting a SVDD without a non-

linear mapping can obtain a similar performance to a SVDD that uses a non-linear kernel

function. In the case where data are not mapped to some high-dimensional space, we call

such situations linear SVDD. One can still solve the dual problem for linear SVDD, but it

will be more beneficial if we can solve the SVDD primal problem directly. The objective

function of L1 SVDD is nondifferentiable, so typical optimization methods cannot be directly

applied. However, L2 SVDD is a piecewise quadratic and strongly convex function, which is

differentiable.

The first approach discussed for solving SVDD problem was to use quadratic optimization

with linear constraints. However, the memory requirements of quadratic programming meth-

ods renders a direct use of quadratic programming methods for SVDD very difficult when

the training sample consists of many observations.

The second approach presented to solve SVDD problem was SMO. SMO is an approach to

overcome the quadratic memory requirement of quadratic programming. SMO solves the

dual problem by using an active set of constraints and hence, works on a subset of dual

variables. Since SMO finds a feasible dual solution and its goal is to maximize the dual

objective function, it often results in a rather slow convergence rate to the optimum of the

primal objective function.
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6.1 L1 SVDD

Let xi, i = 1, 2, . . . , N be a sequence of p−variate training (or target) observations. L1 SVDD

tries to find a sphere with minimum volume containing all (or most of) vectors. Learning

an SVDD has been formulated as a constrained optimization problem over r2 and a.

minimize
r,a,ξi

r2 + C

N∑
i=1

ξi,

subject to ||xi − a||2 ≤ r2 + ξi, i = 1, 2, . . . , N

ξi ≥ 0, i = 1, 2, . . . , N

(6.1)

The learning problem (6.1) can be replaced by the unconstrained optimization problem

min
r,a

λ

2
r2 +

1

2

N∑
i=1

max
(
0, ||xi − a||2 − r2

)
(6.2)

where λ = 1/C and max (0, ||xi − a||2 − r2) is the ‘hinge’ loss. Define J1 as

J1(r, a) =
λ

2
r2 +

1

2

N∑
i=1

max
(
0, ||xi − a||2 − r2

)
(6.3)

It immediately follows that an observation xi inside the sphere is not penalized while there

is a penalty for an observation xi outside of the sphere. Since the hinge loss is convex, then

the objective function J1 is convex and a locally optimal point is globally optimal (provided

the optimization is over a convex set, which it is in our case).
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6.1.1 Gradient descent algorithm for L1 SVDD

To minimize the objective J1, we will use the gradient descent algorithm. Since the hinge

loss is not differentiable, a sub-gradient is computed, and the sub-gradients are

∂J1
∂r

=


λr, if ||xi − a||2 − r2 ≤ 0

r(λ−N), if ||xi − a||2 − r2 > 0

(6.4)

and

∂J1
∂a

=


0, if ||xi − a||2 − r2 ≤ 0

−
N∑
i=1

(xi − a), if ||xi − a||2 − r2 > 0

(6.5)

Let ω1 be a 2 × 1 vector holding the values of r and a, that is ω1 = (r, a)′, and let ω
(t)
1 be

the values of ω at iteration t, then the simultaneous sub-gradient descent update for r and

a is given by:

ω
(t+1)
1 = ω

(t)
1 − η∇J1(ω

(t)
1 ) (6.6)

where η is a hyperparameter that represents the step size.

6.1.2 Stochastic Gradient descent algorithm for L1 SVDD

With stochastic gradient descent, at each iteration, we randomly select a single observation

xi from the training set and use that observation to obtain an approximation of the gradient

of the objective function. A step with pre-determined step size is taken in the opposite

direction to guarantee minimization. Define Js1 as

Js1(r, a) =
λ

2
r2 +

1

2
max

(
0, ||xi − a||2 − r2

)
(6.7)
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Consequently, it follows that the sub-gradients are

∂Js1
∂r

=


λr, if ||xi − a||2 − r2 ≤ 0

r(λ− 1), if ||xi − a||2 − r2 > 0

(6.8)

and

∂Js1
∂a

=


0, if ||xi − a||2 − r2 ≤ 0

−(xi − a), if ||xi − a||2 − r2 > 0

(6.9)

Consequently, the simultaneous stochastic sub-gradient descent update for r and a is given

by:

ω
(t+1)
1 = ω

(t)
1 − η∇Js1(ω

(t)
1 ) (6.10)

where η is a hyperparameter that represents the step size or learning rate.

6.2 L2 SVDD

Let xj, j = 1, 2, . . . , N be a sequence of p−variate training (or target) observations. L2

SVDD tries to find a sphere with minimum volume containing all (or most) of the training

observations. Learning a L2 SVDD can be formulated as a constrained optimization problem

over R2 and c:

minimize
R,c,ξj

R2 + C
N∑
i=j

ξ2j ,

subject to ||xj − c||2 ≤ R2 + ξj, j = 1, 2, . . . , N

(6.11)

The learning problem (6.11) can be replaced by the unconstrained optimization problem

min
R,c

λ

2
R2 +

1

2

N∑
j=1

max
{(

0, ||xj − c||2 −R2
)}2

(6.12)
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where λ = 1/C.

Define J2 as

J2(R, c) =
λ

2
R2 +

1

2

N∑
j=1

max
{(

0, ||xj − c||2 −R2
)}2

(6.13)

Similarly to the L1 SVDD, an observation xj inside the sphere is not penalized while there

is a cost for an observation xj outside the sphere. Since the objective function J2 is strongly

convex, a locally optimal point is globally optimal.

6.2.1 Gradient descent algorithm for L2 SVDD

To minimize the objective J2, we will use gradient descent algorithm. The sub-gradients are

∂J2
∂R

=


λR, if ||xj − c||2 −R2 ≤ 0

R

{
λ− 2

N∑
j=1

(||xj − c||2 −R2)

}
, if ||xj − c||2 −R2 > 0

(6.14)

and

∂J2
∂c

=


0, if ||xj − c||2 −R2 ≤ 0

−2
N∑
j=1

(xj − c)(||xj − c||2 −R2), if ||xj − c||2 −R2 > 0

(6.15)

Let ω2 be a 2× 1 vector holding the values of R and c, that is ω2 = (R, c)′, and let ω
(t)
2 be

the values of R and c at iteration t. It follows that the simultaneous sub-gradient descent

update for R and c is given by:

ω
(t+1)
2 = ω

(t)
2 − η∇J2(ω

(t)
2 ) (6.16)

where η is the step size.
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6.2.2 Stochastic gradient descent algorithm for L2 SVDD

In stochastic gradient descent, we randomly select one observation xj from the training set

and use that observation to approximate the gradient of the objective function. Define Js2

as

Js2(R, c) =
λ

2
R2 +

1

2

{
max

(
0, ||xj − c||2 −R2

)}2
(6.17)

∂Js2
∂R

=


λR, if ||xj − c||2 −R2 ≤ 0

R(λ− 2(||xj − c||2 −R2)), if ||xj − c||2 −R2 > 0

(6.18)

and

∂Js2
∂c

=


0, if ||xj − c||2 −R2 ≤ 0

−2(xj − c) (||xj − c||2 −R2) , if ||xj − c||2 −R2 > 0

(6.19)

then the simultaneous stochastic sub-gradient descent update for R and c is given by:

ω
(t+1)
2 = ω

(t)
2 − η∇Js2(ω

(t)
2 ) (6.20)

where η is the learning rate.

6.3 Performance Evaluation

In this section we apply linear L1 SVDD and linear L2 SVDD to various datasets and

assess their relative computation time as well as their accuracy. The datasets used in this

section correspond to those used in Section 5.3. It is important to note that there are 3

hyperparameters for fitting the four linear SVDD models considered in this section: the step

size, number of epochs, and C. The models were all optimized for accuracy and then the
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corresponding time was recorded. The timing results are presented in Table 3. We note

that the model runtimes depend on the the three aforementioned hyperparameters including

C = 1
λ

which is a component of the gradient update equations and controls, at least partially,

the extent to which the radius and center are updated. As expected, stochastic gradient

descent results in much faster runtimes even when the sample size is larger.

Dataset n p L2 (GD) L2 (SGD) L1 (GD) L1 (SGG)

1 MVN 1,000 10 46.319 0.17 29.98 0.43

2 MVN 750 10 9.61 0.19 17.98 0.26

3 MVN 500 10 6.52 0.14 12.17 0.21

4 MVN 250 10 3.63 0.04 2.74 0.15

5 MVN 100 10 0.12 0.12 3.56 0.26

6 Activity Recognition 1110 7 0.99 0.11 3.02 0.22

7 Breast Cancer 347 30 10.31 2.55 8.08 3.75

8 Abalone 1297 8 0.09 0.09 3.48 0.09

9 Rice 1620 7 9.33 0.25 0.779 0.25

Table 3: The model runtimes (seconds) of the linear L2 SVDD using gradient descent (GD),

linear L2 SVDD using stochastic gradient descent (SGD), linear L1 SVDD using gradient

descent (GD), and linear L2 SVDD using stochastic gradient descent (SGD) for various

simulated and real-world datasets.

For both the linear L1 SVDD and linear L2 SVDD, stochastic gradient descent provides

a faster model runtime as well as similar, in some cases superior, accuracy on the test
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data. Both linear L1 SVDD and linear L2 SVDD perform well on the multivariate normal

data irrespective of the underlying optimization algorithm. For the Abalone dataset, both

the linear L1 SVDD and linear L2 SVDD perform similarly: linear L2 SVDD (GD) has

an accuracy of 65%, linear L2 SVDD (SGD) 70%, linear L1 SVDD (GD) 70%, and linear

L1 SVDD (SGD) 70%. All four algorithms predict only 50% on the other three real-world

datasets. This perhaps is caused by the four models’ inability to model non-linearly separable

data, and note that from Table 2 the L1 SVDD and L2 SVDD models (SMO or QP) that

utilize the Gaussian kernel function perform well on the three datasets which implies that

the decision boundary is non-linear.
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Dataset n p L2 (GD) L2 (SGD) L1 (GD) L1 (SGG)

1 MVN 1,000 10 95% 95% 100% 100%

2 MVN 750 10 100% 95% 100% 95%

3 MVN 500 10 95% 95% 100% 95%

4 MVN 250 10 95% 100% 100% 100%

5 MVN 100 10 100% 100% 95% 100%

6 Activity Recognition 1110 7 50% 50% 50% 50%

7 Breast Cancer 347 30 50% 50% 50% 50%

8 Abalone 1297 8 65% 70% 70% 70%

9 Rice 1620 7 50% 50% 50% 50%

Table 4: The model accuracy of the linear L2 SVDD using gradient descent (GD), linear

L2 SVDD using stochastic gradient descent (SGD), linear L1 SVDD using gradient descent

(GD), and linear L2 SVDD using stochastic gradient descent (SGD) for various simulated

and real-world datasets.
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7 Case Study

In this section we apply L1 SVDD and L2 SVDD to monitor a machine in a manufacturing

process [23]. The dataset contains 7,905 anonymized observations where each observation

is represented as a p = 17 dimensional vector of measurements including temperature, hu-

midity, and an additional 15 measurements whose names are anoymized. In addition to the

predictor information, each observation is associated with a timestamp so that one observa-

tion associated with the machine corresponds to a specific date and hour of operation; also,

each observation has a label indicating if the machine failed during the specified hour of

operation. Of the 7,905 hours of operation, there are 75 failures and 7,830 non-failures. We

define the target class as the observations where the machine did not fail during the hour and

take the non-target class (i.e. outlier) to be the observations where the machine failed during

the hour. Since the data are collected on an hourly basis, we train the model using target

class data from hour 150 (i.e. January 7, 2016 at 6 A.M.) to hour 499 so that the training

sample size is 350 observations (350 hours; 1 observation per hour). The monitoring dataset

corresponds to 19 observations collected at hours 500 to 518 where the first 16 observations

correspond to the target class and the next 3 observations correspond to the non-target class.

The monitoring is terminated once a non-target class prediction is produced by the model,

so the ideal result occurs when the monitoring is terminated at hour 516.
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7.1 L1 SVDD

The L1 SVDD is trained using quadratic programming to solve the dual problem (2.2).

Once the solution to the dual problem (2.2) is determined, the radius is computed using

equation (2.3). Next, we compute the kernel distance for the monitoring observations using

the equation on the left hand side of condition (2.4) and then determine if condition (2.4) is

true or false. The L1 SVDD correctly classifies the data at hours 500 to 515 correctly as the

target class and correctly classifies the data at hour 516 to be in the non-target class, so the

monitoring terminates at hour 516. The control chart for the L1 SVDD is shown in Figure 6

and plots the kernel distance against the hour (i.e. one observation corresponds to one hour)

in the testing dataset with a dotted horizontal line corresponding to the radius. From the

control chart, we can see that the kernel distance values corresponding to the observations

at hours 500 to 515 is less than the radius and only the kernel distance for the observation

at hour 516 is greater than the radius which yields a non-target classification and terminates

the monitoring.
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Figure 6: The control chart for the L1 SVDD for the machine failure dataset.
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7.2 L2 SVDD

The L2 SVDD is trained using quadratic programming to solve the dual problem (3.6).

Using the solution to dual problem (3.6), the radius is computed using equation (3.7). We

then compute the kernel distance for the monitoring observations using the equation on the

left hand side of condition (3.8) to determine if condition (3.8) is true or false. The L2

SVDD correctly classifies the data corresponding to hours 500 to 515 as the target class and

correctly classifies the data corresponding to hour 516 to be in the non-target class, so the

monitoring terminates at hour 516. The control chart for the L2 SVDD is shown in Figure 7

and plots the kernel distance against the hour (i.e. one observation corresponds to one hour)

in the monitoring dataset with a dotted horizontal line corresponding to the radius. From

the control chart, we can see that the kernel distance for the observations at hours 500 to 515

is less than the radius and only the kernel distance for the observation at hour 516 is greater

than the radius which yields a non-target classification and terminates the monitoring.

We note that though the two control charts are similar, there are some subtle differences.

For example, the kernel distances corresponding to the observations at hour 503 and 506,

respectively, are closer to the radius for the L2 SVDD as compared to the L1 SVDD. Also,

the scale of the kernel distance values and the radius for the L2 SVDD is larger than that of

the L1 SVDD.
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Figure 7: The control chart for the L2 SVDD for the machine failure dataset.
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8 Conclusion

L1 SVDD, commonly referred to as just SVDD, is a commonly used one-class classification

algorithm that utilizes a L1 norm whereas the L2 SVDD is an alternative formulation of

SVDD that uses a L2 norm. Performance simulations show that L2 SVDD and L1 SVDD

tend to have a similar performance, though one algorithm may sometimes outperform the

other. We propose an extension of the sequential minimum optimization (SMO) algorithm

for L2 SVDD. Timing results show that the L2 SVDD is generally slower than the L1 SVDD

for a fixed optimization algorithm (i.e. QP or SMO), but using the SMO tends to reduce the

difference in runtime between the L1 and L2 SVDD, making the use of L2 SVDD (SMO) more

feasible in practice. We presented update equations used in gradient descent and stochastic

gradient descent algorithms that are used to solve both the unconstrained (i.e. linear) L1

SVDD and the unconstrained (i.e. linear) L2 SVDD. Our simulations for the unconstrained

formulations show that both linear L1 SVDD and linear L2 SVDD have a similar perfor-

mance for simulated multivariate normal data as well as real-world data. The linear SVDD

algorithms, irrespective of the underlying optimization algorithm, did not perform well on

three of the four real-world datasets. This can be explained by the fact that these real-world

datasets cannot be modeled as linear problems which means that the data cannot fit into a

sphere in the original input space and will need to be mapped into some high dimensional

space by the use of some non-linear kernel function. As a comparison, the L1 SVDD (QP),

L1 SVDD (SMO), L2 SVDD (QP), and L2 SVDD (SMO) use a Gaussian kernel and all

have superior accuracy on the breast cancer, abalone, and rice datasets whereas the activity
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recognition dataset accuracy is the same for all methods. Finally, the L1 SVDD and L2

SVDD are used to monitor machine failures in a manufacturing process. Both the L1 SVDD

and L2 SVDD are able to correctly detect the shift in the process, and there are some minor

differences between the two control charts.
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Feature engineering and health indicator
construction for fault detection and diagnostic.

Khanh T. P. Nguyen

Abstract

Nowadays, the rapid growth of modern technologies in Internet of Things (IoT)
and sensing platforms is enabling the development of autonomous health manage-
ment systems. This can be done, in the first step, by using intelligent sensors, which
provide reliable solutions for systems monitoring in real-time. Then, the monitoring
data will be treated and analyzed in the second step to extract health indicators (HIs)
for maintenance and operation decisions. This procedure called feature engineering
(FE) and HI construction is the key step that decides the performance of condition
monitoring systems. Hence, in this chapter we present a comprehensive review and
new advances of FE techniques and HI construction methods for fault detection
and diagnostic (FDD) of engineering systems. This chapter would also serve as an
instructive guideline for industrial practitioners and researchers with different levels
of experience to broaden their skills about system condition monitoring procedure.

1 Condition monitoring data acquisition for fault detection and
diagnostic

Reliable condition monitoring data (CM) is a key factor for an efficient deployment
of fault detection and diagnostic solutions. This data can measure the system’s be-
havior characteristics and capture its slight changes in real-time. For example, oil
analysis can help detecting machine oxidation, dilution, moisture while pressure sen-
sors allows finding leakages or faulty connectors. Besides, thermal imaging sensors
allows monitoring temperature of interacting machine parts, and then warning any
abnormalities. Similarly, vibration sensors can allow track deviations from nominal
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vibration frequencies of system components for early detection of their stress and
unexpected faults.

1.1 Choice of condition monitoring parameters

Although condition monitoring data has enable the capacity of tracking system
states in real-time, it is not trivial to identify the appropriate physical parameters to
monitor the system degradation phenomena. A recommended scenario requires both
domain experts and data scientists for planning the condition monitoring process. In
detail, while the data scientists investigate the operating and maintenance historical
data to identify critical components and important failure types, the experts can
provide their valuable knowledge about the system’s characteristics and also verify
the useful information extracted by the data scientists. Besides, the architectural,
structural, and functional analyses of the system should be performed to isolate the
failure mechanisms. This action, also known as critical component identification,
can be realized using qualitative analysis approaches, such as experience feedback,
failure tree, event tree, cause, and effect tree, or through operator knowledge in case
of insufficient information about the system [1].

Identification of critical components Choice of the appropriate sensors 

Fig. 1: From system analysis to the selection of appropriate sensors.

Once the critical components are localized, depending on their characteristics
and on the information available, a proper definition of the monitoring process, such
as monitoring parameters and the appropriate sensors, can be defined, see Figure 1.
The critical components can be electronic, mechanical, hydraulic, pneumatic, etc.
Their heterogeneity poses a big challenge in the choice of monitoring sensors that
requires expert knowledge in multiple domains. In [2], the authors review different
parameters that can be used to monitor the state of health of systems and in Table 1, the
appropriate sensors are also proposed to capture degradation mechanisms according
to every category: thermal, electrical, chemical, etc. For example, numerous studies
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propose to use vibration sensors to monitor the bearing condition because their
defects generally produce fault signatures in the machine vibration. Besides, current
sensor is used to remedy faults such as unbalanced supply motors, squirrel cage
motor broken bars of the electrical motors [3].

Table 1: Examples of parameters and sensors for condition monitoring [2]

Category Parameter Sensor

Thermal Temperature, heat flux, heat dissipation
Negative temperature coefficient thermistors,
resistance temperature detectors, thermocou-
ples, semiconductor-based sensors.

Electrical

Voltage, current, resistance, inductance, ca-
pacitance, dielectric constant, charge, polar-
ization, electric field, frequency power, noise
level, impedance

Open-loop circuit, closed-loop circuit, Ro-
gowski coil, current clamp meters.

Chemical Species concentration, gradient, re-activity,
mess, molecular weight

Ion sensor, humidity sensor, gas sensor, biosen-
sor.

Mechanical

Length, area, volume, velocity or acceleration,
mass flow, force, torque, stress, strain, density,
stiffness, strength, angular, direction, pressure,
acoustic intensity, power, acoustic spectral dis-
tribution

Bourdon tube, manometer, diaphragms, pres-
sure gauge, strain gauge, load cell, tachometer,
encoder.

Optical
Intensity, phase, wavelength, polarization, re-
flection, transmittance, refraction, index, dis-
tance, vibration, amplitude and frequency

Photoconductive devices, photovoltaic cell,
photodiodes.

Magnetic Magnetic field, flux density, magnetic moment,
permeability, direction, distance, position, flow

Coils, reed switch, hall elements, magnetore-
sistive element, semiconductor, anisotropic,
and tunnel magnetoresistive element.

1.2 Data acquisition and preprocessing

A pertinent strategy for data acquisition, i.e. data collection and the storage, is
more important than an effort to collect extra data. It is essential for industries to
install a reliable acquisition system that ensures credibility, validity, and reliability
of the collected data and consequently a more accurate and efficient monitoring. The
monitoring process must be carefully set up considering external information such
as system operating conditions, according to the expert advices.

After collecting and storing, the raw data is injected into processing procedure,
one of the most important steps in condition monitoring. The first step of data
processing serves to identify the errors, which significantly affect data quality, and
consequently defines an appropriate processing plan for correcting them. The major
error types for CM data are human, transmission, recording and sensors errors.
There is no generalized approach to effectively manage these errors. Indeed, data
processing is a meticulous process that requires different skills and experience from
data scientists, and depends on the orientation of technical and business experts.
However, they can generally be grouped as follows:
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1. Data inspection. This first step aims to detect unexpected, inconsistent and incor-
rect data. It is performed by two techniques: summary statistic and data visual-
ization [4].

• Summary statistics provides an overview of data. It allows identifying the
number of missing values, the characteristics of the data such as range, mean
value, distribution, and relationship between variables.

• Data visualization is the graphical representation of data. It establishes a sys-
tematic mapping between graphical marks and data values to visually and
vividly demonstrate the properties of the data. Nowadays, thanks to numer-
ous statistical and information graphic tools, complex data has become more
accessible, understandable, and usable.

2. Data cleaning. The second step is crucial, especially for treating sensor noises. It
is applied to remove the following errors:

• Irrelevant data is the one that is not consistent with the context of the studied
problem. For example, the name of repairman is unnecessary to predict the
system remaining useful life time. In practice, it is not trivial to detect the
irrelevant data. Hence, this task should be carefully performed according to
expert advices and after meticulously considering the correlation between the
variables.

• Duplicates are the records repeated in a dataset, normally caused by a com-
bination of different sources or due to data entry. The deduplication is often
manually performed using filtering techniques. However, for large databases,
it is preferable to use statistical or machine learning techniques [5, 6].

• Syntax errors always occur in datasets due to a manual data entry. They can
lead to unexpected consequences when mining the data, especially for cate-
gorical variables. Generally, syntax errors might be corrected using matching
techniques.

• Outliers are those values which are outstandingly different from all other
records. They might be attributable to noises, negative effects of the environ-
ment or caused by anomalies in the monitored system. Therefore, handling
outliers should be carefully performed to avoid the loss of crucial informa-
tion [7].

• Missing values are unavoidable errors in datasets when some observations are
not available for one or more variable. Neglecting them might significantly
distort the conclusion drawn from the data. Hence, it is necessary to handle
the missing values. The missing values can be filled by statistical values or
interpolation using regression methods [4, 8, 9]. In some particular cases where
missing data is informative in itself, it is necessary to develop appropriate
algorithms that allow recognizing this omission.

3. Data transformation. The last step aims to transform the data into a format that is
ready to use and most convenient for a specific purpose. It includes the following
tasks:
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• Standardizing: it aims to ensure that the data are uniform for every variable.
• Min-max scaling and Z-transform: it serves to transform the data within a

specific scale to enhance their consistency.
• Re-sampling: it is used to enhance the hidden trend of the variables and also

balance their record numbers of for further analysis by machine learning tools.
For example, the vibration signals, with high frequency of 25 kHz, could be
segmented and re-sampled by the interval time when temperature measurement
is recorded.

• Dimension reduction: it is an essential task to reduce the number of variables by
obtaining a set of necessary ones to facilitate further visualization and analysis.
It can be performed by using methods based on statistics, information theory,
dictionaries, and projections [10].

2 Signal processing techniques for feature extraction

Figure 2 presents an overview of signal processing techniques used to extract mean-
ingful features from the recorded raw measurements. In general, these methods can
be classified into three categories: time, frequency, and time-frequency domain [11].

Frequency domain

Feature extraction techniques

Time domain Time-frequency domain 

Statistical value

Overal form

Others Fast Fourier
Transformation

Envelope analysis

Power spectrum
density

Hilbert-Huang
Transform

Wavelet Transform

STFT

Fig. 2: Signal processing techniques for extraction of features.

2.1 Features in time domain

Signal processing techniques for raw data in time domain are classical, fast and sim-
ple. They play a critical role for fault detection and diagnostic in different components
such as gears, bearings, machining tools, etc.

Among features in time domain, the statistical indicators are widely used, thanks
to its capacity to reflect the incipient characteristic of signals [12]. For example,
root mean square (RMS) value allows measuring the power content in the vibration
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signature, and consequently can be effective for detection of an imbalance in rotating
machinery. The standard deviation (STD) is used to evaluate the dispersion of a
signal while the kurtosis (KUR) aims to evaluate the peakedness of signals for
fault detection and severity quantification. Furthermore, skewness (SKW) is used to
measure the symmetry and asymmetry of signal distribution. Besides, the energy
ratio (ER) is effective for the detection of heavy faults.

In addition to the statistical values, the factors that represent the overall shape of
signals, such as the Crest factor (CF), Peak to Peak value (PP), Shape factor (SF),
and Impulse factor (IF), are powerful to capture changes in the signal pattern [12, 13]
when anomalies occur. The conventional scalar indicators, e.g. RMS, KUR, CF, and
Peak are also combined to create new indicators, called TALAF or THIKAT, that
aim to predict future failures and track defects from the first signs of degradation to
the end of life [11]. In [14], the authors proposed to use entropy features extracted
from vibration signals for bearing failure prognostics.

Although it does not require many computational time and ressources to evaluate
the temporal features, these indicators are sensible to noisy signals. It could require
other techniques to enhance signals before the evaluation of indicators. For example,
in [15], the deterministic and random parts of the vibration signal are separated
by an autoregressive model (AR); and then the fault indicator is calculated by an
energy ratio between these two parts. The papers [16] propose to use the Park’s and
Concordia transform for stator current signals and then use the current pattern for
fault detection and diagnosis. The authors in [17] evaluate the RMS value of current
signals after a noise cancellation step using Wiener filter.

2.2 Features in frequency domain

Frequency analysis is a common technique to convert time-serie measurements into
frequency values that are sensitive to the anomaly appearance. For example, bearing
defects generally generate characteristic frequencies in the vibration and current
signals.

Among frequency analysis, Fast Fourier Transform (FFT) is widely used to de-
compose physical signals into spectrum of continuous frequencies or number of
discrete frequencies [18]. After performing FFT, the magnitude values at the char-
acteristic frequencies are used as common indicators for bearing fault detection and
diagnostic [19]. In [20], the authors propose a frequency feature called PMM, that is
the ratio between the maximal value of FFT magnitudes at the characteristic frequen-
cies and the mean of the entire magnitude frequency value, for defect and severity
classification and for bearing performance assessment. The authors in [21] used the
spectral kurtosis for mechanical unbalance detection in an induction machine.

In addition to FFT, power spectrum density (PSD) that describes the spectral
energy distribution into the signal’s frequency components is also used to evaluate
the features for fault detection and diagnostics. In [12], the authors propose to use the
maximal value of PS for bearing fault detection based on vibration signals. The PSD
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magnitude of the non-stationary current-demodulated signals at the characteristic
frequency is proved as an efficient features for fault diagnosis in [22]. On the other
hand, using Welch’s periodogram of the stator current, the authors in [23] developed
a new fault detection indicator, which is calculated as the sum of the centered reduced
spectrum amplitude around the characteristic frequencies.

Envelope analysis allows reflecting the energy concentration in narrow bande
while there are multiple repetitive vibration impulses generated due to a contact
between a localized defect and another surface. For example, the maximal value of
the envelope spectrum magnitude is used as an indicator for bearing fault detec-
tion in [12]. Numerous articles show that the envelope spectrum magnitudes at the
characteristic frequencies are powerful to detect and classify the bearing failures
[24, 25]. On the other hand, in [20], the ratio between the maximal value of envelope
spectrum magnitudes at the characteristic frequencies and the mean value of the
entire magnitudes is also used for diagnostic and degradation assessment.

Although frequency analysis techniques are widely used for fault detection and
diagnostics but they require signal spectrum knowledge and are limited to the equip-
ment having fault characteristic frequencies. Moreover, they are not suitable for
non-stationary signals due to the loss of information when transforming the time-
series signal into frequencies.

2.3 Features in time-frequency domain

To capture the non-stationary characteristic of signals, it is necessary to present them
into two-dimensional function of time and frequency. Therefore, numerous signal
processing techniques in time-frequency domain have been developed in literature.

Short time Fourier transform (STFT) firstly decomposes the signals into a set
of data within a fixed window length and secondly performs the FT on every data
window. Then, the spectrum magnitude at FFT characteristic frequencies is proposed
to use as an effective feature for bearing defect diagnostic [26]. However, the selection
of the fixed window length before performing STFT can strongly affect the method
performance.

Wavelet transform (WT) is recommended to overcome the above mentioned limit
of STFT thanks of its capacity to flexibly adapting the resolutions of time and
frequencies for signal analysis. This technique can be divided into three groups:
continuous wavelet, discrete wavelet and wavelet packet transform. For bearing fault
detection, the features are extracted based on statistical evaluation of the wavelet
coefficients [27]. Besides, features based on the wavelet energy are also extracted
from vibration or stator current signals [20].

As the performance of wavelet analysis method strictly depends on the choice
of the mother wavelet, it is suitable to use Hilbert Huang transform (HHT) for
analyzing non-stationary signals when we do not have a prior information about the
signal shape. The HHT technique includes two phases. Firstly, the input signal is
decomposed into a set of intrinsic mode functions (IMFs) using Empirical mode
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decomposition (EMD). Secondly, the instantaneous frequencies of the IMFs are
extracted through Hilbert spectrum analysis (HSA). Therefore, HHT becomes a
powerful tool for analyzing and characterizing the signal spectrum in time [28, 29].

3 Feature selection

Feature selection (FS) aims to identify a subset of features which allows reducing
effects from irrelevant ones, and therefore providing good prediction results [30]. The
classification of FS techniques can be performed according to the characteristics of
target models (supervised, semi-supervised, and unsupervised), the search strategies
(forward increase, backward deletion random, and hybrid), the selection criteria, or
the learning methods (filter, wrapper, and embedded) [31, 32].

3.1 Common criteria in literature for feature selection

Feature
selection criteria

Fault detection Diagnostics

Class-Features
Relevance
measures

Khi-2 F-test
Classification

MI for
Classification

Class structure
measures

Laplacian
score

Fisher score
(diversity)

Diagnostic
performance

measures

ROC Accuracy
F1-score
Precision

Recall

Pairwise
constraint

Fig. 3: Feature selection criteria for fault detection and diagnostics.

Figure 3 presents an overview of the criteria widely used in literature for feature
selection. According to the fault detection and diagnostics purposes, these criteria
can be grouped into three following categories:

1. Class structure measures. The criteria in this group aim to capture local and
global structure of the data space. Among them, Fisher score is the most widely
used criterion. It aims to find a subset of features such that in the data space
limited by the selected features, data points in the same class are close are
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possible while the distance between data points in different classes are large
as possible. Besides, Laplacian score allows evaluating the features according to
their locality preserving power while pairwise constraints provide information
about link-constraints between observations to identify whether a pair of data
samples belong to the same class or different classes.

2. Class-Feature’s relevance measures. This second group aims to measure the rele-
vance between features themselves and also their pertinence for the classification.
For example, the Chi-square test allows us selecting the best features to build the
model by testing the relationship between them. A feature having high Chi-square
value is more dependent on the response and consequently can be selected for
model training. Another test, F-Test, is also widely used for feature selection. It
check whether a model created by a feature is significantly different to the one
build just by a constant. Hence, the significance of each feature in improving the
model is consequently evaluated. Besides, mutual information is used to quantify
the “amount of information” obtained about diagnostic information by observing
the feature. It is a non-negative value, and equal to zero if and only if two random
variables are independent, while higher values mean higher dependency [33].

3. Diagnostic performance measures. The final group aims to evaluate the perfor-
mance of a diagnostic model build by a subset of features) and based on it, the
feature subset contributing to create the highest-performance model is selected.
Among the performance metrics, the accuracy is widely used to evaluate the ratio
of the number of labels predicted that exactly matches the true labels. Besides,
the precision metric, which indicates how accurate the model is out of those
predicted positive, is preferred when the cost of False Positive is high; while the
recall metric is more suitable for the cases when there is a high cost associated
with False Negative. When we consider a balance between false positive and false
negative cases, F1-score might be a better measure. Finally, the the AUC (Area
Under The Curve) - ROC (Receiver Operating Characteristics) curve is one of the
most important evaluation metrics for checking the model performance. ROC is
a probability curve and AUC represents the degree or measure of separability.

3.2 A proposed metric for evaluating feature performance

The paper [11] proposes a metric that allows directly evaluate the performance of the
extracted features for fault detection and diagnostic. The proposed feature satisfies
the following requirements: 1) convenient and simple for prompt evaluation and 2)
independent from the feature units. Thus, it allows comparing heterogeneous features
in different domains.

This feature, called the distance ratio (𝑅𝐷), is evaluated by the ratio between the
Euclidean distance from a such feature value (point 𝑖), extracted from monitoring
signal, to the median value of the set of nominal feature values (𝑆𝐹𝑉 ) characterized
healthy state, and the standard deviation of nominal feature value set, 𝜎(𝑆𝐹𝑉 ):
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𝑅𝐷 =
| |𝑖 − median(𝑆𝐹𝑉 ) | |2

𝜎(𝑆𝐹𝑉 )
(1)

For fault detection and diagnostic, if the extracted feature allows clearly distinguish-
ing the normal and abnormal state, then the feature performance is well highlighted.
Considering Eq.1, if the distance of a such feature value to the median value of the
healthy set is significant while the standard deviation of distances between nominal
feature values is small, then the correspondent 𝑅𝐷 is high. In other words, the greater
𝑅𝐷 value is, higher is the feature performance. Therefore, 𝑅𝐷 can be used as an
effective measure for feature performance ranking when considering fault detection
issues. Regarding diagnostic problems, it can be extended based on the evaluation
of distances from a such group to others.

3.3 Feature selection techniques

Figure 4 presents an overview of the performance of the feature selection techniques
grouped according to the learning methods. Among three groups, the filter models
are the simplest and fastest ones but their performance is lower than wrapper and
embedded models. Nevertheless, the wrapper methods provide better results com-
pared to filter approaches but hey are very computationally expensive to implement,
especially for data with a large number of features [34]. To benefit the advantages
and overcome the shortcomings of the filter and the wrapper groups, embedded
approaches were developed. Therefore, they achieve low computational cost than
wrapper models and high performance than filter models.
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Fig. 4: Characteristics of feature selection techniques.
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In the first group, the filter methods rank features based on certain statistical
criteria, such as Laplacian, Fisher score [35], or the mutual information [19, 36]
to eliminate the inappropriate features. In [12], the authors introduced an ordering
metric, that measures the separability between the normalized feature vectors charac-
terizing healthy and faulty classes. An analysis and comparison of multiple features
for fault detection and prognostic in ball bearings was presented in [11]. However,
one of the important limitation considering these above methods, it is not trivial to
identify the number of selected features. Furthermore, in practical applications, the
important features could have the low ranking according to certain criteria evalu-
ation but are more informative when combined with others for a specific learning
purpose [30].

The wrapper methods propose to incorporate a specific learning algorithm in the
process of feature subset selection [37, 38]. The feature search component will create
a subset of features while the feature evaluation component will use the accuracy
of the predetermined learning algorithm to assess the quality of this subset. For
search component, a wide range of sequential and heuristic algorithms are developed
in literature. For example, the study [39] developed Sequential Floating Forward
Selection algorithm to decide whether a feature is added to the selected subset or
not. In [40, 41], the authors proposed to use the Genetic Algorithm (GA) to find
the optimum feature subset that maximizes the accuracy of the given classification
algorithm.

The embedded models can be considered as hybrid models by combining the filter
and the wrapper ones. It integrates the optimization of feature subsets during the
learning process to avoid the training of the model each time when exploring a new
feature subset. Therefore, they achieve lower computational cost than wrapper mod-
els and higher performance than filter ones. In [42], the authors present two feature
selection approaches, concave minimization and support vector machine approach,
for finding a separating plane that discriminates two classes in an n-dimensional
space. Besides, the regularization models, that allow minimizing fitting errors and
simultaneously penalizing the coefficients corresponding to features, receive increas-
ing attention thanks to their good performance [34]. For example, Lasso [43, 44],
bridge [45], and elastic net [46] are the popular and efficient regularization methods
that are widely applied for feature selection. However, the embedded methods lack
the generality as the method of the optimal feature subset selection is specific for a
given classification algorithm [32].

3.4 A proposed algorithm for feature ranking

The paper [11] proposes a fast, simple, and effective ranking algorithm to access the
performance of multiple features for fault detection and diagnostics, see Figure 5.

This algorithm is based on the principle: the higher mean value of 𝑅𝐷 (Eq.1),
of a feature is, the greater performance of this feature is. In detail, for ranking 𝑁

features, the 𝑅𝐷 measures are firstly evaluated for every feature. Then, 𝑁 features
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Fig. 5: Feature ranking algorithm [11].

are sorted according their 𝑅𝐷 mean values such as the 𝑅𝐷 mean value of 𝑖-th feature
is greater than the one of 𝑖 + 1-th feature (`𝑖 > `𝑖+1). Next, it is necessary to verify
the confidence level of this feature ranking list. In other words, we consider whether
the results (`𝑖 > `𝑖+1, 𝑖 ∈ [1, 𝑁 − 1]) are statistical significant or only random
observations:

• If 𝐻0 : `𝑖 = `𝑖+1 is rejected, the rank of 𝑖 and (𝑖 + 1)-th feature are maintained.
• If not, we can not conclude that the 𝑖-th feature is better than the (𝑖 + 1)-th one,

then they have the same rank.
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4 Health indicator construction

4.1 Taxonomy of existing methods

In general, the health indicator (HI) construction techniques can be classified into four
categories: statistical projection, mathematical model based, deep learning based or
optimization methods of feature combination.

In the first group, mathematical model based methods focus on developing math-
ematical expression that allow capturing the relations between CM measurements of
the system and its health states. For example, the authors in [47] evaluate the distance
between the vibration signals of degraded and nominal bearings, and then smooth it
by an exponential model. In [48], the authors manually choose the relevant features,
and then construct the HI using a weighted average combination of the chosen ones.
The HI is also developed based on expertise knowledge about physical behavior of
system [49, 50] and about the relevant feature used for creating effective HIs [51].
In a recent study [52], the authors propose to use the multivariate state estimation
method, which is a non-parametric regression modeling technique, to generate use-
ful HIs. However, the above studies are based on assumptions about degradation
forms over time or the expertise knowledge about signal processing techniques, data
analysis, and system behaviors. Then, they might not be suitable for complex systems
where an automatic process is preferable.

Deep learning (DL) methods, provides alternative solutions for automatically
extracting and constructing useful information without the expertise knowledge in
the case of abundant data. For example, Long Short Term Memory (LSTM) Encoder-
Decoder [53] or Recurrent Neural Network (RNN) Encoder-Decoder [54] can be used
for automatic creating the HI. Besides, the Convolution Neural Network (CNN) is
also applied to create HIs using raw vibration signals [55, 56] or using time-frequency
features extracted from data [57, 58]. From these studies, it can be seen that the Deep
Learning approaches can take advantage of abundant data to automatically generate
health indicators without much expert knowledge about the system. Nevertheless,
the deep features created by these works are difficult to understand and cannot be
interpreted as physical characteristics of the system.

Besides, the statistical projection methods aim to represent the observations from
the high-dimensional to a lower dimensional space. For early studies, principal
component analysis (PCA) was proposed to find lower dimensional representation
of features for condition and performance assessment [59]. To overcome the PCA
limitations when facing nonlinearities and time-varying properties, numerous PCA
variations, e.g. Kernel-PCA, PCA-based KNN and PCA-based Gaussian mixture
models, were developed to handle data [60]. Besides, other non-linear combination
techniques such as Isomap or Linear Locally Embedding (LLE) are developed for
finding manifold embedding of lower dimensionality [61, 62]. However, the new
features created by these mentioned statistical projection methodologies are not
interpretable, which can lead to a deal-breaker in some settings.
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The final group that is based on the optimization methods of feature combination
aims to automatically find the best mathematical expression that combines low-
level features to form more abstract high-level prognostic features [63, 64, 65].
These methods are flexible in formatting mathematical functions and allows easily
integrating expertise knowledge about the HI formulations by defining an appropriate
initial population. Furthermore, the created HI, which is an explicit mathematical
function of low-level features, can be interpreted for further studies [33].
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Fig. 6: Characteristics of HI construction methods.

Figure 6 presents an overview of the HI construction methods in two aspects:
interpretation ability and expert-knowledge requirements. Among four groups, the
mathematical based methods allows creating the HIs that can be easily interpreted
by physical characteristics of a specific system. However, they require thorough
expertise knowledge about the system and its degradation trend. Contrastingly, the
deep learning based methods require little expert knowledge, but high computational
resources; and moreover it is difficult to interpret their created HI. Besides, the
statistical projection methods and the optimization algorithms of feature combination
can be considered as the alternatives solutions that have the acceptable interpretation
level and do not require many expert knowledge about systems. Among them, the
genetic programing techniques are promising candidates and will be detailed in next
subsection.

4.2 Automatic health indicator construction method

In [33], the authors developed a new HI construction framework, including a com-
plete automated process from extraction of low-level features to construction of
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useful HI. The proposed framework does not require the expertise knowledge but
allows facilitating its integration if available. In addition, it takes into account multi
criteria for a better HI performance evaluation. Moreover, it can be easily deployed
for various systems.

An overview of the proposed framework is presented in Figure 7. The automated
HI construction framework is based on the two-stage Genetic Programming that are
flexible in creating new mathematical functions. In the first stage, pertinent low-level
features are automatically extracted from raw sensor measurements. It starts with a
population of individuals that are tree-like representations of the feature extraction
functions, their parameters and the sensor signals. Next, it evaluates them based
on some evaluation criteria and generates a new population by using evolutionary
operators on high scoring individuals and then eliminating the low scoring ones.
In the second stage, GP is used to derive reasonable mathematical formulations
of the features extracted in the first stage to create powerful health indicators. Each
individual HI is defined using an expression tree constructed by combining the values
of low-level features and a set of mathematical operators.

Sensor
measurements

Feature evaluation
criteria

Health indicator
construction

Stoping criteria
evaluation and

verification

Automated feature
extraction

Fault detection
Diagnostic

Output

YES

NONO

YES

Fig. 7: Overview of the HI construction method.

First stage: Automated feature extraction

The first stage aims to identify the best combinations of the feature extraction
functions and their relevant parameters for raw sensor signal. This process is based
on genetic programming, as show in Figure 8.

Firstly, an initial population including 𝑛𝑝 individuals is randomly created. Every
individual, which is a combination of 1) a feature extraction (FE) function, 2) a
sensor signal output and 3) a value of window length parameter 𝑛, represents a
way for extraction of features. Its performance is then evaluated through one (or a
combination) of the evaluation criteria for fault detection and diagnostic purposes
presented in subsection 3.1.

From the initial population, 𝑛𝑜 offspring are generated in different ways through
crossover, mutation of FE function, terminal mutation and reproduction. Note that
for all operators (crossover, mutation and reproduction), the individual having the
better finest function is chosen with the higher probability. Beside, the operator is
randomly chosen based on the following principles:
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Fig. 8: Flow chart of the automated feature extraction algorithm [33].

1. Crossover. If a random value 𝑟, 𝑟 ∈ [0, 1], is less than the crossover probability,
𝑝𝑐 , then two individuals are chosen from the initial population to exchange the
terminals that belongs to the same type, e.g. the window length parameter of
parent 1 will be be replaced by the window length parameter of parent 2. After
crossover operation, two offsprings are created.
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2. Mutation of FE function. If 𝑟 is superior to 𝑝𝑐 but inferior to its cumulative
sum with the probability of the FE-function mutation 𝑝𝑜, the FE function of the
chosen parent will be replaced by another FE function.

3. Mutation of terminal. If 𝑟 is superior to this sum (𝑝𝑐 + 𝑝𝑜), but is inferior to
the cumulative sum including the probability of the terminal mutation 𝑝𝑤 , the
terminal (i.e. sensor output or window length parameter 𝑛) will be replaced by
another same type terminal.

4. Reproduction. If 𝑟 is superior to the sum of crossover and mutation probability
(𝑝𝑐 + 𝑝𝑜 + 𝑝𝑤 ), the chosen parent will be copied to create its offspring.

After creating 𝑛𝑜 offsprings, all individuals including the ones in the parent pop-
ulation 𝑛𝑝 , and the one in the offspring population 𝑛𝑜, will be evaluated to update
the hall of frame (HOF) that is the best solutions through all generations. The HOF
number, i.e., number of extracted features, is defined by users. Among 𝑛𝑜 + 𝑛𝑝 indi-
viduals, 𝑛𝑝 individuals will be randomly chosen as the parents of the next generation.
Note that the individual having the better finest function will be kept with the higher
probability. For a new generation, the above procedure will be repeated until the
stopping criteria (the maximal number of generations) is attained.

Second stage: Automated health indicator construction

The second stage of the proposed methodology aims to find best mathematical
functions that allow combining the low-level features extracted from the first stage
to derive the powerful HI. To prevent not-a-number values that can be created by
random combinations, several variants of basic mathematical operators are proposed
in Table 2.

Table 2: Summary of mathematical operators to create the HI. [33]

Operators Formulation
Addition 𝑥 + 𝑦

Subtraction 𝑥 − 𝑦

Multiplication 𝑥 × 𝑦

Protected division 𝑥/𝑦 if 𝑦 > 10−9, otherwise 109

Protected exponential function exp(𝑥) if 𝑥 < 100, otherwise 109

Protected logarithmic function log( |𝑥 |) if |𝑥 | > 10−9, otherwise −109

Power function 𝑥𝑎 , 𝑎 ≤ 10
Negative function −𝑥
Squared function

√︁
|𝑥 |

The HI combination stage is summarized in Figure 9. It aims to find the best multi-
level-combinations of mathematical operators defined in Table 2 and the low-level
features extracted during the first sage. To do that, we implemented the following
evolutionary operators:
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Fig. 9: Flow chart of the automated HI construction algorithm [33].

1. Crossover: If the random value 𝑟 is inferior or equal to the probability of crossover
(𝑟 ≤ 𝑝𝑐), the crossover operator will be performed. It randomly selects one point
in each parental individual and exchanges their relevant subtrees.

2. Function mutation: If the random value 𝑟 is superior to the probability of
crossover and inferior or equal to the sum of the cross over and function mutation
probability, noted 𝑝2 (𝑝𝑐 < 𝑟 ≤ 𝑝2), the mutation of mathematical functions will
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be performed. It replaces a randomly chosen mathematical function from parental
individual by a randomly chosen function with the same number of arguments.

3. Shrink mutation: If the random value 𝑟 is superior to 𝑝2 and inferior or equal
to the cumulative sum of the cross over, the function mutation and the shrink
mutation probability, noted 𝑝3, (𝑝2 < 𝑟 ≤ 𝑝3), the shrink mutation will be
performed. This operator shrinks the parental individual by choosing randomly
its branch and replacing it with one of the branch arguments (also randomly
chosen). It allows investigating if a simplified formulation provides a promising
solution.

4. Replacement mutation: If the random value 𝑟 is superior to 𝑝3 and inferior or
equal to 𝑝4, the cumulative sum 𝑝3 including replacement mutation probability,
(𝑝3 < 𝑟 ≤ 𝑝4), the replacement mutation will be performed. It randomly selects
a point in the parental individual, then replaces the subtree at that point as a
root by the expression generated by a random combination between mathematical
functions and low-level extracted features.

5. Insert mutation: If the random value 𝑟 is superior to 𝑝4 and inferior or equal to
𝑝5, the cumulative sum including the insert mutation probability, (𝑝4 < 𝑟 ≤ 𝑝5),
the insert mutation will be performed. It inserts a new branch at a random position
in parental individual. The original subtree will become one of the children of
the new mathematical function inserted, but not perforce the first (its position is
randomly selected if the new function has more than one child).

6. Reproduction: If the random value 𝑟 is superior to 𝑝5, the offspring is created
by a copy of the parental individual.

In addition, as the length of the individuals can be rapidly explored through
generations, then too complicated expressions that can not be interpreted might be
created. To prevent this issue, a bloat control of the expression depth is performed
to eliminate the long offsprings. Besides, as one prefers simple expressions having
acceptable HI performance, the individual length can be set as a one of the fitness
functions. The proposed algorithm finds the best combinations that minimize the
individual length and maximize the HI evaluation criteria presented in subsection 3.1.
This multi-objective optimization problem is handled by using the Strength Pareto
Evolutionary Algorithm (SPEA II) that allows locating and maintaining a set of
non-dominated solutions.

4.3 Applications of the automatic health indicator construction method

The two main challenges of the automated HI constructions are: 1) the ability to
correctly chose the pertinent measurements among various sensor sources, and 2)
the capability to handle raw data from high-frequency sensors. Hence, in [33] the
authors investigated whether the proposed methodology can address these challenges
through two benchmark case studies.



20 Khanh T. P. Nguyen

4.3.1 Case study 1 - Turbofan engine degradation

This case study is widely used in PHM field [66]. It presents various degradation
scenarios of the fleet of engines from a nominal state to a failure in the training sets
and a time before the failure in the test sets. Both of training and test sets consist of
26 columns that describe the characteristics of the engine units. The first and second
column respectively represent the ID and the degradation time steps for every engine.
The next three columns characterize the operation modes of the engines while the
final 21 columns correspond to the outputs of 21 sensors. Among these numerous
measurements, it is necessary to correctly chose the pertinent features. Therefore,
the subset FD001 of this dataset is used to verify whether the proposed method can
automatically chose the informative features or not.

Figure 10 illustrates raw signals recorded from the four first sensors (among 21
sensors) of the turbofan engine dataset FD001. One can recognize that the first sensor
provides useless information that should be automatically eliminated during the first
stage of the proposed methodology. Indeed, Figure 11 presents four examples of the
results obtained after the feature extraction stage. They are respectively the results
of the smoothing function (𝑣𝑆𝑀 ) for sensors 2, 3, 11 and 21 that are also the ones
recommended by the previous works in literature [66]. These results highlight the
performance of the FE stage that automatically chooses the appropriate sensors and
based on these measures, extracts the pertinent low-level features. In fact, comparing
Figure 11 with Figure 10, we find that the extracted features are more monotonic,
smooth and robustness than the raw sensor measurements. In other words, these
features can better represent the characteristics of the turbofan engine’s degradation
process.
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Fig. 10: Turbofan engine’s raw data [33]
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Fig. 11: Features extracted from Turbofan engine dataset [33]

After extracting low-level features, the second stage of the proposed methodol-
ogy allows using these features to create the powerful HI according to the predefined
criteria. Figure 12 presents one example of the created HI for the case study of tur-
bofan engines. One can recognize that the created HI represents well the degradation
processes in this case. It is monotonically increasing over time and almost end at the
same failure threshold.
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Fig. 12: Illustration of the created HI for turbofan engines [33]
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4.3.2 Case study 2 - Bearing degradation

This case study was generated by the NSF I/UCR Center for Intelligent Maintenance
Systems (IMS) and used as a common benchmark data in PHM field [67]. It includes
three sub datasets that describe three test-to-failure experiments of four bearings
installed in an AC motor that operates at 2000 RPM of rotation speed with a radial
load of 6000 lbs. In contrast to the previous case (Turbofan engine), in this case,
there is only a high-frequency sensor type (i.e vibration) to monitor the bearing state.
Concretely, 1-second vibration signal snapshots is recorded at specific intervals by
NI DAQ Card 6062E with the sampling rate set equal to 20 kHz. To verify if the
proposed methodology can handle the high-frequency raw data, the sub dataset No.1,
that is the longest test, is used in [33].

Figure 13 presents raw vibration signals recorded from two channels of bearings
3 and 4 during one second in the first test of IMS bearing dataset. Note that these
bearings fail after more than one month of running test-to-failure experiment. Thus,
for every sensor channel, more than 2100 samples of 1 s-signal are recorded during
the experiment. It is impossible to directly visualize the degradation process of
bearings 3 and 4 with these raw data (Figure 13), while the extracted features after
the first stage allow representing the evolution of bearing degradation over time
(Figure 14). The extracted features are respectively the results of the 𝑣𝑀𝐴, 𝑣𝑅𝑀𝑆 ,
𝑣𝐶𝐹 and 𝑣𝐼 𝐹 functions applied on 2100 samples of 1 second of vibration signals.
Hence, the proposed method’s performance is one more time emphasized. It allows
automatically handle the high-frequency signals and deriving useful features after
the first stage.
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Fig. 13: Bearing’s raw vibration data [33]
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Fig. 14: Features extracted from IMS bearing dataset [33]

Finally, Figure 15 shows the created HI that well captures the degradation trend
of bearings. In addition, their trajectories almost end at the same failure thresh-
old. Hence, this HI allows monitoring bearing conditions for fault detection and
contributing to improve the precision of prognostic models.
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Fig. 15: Illustration of the created HI for bearings [33]

5 Conclusions

This chapter presents a tutorial on feature engineering and health indicator construc-
tion in condition monitoring. In addition, it also provides a systematic and compre-
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hensive review of existing techniques for feature extraction, feature selection, and
health indicator construction. This thorough review presents a general guideline for
practitioners on how to properly implement condition monitoring systems for fault
detection and diagnostic purposes.

Among feature extraction methods, time-domain techniques are classical, fast
and simple. They can be applied for different fault types of various systems but are
not viable for noisy measurement. On the other hand, the frequency-domain anal-
ysis is effective to detect system anomalies when knowing their fault characteristic
frequencies. However, it is not suitable for non-stationary signals. On the contrary,
time-frequency transformation techniques are powerful for analyzing and charac-
terizing the signal spectrum in time. Nevertheless, those techniques often require a
lot of computational power as well as experience to choose the appropriate set of
hyperparameters.

For feature selection, filter approaches are used for unlabeled data or when there
is no correlation between features and labeled data. Besides, embedded approaches
are appropriate for scenarios in which high accuracy and inexpensive computation
are required. They are however not suitable for high dimensional data which can be
addressed by using wrapper methods based on heuristic search algorithms.

Finally, for health indicator construction, methods based on statistical projection
are good candidates for high-dimensional but non-abundant data, especially when
there is no expert knowledge about the system to construct mathematical health
indicators. Otherwise, deep learning based methods are suitable for scenarios with
high-dimensional and abundant data. Besides, methods based on optimization of
feature combination, particularly genetic programming, are promising solutions for
giving interpretation ability of the created health indicators. Furthermore, they can
also be extended to integrate the possibly available knowledge.
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