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ADAPTIVE PRECISION SPARSE MATRIX–VECTOR PRODUCT∗

STEF GRAILLAT† , FABIENNE JÉZÉQUEL‡ , THEO MARY† , AND ROMÉO MOLINA§

1. Introduction. Motivated by the growing availability of lower precision arithmetics,
mixed precision algorithms are being developed for a wide range of numerical computations [12].
One subclass of mixed precision algorithms that has recently and increasingly proven successful
is what we call adaptive precision algorithms. These algorithms are based on the idea of adapting
the precision to the data involved in the computation, by selecting a level of precision proportional
to the importance of the data, where the definition of “importance” is application dependent.
For example, Anzt et al. [3], [7] have proposed an adaptive precision block Jacobi preconditioner
in which the precision of each block is chosen based on its condition number. Another example
is the mixed precision low-rank compression proposed by Amestoy et al. [2], which partitions a
low-rank matrix into several low-rank components of decreasing norm and stores each of them in
a correspondingly decreasing precision. In the most extreme case, adaptive precision algorithms
choose a different precision for each scalar variable of the computation: for example, in a matrix
computation, each individual matrix element may have its own independent level of precision.
This is for example the case of the sparse matrix–vector product developed by Ahmad et al. [1],
in which elements in the range [−1, 1] are switched to single precision while the other elements
are kept in double precision. Similarly, Diffenderfer et al. [6] have proposed a “quantized” dot
product algorithm that adapts the precision of each vector element based on its exponent. For a
unified presentation of these adaptive precision algorithms, see [12, sect. 14].

In this article, we propose an adaptive precision algorithm at the element level for matrix–
vector products. Specifically, our matrix–vector product algorithm partitions the elements into
several buckets and uses a different precision for each bucket. We perform a rounding error
analysis of this algorithm that reveals how the precisions should be chosen: we prove that it
suffices to take the precisions to be proportional to the magnitude of the elements, that is,
elements of large magnitude should be kept in high precision, but elements of smaller magnitude
can be switched to correspondingly lower precisions. Intuitively, this discovery can be explained
by the fact that the least significant bits of the smaller elements end up being lost when they
are summed to the larger elements: hence, we might as well avoid computing those bits to begin
with.

Based on this analysis, we develop an adaptive precision sparse matrix–vector product and
evaluate experimentally its performance and accuracy on a range of real-life large sparse matrices.
We show that the storage and hence the data movement costs of the product can be significantly
reduced for many matrices, while preserving a user-prescribed accuracy target. We develop an
implementation for CPUs that uses double and single precision arithmetic as well as dropping,
and obtain speedups of up to an order of magnitude on a multicore computer.

2. Uniform precision matrix–vector product. Before proposing an adaptive precision
matrix–vector product, let us recall the error analysis of the uniform precision case, where the
same precision is used across all operations.

Throughout the article we will use the standard model of floating-point arithmetic [9, sec.
2.2]

f l(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}, (2.1)

where u is the unit roundoff of the precision used.
Let yi =

∑
j∈Ji

aijxj be the inner product between the ith row of A and x, where Ji is the
set of the column indices of the nonzero elements in row i of A. In uniform precision u, the
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computed ŷi satisfies

|ŷi − yi| ≤ #Jiu
∑
j∈Ji

|aijxj |, (2.2)

where #Ji denotes the cardinality of Ji. Note that here, and throughout the article, we have
used the analysis of inner products of Jeannerod and Rump [13] to obtain more refined bounds,
where constants of the form γn = nu/(1 − nu) can be replaced simply by nu. The analysis
of [13] assumes the use of rounding to nearest, but it was later shown in [14, Corollary 3.3] that
these refined bounds also hold for directed roundings by replacing u with 2u. We also note that
constants n could be further reduced to

√
n to obtain probabilistic bounds that hold with high

probability [10, 11, 4]. In this article the size of the constants is not the main focus (as they are
typically small for sparse matrices), and so we use the more general worst-case error bounds.

Algorithm 2.1 Uniform precision matrix–vector product.

1: Input: A ∈ Rm×n, x ∈ Rn. Ji is the set of column indices of the nonzero elements in row i
of A.

2: Output: y = Ax
3: for i = 1: m do
4: yi = 0
5: for j ∈ Ji do
6: yi ← yi + aijxj
7: end for
8: end for

As a consequence of the Oettli–Prager [9, Thm. 7.3], [15] and Rigal–Gaches [9, Thm. 7.1],
[16] theorems, we have the following formulas for the componentwise backward error

εcw = min {ε : ŷ = (A+ ∆A)x, |∆A| ≤ ε|A|} = max
i

[ |ŷi − yi|∑
j∈Ji
|aijxj |

]
(2.3)

and for the normwise backward error

εnw = min {ε : ŷ = (A+ ∆A)x, ‖∆A‖ ≤ ε‖A‖} =
‖ŷ − y‖
‖A‖‖x‖

, (2.4)

respectively. Throughout this article, the unsubscripted norm ‖ · ‖ denotes the infinity norm

‖A‖∞ = max
i

∑
j

|aij |.

Note that the componentwise error is always larger than the normwise one, since we have

εnw =
‖ŷ − y‖
‖A‖‖x‖

≤ ‖ŷ − y‖
‖|A||x|‖

=
maxi |ŷ − y|i
maxi(|A||x|)i

≤ max
i

|ŷ − y|i
(|A||x|)i

= εcw. (2.5)

Moreover, using (2.2), we obtain the bound

εnw ≤ εcw ≤ pu, (2.6)

where p = maxi #Ji is the maximum number of nonzero elements per row of A.

3. Adaptive precision matrix–vector product. In this section we propose an adaptive
precision matrix–vector product algorithm. We begin, in section 3.1, by performing the error
analysis of a general mixed precision matrix–vector product that partitions the nonzero elements
of the matrix into buckets and computes the partial inner products associated with each bucket
in a different precision. Our analysis shows how to build these buckets so as to minimize the
precisions used while achieving a prescribed backward error. In section 3.2 we then experimentally
assess the performance of this algorithm on a wide range of real-life matrices.
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3.1. Error analysis. In this section we analyze Algorithm 3.1 which computes a mixed
precision matrix–vector product y = Ax using q precisions u1 > u2 > . . . > uq. Each row i of A

is partitioned into q buckets Bik ⊂ [[1, n]], k = 1: q, and the inner product y
(k)
i =

∑
j∈Bik

aijxj
associated with bucket Bik is computed in precision uk. All the partial inner products are then
summed in precision uq.

For Algorithm 3.1 to be well defined, we require that the Bik form a partition of Ji (the
nonzero elements in row i of A), that is, that they are disjoint and that their union is equal to
Ji.

Algorithm 3.1 Adaptive precision matrix–vector product in q precisions u1 > . . . > uq.

1: Input: A ∈ Rm×n, x ∈ Rn, a partitioning of A into buckets Bik

2: Output: y = Ax
3: for i = 1: m do
4: for k = 1: q do

5: y
(k)
i = 0

6: for j ∈ Bik do

7: y
(k)
i ← y

(k)
i + aijxj in precision uk

8: end for
9: end for

10: yi =
∑q

k=1 y
(k)
i in precision uq

11: end for

According to (2.2) the computed partial inner product ŷ
(k)
i satisfies

|ŷ(k)i − y(k)i | ≤ pikuk(1 + uk)2
∑

j∈Bik

|aijxj |, (3.1)

where pik = #Bik and where the (1 + uk)2 term accounts for the need to first convert both aij

and xj to precision uk. Then, defining yi =
∑q

k=1 ŷ
(k)
i the exact sum of the ŷ

(k)
i , we have

|yi − yi| ≤
q∑

k=1

[
pikuk(1 + uk)2

∑
j∈Bik

|aijxj |
]
, (3.2)

and the computed ŷi satisfies

|ŷi − yi| ≤ (q − 1)uq

q∑
k=1

|ŷ(k)i | (3.3)

≤ (q − 1)uq

q∑
k=1

[(
1 + pikuk(1 + uk)2

) ∑
j∈Bik

|aijxj |
]
, (3.4)

where the conversion of ŷ
(k)
i back to precision uq does not introduce any error since uq ≤ uk for

all k. Using the fact that the Bik form a partition of Ji, we have that

q∑
k=1

∑
j∈Bik

|aijxj | =
∑
j∈Ji

|aijxj |

and we therefore obtain

|ŷi − yi| ≤ |ŷi − yi|+ |yi − yi| (3.5)

≤ (q − 1)uq
∑
j∈Ji

|aijxj |+ (1 + (q − 1)uq)

q∑
k=1

[
pikuk(1 + uk)2

∑
j∈Bik

|aijxj |
]
. (3.6)
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Dividing both sides by
∑

j∈Ji
|aijxj |, we obtain the componentwise backward error bound

εcw ≤ (q − 1)uq + (1 + (q − 1)uq) max
i

[ q∑
k=1

pikuk(1 + uk)2αik

]
, (3.7)

which shows that the ratios

αik =

∑
j∈Bik

|aijxj |∑
j∈Ji
|aijxj |

(3.8)

play a fundamental role in controlling the size of backward error.
Now we want to determine how to build the buckets Bik such that the backward error is

at most in O(ε), where ε ≥ uq is a user-prescribed target accuracy. The analysis above shows
that to do so, we need to control the ratios αik, which are essentially a measure of how large the
elements in bucket Bik are with respect to all the elements in Ji. Thus, the analysis tells us that
elements smaller in magnitude can be placed in lower precision buckets. Specifically, writing ai
the ith row of A so that

∑
j∈Ji
|aijxj | = |ai|T |x|, let us define the intervals

Pik =


(
0, ε|ai|T |x|/u1

]
for k = 1,(

ε|ai|T |x|/uk−1, ε|ai|T |x|/uk
]

for k = 2: q − 1,(
ε|ai|T |x|/uq−1, +∞

]
for k = q,

(3.9)

which form a partition of R+, and let us define the buckets Bik as the column indices of the
nonzero elements of A such that |aijxj | belongs to the corresponding interval Pik:

Bik = {j ∈ Ji : |aijxj | ∈ Pik} . (3.10)

This construction yields αik ≤ pikε/uk and therefore, by (3.7),

εcw ≤ (q − 1)uq + cε = O(ε), (3.11)

with

c = (1 + (q − 1)uq) max
i

q∑
k=1

p2ik(1 + uk)2. (3.12)

We note that we have not taken into account any rounding error occuring in the computation
of the intervals Pik, which we assume is evaluated in sufficiently high precision to be considered
exact.

Since, by (2.5), εnw ≤ εcw, this bucket construction also yields a normwise backward error
in O(ε). However, if we only need to bound the normwise backward error, and can afford a
potentially large componentwise error, we can improve the use of low precisions by modifying the
buckets as follows. Taking norms in (3.6) shows that

εnw ≤ (q − 1)uq + (1 + (q − 1)uq) max
i

[ q∑
k=1

pikuk(1 + uk)2βik

]
, (3.13)

where it is now the ratios

βik =

∑
j∈Bik

|aijxj |
‖A‖‖x‖

(3.14)

that play a role in controlling the size of the normwise backward error. Importantly, unlike the
ratios αik in (3.8), the ratios βik can be bounded above independently of x:

βik ≤
∑

j∈Bik
|aij |

‖A‖
. (3.15)

As a result, we can redefine the buckets as

Bik = {j ∈ Ji : |aij | ∈ Pik} . (3.16)
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with the intervals Pik as in (3.9) with |ai|T |x| replaced with ‖A‖:

Pik =


(
0, ε‖A‖/u1

]
for k = 1,(

ε‖A‖/uk−1, ε‖A‖/uk
]

for k = 2: q − 1,(
ε‖A‖/uq−1, +∞

]
for k = q,

(3.17)

This is sufficient to ensure that βik ≤ pikε/uk and thus that εnw = O(ε). However, in this case we
can no longer guarantee a small εcw, since the ratios αik/βik = ‖A‖‖x‖/|ai|T |x| can be arbitrarily
large for some i.

We summarize the main conclusions of our analysis in the next theorem.

Theorem 3.1. Let A ∈ Rm×n and x ∈ Rn and let y = Ax be computed with Algorithm 3.1.
If the bucket partitioning is defined by (3.9)–(3.10), then we have

εnw ≤ εcw ≤ (q − 1)uq + cε,

where the expression of c is given by (3.12). If instead it is defined by (3.16)–(3.17), then we only
have

εnw ≤ (q − 1)uq + cε.

Remark 3.1. For sparse matrices, since the performance of SpMV is memory bound, in
principle we could only store the elements of A in lower precisions and keep the floating-point
operations in precision uq in order to avoid error accumulation. The error analysis above can be
easily adapted to this scenario by replacing (3.1) with

|ŷ(k)i − y(k)i | ≤
(
pikuq(1 + uk) + uk

) ∑
j∈Bik

|aijxj |, (3.18)

which roughly reduces the p2ik term in (3.12) to pik.

Remark 3.2. Our analysis allows for the case where some elements of A are simply dropped.
Indeed, this can be modeled as using a “precision” u1 = 1, since replacing an element by zero
introduces a relative perturbation equal to 1. Thus, taking u1 = 1 in (3.9) or (3.17) shows
that elements of magnitude smaller than ε|ai|T |x| or ε‖A‖ can be dropped while preserving a
componentwise or normwise backward error of order ε, respectively.

Remark 3.3. Our analysis can be trivially specialized to adaptive precision inner products,
for which A is a row vector, and to adaptive precision summation, for which A = e = [1, . . . , 1].

3.2. Numerical experiments. We now evaluate the performance of our adaptive precision
matrix–vector product, Algorithm 3.1, by applying it to a range of real-life large sparse matrices.

We have developed a Fortran code that implements Algorithm 3.1. Our code uses up to
seven different precisions: the IEEE fp64 and fp32 formats, the bfloat16 format, and four custom
formats using 56, 48, 40, and 24 bits, which we will refer to as fpxx, with xx the number of
bits. The fp56, fp48, and fp40 formats use 11 bits for the exponent and thus have unit roundoffs
2−45, 2−37, and 2−29, whereas the fp24 format uses 8 bits for the exponent, which corresponds
to a unit roundoff 2−16. This choice of formats aims at spanning as uniformly as possible the
range of precisions used. In principle, we could have used many more precision formats by
adapting the precision bit by bit, but focusing on formats that use multiples of 8 bits simplifies
the implementation of the cast operations. We also do not experiment with formats using a
reduced number of bits for the exponent, such as IEEE fp16. In addition to these seven precision
formats, we also drop the matrix elements that are sufficiently small, as explained in Remark 3.2.

For the cast from fp64 to fp32 we use the Fortran REAL function, whereas for casting to the
other custom formats (including bfloat16), we use our own implementation that relies on the
Fortran MVBITS subroutine. Our environment only supports floating-point operations in fp64 or
fp32. As a result, after casting the matrix elements to these custom precision formats, we must
cast them back during the computation, either to fp32 (in the case of bfloat16 and fp24) or to fp64
(in the case of fp40, fp48, and fp56). As mentioned in Remark 3.1, performing the computations
in a higher precision than the storage format only affects the constants in the error bounds.
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The experiments were performed on an Intel Xeon X5690 processor at 3.47GHz using 24
threads. For the time measurements, we perform one hundred products and report the average
timings.

The matrices used in these experiments come from the SuiteSparse collection [5] and from
our industrial partners (see Table 3.1). Clearly, by its very design, the potential of the adaptive
precision algorithm completely depends on the matrix values: there must be sufficient variations
in their magnitudes. For example, SuiteSparse has several binary matrices (with only zeros and
ones) that present no potential at all. In our experiments, we have selected a range of matrices that
present a minimum potential, listed in Table 3.1. As for the vector x, we set it to e = [1, . . . , 1]T

throughout the experiments. The role of the vector x is discussed in section 3.3.

Table 3.1: List of matrices used in our experiments.

Number Matrix n nnz

0 Transport 1.6e+06 2.4e+07
1 ss1 2.1e+05 8.5e+05
2 Serena 1.4e+06 3.3e+07
3 Emilia 923 9.2e+05 2.1e+07
4 Hook 1498 1.5e+06 3.1e+07
5 Geo 1438 1.4e+06 3.2e+07
6 vas stokes 1M 1.1e+06 3.5e+07
7 ML Laplace 3.8e+05 2.8e+07
8 ss 1.7e+06 3.5e+07
9 vas stokes 2M 2.1e+06 6.5e+07
10 Fault 639 6.4e+05 1.5e+07
11 PFlow 742 7.4e+05 1.9e+07
12 CoupCons3D 4.2e+05 2.2e+07
13 Long Coup dt6 1.5e+06 4.4e+07
14 Long Coup dt0 1.5e+06 4.4e+07
15 StocF-1465 1.5e+06 1.1e+07
16 vas stokes 4M 4.4e+06 1.3e+08
17 ML Geer 1.5e+06 1.1e+08
18 Bump 2911 2.9e+06 6.5e+07
19 Cube Coup dt6 2.2e+06 6.5e+07
20 Flan 1565 1.6e+06 5.9e+07
21 Cube Coup dt0 2.2e+06 6.5e+07
22 stokes 1.1e+07 3.5e+08
23 nv2 1.5e+06 5.3e+07
24 test1 3.9e+05 1.3e+07
25 radiation 2.2e+05 7.6e+06
26 power9 1.6e+05 2.5e+06
27 imagesensor 1.2e+05 1.9e+06
28 dgreen 1.2e+06 3.8e+07
29 mosfet2 4.7e+04 1.5e+06
30 nv1 7.5e+04 2.4e+06
31 Queen 4147 4.1e+06 1.7e+08

We begin in Figure 3.1 by evaluating the accuracy of our adaptive precision algorithm to
confirm that we are able to control the backward error, which, according to Theorem 3.1, should
remain of order ε. We check this both for the normwise and componentwise backward errors by
plotting, in Figure 3.1a, the normwise backward error for the algorithm with the normwise bucket
criteria (3.16)–(3.17), and, in Figure 3.1b, the componentwise backward error for the algorithm
with the componentwise bucket criteria (3.9)–(3.10). We use three different target accuracies,
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that is, three values of ε, 2−53, 2−37, and 2−24, which correspond to the unit roundoffs of fp64,
fp48, and fp32, respectively, and compare its backward error to the one obtained by the uniform
precision algorithm in the corresponding target format (fp64, fp48, or fp32). Moreover, we also
investigate how the backward error is affected if, instead of using all 7 precision formats, we only
use 2 (fp64 and fp32) or 3 (fp64, fp32, and bfloat16). As expected, the measured errors remain
close to the target accuracy, for all targets ε, and for any configuration of precision formats. Using
more precision formats slightly increases the error, which is explained by the analysis, since the
constant c in (3.12) increases with q.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices

10 20

10 17

10 14

10 11

10 8

10 5

Uniform
2 precisions
3 precisions
7 precisions
fp32 target
fp48 target
fp64 target

(a) Normwise backward error (2.4) (the adaptive precision algorithm uses the normwise bucket criteria (3.16)–(3.17)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
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10 11
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Uniform
2 precisions
3 precisions
7 precisions
fp32 target
fp48 target
fp64 target

(b) Componentwise backward error (2.3) (the adaptive precision algorithm uses the componentwise bucket criteria (3.9)–(3.10)).

Fig. 3.1: Backward error for the adaptive precision Algorithm 3.1 with different target accuracies
ε and different number of precisions used, compared with the uniform precision Algorithm 2.1 in
the corresponding precision (fp32, fp48, or fp64).

Next, we evaluate the performance gains achieved by the adaptive precision algorithm. We
first measure the storage gains, that is, the number of bytes necessary to store the matrix in
adaptive precision. The storage cost is a relevant metric because it drives the data movement
costs of the SpMV, which is a memory-bound algorithm.

Figure 3.2 plots the storage cost of the adaptive precision algorithm as a percentage of
the uniform precision fp64 algorithm. As for Figure 3.1, several configurations of the adaptive
precision algorithm are tested, depending on the accuracy target (fp64, fp48, or fp32), the number
of precisions used (2, 3, or 7, with dropping being used in all cases), and on whether the buckets
are built with the componentwise criteria (3.9)–(3.10) or the normwise one (3.16)–(3.17). Clearly,
the more precision formats are used, the larger are the gains, since we can better adapt the choice
of precisions to each element. In some cases, the use of more than two precisions appears to
be critical: for example, the storage cost for matrices 11 and 12 with an fp32 accuracy target
(Figure 3.2c) is divided by two when adding bfloat16 (3 precisions instead of 2). Moreover, as
expected, the storage gains are always larger with the normwise criteria (blue bars), which offers
more room to the use of lower precisions than the componentwise one (green bars). Finally, it
is also worth noting that the relative storage gains also become larger as the accuracy target is
lowered, even when compared with the uniform precision algorithm in the corresponding precision.
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That is, while lowering the accuracy target from fp64 (Figure 3.2a) to fp32 (Figure 3.2c) reduces
the storage cost of the uniform precision algorithm by a factor two, it can reduce the cost of the
adaptive precision algorithm by a much larger factor. This is for example the case for matrix 7,
for which the adaptive precision algorithm (with 7 precisions and a normwise criteria) achieves a
cost of about 60% of the uniform fp64 cost for an fp64 target, to be compared with only about
5% of the uniform fp64 cost (and hence 10% of the uniform fp32 cost) for an fp32 target.

In any case, the storage gains are overall significant in all configurations and for several
matrices, with reductions of up to a factor xx in the best case.
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(a) fp64 accuracy target
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(b) fp48 accuracy target
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(c) fp32 accuracy target

Fig. 3.2: Storage cost of the adaptive precision SpMV, as a percentage of the storage cost of the
uniform precision fp64 SpMV, for three different accuracy targets. For each plot, we report the
storage gains depending on which of the componentwise (“CW”) or normwise (“NW”) criteria is
considered and on how many precision formats are used.

Finally, we measure the execution time of the algorithms. Since SpMV is memory bound, in
principle we can hope the time gains to roughly follow the storage gains, even though the execution
time depends on several other factors such as the overhead cost of the cast operations and the
latency costs. In our experiments, we have found the time cost of the adaptive precision SpMV
to roughly match its storage cost in the case where we only use the natively supported fp64 and
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fp32 formats (that is, the two-precision version plus dropping). Unfortunately, we have found the
use of other custom precision formats to lead to slowdowns due to a heavy performance penalty
associated with our cast implementation. Our cast implementation is however not optimized and
there has been recent work on efficient implementations, such as the memory accessor from [8],
which suggests that the three- and seven-precision versions could meet their potential with a
more optimized implementation. We however leave these ideas for future work and focus here on
the results obtained with the two-precision version.

Figure 3.3 reports the execution time of the adaptive precision SpMV for fp64 and fp32
target accuracies, as a percentage of the execution time of the uniform precision SpMV in the
corresponding precision (fp64 or fp32). The time cost of the algorithm follows a trend similar
to the storage cost, with the gains being in general smaller but still significant, with speedups
of up to xx in the best case. Interestingly, for some matrices, the time reduction is larger than
the storage one, and this effect is not explained by measurement noise and can be consistently
reproduced across several runs. A possible explanation is that the smaller storage cost of the
matrix reduces the number of cache misses and hence benefits from the doubled effect of a lower
volume of data movement and higher bandwidth. Alternatively, it could also be explained by the
dropping of sufficiently small elements, which not only reduces the bandwidth costs but also the
latency ones, since the dropped elements are not read at all.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

25

50

75

100

125

150

175

200

Ti
m

e 
wr

t u
ni

fo
rm

 fp
64

 (%
)

Uniform fp64
NW, fp64 target
CW, fp64 target

(a) fp64 accuracy target

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Matrices
0

20

40

60

80

100

120

140

160

Ti
m

e 
wr

t u
ni

fo
rm

 fp
32

 (%
)

Uniform fp32
NW, fp32 target
CW, fp32 target

(b) fp32 accuracy target

Fig. 3.3: Execution time of the adaptive precision SpMV for fp64 and fp32 target accuracies, as a
percentage of the execution time of the uniform precision SpMV in the corresponding precision.
Both the normwise (“NW”) and componentwise (“CW”) criteria are reported.

Finally, we also report the execution time in the case of an fp48 accuracy target in Figure 3.4.
The figure also plots the time for the fp64 and fp32 targets (already presented in Figure 3.3) as a
point of comparison. Figure 3.4 illustrates a valuable feature of our adaptive precision algorithm:
it is able to achieve a flexible level of accuracy that does not necessarily correspond to any natively
supported precision format, while only using such supported formats (here fp64 and fp32). This is
because the accuracy of the adaptive precision algorithm is determined by ε, rather than directly
by the unit roundoffs of the precision used.
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Fig. 3.4: Execution time of the adaptive precision SpMV, as a percentage of the execution time of
the uniform precision fp64 SpMV, depending on the target accuracy and on whether the normwise
(“NW”) or componentwise (“CW”) criteria is considered.

3.3. Limitation. The approach presented above presents a practical limitation: to guar-
antee componentwise backward stability, the adaptive precision representation of matrix A must
depend on the vector x we want to multiply it with, as shown by (3.9)–(3.10). Unfortunately,
taking the values of x into account is unrealistic, since it would require to change the represen-
tation of A every time we want to compute its product with a different vector. A more practical
scenario is to compute an adaptive precision representation of A independent of x and use it to
accelerate many SpMVs with different vectors. The bucket construction defined by (3.16)–(3.17)
satisfies this practical constraint, but can only guarantee normwise stability.

This motivates us to propose a bucket construction

Bik = {j ∈ Ji : |aij | ∈ Pik} (3.19)

with the definition of the intervals Pik modified as follows:

Pik =


(
0, ε|ai|T e/u1

]
for k = 1,(

ε|ai|T e/uk−1, ε|ai|T e/uk
]

for k = 2: q − 1,(
ε|ai|T e/uq−1, +∞

]
for k = q,

(3.20)

where e = [1, . . . , 1]T , so that |ai|T e =
∑

j∈Ji
|aij |. This modified definition essentially amounts to

drop x in the componentwise bucket construction (3.9)–(3.10). With this the bucket construction,
we can bound the ratios αik (3.8)

αik ≤
pikε

uk

|ai|T e
|ai|T |x|

‖x‖, (3.21)

whereas with the normwise bucket construction (3.16)–(3.17), the best bound on αik we can get
is

αik ≤
pikε

uk

‖A‖
|ai|T |x|

‖x‖. (3.22)

Clearly, the right-hand side of (3.22) can be larger than that of (3.21), especially for badly scaled
matrices with rows such that ‖ai‖ � ‖A‖. Therefore, we can expect that at least in some
cases, construction (3.19)–(3.20) will lead to much smaller εcw than construction (3.16)–(3.17).
It is important to note that, unfortunately, construction (3.19)–(3.20) cannot always guarantee
a small εcw, since the ratio |ai|T e/|ai|T |x| can be arbitrarily large for an unlucky choice of vector x.
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