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Abelian integrals play a key role in the infinitesimal version of Hilbert’s 16th problem. Being able to evaluate
such integrals – with guaranteed error bounds – is a fundamental step in computer-aided proofs aimed at this
problem. Using interpolation by trigonometric polynomials and quasi-Newton-Kantorovitch validation, we
develop a validated numerics method for computing Abelian integrals in a quasi-linear number of arithmetic
operations. Our approach is both effective, as exemplified on two practical perturbed integrable systems, and
amenable to an implementation in a formal proof assistant, which is key to provide fully reliable computer-aided
proofs.
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1 INTRODUCTION
After more than a century since the early stages of automated reasoning and mechanized theorem
proving, notably with Hilbert’s program in the beginning of the 20th century, it can be safely
said that machines have not replaced mathematicians so far. Yet, for an increasing number of
problems involving intense calculations, algorithms running on computers have already proven to be
much more efficient than pen-and-paper work. Rather than fully machine-generated, the resulting
proofs are computer-assisted. The field of dynamical systems, in particular, has benefited from
automated techniques in computer algebra, numerical analysis and rigorous numerics over the
past decades. Famous proofs highlighting these achievements are, for instance, the universality
of the Feigenbaum constant [Lanford 1982], the existence of chaos in the Kuramoto–Sivashinsky
equations [Wilczak 2003], and the (almost) finiteness of relative equilibria for the 5-body problem of
celestial mechanics [Albouy and Kaloshin 2012].

The proliferation of computer-assisted proofs raises several central questions concerning their
acceptability and utility by the mathematical community. 1. How efficient can algorithms be made to
tackle hard problems from a computational point of view? 2. Can we trust the algorithms used to
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compute the solutions to these problems? 3. Can we moreover trust the implementations of these
algorithms, written in practical programming languages and run on real world computers?

Having those questions in mind, this article deals with a computational problem originating from
the infinitesimal Hilbert’s 16th problem in dynamical systems, namely the evaluation of so-called
Abelian integrals. The challenge is the following, with further details postponed to the rest of the
introduction.

Problem 1.1. For a polynomial potential function 𝐻 : R2 → R, a rational rescaling factor
𝜇 : R2 → R, a polynomial perturbation (𝑃,𝑄) : R2 → R2 and a regular1 level value ℎ, compute the
Abelian integral along the oval Γ(ℎ) in the plane:

ℑ(ℎ) =
∫
Γ (ℎ)

𝑃 (𝑥,𝑦)d𝑦 −𝑄 (𝑥,𝑦)d𝑥
𝜇 (𝑥,𝑦) , (1.1)

where an oval Γ(ℎ) denotes a bounded connected component of the level set 𝐻 (𝑥,𝑦) = ℎ for a regular
value ℎ2.

We propose a validated numerical algorithm, which, given polynomial or rational functions
𝐻, 𝜇, 𝑃,𝑄 , together with the level ℎ, computes an interval that contains the exact value of ℑ(ℎ).
It is intended to be part of computer-assisted proofs around infinitesimal Hilbert’s 16th problem,
as in the examples at the end of this article. The method has to be both efficient – since a very
large number of accurate digits may be necessary to return a tight enough enclosure of ℑ(ℎ) – and
strongly reliable – since the (sometimes quite ill-conditioned) numerical calculations are actual
parts of the computer-assisted proof. To overcome this, we combine higher-order techniques based
on Fourier series with fixed-point a posteriori validation to rigorously approximate the integration
path and perform the integration. We obtain an algorithm with quasi-linear complexity in terms of
arithmetic operations (see main Theorem 1.4), for which we provide an efficient implementation3 in
Julia4 [Bezanson et al. 2017]. The method is sufficiently self-contained and is tailored to the specific
needs of a formal proof. This will allow us to implement the algorithm within a proof assistant like
Coq [Bertot and Castéran 2013] in the near future. The end goal is to provide an efficient and fully
certified calculator for the infinitesimal Hilbert’s 16th problem.

1.1 Hilbert’s 16th problem
In 1900, at the International Congress of Mathematics held in Paris, David Hilbert presented ten open
problems in mathematics, and later published a more comprehensive list of 23 problems [Hilbert
1900] aimed at challenging the mathematical community. Today, most of the Hilbert problems have
been resolved (two of them were deemed to be unresolvable), but a few ones still remain open: one of
these is Hilbert’s 16th problem.

Hilbert’s 16th problem has two distinct parts: one in real algebraic geometry, and one in dynamical
systems. We shall address the latter which asks forH(𝑛) – the maximal number of limit cycles (i.e.,
isolated periodic orbits [Christopher and Li 2007, §II.1.1]) the family of two-dimensional polynomial
vector fields of (total) degree at most 𝑛 can display. Note that the boundH(𝑛) should be uniform,
that is, it should not depend on the particular polynomial vector field, only on its degree 𝑛. As of
today, this question is not resolved even in the simplest case 𝑛 = 2. Even finding non-trivial lower
bounds forH(𝑛) appears to be very hard.

1It means that ∇𝐻 (𝑥, 𝑦) ≠ 0 for all (𝑥, 𝑦) s.t. 𝐻 (𝑥, 𝑦) = ℎ.
2This makes Γ (ℎ) a Jordan curve,𝐶∞-diffeomorphic to the unit circle.
3The repositories for our code are available from https://gitlab.inria.fr/abintvalid.
4https://julialang.org/
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Efficient and Validated Numerical Evaluation of Abelian Integrals 3

In light of the lack of progress regarding bounds forH(𝑛), in the mid-seventies, V.I. Arnold [Arnold
1977, 1990] proposed to study a restricted version of the original problem, now known as the
infinitesimal (or weak, or tangential) Hilbert’s 16th problem. Rather than considering the class of
all polynomial vector fields of a certain degree, Arnold suggested that only small perturbations of
Hamiltonian polynomial vector fields be considered. Thus, the corresponding question can be asked:

Problem 1.2. Consider the differential system in R2:
¤𝑥 = − 𝜕𝐻

𝜕𝑦
(𝑥,𝑦) + 𝜀𝑃 (𝑥,𝑦),

¤𝑦 =
𝜕𝐻

𝜕𝑥
(𝑥,𝑦) + 𝜀𝑄 (𝑥,𝑦),

(1.2)

where 𝐻 (𝑥,𝑦) is a polynomial of degree at most 𝑛 + 1. The polynomials 𝑃 and 𝑄 of degree at most 𝑛,
and the positive number 𝜀 > 0 define the small perturbation of the Hamiltonian system.

Is there a boundZ(𝑛) on the number of limit cycles the system (1.2) can have (for small 𝜀), that
only depends on the degree 𝑛?

For the infinitesimal problem, significant progress has been made, notably the proof of the finiteness
ofZ(𝑛) for all𝑛 [Binyamini et al. 2010], and the uniform bound for the quadratic caseZ(2) = 2 [Chen
et al. 2006]

1.2 The Poincaré-Pontryagin theorem and Abelian integrals
The study of perturbed Hamiltonian (or even integrable) systems heavily depends on a theorem by
Poincaré and Pontryagin, that makes a strong connection between the existence of a limit cycle and a
zero of the Abelian integral (1.1).

The Poincaré return map is the key tool to understand this connection. Consider the unperturbed
Hamiltonian system in a region made of a continuous foliation of periodic orbits. Take a transversal
Σ, that is an open interval of a line crossing all orbits it encounters non-tangentially. This interval may
be parameterized by the parameter ℎ (the energy level) of the unperturbed system for some domain
ℎ− < ℎ < ℎ+. By continuity, for every ℎ ∈ (ℎ−, ℎ+) and sufficiently small 𝜀, the trajectory originating
from the point Σ(ℎ) on the transversal in the perturbed Hamiltonian system will cross Σ again. The
Poincaré return map Π associates to ℎ and 𝜀 the parameter Π(ℎ, 𝜀) corresponding to the first point of
return to Σ. We call 𝑑 (ℎ, 𝜀) = Π(ℎ, 𝜀) − ℎ the displacement function. Clearly, the point Σ(ℎ) belongs
to a periodic orbit of the perturbed system if and only if 𝑑 (ℎ, 𝜀) = 0, and this is a limit cycle if and
only if the zero of 𝑑 (·, 𝜀) is isolated.

The Poincaré-Pontryagin theorem roughly states that, for a Hamiltonian (or more generally,
integrable) system perturbed by 𝜀-small terms, the Abelian integral – which is nothing but the integral
of the perturbation along a non-perturbed periodic orbit – is the first-order approximation in 𝜀 of the
Poincaré return map. We now state the following adaptation of this result (see [Christopher and Li
2007] for a proof) that will prove useful in the sequel.

Theorem 1.3 (Generalized Poincaré-Pontryagin Theorem). Let 𝐻 : R2 → R be a real
analytic potential function, 𝑃,𝑄 : R2 → R real analytic functions, 𝜀 > 0, and 𝜇 : R2 → R an analytic
rescaling factor. Consider the perturbed integrable system:

¤𝑥 = − 𝜇 (𝑥,𝑦) 𝜕𝐻
𝜕𝑦
(𝑥,𝑦) + 𝜀𝑃 (𝑥,𝑦),

¤𝑦 = 𝜇 (𝑥,𝑦) 𝜕𝐻
𝜕𝑥
(𝑥,𝑦) + 𝜀𝑄 (𝑥,𝑦).

(1.3)
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Let Γ(ℎ) be an oval of 𝐻 of level ℎ over which 𝜇 does not vanish. Then the displacement function
𝑑 (ℎ, 𝜀) is approximated as

𝑑 (ℎ, 𝜀) = 𝜀ℑ(ℎ) +𝑂 (𝜀2), as 𝜀 → 0,

where the Abelian integral ℑ(ℎ) was defined in (1.1).

In particular, 𝑑 (ℎ, 𝜀) and ℑ(ℎ) have the same sign for small 𝜀 > 0. Hence, the number of isolated
zeros of ℑ(ℎ) where a change of sign occurs (in particular, simple zeros of ℑ(ℎ)) provides a lower
bound for the number of limit cycles of (1.3) that exist for small 𝜀 > 0. Considering zeros of ℑ(ℎ)
of higher multiplicity it is possible to get an upper bound on the number of limit cycles that can
bifurcate from the unperturbed periodic orbit(s) Γ(ℎ), see [Christopher and Li 2007].

A pessimistic, yet constructive, upper bound forZ(𝑛) was obtained by the authors of [Binyamini
et al. 2010] by bounding the number of zeros of ℑ(ℎ) in terms of the degree 𝑛 only, using the
Picard-Fuchs differential equations satisfied by ℎ ↦→ ℑ(ℎ). On the other hand, counting the sign
alternations of the Abelian integrals for well chosen integrable systems and perturbations can provide
lower bounds for someH(𝑛) [Li et al. 2009] orZ(𝑛) [Johnson and Tucker 2010].

1.3 Rigorous computation of Abelian integrals: challenge and related works
In general, we lack closed forms for the Abelian integrals, and except for specific families of systems
where the analytic behavior of these integrals was investigated by pure – but involved! – pen-and-paper
techniques (e.g., [Li et al. 2009] forH(3) ⩾ 13), the numerical evaluation of ℑ(ℎ) requires a delicate
strategy to certify a lower bound on the number of sign changes. Since these computations are a
part of the proof, the results must come with strong guarantees, typically validated bounds. This is
the field of rigorous (or validated) numerics [Moore 1966; Tucker 2011], where interval and higher
order methods are used to enclose the actual value (number or function) in a guaranteed set-valued
representation. Moreover, high precision is often necessary, even though only the sign of ℑ(ℎ) needs
to be validated in the end. This is because Abelian integrals with many zeros are often expressed
as linear combinations of simpler integrals. These linear combinations are often subject to high
cancellations. (see the example of Section 7.1 with Figure 2).

A first work to mention in this regard is the rigorous computation of Poincaré maps [Kapela
et al. 2021]5 using the celebrated CAPD6 [Kapela et al. 2020] library for validated numerics in
connection with dynamical systems. Although CAPD’s efficiency is well-established, we prefer not
using rigorous (nonlinear) ODE integrators. Our aim is to keep the method as minimal as possible, in
order to ease its implementation in a formal proof assistant.

Several works deal with the rigorous approximation of implicitly defined curves. The closest
related one [Johnson and Tucker 2011], by one of the authors of this article, computes the Abelian
integral by subdividing the interior of the oval Γ(ℎ) and enclosing its border using parallelotopes. A
similar approach can be found in [Martin et al. 2013] for the rigorous continuation of one-dimensional
varieties. Other techniques we can mention for rigorous path continuation, yet for a different problem,
namely rigorous homotopy tracking, are [Beltrán and Leykin 2013; Xu et al. 2018]. A common
feature of these methods is that the curve is represented by piecewise low-order approximations, with
the accuracy controlled by the step size.

Since we target high precision without compromising the efficiency, we promote the use of global,
high-order approximations for a suitable parameterization of the oval Γ(ℎ). Parameterizing algebraic
curves is a deep topic in algebraic geometry and geometric modelling for computer-aided design.
However, existence theorems for exact (polynomial, rational or trigonometric) parameterizations are

5See also the tutorial slides: https://kam.mff.cuni.cz/conferences/swim2015/slides/wilczak.pdf
6http://capd.ii.uj.edu.pl/
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mostly restricted to curves of genus 0 [Abhyankar and Bajaj 1988; Hong and Schicho 1998], while
approximate methods (piecewise rational, splines, etc.) developed for more general curves most of
the time come without guaranteed error bounds (see e.g., [Bajaj and Xu 1997; Gao and Li 2004; Yang
et al. 2010]). These methods usually target the standard binary64 precision (i.e. double precision),
which is not sufficient for our problem. A notable exception is the computation of certain elliptic
integrals [Bost and Mestre 1988], with quadratic convergence due to the arithmetic-geometric mean.

1.4 Our approach and contributions
We propose a higher-order method where the oval Γ(ℎ) is approximated not by parallelotopes, but by
interpolation trigonometric polynomials. This allows us to take advantage of the excellent (typically,
exponentially converging) approximation properties in Fourier analysis, while keeping a minimalist
framework for rigorous computations, namely trigonometric polynomials, which we develop in
Section 2. The result is a fully automated and rigorous Algorithm AbIntValid stated in Section 5,
together with the following result, that we shall state more precisely as Theorem 5.2.

Theorem 1.4. Algorithm AbIntValid computes an interval enclosure 𝑰 for ℑ(ℎ) (cf. (1.1)) in
𝑂 (𝑁 log𝑁 ) arithmetic operations, where 𝑁 is the degree used for trigonometric polynomials to
approximate the curve Γ(ℎ). As 𝑁 →∞, the diameter of 𝑰 tends exponentially fast to 0.

The theorem says that in order to compute ℑ(ℎ) rigorously to 𝑘 digits of accuracy, one has to use a
degree 𝑁 = 𝑂 (𝑘), where the constant hidden in this notation depends on the Hamiltonian system and
ℎ, but not on 𝑘 .

Our approach is based on an a posteriori validation scheme, where we first approximate the oval
Γ(ℎ) with a trigonometric parameterization, and afterwards validate a tube around it, over which the
Abelian integral is eventually computed rigorously. The main algorithm AbIntValid is decomposed
as the following subroutines:

(1) First, the oval Γ(ℎ) is approximated by the two routines OvalApproxInit and OvalAp-
proxRefine (both described in Section 3). The result is a pair of degree 𝑁 trigonometric
polynomials (𝑥,𝑦), such that 𝑡 ∈ [0, 2𝜋] ↦→ (𝑥 (𝑡), 𝑦 (𝑡)) is a smooth approximate parameter-
ization of Γ(ℎ).

(2) Next, Algorithm OvalValid (described in Section 4) computes an a posteriori error
bound for the distance between (𝑥,𝑦) and Γ(ℎ), thus defining a tube. This relies on the
Newton-Kantorovitch validation principle summarized in Section 2.3.

(3) After that, Algorithm AbIntValidQuad (described in Section 5) rigorously computes an
interval containing ℑ(ℎ) by integrating the perturbation over the tube. Therefore, the smaller
the obtained error bound is, the tighter the final enclosure is; hence the need for accurate
validation techniques.

Finally, in Section 6, we present our implementation and compare it with alternative approaches,
and we assess its efficiency on two practical examples borrowed from the literature in Section 7.

2 APPROXIMATION TOOLS FOR FOURIER ANALYSIS
In this section, we collect useful results for the sequel of the text. After recalling some basic facts about
interpolation by trigonometric polynomials, we introduce rigorous trigonometric approximations, a
tool for performing validated computations, and an arithmetic on these objects.

2.1 Interpolation of periodic functions
Throughout this paper, we shall need to approximate parameterizations of the ovals Γ(ℎ). Seeing that
these parameterizations are continuous and 2𝜋-periodic, a natural choice for approximating them is
via trigonometric polynomials [Zygmund 2002].
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Definition 2.1 (Trigonometric Polynomials). A degree 𝑁 Trigonometric Polynomial (TP) 𝑓 is a
real-valued trigonometric polynomial over [0, 2𝜋]:

𝑓 (𝑡) = 𝑎0 +
𝑁∑︁
𝑘=1

(
𝑎𝑘 cos(𝑘𝑡) + 𝑏𝑘 sin(𝑘𝑡)

)
,

where 𝑎𝑁 or 𝑏𝑁 is nonzero. We represent 𝑓 in terms of its 2𝑁 + 1 coefficients.

Let TP𝑁 (R) denote the vector space of trigonometric polynomials with real coefficients and degree
at most 𝑁 , and let (𝐶0

2𝜋 , ∥ · ∥∞) denote the vector space of real continuous 2𝜋-periodic functions,
equipped with the supremum norm: ∥ 𝑓 ∥∞ = max0⩽𝑥⩽2𝜋 |𝑓 (𝑥) |.

A usual way to obtain quasi-optimal trigonometric polynomial approximants is to consider the
Fourier series expansion of the function 𝑓 ∈ 𝐶0

2𝜋 truncated to order 𝑁 . And yet, from a computational
point of view, it is often more interesting to consider the degree (at most) 𝑁 trigonometric polynomial

that interpolates the function under consideration at the equispaced points
(

2𝑘𝜋
2𝑁+1

)2𝑁

𝑘=0
[Wright et al.

2015]. We then define the interpolation operator

I𝑁 : 𝐶0
2𝜋 → TP𝑁 (R)

𝑓 ↦→ 𝑓 s.t. 𝑓

(
2𝑘𝜋

2𝑁 + 1

)
= 𝑓

(
2𝑘𝜋

2𝑁 + 1

)
for 𝑘 = 0, . . . , 2𝑁 .

(2.1)

The Lebesgue constant Λ𝑁 [Powell 1981] associated to the trigonometric interpolation operator I𝑁 is
the operator norm of I𝑁 , that is to say Λ𝑁 = sup𝑓 ∈𝐶0

2𝜋 ,∥ 𝑓 ∥∞=1 ∥I𝑁 (𝑓 )∥∞. A first nice feature of these
interpolation trigonometric polynomials is that Λ𝑁 = 𝑂 (log𝑁 ) [Ehlich and Zeller 1966], which
makes them quasi-optimal approximations with respect to ∥ · ∥∞.

A second nice feature is that we can compute the coefficients of the interpolation polynomial
by the Fast Fourier Transform, hence in 𝑂 (𝑁 log(𝑁 )) arithmetic operations. Indeed, if 𝑓 (𝑡) =
𝑎0 +

∑𝑁
𝑘=1 (𝑎𝑘 cos(𝑘𝑡) + 𝑏𝑘 sin(𝑘𝑡)) and 𝑓𝑗 = 𝑓

(
2𝑗𝜋

2𝑁+1

)
for 𝑗 = 0, . . . , 2𝑁 , we have, for 𝑘 = 1, . . . , 𝑁 ,

𝑎0 =
1

2𝑁 + 1

2𝑁∑︁
𝑗=0

𝑓𝑗 , 𝑎𝑘 =
1

2𝑁 + 1

2𝑁∑︁
𝑗=0

𝑓𝑗 cos
(

2 𝑗𝑘𝜋
2𝑁 + 1

)
, 𝑏𝑘 =

1
2𝑁 + 1

2𝑁∑︁
𝑗=0

𝑓𝑗 sin
(

2 𝑗𝑘𝜋
2𝑁 + 1

)
.

Having this in mind, we define

FFT𝑁 : R2𝑁+1 → TP𝑁 (R)
(𝑓𝑗 )2𝑁𝑗=0 ↦→ 𝑓 s.t. 𝑓 (𝑡 𝑗 ) = 𝑓𝑗 for 0 ⩽ 𝑗 ⩽ 2𝑁,

and its inverse transform

IFFT𝑁 : TP𝑁 (R) → R2𝑁+1

𝑓 ↦→ (𝑓 (𝑡 𝑗 ))2𝑁𝑗=0 where 𝑡 𝑗 = 2𝜋 𝑗
2𝑁+1 for 0 ⩽ 𝑗 ⩽ 2𝑁,

which allows us to interpolate a function and to evaluate a TP on the equispaced grid in only
𝑂 (𝑁 log(𝑁 )) arithmetic operations. By combining both routines, we can compute the degree 2𝑁
product of two degree 𝑁 TPs with the same asymptotic complexity 𝑂 (𝑁 log(𝑁 )). In practice, this
outperforms the “naive” multiplication algorithm in 𝑂 (𝑁 2) arithmetic operations for degrees 𝑁 of
the order of magnitude of 100 or more. We assume this 𝑂 (𝑁 log(𝑁 )) asymptotic complexity for the
product of degree 𝑁 TPs in what follows.
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Efficient and Validated Numerical Evaluation of Abelian Integrals 7

When working with real trigonometric approximations, a convenient way to bound the supremum
norm of functions is to use the ∥ · ∥ℓ1 norm directly defined from the Fourier coefficients 𝑎𝑘 , 𝑏𝑘 of 𝑓 :

∥ 𝑓 ∥ℓ1 = |𝑎0 | +
∞∑︁
𝑘=1

(
|𝑎𝑘 | + |𝑏𝑘 |

)
.

This norm is well-defined as long as the sum converges, and then satisfies ∥ 𝑓 ∥ℓ1 ⩾ ∥ 𝑓 ∥∞. Note that
the sum does not necessarily converge for 𝑓 ∈ 𝐶0

2𝜋 . However, this becomes true under very mild
regularity assumptions, and a fortiori7 for analytic 𝑓 as assumed throughout this article. Finally, we
have that ∥ 𝑓 𝑔∥ℓ1 ⩽ ∥ 𝑓 ∥ℓ1 ∥𝑔∥ℓ1 .

2.2 Rigorous trigonometric approximations
By analogy with intervals used to represent real numbers rigorously on computers [Moore 1966],
(generalized) rigorous polynomial approximations are used in rigorous numerics to enclose mathe-
matical functions in set-valued representations. Taking its roots in the so-called ultra-arithmetics
developed in the early 80s [Epstein et al. 1982a,b], this concept has been extended and implemented
in various settings, notably with Taylor [Makino and Berz 2003a,b] or Chebyshev [Brisebarre and
Joldeş 2010] approximations. Since the functions considered throughout this article are univariate,
real-valued and periodic, the trigonometric polynomials expressed in the Fourier trigonometric basis
are the natural candidates to build rigorous, set-valued representations. For short, we call them
Rigorous Trigonometric Approximations (RTA). Some previous works already made use of quite
similar concepts (see, e.g., [Figueras and de la Llave 2017; Hungria et al. 2016]). However, for
the sake of completeness, and in order to provide sound bases for the complexity analysis of the
computation method for Abelian integrals presented in this article, we provide some elementary
definitions, basic routines and lemmas concerning RTAs.

Definition 2.2 (Rigorous Trigonometric Approximations). A degree 𝑁 Rigorous Trigonometric
Approximation (RTA) is a pair 𝒇 = (𝑓 , 𝜀), with 𝑓 a degree 𝑁 TP and 𝜀 ⩾ 0 representing the closed
𝜀-ball around 𝑓 in the Banach space 𝐶0

2𝜋 :

𝐵(𝑓 , 𝜀) =
{
𝑓 ∈ 𝐶0

2𝜋

��� ∥ 𝑓 − 𝑓 ∥∞ ⩽ 𝜀

}
.

Therefore, we say that a degree 𝑁 RTA 𝒇 = (𝑓 , 𝜀) represents a function 𝑓 ∈ 𝐶0
2𝜋 (or 𝒇 contains 𝑓 , or

simply 𝑓 ∈ 𝒇 ) if there exists a function 𝑠 ∈ 𝐶0
2𝜋 with ∥𝑠 ∥∞ ⩽ 𝜀 such that 𝑓 (𝑡) = 𝑓 (𝑡) + 𝑠 (𝑡) for all

𝑡 ∈ R.

Linear operations are trivially defined on RTAs to match the (Banach) linear space structure of
(𝐶0

2𝜋 , ∥ · ∥∞): for all degree 𝑁 RTAs (𝑓 , 𝜀), (𝑔, 𝜂) and 𝜆 ∈ R, we have

(𝑓 , 𝜀) + (𝑔, 𝜂) = (𝑓 + 𝑔, 𝜀 + 𝜂),
(𝑓 , 𝜀) − (𝑔, 𝜂) = (𝑓 − 𝑔, 𝜀 + 𝜂),

𝜆(𝑓 , 𝜀) = (𝜆𝑓 , |𝜆 |𝜀).

Also, Bound(𝒇 ), defined as:

Bound((𝑓 , 𝜀)) =
𝑁∑︁
𝑘=0
|𝑎𝑘 | +

𝑁∑︁
𝑘=1
|𝑏𝑘 | + 𝜀.

7This is a straightforward corollary of the exponential decay of Fourier coefficients for analytic functions, see e.g. [Wright et al.
2015, Thm. 4.1].
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satisfies Bound(𝒇 ) ⩾ ∥ 𝑓 ∥ℓ1 + 𝜀 ⩾ ∥ 𝑓 ∥∞ + 𝜀, so that ∥ 𝑓 ∥∞ ⩽ Bound(𝒇 ) for all 𝑓 ∈ 𝒇 .
The product of two degree 𝑁 RTAs is the degree 2𝑁 RTA defined by

(𝑓 , 𝜀) × (𝑔, 𝜂) =
(
𝑓 𝑔,Bound(𝑓 )𝜂 + Bound(𝑔)𝜀 + 𝜀𝜂

)
,

which can be computed in𝑂 (𝑁 log(𝑁 )) arithmetic operations using the fast multiplication algorithm
for TPs mentioned previously.

We shall also define the integral of 𝒇 = (𝑓 , 𝜀) with 𝑓 = 𝑎0 +
∑𝑁

𝑘=1 (𝑎𝑘 cos(𝑘𝑡) + 𝑏𝑘 sin(𝑘𝑡)) over
one period: ∫ 2𝜋

0
𝒇 (𝑡)d𝑡 = 2𝜋 (𝑎0 + [−𝜀, 𝜀]) .

Lemma 2.3. If the RTAs 𝒇 = (𝑓 , 𝜀) and 𝒈 = (𝑔, 𝜂) represent functions 𝑓 and 𝑔, then the RTA
𝜆𝒇 represents 𝜆𝑓 for any 𝜆 ∈ R, and the RTA 𝒇 ★ 𝒈 represents 𝑓 ★ 𝑔 for ★ ∈ {+,−,×}. Also,∫ 2𝜋

0 𝑓 (𝑡)d𝑡 ∈
∫ 2𝜋

0 𝒇 (𝑡)d𝑡 for all 𝑓 ∈ 𝒇 .

Proof. We prove the least trivial case only, namely the multiplication. By hypothesis, there exist
functions 𝑢 and 𝑣 in 𝐶0

2𝜋 with ∥𝑢∥∞ ⩽ 𝜀 and ∥𝑣 ∥∞ ⩽ 𝜂, such that 𝑓 = 𝑓 + 𝑢 and 𝑔 = 𝑔 + 𝑣 . Therefore,

∥ 𝑓 𝑔 − 𝑓 𝑔∥∞ ⩽ ∥ 𝑓 𝑣 + 𝑔𝑢 + 𝑢𝑣 ∥∞ ⩽ ∥ 𝑓 ∥∞∥𝑣 ∥∞ + ∥𝑔∥∞∥𝑢∥∞ + ∥𝑢∥∞∥𝑣 ∥∞
⩽ Bound(𝑓 )𝜂 + Bound(𝑔)𝜀 + 𝜀𝜂,

which by definition implies 𝑓 𝑔 ∈ 𝒇 × 𝒈. □

Remark 2.4. By analogy with a globally set precision for floating-point and interval arithmetic,
we can choose to fix a global degree 𝑁 used for TP / RTAs computations. Since some operations (e.g.
multiplication) may increase the degree, the obtained result is truncated. In the case of RTAs, the
higher-order terms must be added to the error component:

Trunc(𝒇 , 𝑁 ) =
(
𝑎0 +

𝑁∑︁
𝑘=1

(
𝑎𝑘 cos(𝑘𝑡) + 𝑏𝑘 sin(𝑘𝑡)

)
,

𝑚∑︁
𝑘=𝑁+1

(
|𝑎𝑘 | + |𝑏𝑘 |

)
+ 𝜀

)
,

for 𝒇 =
(
𝑎0 +

∑𝑚
𝑘=1

(
𝑎𝑘 cos(𝑘𝑡) +𝑏𝑘 sin(𝑘𝑡)

)
, 𝜀

)
when𝑚 > 𝑁 . Clearly, if 𝑓 ∈ 𝒇 , then 𝑓 ∈ Trunc(𝒇 , 𝑁 ).

These elementary operations on RTAs are the building blocks of more complex ones. For instance,
if 𝑝 (𝑥) is a polynomial and 𝒇 an RTA for 𝑓 , then substituting 𝑥 by 𝒇 and applying an evaluation
scheme of choice with arithmetic operations on RTAs gives an RTA 𝑝 (𝒇 ) for 𝑝 (𝑓 ).

Finally, we also need a routine IsPositive to determine whether, for an RTA 𝒇 , 𝑓 > 0 holds for
every 𝑓 ∈ 𝒇 . Such a routine is discussed in Appendix A.

2.3 A posteriori validation using Newton-like operators
Many operations defined on functions do not preserve the ring of trigonometric polynomials. Examples
include division, the square root, or the more complex operation performed by Algorithm OvalValid
in Section 4 used to rigorously approximate a parameterization of the oval Γ(ℎ). More generally, the
target function 𝜑∗ can be viewed as the solution of a functional equation F (𝜑) = 0 for a suitable
operator F mapping a function space to another one. For such cases, the principle of a posteriori
validation is widely used in validated numerics:

• First, a TP 𝜑 approximating the solution 𝜑∗ is computed using nonrigorous algorithms, e.g.
by trigonometric interpolation as in Section 2.1.
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• Next, an upper bound on the approximation error 𝜀 ⩾ ∥𝜑 − 𝜑∗∥∞ is rigorously computed
by expressing 𝜑∗ as a fixed point of a contracting operator T , and applying the Banach
fixed-point theorem (see Theorem 2.5 below). The result is an RTA 𝝋 = (𝜑, 𝜀) such that
𝜑∗ ∈ 𝝋.

Theorem 2.5. (see, e.g., [Yamamoto 1998, Thm. 2.1]) Let (𝐸, ∥ · ∥) be a Banach space, 𝜑 ∈ 𝐸,
and T : 𝐸 → 𝐸. If we can find 𝑟, 𝜆 ⩾ 0 such that:

• T is 𝜆-contracting over the closed ball 𝐵(𝜑, 𝑟 ), i.e., 𝜆 < 1 and:

∥T (𝜑1) − T (𝜑2)∥ ⩽ 𝜆∥𝜑1 − 𝜑2∥ for all 𝜑1, 𝜑2 ∈ 𝐵(𝜑, 𝑟 );
• We have 𝑑 + 𝜆𝑟 ⩽ 𝑟, where 𝑑 := ∥T (𝜑) − 𝜑 ∥ (called the defect);

Then T admits a unique fixed point 𝜑∗ in the ball 𝐵(𝜑, 𝑟 ), and we have the following enclosure for the
approximation error:

𝑑

1 + 𝜆 ⩽ ∥𝜑 − 𝜑∗∥ ⩽ 𝑑

1 − 𝜆 .

Assume the functional equation is of the form F (𝜑) = 0 with F : 𝐶0
2𝜋 → 𝐶0

2𝜋 being of class 𝐶1,
and let 𝜑 be an approximate zero of F . A classical method in rigorous numerics (see e.g., [Hungria
et al. 2016; Yamamoto 1998]) to obtain an equivalent fixed-point equation T (𝜑) = 𝜑 is to construct
T : 𝐶0

2𝜋 → 𝐶0
2𝜋 as a Newton-like operator:

T (𝜑) = 𝜑 − A(F (𝜑)) .
Here,A : 𝐶0

2𝜋 → 𝐶0
2𝜋 is an invertible bounded linear operator approximating (DF (𝜑))−1, the inverse

of the differential of F at 𝜑 , making T a local contraction in a neighborhood of 𝜑 .

2.3.1 Newton-like validation in the case of polynomial equations. For the purpose of validating
approximate parameterizations of planar algebraic curves, we apply the above strategy to polynomial
equations of the form

𝑐𝑟 (𝑡)𝜑 (𝑡)𝑟 + 𝑐𝑟−1 (𝑡)𝜑 (𝑡)𝑟−1 + · · · + 𝑐1 (𝑡)𝜑 (𝑡) + 𝑐0 (𝑡) = 0, 𝑡 ∈ [0, 2𝜋],
with 𝑐0, . . . , 𝑐𝑟 ∈ 𝐶0

2𝜋 , that is to say, F ∈ 𝐶0
2𝜋 [𝑋 ] is a polynomial with coefficients in 𝐶0

2𝜋 .
In this case, the differential DF (𝜑) coincides with the multiplication by F ′ (𝜑) ∈ 𝐶0

2𝜋 , where the
prime symbol denotes the usual differentiation in a ring of polynomials, here 𝐶0

2𝜋 [𝑋 ]. Therefore, the
linear operatorA is set to be the multiplication by a TP 𝑎 constructed by interpolation to approximate
1/F ′ (𝜑):

A(𝜑) = 𝑎𝜑, with 𝑎(𝑡) ≈ 1
F ′ (𝜑) (𝑡) .

The following lemma provides a simple way to bound the Lipschitz constant of the resulting
Newton-like operator T .

Lemma 2.6. If F ∈ 𝐶0
2𝜋 [𝑋 ], A(𝜑) (𝑡) = 𝑎(𝑡)𝜑 (𝑡), and T (𝜑) = 𝜑 − A(F (𝜑)), then T is 𝜆(𝑟 )-

Lipschitz over 𝐵(𝜑, 𝑟 ) with 𝜆(𝑟 ) = 𝜆0 + 𝛼𝑟𝜆1 (𝑟 ), obtained from the (rigorously computed) bounds:

𝜆0 ⩾ ∥1 − 𝑎 F ′ (𝜑)∥∞, 𝛼 ⩾ ∥𝑎∥∞, 𝜆1 (𝑟 ) ⩾ sup
𝜑∈𝐵 (𝜑̌,𝑟 )

∥F ′′ (𝜑)∥∞ .

Proof. To get an upper bound for the Lipschitz constant for T ∈ 𝐶0
2𝜋 [𝑋 ] over 𝐵(𝜑, 𝑟 ), we simply

bound ∥T ′ (𝜑)∥∞ for ∥𝜑−𝜑 ∥∞ ⩽ 𝑟 by the triangle inequality. First, ∥T ′ (𝜑)∥∞ = ∥1−𝑎 F ′ (𝜑)∥∞ ⩽ 𝜆0
by definition of 𝜆0. Then, ∥T ′ (𝜑) − T ′ (𝜑)∥∞ = ∥𝑎 (F ′ (𝜑) − F ′ (𝜑))∥∞ ⩽ 𝛼𝑟𝜆1 (𝑟 ) using the mean
value theorem, by definition of 𝛼 and 𝜆1, and since 𝜑 ∈ 𝐵(𝜑, 𝑟 ). Adding both bounds, we obtain the
expected upper bound for the Lipschitz constant 𝜆(𝑟 ). □
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Note that A being invertible is a byproduct of the second assumption of Theorem 2.5: except in
the trivial case 𝑑 = 0, the inequality implies 𝜆0 < 1, so 𝑎 never vanishes.

Example 2.7 (Division of RTAs). For two functions 𝑔, ℎ ∈ 𝐶0
2𝜋 with ℎ(𝑡) ≠ 0 for all 𝑡 , represented

by RTAs 𝒈 and 𝒉, Algorithm RTADiv(𝒈,𝒉, 𝑁 ) computes a degree 𝑁 TP 𝜑 approximating the quotient
𝜑∗ = 𝑔/ℎ by trigonometric interpolation, and validates it using Lemma 2.6, since 𝜑∗ is the unique
zero of F ∈ 𝐶0

2𝜋 [𝑋 ] defined by F (𝜑) = ℎ𝜑 − 𝑔. When a global degree 𝑁 for the RTA computations is
fixed, we may use the notation 𝒈/𝒉 for RTADiv(𝒈,𝒉, 𝑁 ).

Algorithm 1 RTADiv(𝒈,𝒉, 𝑁 )

Input: RTAs 𝒈 = (𝑔, 𝛿) and 𝒉 = (ℎ̌, 𝜂), and approximation degree 𝑁 ∈ N
Output: Degree 𝑁 RTA 𝝋 representing the quotient 𝒈/𝒉

⊲ Build degree 𝑁 candidate TP 𝜑 by interpolation
1: (𝑔 𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (𝑔) and (ℎ 𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (ℎ̌)

2: 𝜑 ← FFT𝑁

((
𝑔𝑗

ℎ 𝑗

)2𝑁

𝑗=0

)
⊲ Build TP 𝑎 defining the Newton-like operator and bound the Lipschitz constant

3: 𝑎 ← FFT𝑁

((
1
ℎ 𝑗

)2𝑁

𝑗=0

)
4: 𝜆 ← Bound(1 − 𝑎𝒉)
⊲ Compute a posteriori error bound, if possible
5: if 𝜆 < 1 then
6: 𝑑 ← Bound

(
𝑎 (𝒉𝜑 − 𝒈)

)
7: 𝜀 ← 𝑑

1−𝜆
8: return 𝝋 = (𝜑, 𝜀)
9: else

10: return 𝐹𝐴𝐼𝐿

11: end if

We now prove that the division operator, as implemented in Algorithm1, is correct, convergent,
and has a good complexity.

Lemma 2.8. Let 𝒈 = (𝑔, 𝛿) and 𝒉 = (ℎ̌, 𝜂) be RTAs. Then,
(𝑖) For all 𝑁 ∈ N, if RTADiv(𝒈,𝒉, 𝑁 ) returns an RTA 𝝋, then for all 𝑔 ∈ 𝒈 and ℎ ∈ 𝒉, ℎ(𝑡) ≠ 0

for all 𝑡 and 𝑔/ℎ ∈ 𝝋.
(𝑖𝑖) If ℎ̌(𝑡) ≠ 0 for all 𝑡 and 𝜂 < ∥ℎ̌−1∥−1

ℓ1 , then there exists an 𝑁0 ∈ N such that for all 𝑁 ⩾ 𝑁0,
Algorithm RTADiv(𝒈,𝒉, 𝑁 ) does not fail, and the remainder of 𝝋 = (𝜑, 𝜀) satisfies

𝜀 ⩽
∥ℎ̌−1∥ℓ1𝛿 + ∥𝑔/ℎ̌2∥ℓ1𝜂

1 − ∥ℎ̌−1∥ℓ1𝜂
+𝑂 (𝜅−𝑁 ), as 𝑁 →∞,

for some 𝜅 > 1 depending on 𝑔 and ℎ̌.
(𝑖𝑖𝑖) RTADiv(𝒈,𝒉, 𝑁 ) runs in𝑂 (𝑁 ′ log(𝑁 ′)) arithmetic operations, where𝑁 ′ = max(deg𝒈, deg𝒉,

𝑁 ).

Proof. (𝑖) Soundness. The Newton-like operator associated toF is defined byT (𝜑) = 𝜑−𝑎 (ℎ𝜑−𝑔)
with 𝑎 a degree 𝑁 TP approximating 1/F ′ (𝜑) = 1/ℎ(𝑡) (line 3). Since F (and hence T ) has degree 1,
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F ′′ = 0. Hence the bound 𝜆1 (𝑟 ) in Lemma 2.6 is identically 0 , and we have 𝜆(𝑟 ) = 𝜆0 = ∥1 − 𝑎ℎ∥∞,
rigorously upper-bounded by 𝜆 in line 4. Hence, as soon as 𝜆 < 1, we can set 𝑟 arbitrary large in
Theorem 2.5 and return the bound implemented in lines 6 and 7:

∥𝜑 − 𝜑∗∥∞ ⩽
∥T (𝜑) − 𝜑 ∥∞

1 − 𝜆 ⩽
∥𝑎 (ℎ𝜑 − 𝑔)∥∞

1 − 𝜆 ⩽
Bound

(
𝑎 (𝒉𝜑 − 𝒈)

)
1 − 𝜆 .

Therefore, the degree 𝑁 RTA 𝝋 = (𝜑, 𝜀) returned in line 8 contains 𝑔/ℎ for all 𝑔 ∈ 𝒈 and ℎ ∈ 𝒉. Note
moreover that the nonvanishing of all ℎ ∈ 𝒉 is a byproduct of the inequality ∥1 − 𝑎ℎ∥∞ ⩽ 𝜆 < 1.
(𝑖𝑖) Convergence. Suppose that ℎ̌(𝑡) ≠ 0 for all 𝑡 , and that 𝜂 < ∥ℎ̌−1∥−1

ℓ1 . In particular, 𝜂 < ∥ℎ̌−1∥−1
∞ =

min𝑡 ∈R |ℎ̌(𝑡) |. Since ℎ̌−1 (resp. 𝑔/ℎ̌) is analytic over R, then 𝑎 = I𝑁 (ℎ̌−1) (resp. 𝜑 = I𝑁 (𝑔/ℎ̌))
converges to ℎ̌−1 (resp. 𝑔/ℎ̌) w.r.t. ∥ · ∥ℓ1 exponentially fast as 𝑁 →∞ (see e.g. [Wright et al. 2015,
Thm. 4.2]8).

Now for the bound 𝜆 computed in line 4, we have for all ℎ ∈ 𝒉,

∥1 − 𝑎ℎ∥ℓ1 ⩽ ∥1 − 𝑎ℎ̌∥ℓ1 + ∥𝑎∥ℓ1 ∥ℎ − ℎ̌∥ℓ1 ⩽ ∥𝑎 − ℎ̌−1∥ℓ1 ∥ℎ̌∥ℓ1 + ∥𝑎∥ℓ1𝜂 ⩽ ∥ℎ̌−1∥ℓ1𝜂 +𝑂 (𝜅−𝑁 ),
for some 𝜅 > 1, as 𝑁 →∞. In particular, Algorithm RTADiv always terminates for sufficiently large
𝑁 . Similarly, for the bound 𝑑 computed in line 6, for all 𝑔 ∈ 𝒈 and ℎ ∈ 𝒉,

∥𝑎(ℎ𝜑 − 𝑔)∥ℓ1 ⩽ ∥𝑎(ℎ̌𝜑 − 𝑔)∥ℓ1︸           ︷︷           ︸
→ 0

+ ∥𝑎∥ℓ1︸︷︷︸
→ ∥ℎ̌−1 ∥

ℓ1

𝛿 + ∥𝑎𝜑 ∥ℓ1︸ ︷︷ ︸
→ ∥𝑔/ℎ̌2 ∥

ℓ1

𝜂 ⩽ ∥ℎ̌−1∥ℓ1𝛿 + ∥𝑔/ℎ̌2∥ℓ1𝜂 +𝑂 (𝜅−𝑁 ),

for some 𝜅 > 1, as 𝑁 →∞. This finally yields the expected estimate for 𝜀 computed in line 7.
(𝑖𝑖𝑖) Complexity. The asymptotic complexity is determined by the FFT𝑁 /IFFT𝑁 routines used for
evaluation on the equispaced grid, interpolation and TP/RTA multiplications. □

Remark 2.9. In the case where the polynomial operator F has degree greater than 1 (which will
be the case for Algorithm OvalValid in Section 4 as long as the potential function 𝐻 (𝑥,𝑦) has degree
at least 2), an explicit radius 𝑟 satisfying the hypothesis of Theorem 2.5 must be rigorously computed.
Given the function 𝑟 ↦→ 𝜆(𝑟 ), this amounts to locating the smallest positive zero of (1 − 𝜆(𝑟 ))𝑟 − 𝑑 . A
simple bisection method NewtonBall is proposed in Appendix C for this purpose.

3 APPROXIMATION OF THE OVAL Γ(ℎ) AND NUMERICAL INTEGRATION
This section is devoted to the computation of a smooth approximate parameterization 𝑡 ∈ [0, 2𝜋] →
(𝑥 (𝑡), 𝑦 (𝑡)) of the oval Γ(ℎ) with 𝑥,𝑦 TPs of degree 𝑁 .

First, an implicit parameterization for Γ(ℎ) is given by the unscaled, unperturbed Hamiltonian
system itself (i.e., System (1.2) with 𝜀 = 0):

¤𝑥 = − 𝜕𝐻

𝜕𝑦
(𝑥,𝑦),

¤𝑦 =
𝜕𝐻

𝜕𝑥
(𝑥,𝑦).

(3.1)

For a level ℎ on the portion of Σ of interest, the trajectory of (3.1) starting at (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ) = Σ∩𝐻−1 (ℎ)
is periodic since it exactly follows the oval Γ(ℎ). Call 𝑡end the time of first return onto Σ. By a linear
change of the independent variable 𝑡 , we may assume that 𝑡end = 2𝜋 , giving a periodic analytic
parameterization

𝑡 ∈ [0, 2𝜋] ↦→ (𝑥∗ (𝑡), 𝑦∗ (𝑡)) of Γ(ℎ), (3.2)
with a winding number equal to ±1 with respect to any point inside Γ(ℎ).
8This theorem provides convergence bounds w.r.t. the ∥ · ∥∞ norm, but the same bounds actually hold for the ∥ · ∥ℓ1 norm
since the proof consists in bounding the Fourier coefficients.
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The approximation of Γ(ℎ) consists of two steps:
• First, Algorithm OvalApproxInit presented in Section 3.1 computes an initial approximation
(𝑥◦, 𝑦◦) ∈ (𝐶0

2𝜋 )2 of (𝑥∗, 𝑦∗), with TPs 𝑥◦, 𝑦◦ of a low degree 𝑁0. The accuracy of this initial
guess (and therefore 𝑁0) should ensure the convergence of the Newton iterations in the next
routine OvalApproxRefine. It only depends on the system under consideration (i.e., 𝐻 , Σ
and ℎ) and not on the (possibly very high) final precision that we target. Hence, the uniform
convergence of the output of Algorithm OvalApproxInit (without asymptotic estimate) is
sufficient for our complexity analysis.
• Next, Algorithm OvalApproxRefine refines this initial guess by computing TPs 𝑥,𝑦 of

higher degree 𝑁 . As explained in Section 3.2, this is done by applying Newton iterations to
the initial guess so as to “project” it onto Γ(ℎ). We provide a complexity analysis and an
asymptotic convergence estimate of (𝑥,𝑦) to Γ(ℎ) in terms of the degree 𝑁 .

We emphasize the fact that the convergence results in this section are asymptotic only. Indeed, our
objective is to prove the quasi-linear arithmetic complexity of this approximation procedure with
respect to the number of correct digits. On the other hand, computing effective error bounds is the
role of the algorithms presented in the Sections 4 and 5.

3.1 Algorithm OvalApproxInit: initial approximation of the curve
Algorithm OvalApproxInit is given an initial point (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ) ∈ Γ(ℎ) ∩ Σ on the transversal. It
first calls a numerical ODE solver to approximately solve the differential system (3.1) until the first
return onto Σ. It provides us with a continuous function 𝑡 ↦→ (𝑥 (𝑡), 𝑦 (𝑡)), which we assume to be
rescaled over the time interval [0, 2𝜋]. Finally, in order to obtain smooth approximations to (𝑥∗, 𝑦∗),
cf. (3.2), we interpolate (𝑥,𝑦) at evenly spaced points and obtain low degree TPs 𝑥◦, 𝑦◦ (lines 2–5)
representing our analytic initial guess for Γ(ℎ). The proof of the following Proposition is postponed
to the end of this section.

Proposition 3.1. Under Assumption 3.2, Algorithm OvalApproxInit(𝐻, Σ, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝑁0) computes
degree 𝑁0 TPs 𝑥◦ and 𝑦◦ that converge uniformly to the rescaled parameterization (𝑥∗, 𝑦∗) ∈ (𝐶0

2𝜋 )2
of Γ(ℎ):

∥𝑥◦ − 𝑥∗∥∞, ∥𝑦◦ − 𝑦∗∥∞ → 0 as 𝑁0 →∞.

Algorithm 2 OvalApproxInit(𝐻, Σ, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝑁0)
Input: Potential function𝐻 , transversal Σ, initial point (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ), and approximation degree 𝑁0 ∈ N
Output: Degree 𝑁0 TPs 𝑥◦, 𝑦◦ approximating Γ(ℎ)

⊲ Approximation of Γ(ℎ), computed with precision parameter 𝑁 −1
0

1: (𝑥,𝑦) ← DSolve(𝐻, Σ, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝑁
−1
0 )

2: for 𝑗 = 0 to 2𝑁0 do

3: 𝑥◦𝑗 ← 𝑥

(
2 𝑗𝜋

2𝑁0 + 1

)
, 𝑦◦𝑗 ← 𝑦

(
2 𝑗𝜋

2𝑁0 + 1

)
4: end for
⊲ Interpolate the points
5: 𝑥◦ ← FFT𝑁0

(
(𝑥◦𝑗 )

2𝑁0
𝑗=0

)
, 𝑦◦ ← FFT𝑁0

(
(𝑦◦𝑗 )

2𝑁0
𝑗=0

)
6: return (𝑥◦, 𝑦◦)
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3.1.1 The numerical solver. We need a numerical routine DSolve(𝐻, Σ, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝛿) that integrates
the ODE system (3.1) with some precision parameter 𝛿 , starting from the initial point (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ) ∈
Γ(ℎ) ∩ Σ. This routine has to detect numerically the first return onto Σ and stop at the corresponding
time 𝑡end. Moreover, we assume that this routine rescales the time interval [0, 𝑡end] to [0, 2𝜋], in order
to work on a fixed domain of definition.

Most scientific programming languages offer libraries with sophisticated explicit or implicit
iterative schemes to compute a time-discretized solution to (3.1), with excellent timings for the
moderate precision, e.g., the standard double precision in most cases, needed at this stage. Here,
the precision parameter 𝛿 may represent a maximal time step. Moreover, the values between two
consecutive time steps are usually automatically interpolated, so as to define a continuous function
𝑡 ↦→ (𝑥 (𝑡), 𝑦 (𝑡)).

3.1.2 Detection of the first return onto Σ. Another feature often proposed by numerical libraries
is the so-called event detection: the solver stops when a user-defined continuous function of the
dependent and independent variables vanishes (the “event”). In our case, intersecting the transversal
line Σ is trivially recast as a linear equation in the Cartesian coordinates. Note, however, that the
event is already satisfied at 𝑡 = 0 (up to numerical errors), since (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ) ∈ Σ, which may cause
the solver to stop before detecting the actual first return. A more robust solution is to use a polar
parameterization with respect to a reference point (𝑥𝑟 , 𝑦𝑟 ) of choice inside Γ(ℎ), that is the ODE
system:

{
𝑥 (𝑡) = 𝑥𝑟 + 𝜌 (𝑡) cos𝜃 (𝑡),
𝑦 (𝑡) = 𝑦𝑟 + 𝜌 (𝑡) sin𝜃 (𝑡), with


¤𝜌 = sin𝜃

𝜕𝐻

𝜕𝑥
(𝑥,𝑦) − cos𝜃

𝜕𝐻

𝜕𝑦
(𝑥,𝑦),

¤𝜃 =
cos𝜃 𝜕𝐻

𝜕𝑥
(𝑥,𝑦) + sin𝜃 𝜕𝐻

𝜕𝑦
(𝑥,𝑦)

𝜌
.

The stopping condition is when 𝜃 (𝑡) reaches 𝜃 (0) + 𝜍2𝜋 , with 𝜍 = ±1 the winding number of (𝑥∗, 𝑦∗)
with respect to (𝑥𝑟 , 𝑦𝑟 ).

3.1.3 Convergence of the ODE solver and a proof of Proposition 3.1. To prove Proposition 3.1,
we need the following assumption on the numerical routine DSolve to ensure that the numerical
solution (𝑥,𝑦), computed with a precision parameter 𝛿 = 1/𝑁0, converges fast enough to (𝑥∗, 𝑦∗) to
balance the overestimation factor due to the degree 𝑁0 trigonometric interpolation. In practice, such a
mild convergence assumption in 𝑂 (𝛿) is guaranteed by most iterative schemes, even a simple Euler
scheme with time step 𝛿 .

Assumption 3.2. The numerical routine DSolve(𝐻, Σ, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝛿) computes a continuous approx-
imation 𝑡 ∈ [0, 2𝜋] ↦→ (𝑥 (𝑡), 𝑦 (𝑡)) of the rescaled parameterization (𝑥∗, 𝑦∗), cf. (3.2), of Γ(ℎ), such
that:

∥𝑥 − 𝑥∗∥∞, ∥𝑦 − 𝑦∗∥∞ = 𝑂 (𝛿) as 𝛿 → 0.

We can now prove the convergence of Algorithm OvalApproxInit.

Proof of Proposition 3.1. Let the symbol 𝑧 denote either 𝑥 or 𝑦. Let 𝜂 = 𝑧 − 𝑧∗ be the error between
𝑧∗ and the approximate solution 𝑧 computed by DSolve in line 1. Thanks to the linearity of the
operator I𝑁0 (see (2.1)), the error between the interpolant 𝑧◦ computed in lines 2–5 and 𝑧∗ can be
bounded from above by the error of interpolation for 𝑧∗, plus the interpolation of the error 𝜂 :

∥𝑧◦ − 𝑧∗∥∞ = ∥I𝑁0 (𝑧) − 𝑧∗∥∞ ⩽ ∥I𝑁0 (𝑧∗) − 𝑧∗∥∞ + ∥I𝑁0 (𝜂)∥∞.

• Error of interpolation. Since 𝑧∗ is 2𝜋-periodic and continuously differentiable, the trigonometric
interpolants I𝑁0 (𝑧∗) converge uniformly to 𝑧∗ [Zygmund 2002, Chap. X].

, Vol. 1, No. 1, Article . Publication date: December 2023.



14 Florent Bréhard, Nicolas Brisebarre, Mioara Joldes, and Warwick Tucker

• Interpolation of error. By Assumption 3.2, 𝜂 is a continuous function over [0, 2𝜋] and ∥𝜂∥∞
converges uniformly to 0 in𝑂 (𝑁 −1

0 ) as the precision parameter 𝛿 = 𝑁 −1
0 tends to 0. From Section 2.1,

we have
∥I𝑁0 (𝜂)∥∞ ⩽ Λ𝑁0 ∥𝜂∥∞ = 𝑂 (log(𝑁0)/𝑁0) → 0 as 𝑁0 →∞. □

3.2 Algorithm OvalApproxRefine: refining the curve by projection
As its name suggests, the role of Algorithm OvalApproxRefine is to refine the initial guess (𝑥◦, 𝑦◦)
with TPs (𝑥,𝑦) of higher degree 𝑁 ⩾ 𝑁0, yielding an analytic approximate parameterization of Γ(ℎ)
of very high accuracy.

By solving algebraic equations only, it is in general not possible to recover the parameterization
(𝑥∗, 𝑦∗) ∈ (𝐶0

2𝜋 )2 satisfying the differential system (3.1). However, the value of ℑ(ℎ) is independent
of the parameterization used for Γ(ℎ). Therefore, we define another one, (𝑥#, 𝑦#) ∈ (𝐶0

2𝜋 )2, called the
projected parameterization, which Algorithm OvalApproxRefine approximates using Newton’s
method on points sampled on the initial curve (𝑥◦, 𝑦◦).

Definition 3.3. Let (𝑥◦, 𝑦◦) ∈ (𝐶0
2𝜋 )2 be an approximate parameterization of Γ(ℎ), (𝑢◦, 𝑣◦) ∈ (𝐶0

2𝜋 )2,
and 𝜀 > 0. If the equation

𝐻 (𝑥◦ (𝑡) + 𝑠 (𝑡) 𝑢◦ (𝑡), 𝑦◦ (𝑡) + 𝑠 (𝑡) 𝑣◦ (𝑡)) = ℎ, 𝑡 ∈ [0, 2𝜋], (3.3)

has a unique solution 𝑠# ∈ 𝐶0
2𝜋 with ∥𝑠#∥∞ ⩽ 𝜀, called the shift, then the curve (𝑥#, 𝑦#) ∈ (𝐶0

2𝜋 )2,{
𝑥# (𝑡) = 𝑥◦ (𝑡) + 𝑠# (𝑡) 𝑢◦ (𝑡),
𝑦# (𝑡) = 𝑦◦ (𝑡) + 𝑠# (𝑡) 𝑣◦ (𝑡),

(3.4)

is called the projection of (𝑥◦, 𝑦◦) onto Γ(ℎ) w.r.t. the direction (𝑢◦, 𝑣◦).

The following Lemma, whose proof is postponed to Appendix B, establishes the good properties
of the projected parameterization when the initial guess (𝑥◦, 𝑦◦) returned by OvalApproxInit is
sufficiently close to Γ(ℎ).

Lemma 3.4. There exists 𝜂 > 0 (depending on 𝐻 and ℎ) such that if (𝑥◦, 𝑦◦) and (𝑢◦, 𝑣◦) are
analytic and 𝜂-close9 to (𝑥∗, 𝑦∗) and ∇𝐻 (𝑥∗,𝑦∗ )

∥∇𝐻 (𝑥∗,𝑦∗ ) ∥2 , respectively, in (𝐶0
2𝜋 )2, then:

(𝑖) (𝑥#, 𝑦#) ∈ (𝐶0
2𝜋 )2 is well-defined and it is an analytic parameterization of Γ(ℎ) with same

orientation as (𝑥∗, 𝑦∗).
(𝑖𝑖) For all 𝑡 ∈ [0, 2𝜋], letting (𝑥,𝑦) = (𝑥◦ (𝑡), 𝑦◦ (𝑡)) and (𝑢, 𝑣) = (𝑢◦ (𝑡), 𝑣◦ (𝑡)), the Newton

operator associated to Equation (3.3) at 𝑡 is well-defined:

N𝑥,𝑦,𝑢,𝑣 (𝑠) = 𝑠 − 𝐻 (𝑥 + 𝑠𝑢,𝑦 + 𝑠𝑣) − ℎ
𝑢 𝜕𝐻

𝜕𝑥
(𝑥 + 𝑠𝑢,𝑦 + 𝑠𝑣) + 𝑣 𝜕𝐻

𝜕𝑦
(𝑥 + 𝑠𝑢,𝑦 + 𝑠𝑣)

, (3.5)

and the Newton iterations 𝑠 (𝑘 ) = N𝑘
𝑥,𝑦,𝑢,𝑣 (0) converge quadratically fast to 𝑠# (𝑡).

Based on those properties, Algorithm OvalApproxRefine discretizes the initial guess (𝑥◦, 𝑦◦)
over the equispaced grid (𝑡 𝑗 ) of size 2𝑁 + 1 (line 1), then applies several Newton iterations (3.5),
implemented in lines 6–8, and finally interpolates the obtained values 𝑠 𝑗 in order to construct a degree
𝑁 TP 𝑠 approximating the shift 𝑠#. This defines the approximate parameterization (𝑥,𝑦) of Γ(ℎ):{

𝑥 (𝑡) = 𝑥◦ (𝑡) + 𝑠 (𝑡) 𝑢◦ (𝑡),
𝑦 (𝑡) = 𝑦◦ (𝑡) + 𝑠 (𝑡) 𝑣◦ (𝑡), 𝑡 ∈ [0, 2𝜋] . (3.6)

9It means that max( ∥𝑥◦ − 𝑥∗ ∥∞, ∥𝑦◦ − 𝑦∗ ∥∞ ) ⩽ 𝜂.
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Algorithm 3 OvalApproxRefine(𝐻,ℎ, 𝑥◦, 𝑦◦, 𝑁 )
Input: Potential function 𝐻 , level ℎ, initial approximation (𝑥◦, 𝑦◦) and degree 𝑁 ∈ N
Output: Degree 𝑁 TPs 𝑢◦, 𝑣◦, 𝑠 defining the approximate parameterization (𝑥,𝑦) of Γ(ℎ) as in

Eq. (3.6)

⊲ Sample initial points
1: (𝑥 𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (𝑥◦), (𝑦 𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (𝑦◦)
⊲ Apply ⌈log𝑁 ⌉ Newton iterations
2: for 𝑗 = 0 to 2𝑁 do
3: (𝑢 𝑗 , 𝑣 𝑗 ) ←

∇𝐻 (𝑥 𝑗 ,𝑦 𝑗 )
∥∇𝐻 (𝑥 𝑗 ,𝑦 𝑗 ) ∥2

4: 𝑠 𝑗 ← 0
5: for 𝑘 = 1 to ⌈log𝑁 ⌉ do

6: 𝛿 ←
ℎ − 𝐻 (𝑥 𝑗 , 𝑦 𝑗 )

𝑢 𝑗
𝜕𝐻
𝜕𝑥
(𝑥 𝑗 , 𝑦 𝑗 ) + 𝑣 𝑗 𝜕𝐻𝜕𝑦 (𝑥 𝑗 , 𝑦 𝑗 )

7: 𝑠 𝑗 ← 𝑠 𝑗 + 𝛿
8: (𝑥 𝑗 , 𝑦 𝑗 ) ← (𝑥 𝑗 , 𝑦 𝑗 ) + 𝛿 (𝑢 𝑗 , 𝑣 𝑗 )
9: end for

10: end for
⊲ Interpolate

11: 𝑢◦ ← FFT𝑁

(
(𝑢 𝑗 )2𝑁𝑗=0

)
, 𝑣◦ ← FFT𝑁

(
(𝑣 𝑗 )2𝑁𝑗=0

)
12: 𝑠 ← FFT𝑁

(
(𝑠 𝑗 )2𝑁𝑗=0

)
13: return (𝑢◦, 𝑣◦), 𝑠

The following proposition establishes the exponential convergence of this method w.r.t. the
approximation degree 𝑁 and its quasi-linear arithmetic complexity.

Proposition 3.5. There exists 𝜂 > 0 (depending on 𝐻 and ℎ) such that if the analytic initial
guess (𝑥◦, 𝑦◦) ∈ (𝐶0

2𝜋 )2 is 𝜂-close to (𝑥∗, 𝑦∗), then there is 𝜅 > 1 such that for any 𝑁 ∈ N,
Algorithm OvalApproxRefine(𝐻,ℎ, 𝑥◦, 𝑦◦, 𝑁 ) computes a degree 𝑁 TP 𝑠 in 𝑂 (𝑁 log𝑁 ) arithmetic
operations, and the corresponding curve (𝑥,𝑦), cf. (3.6), converges exponentially fast to the projected
parameterization (𝑥#, 𝑦#) of Γ(ℎ):

∥𝑠 − 𝑠#∥∞, ∥𝑥 − 𝑥#∥∞, ∥𝑦 − 𝑦#∥∞ = 𝑂 (𝜅−𝑁 ) as 𝑁 →∞.

Proof. Let 𝜂′ > 0 denote the 𝜂 of Lemma 3.4. Clearly, one can chose an 𝜂 ∈ (0, 𝜂′] such that
if (𝑥◦, 𝑦◦) is 𝜂-close to (𝑥∗, 𝑦∗), then (𝑢◦, 𝑣◦) = I𝑁

(
∇𝐻 (𝑥◦,𝑦◦ )
∥∇𝐻 (𝑥◦,𝑦◦ ) ∥2

)
(lines 3 and 11) is 𝜂′-close to

∇𝐻 (𝑥∗,𝑦∗ )
∥∇𝐻 (𝑥∗,𝑦∗ ) ∥2 , since by assumption ∇𝐻 does not vanish over Γ(ℎ). Then the analytic shift 𝑠# and the
projected parameterization (𝑥#, 𝑦#) are well-defined. As in the proof of Proposition 3.1, we bound the
total error with the sum of the error of interpolation and the interpolation of the error:

∥𝑠 − 𝑠#∥∞ ⩽ ∥I𝑁 (𝑠#) − 𝑠#∥∞ + Λ𝑁 sup
0⩽𝑗⩽2𝑁

|𝑠 (𝑡 𝑗 ) − 𝑠# (𝑡 𝑗 ) |,

where 𝑡 𝑗 = 2𝑗𝜋
2𝑁+1 are the equispaced interpolation points.

• Error of interpolation. Since 𝑠# ∈ 𝐶0
2𝜋 is 2𝜋-periodic and analytic over R by Lemma 3.4, there is a

𝜌 > 0 such that the open horizontal strip R + (−𝜌, 𝜌)𝑖 avoids all possible singularities of 𝑠# in the
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complex plane. Then the interpolants I𝑁 (𝑠#) converge uniformly to 𝑠# over R in 𝑂 (𝜅−𝑁 ) for any
𝜅 ∈ (1, 𝑒𝜌 ) (see [Wright et al. 2015, Thm. 4.2]).
• Interpolation of the error. Since the interpolation in line 12 uses approximations 𝑠 𝑗 of the exact points
𝑠# (𝑡 𝑗 ), the resulting “interpolation of the error” depends on the accuracy reached after 𝑘 = ⌈log𝑁 ⌉
Newton iterations (lines 2–10). By Eq. (B.1) in the proof of Lemma 3.4, we have:

|𝑠 𝑗 − 𝑠# (𝑡 𝑗 ) | ⩽ |N𝑘
𝑥 𝑗 ,𝑦 𝑗 ,𝑢 𝑗 ,𝑣𝑗

(0) − 𝑠# (𝑡 𝑗 ) | ⩽
|𝑠# (𝑡 𝑗 ) |
22𝑘−1

⩽ 2−𝑁
∥𝑠#∥∞

2
.

• Combining both errors, we conclude that ∥𝑠 − 𝑠#∥∞ = 𝑂 (𝜅−𝑁 ) for any 𝜅 ∈ (1,min(𝑒𝜌 , 2)). It is also
clear from Eq. (3.4) and (3.6) that the same convergence happens for (𝑥,𝑦) to (𝑥#, 𝑦#).
• Complexity. The sampling of initial points and reinterpolation through FFT𝑁 /IFFT𝑁 requires
𝑂 (𝑁 log𝑁 ) arithmetic operations. For the projection step (lines 2–10), each of the 2𝑁 + 1 points is
refined through ⌈log𝑁 ⌉ Newton iterations, where the cost of a single iteration is 𝑂 (1). This justifies
the overall complexity in 𝑂 (𝑁 log𝑁 ) arithmetic operations. □

4 A POSTERIORI VALIDATION OF THE OVAL Γ(ℎ)
The purpose of Algorithm OvalValid presented in this section is to enclose the oval Γ(ℎ) in
a validated tube 𝑇 (𝑥,𝑦,𝑢◦, 𝑣◦, 𝜀) around the approximate parameterization (𝑥,𝑦) (3.6) containing
2𝜋-periodic curves:

𝑇 (𝑥,𝑦,𝑢◦, 𝑣◦, 𝜀) =
{
(𝑥,𝑦) ∈ (𝐶0

2𝜋 )2
����� ∃𝑠 ∈ 𝐶0

2𝜋 , ∥𝑠 ∥∞ ⩽ 𝜀 and

{
𝑥 (𝑡) = 𝑥 (𝑡) + 𝑠 (𝑡)𝑢◦ (𝑡)
𝑦 (𝑡) = 𝑦 (𝑡) + 𝑠 (𝑡)𝑣◦ (𝑡)

}
.

The width 𝜀 of such a tube is rigorously computed by using the fixed-point based a posteriori
approach presented in Section 2.3 to bound the distance between 𝑠 computed by OvalApproxRefine
and the exact shift 𝑠# defining the parameterization (𝑥#, 𝑦#) of Γ(ℎ) (see Definition 3.3). Under a few
additional conditions also checked by OvalValid (winding number, etc.10), this ensures that (𝑥#, 𝑦#)
exists, satisfies Lemma 3.4, and lies in the tube 𝑇 (𝑥,𝑦,𝑢◦, 𝑣◦, 𝜀).

Using Equation (3.3), we construct a polynomial Newton-like operator N ∈ 𝐶0
2𝜋 [𝑋 ] acting on a

function 𝑠 ∈ 𝐶0
2𝜋 :

N(𝑠) = 𝑠 − 𝑎 (𝐻 (𝑥◦ + 𝑠 𝑢◦, 𝑦◦ + 𝑠 𝑣◦) − ℎ) , (4.1)
for which 𝑠# is the unique fixed point in some small neighborhood of 𝑠. Here,

𝑎(𝑡) ≈ 1
𝑢◦ (𝑡) 𝜕𝐻

𝜕𝑥
(𝑥 (𝑡), 𝑦 (𝑡)) + 𝑣◦ (𝑡) 𝜕𝐻

𝜕𝑦
(𝑥 (𝑡), 𝑦 (𝑡))

,

is a TP built by interpolation to make the derivative of N ,

N ′ (𝑠) = 1 − 𝑎
(
𝑢◦

𝜕𝐻

𝜕𝑥
(𝑥◦ + 𝑠 𝑢◦, 𝑦◦ + 𝑠 𝑣◦) + 𝑣◦ 𝜕𝐻

𝜕𝑦
(𝑥◦ + 𝑠 𝑢◦, 𝑦◦ + 𝑠 𝑣◦)

)
,

small in the neighborhood of 𝑠 = 𝑠 (that is, geometrically, in the neighborhood of the approximate
curve (𝑥,𝑦)).

Contrary to the a posteriori validation for the division presented in Section 2.3.1, the Newton-like
operatorN in (4.1) is not of degree 1 in 𝑠 unless 𝐻 itself has degree 1. As a consequence, the value of
∥N ′ (𝑠)∥∞ depends on 𝑠, so that the conditions of Theorem 2.5 must be satisfied with a finite radius
𝑟 > 0. We propose a generic subroutine NewtonBall (not specific to the oval validation problem
considered here) in Appendix C to automate this task. Specifically, given:

10Although such kinds of properties may not always be checked by other existing approaches, it turns out to be necessary in
order to move towards formally checked computed-assisted proofs.
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• a procedure computing an upper bound 𝜆(𝑟 ) for sup∥𝑠−𝑠 ∥∞⩽𝑟 ∥N ′ (𝑠)∥∞ for any 𝑟 ⩾ 0,
• an upper bound 𝑑 for the defect ∥N (𝑠) − 𝑠 ∥∞,

NewtonBall(𝑑, 𝜆) either computes a radius 𝑟 and a Lipschitz constant 𝜆 = 𝜆(𝑟 ) satisfying the
hypotheses of Theorem 2.5, or returns an error.

Algorithm 4 OvalValid(𝐻,ℎ, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝜀0, 𝑥𝑟 , 𝑦𝑟 , 𝜍, 𝑥
◦, 𝑦◦, 𝑢◦, 𝑣◦, 𝑠, 𝑁 )

Input: 𝐻,ℎ, 𝜍 = ±1, (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ) ∈ R2, 𝜀0 > 0, (𝑥𝑟 , 𝑦𝑟 ) ∈ R2, and degree 𝑁 TPs 𝑥◦, 𝑦◦, 𝑢◦, 𝑣◦, 𝑠
Output: a bound 𝜀 > 0 defining a tube 𝑇 (𝑥,𝑦,𝑢◦, 𝑣◦, 𝜀) around (𝑥,𝑦) containing (𝑥#, 𝑦#)

⊲ Build TP 𝑎 defining the Newton-like operator N
1: (𝑥 𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (𝑥) and (𝑦 𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (𝑦)
2: (𝑢 𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (𝑢◦) and (𝑣 𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (𝑣◦)

3: 𝑎 ← FFT𝑁
©­«
(

1
𝑢 𝑗

𝜕𝐻
𝜕𝑥
(𝑥 𝑗 , 𝑦 𝑗 ) + 𝑣 𝑗 𝜕𝐻𝜕𝑦 (𝑥 𝑗 , 𝑦 𝑗 )

)2𝑁

𝑗=0

ª®¬
⊲ Bound operator norm of N , using rigorous operations with intervals and RTAs
4: 𝒙 ← 𝑥◦ + 𝑠 𝑢◦ and 𝒚 ← 𝑦◦ + 𝑠 𝑣◦ ⊲ (𝒙,𝒚) RTAs for (𝑥,𝑦)
5: 𝒙′ ← 𝑥◦′ + 𝑠′ 𝑢◦ + 𝑠 𝑢◦′ and 𝒚′ ← 𝑦◦′ + 𝑠′ 𝑣◦ + 𝑠 𝑣◦′
6: 𝑑 ← Bound(𝒔) where 𝒔 ← 𝑎 (ℎ − 𝐻 (𝒙,𝒚)) ⊲ defect
7: 𝜆0 ← Bound(ℓ0) where ℓ0 ← 1 − 𝑎

(
𝑢◦ 𝜕𝐻

𝜕𝑥
(𝒙,𝒚) + 𝑣◦ 𝜕𝐻

𝜕𝑦
(𝒙,𝒚)

)
8: 𝛼 ← Bound(𝑎)
9: 𝑋 ← Bound(𝒙) · [−1, 1] and 𝑌 ← Bound(𝒚) · [−1, 1]

10: 𝑈 ← Bound(𝑢◦) · [−1, 1] and 𝑉 ← Bound(𝑣◦) · [−1, 1]
11: function 𝜆(𝑟 ) ⊲ Lipschitz constant of N over 𝐵(𝑠, 𝑟 ) in 𝐶0

2𝜋
12: 𝑋𝑟 ← 𝑋 + 𝑟𝑈 and 𝑌𝑟 ← 𝑌 + 𝑟𝑉
13: 𝜆1 ← mag

(
𝑈 2 𝜕2𝐻

𝜕𝑥2 (𝑋𝑟 , 𝑌𝑟 ) + 2𝑈𝑉 𝜕2𝐻
𝜕𝑥𝜕𝑦
(𝑋𝑟 , 𝑌𝑟 ) +𝑉 2 𝜕2𝐻

𝜕𝑦2 (𝑋𝑟 , 𝑌𝑟 )
)

14: return 𝜆0 + 𝛼𝑟𝜆1
15: end function
16: (𝑟+, 𝜆+) ← NewtonBall(𝑑, 𝜆) ⊲ Find stable ball
⊲ Validated error bound 𝜀

17: 𝜀 ← 𝑑/(1 − 𝜆+)
⊲ Check initial conditions

18: if (𝒙 (0) − 𝜀𝑢◦ (0) − 𝑥𝑖𝑛𝑖 )2 + (𝒚(0) − 𝜀𝑣◦ (0) − 𝑦𝑖𝑛𝑖 )2 > 𝜀2
0 or

19: (𝒙 (0) + 𝜀𝑢◦ (0) − 𝑥𝑖𝑛𝑖 )2 + (𝒚(0) + 𝜀𝑣◦ (0) − 𝑦𝑖𝑛𝑖 )2 > 𝜀2
0 , then return 𝐹𝐴𝐼𝐿 end if

⊲ Check the winding number of the curve
20: 𝒓2← (𝒙 − 𝑥𝑟 )2 + (𝒚 − 𝑦𝑟 )2
21: if ¬ IsPositive

(
𝒓2 − 𝜀2Bound(𝑢◦2 + 𝑣◦2)

)
then return 𝐹𝐴𝐼𝐿 end if

22: 𝝇 ← 1
2𝜋

∫ 2𝜋

0

(𝒙 (𝑡) − 𝑥𝑟 )𝒚′ − (𝒚(𝑡) − 𝑦𝑟 )𝒙′
𝒓2(𝑡) d𝑡

23: if 𝝇 ∩ Z ≠ {𝜍} then return 𝐹𝐴𝐼𝐿 end if
24: return 𝜀

Proposition 4.1. Given a point (𝑥𝑟 , 𝑦𝑟 ) inside the oval Γ(ℎ), and a ball 𝐵((𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ), 𝜀0) enclosing
initial conditions such that it intersects𝐻−1 (ℎ) in the Γ(ℎ) component only, Algorithm OvalValid(𝐻,ℎ,
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𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝜀0, 𝑥𝑟 , 𝑦𝑟 , 𝑥
◦, 𝑦◦, 𝑢◦, 𝑣◦, 𝑠, 𝑁 ), if it does not fail, computes 𝜀 such that 𝑠# of Definition 3.3 exists,

satisfies Lemma 3.4 with winding number around (𝑥𝑟 , 𝑦𝑟 ) equal to 𝜍 , and ∥𝑠 − 𝑠#∥∞ ⩽ 𝜀.
Moreover, for a sufficiently large degree 𝑁 , the process never fails and returns a bound 𝜀 that

converges exponentially fast to 0 w.r.t. 𝑁 , in 𝑂 (𝑁 log(𝑁 )) arithmetic operations.

Proof. We apply Theorem 2.5 over the space 𝐶0
2𝜋 to compute an upper bound 𝜀 for ∥𝑠#∥∞, where

𝑠# ∈ 𝐶0
2𝜋 is solution to (3.3). First (lines 1–3), the Newton-like operatorN is built as in Equation (4.1)

by computing a TP 𝑎 interpolating the function which represents the inverse differential. Next, the
algorithm computes a rigorous bound 𝑑 on the defect ∥N (𝑠) − 𝑠 ∥∞ (line 6), and produces a procedure
𝜆 s.t. 𝜆(𝑟 ) is a Lipschitz constant for N over 𝐵(𝑠, 𝑟 ) in 𝐶0

2𝜋 w.r.t. to the ∥ · ∥∞ norm (lines 7–15). The
formula for 𝜆(𝑟 ) in line 14 comes from Lemma 2.6, with 𝑈 ,𝑉 enclosures for the range of 𝑢◦, 𝑣◦,
and 𝑋𝑟 , 𝑌𝑟 enclosures for the range of 𝑥◦ + 𝑠𝑢◦ = 𝑥 + (𝑠 − 𝑠)𝑢◦ and 𝑦◦ + 𝑠𝑣◦ = 𝑦 + (𝑠 − 𝑠)𝑣◦, for
all 𝑠 ∈ 𝐵(𝑠, 𝑟 ). After that, the auxiliary routine NewtonBall (line 16) described in Appendix C
rigorously computes a suitable radius 𝑟+ satisfying the hypotheses of Theorem 2.5, if possible. We
thus deduce the existence and uniqueness of 𝑠# ∈ 𝐶0

2𝜋 (and hence (𝑥#, 𝑦#)) together with a validated
bound 𝜀 (line 17).
• Initial conditions. By hypothesis, the ball 𝐵((𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ), 𝜀0) in R2 intersects 𝐻−1 (ℎ) in its component
Γ(ℎ) only. Hence, by continuity, checking that (𝑥# (0), 𝑦# (0)) lies in that ball is sufficient to ensure
that (𝑥# (𝑡), 𝑦# (𝑡)) belongs to the component Γ(ℎ) for all 𝑡 ∈ [0, 2𝜋]. Line 19 does this by checking
that both endpoints of the transversal segment of the tube at time 0 belong to that ball.
• Winding number. First, lines 20–21 ensure that the trajectories in the tube 𝑇 (𝑥,𝑦,𝑢◦, 𝑣◦, 𝜀) all avoid
the point (𝑥𝑟 , 𝑦𝑟 ) inside Γ(ℎ). Then, the winding number of (𝑥,𝑦) is rigorously computed in line 22
and compared to the reference value 𝜍 at line 23. Since the tube avoids (𝑥𝑟 , 𝑦𝑟 ), the winding number
remains the same for all curves in it (so in particular (𝑥#, 𝑦#)).
• Analyticity. The Banach fixed-point based argument used previously only guarantees the continuity
of (𝑥#, 𝑦#). To gain more regularity, we need to consider a larger function space, namely the Banach
space of continuous 2𝜋-periodic functions defined over a horizontal strip S𝜌 := R + [−𝜌, 𝜌]𝑖 of C for
some small 𝜌 > 0, equipped with the norm: ∥𝜑 ∥S𝜌 = sup𝑧∈S𝜌 |𝜑 (𝑧) |11. The a posteriori validation
argument based on Theorem 2.5 applies the same way, except that we need to replace ∥ · ∥∞ with
∥ · ∥S𝜌 in all the bounds defining 𝑑 and 𝑟 ↦→ 𝜆(𝑟 ). If we choose 𝜌 small enough, the inequalities
𝜆(𝑟+) < 1 and 𝑑 + 𝑟+𝜆(𝑟+) < 𝑟+ guaranteed by NewtonBall still hold for the same 𝑟+, which means
that Theorem 2.5 now proves the existence of a unique continuous periodic solution to (3.3) extending
𝑠# over S𝜌 . Moreover, the iterations N𝑘 (0) are all trigonometric polynomials (hence analytic) and
they converge uniformly to 𝑠# over S𝜌 as 𝑘 →∞. As a consequence, the limit 𝑠# is analytic over R.
• Convergence. Here we outline the main arguments and leave the technical details to the reader. First,
we know from Proposition 3.5 that the input 𝑠 computed by OvalApproxRefine tends exponentially
fast to 𝑠#. This holds for the ∥ · ∥∞ norm, but also for the ∥ · ∥ℓ1 norm since they are TPs of degree
𝑂 (𝑁 ). As a consequence, the computed bounds 𝑑 and 𝜆0 tend to 0 exponentially fast, while the other
bounds 𝛼 , 𝑋 , 𝑌 ,𝑈 , 𝑉 and 𝜆1 (for given 𝑟 ) tend to the mathematical values obtained by replacing the
approximations 𝑠, 𝑥,𝑦 by 𝑠#, 𝑥#, 𝑦#. Therefore, in the routine NewtonBall, for 𝑁 sufficiently large,
the initial radius 𝑟max computed in line 1 is bounded away from 0 and satisfies 𝑑 + 𝜆(𝑟max)𝑟max < 𝑟max.
Hence, NewtonBall necessarily returns an 𝑟 satisfying 𝑑 +𝜆(𝑟 )𝑟 < 𝑟 , and then OvalValid computes
𝜀 = 𝑑/(1 − 𝜆+) ⩽ 2𝑑 , which tends exponentially fast to 0. To conclude, similar arguments show that
the remaining tests (initial conditions and winding number) never fail for 𝑁 sufficiently large.

11Note that this argument is purely theoretical: there is no need to reimplement Algorithm OvalValid to actually compute
with this norm ∥ · ∥S𝜌 .
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• Complexity. The asymptotic complexity w.r.t. the degree 𝑁 is determined by the FFT𝑁 /IFFT𝑁

routines used for evaluation, interpolation, RTA multiplications, the RTA positivity test in line 21
and the RTA division in line 22. Note that the execution time of NewtonBall does not depend on 𝑁 ,
since the function 𝑟 ↦→ 𝜆(𝑟 ) (lines 11–15) involves intervals rather than RTAs. □

5 RIGOROUS ENCLOSURE OF THE ABELIAN INTEGRAL ℑ(ℎ)
According to Proposition 4.1, the tube 𝑇 (𝑥,𝑦,𝑢◦, 𝑣◦, 𝜀) computed by OvalValid contains a unique
analytic parameterization (𝑥#, 𝑦#) of Γ(ℎ) with correct winding number, so that we have:

ℑ(ℎ) =
∫ 2𝜋

0

𝑃 (𝑥# (𝑡), 𝑦# (𝑡))𝑦#′ (𝑡) −𝑄 (𝑥# (𝑡), 𝑦# (𝑡))𝑥#′ (𝑡)
𝜇 (𝑥# (𝑡), 𝑦# (𝑡)) d𝑡 . (5.1)

In order to provide an interval enclosure for ℑ(ℎ), we must bound the difference between the exact
value given by Equation (5.1) and the corresponding integral taken along the approximate curve
(𝑥,𝑦) defined by 𝑠:

𝐼𝑠 =

∫ 2𝜋

0

𝑃 (𝑥 (𝑡), 𝑦 (𝑡))𝑦′ (𝑡) −𝑄 (𝑥 (𝑡), 𝑦 (𝑡))𝑥 ′ (𝑡)
𝜇 (𝑥 (𝑡), 𝑦 (𝑡)) d𝑡, (5.2)

which can be rigorously computed using operations on RTAs. To do so, we make use of Stokes’
theorem and bound the resulting term:

𝑐 (𝑥,𝑦) d𝑥 ∧ d𝑦 =

[
𝜕(𝑃/𝜇)
𝜕𝑥

(𝑥,𝑦) + 𝜕(𝑄/𝜇)
𝜕𝑦

(𝑥,𝑦)
]

d𝑥 ∧ d𝑦, (5.3)

over the region located between the two curves (𝑥,𝑦) and (𝑥#, 𝑦#), which is safely overapproximated
by the tube 𝑇 (𝑥,𝑦,𝑢◦, 𝑣◦, 𝜀).

Algorithm 5 AbIntValidQuad(𝑃,𝑄, 𝜇, 𝑥◦, 𝑦◦, 𝑢◦, 𝑣◦, 𝑠, 𝜀, 𝑁 )
Input: 𝑃,𝑄, 𝜇 as in Problem 1.1, degree 𝑁 TPs 𝑥◦, 𝑦◦, 𝑢◦, 𝑣◦, 𝑠, and 𝜀 > 0 computed by OvalValid
Output: interval enclosure 𝑰 for ℑ(ℎ) (1.1)

⊲ Compute rigorous integral along approximate curve using RTAs
1: 𝒙 ← 𝑥◦ + 𝑠 𝑢◦ and 𝒚 ← 𝑦◦ + 𝑠 𝑣◦ ⊲ (𝒙,𝒚) RTAs for (𝑥,𝑦)
2: 𝒙′ ← 𝑥◦′ + 𝑠′ 𝑢◦ + 𝑠 𝑢◦′ and 𝒚′ ← 𝑦◦′ + 𝑠′ 𝑣◦ + 𝑠 𝑣◦′
3: 𝑷 ← 𝑃 (𝒙,𝒚), 𝑸 ← 𝑄 (𝒙,𝒚), and 𝝁 ← 𝜇 (𝒙,𝒚)
4: 𝑬 ← (𝑷 𝒚′ − 𝑸 𝒙′) / 𝝁
5: 𝑰 𝑠 ←

∫ 2𝜋
0 𝑬 (𝑡) d𝑡

⊲ Compute integration error in the tube using Stokes’ theorem
6: 𝒙𝜀 ← (𝑥◦ + 𝑠 𝑢◦, 𝜀 Bound(𝑢◦))) and 𝒚𝜀 ← (𝑦◦ + 𝑠 𝑣◦, 𝜀 Bound(𝑣◦)))
7: 𝑐 ← 𝜕 (𝑃/𝜇 )

𝜕𝑥
+ 𝜕 (𝑄/𝜇 )

𝜕𝑦
⊲ symbolically as a rational fraction

8: 𝐶 ← Bound(𝑐 (𝒙𝜀 ,𝒚𝜀))
9: 𝐵1 ← Bound(𝒙′𝑣◦ −𝒚′𝑢◦)

10: 𝐵2 ← Bound(𝑢◦′𝑣◦ − 𝑣◦′𝑢◦)
11: 𝛿 ← 2𝜋𝜀 (2𝐵1 + 𝜀𝐵2)𝐶
⊲ Return interval enclosure

12: return 𝑰 ← 𝑰 𝑠 + [−𝛿, 𝛿]
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Proposition 5.1. Let 𝑃,𝑄, 𝜇 be as in Problem 1.1. If AbIntValidQuad(𝑃,𝑄, 𝜇, 𝑥◦, 𝑦◦, 𝑢◦, 𝑣◦, 𝑠, 𝜀,
𝑁 ) with 𝜀 > 0 computed by OvalValid does not fail, then it returns an interval enclosure 𝑰 of ℑ(ℎ).

Moreover, if 𝑁 is sufficiently large, then it does never fail and computes an interval 𝑰 whose
diameter tends exponentially fast to 0 w.r.t. 𝑁 , in 𝑂 (𝑁 log(𝑁 )) arithmetic operations.

Proof. First, an interval enclosure 𝑰 𝑠 of the integral 𝐼𝑠 (5.2) along the approximate curve (𝑥,𝑦) is
computed rigorously by using RTA representations and operations for the integrand (lines 3 and 4),
and then integrating it over [0, 2𝜋] (line 5). Next, lines 6–11 compute a bound 𝛿 for the error between
𝐼𝑠 and the exact value ℑ(ℎ) taken along (𝑥#, 𝑦#) of Γ(ℎ), so that AbIntValidQuad returns a validated
enclosure 𝑰 = 𝑰 𝑠 + [−𝛿, 𝛿] for ℑ(ℎ). The strategy to obtain 𝛿 is detailed below.
• Error bound 𝛿 with Stokes’ theorem. Let (𝑥,𝑦) denote the standard coordinates of the plane R2, and
add a third one, 𝑧, living in R/2𝜋Z, corresponding to the time 𝑡 . The approximate parameterization
(𝑥,𝑦) traces a smooth simple closed curve 𝑡 ∈ R/2𝜋Z ↦→ (𝑥◦ (𝑡) + 𝑠 (𝑡)𝑢◦ (𝑡), 𝑦◦ (𝑡) + 𝑠 (𝑡)𝑣◦ (𝑡), 𝑡) in
R2 ×R/2𝜋Z. Similarly, (𝑥#, 𝑦#) traces 𝑡 ∈ R/2𝜋Z ↦→ (𝑥◦ (𝑡) + 𝑠# (𝑡)𝑢◦ (𝑡), 𝑦◦ (𝑡) + 𝑠# (𝑡)𝑣◦ (𝑡), 𝑡). Since
𝑠# is analytic, it only has a finite number of zeros in [0, 2𝜋]. Hence, since (𝑢◦, 𝑣◦) never vanishes, the
two curves only intersect each other a finite number of times. The “strip” S between them,

S =
{(
𝑥◦ (𝑡) + 𝑠𝑢◦ (𝑡), 𝑦◦ (𝑡) + 𝑠𝑣◦ (𝑡), 𝑡

)
, 𝑡 ∈ R/2𝜋Z, 𝑠 ∈ [𝑠 (𝑡), 𝑠# (𝑡)] or [𝑠# (𝑡), 𝑠 (𝑡)]

}
,

is a finite collection of two-dimensional cells (with two singularities each). Choosing the appropriate
orientation for each cell, the difference between ℑ(ℎ) and 𝐼𝑠 is equal to the integral of the 1-form
(𝑃/𝜇)d𝑦 − (𝑄/𝜇)d𝑥 along the oriented boundary 𝜕S of S:

ℑ(ℎ) − 𝐼𝑠 =
∫
𝜕S

𝑃 (𝑥,𝑦)d𝑦 −𝑄 (𝑥,𝑦) d𝑥
𝜇 (𝑥,𝑦) .

Using Stokes’ theorem [Lee 2013, Thm. 14.9], and since 𝑃 and 𝑄 do not depend on 𝑧, we obtain:

|ℑ(ℎ) − 𝐼𝑠 | ⩽
∫
S
|𝑐 (𝑥,𝑦) | d𝑥 ∧ d𝑦,

with 𝑐 (𝑥,𝑦) defined as in Equation (5.3).
A bound 𝐶 for the integrand |𝑐 (𝑥,𝑦) | is computed in lines 6–8. Moreover, the integration domain
S can be safely overapproximated by the geometric realization 𝑇𝜀 of the tube 𝑇 (𝑥,𝑦,𝑢◦, 𝑣◦, 𝜀) in
R2 × R/2𝜋Z, which is the two-dimensional manifold parameterized by:

𝜎 : R/2𝜋Z × [−𝜀, 𝜀] −→ 𝑇𝜀

(𝑡, 𝑠) ↦−→
©­­«
𝑥 (𝑡) + 𝑠 𝑢◦ (𝑡)
𝑦 (𝑡) + 𝑠 𝑣◦ (𝑡)

𝑡

ª®®¬ .
Hence, the difference ℑ(ℎ) − 𝐼𝑠 is bounded by:

|ℑ(ℎ) − 𝐼𝑠 | ⩽ 𝐶

∫
T𝜀
|d𝑥 ∧ d𝑦 |

= 𝐶

∫ 2𝜋

0

∫ 𝜀

−𝜀

���� �����𝑥 ′ (𝑡) 𝑢◦ (𝑡)
𝑦′ (𝑡) 𝑣◦ (𝑡)

����� + 𝑠
�����𝑢◦′ (𝑡) 𝑢◦ (𝑡)
𝑣◦′ (𝑡) 𝑣◦ (𝑡)

����� ���� d𝑠 d𝑡

⩽ 2𝜋𝜀 (2𝐵1 + 𝜀𝐵2)𝐶 = 𝛿,

with 𝐵1 ⩾ sup
0⩽𝑡⩽2𝜋

���� �����𝑥 ′ (𝑡) 𝑢◦ (𝑡)
𝑦′ (𝑡) 𝑣◦ (𝑡)

����� ���� and 𝐵2 ⩾ sup
0⩽𝑡⩽2𝜋

���� �����𝑢◦′ (𝑡) 𝑢◦ (𝑡)
𝑣◦′ (𝑡) 𝑣◦ (𝑡)

����� ����,
computed in lines 9 and 10. Hence, ℑ(ℎ) = 𝐼𝑠 + (ℑ(ℎ) − 𝐼𝑠 ) ∈ 𝑰 𝑠 + [−𝛿, 𝛿] = 𝑰 .
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• Convergence. When 𝑁 is large enough, (𝑥,𝑦) is sufficiently close to Γ(ℎ), and since 𝜇 does not
vanish in a neighborhood of this oval, all the functions involved in the computation of 𝑰 𝑠 (lines 3–5)
are analytic; hence the diameter of this interval tends exponentially fast to 0 w.r.t. 𝑁 .

The same arguments hold for the computation of Stokes’ error bound 𝛿 in lines 6–11. Note that
𝐵1, 𝐵2 and 𝐶 are bounded since they converge to the corresponding ∥ · ∥ℓ1 norms with (𝑥,𝑦) and
(𝑢◦, 𝑣◦) replaced by (𝑥#, 𝑦#) and ∇𝐻 (𝑥◦,𝑦◦ )

∥∇𝐻 (𝑥◦,𝑦◦ ) ∥2 , respectively. Since 𝜀 tends to 0 exponentially fast w.r.t.
𝑁 according to Proposition 4.1, so does 𝛿 (line 11), and consequently the total diameter of 𝑰 in line 12.
• Complexity. The asymptotic complexity w.r.t. the globally set RTA degree 𝑁 is determined by the
FFT𝑁 /IFFT𝑁 routines used for TP/RTA multiplications and divisions. □

Now we state our main algorithm AbIntValid and our main theorem, which is a straightforward
consequence of Propositions 3.1, 3.5, 4.1 and 5.1.

Algorithm 6 AbIntValid(𝐻,ℎ, Σ, 𝑃,𝑄, 𝜇, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝜀0, 𝑥𝑟 , 𝑦𝑟 , 𝜍, 𝑁0, 𝑁 )
Input: Potential 𝐻 , level ℎ, transversal Σ, 𝑃,𝑄, 𝜇 as in Problem 1.1, (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ) ∈ R2, 𝜀0 > 0,
(𝑥𝑟 , 𝑦𝑟 ) ∈ R2, 𝜍 = ±1, 𝑁0 ∈ N and 𝑁 ⩾ 𝑁0

Output: interval enclosure 𝑰 of ℑ(ℎ)

1: (𝑥◦, 𝑦◦) ← OvalApproxInit(𝐻, Σ, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝑁0)
2: (𝑢◦, 𝑣◦), 𝑠 ← OvalApproxRefine(𝐻,ℎ, 𝑥◦, 𝑦◦, 𝑁 )
3: 𝜀 ← OvalValid(𝐻,ℎ, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝜀0, 𝑥𝑟 , 𝑦𝑟 , 𝜍, 𝑥

◦, 𝑦◦, 𝑢◦, 𝑣◦, 𝑠, 𝑁 )
4: return 𝑰 ← AbIntValidQuad(𝑃,𝑄, 𝜇, 𝑥◦, 𝑦◦, 𝑢◦, 𝑣◦, 𝑠, 𝜀, 𝑁 )

Theorem 5.2. Let 𝐻, 𝑃,𝑄, 𝜇 be as in Problem 1.1, ℎ be a regular level value on a transversal Σ,
the ball of center (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 ) and radius 𝜀0 contain a unique point in 𝐻−1 (ℎ) ∩ Σ, the point (𝑥𝑟 , 𝑦𝑟 ) be
in the interior of the oval Γ(ℎ), and 𝜍 ∈ {−1, 1} be the winding number of Γ(ℎ) w.r.t. (𝑥𝑟 , 𝑦𝑟 ) in the
orientation prescribed by the Hamiltonian. Then for a sufficiently large degree 𝑁0 (depending on the
preceding input data but not on the target accuracy), as the approximation degree 𝑁 →∞, Algorithm
AbIntValid(𝐻,ℎ, Σ, 𝑃,𝑄, 𝜇, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝜀0, 𝑥𝑟 , 𝑦𝑟 , 𝜍, 𝑁0, 𝑁 ) never fails and returns an interval enclosure
𝑰 of ℑ(ℎ) in 𝑂 (𝑁 log𝑁 ) arithmetic operations. The diameter of 𝑰 tends to 0 exponentially fast, i.e.,
there exists 𝜅 > 1 depending on 𝐻,ℎ, Σ, 𝑃,𝑄, 𝜇, 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝜀0, 𝑥𝑟 , 𝑦𝑟 , 𝜍, 𝑁0 such that diam(𝑰 ) = 𝑂 (𝜅−𝑁 ).

6 IMPLEMENTATION DETAILS AND CONCURRENT APPROACHES
We now present the Julia implementation of our method and review concurrent approaches. The
repositories for our code are available from https://gitlab.inria.fr/abintvalid.

6.1 A brief overview of our Julia implementation
Two main reasons motivating our choice of the Julia language for the prototype implementation
accompanying this article are: the convenience of the interactive mode for experimenting, with
performances close to compiled languages such as C; and the existing libraries for numerical computing,
notably approximations with Fourier series. We developed two Julia packages: RigorousFourier.jl
to provide RTA data structures and operations used throughout this article, and AbelianIntegral.jl
to implement Algorithm AbIntValid and its subroutines.

RigorousFourier.jl (v.0.0.1). We built this package on top of the existing ApproxFun.jl
package12 which provides a very modular framework to approximate and manipulate functions in

12https://juliaapproximation.github.io/ApproxFun.jl/latest/
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various bases, including Fourier: A degree 𝑁 TP is stored as the length 2𝑁 +1 vector of its coefficients
represented by floating-point numbers of arbitrary precision (the BigFloat type in Julia is a wrapper
for the standard GNU MPFR C library13). Since this data structure is parameterized by the type of the
coefficients, TPs can also be defined with interval coefficients14. Therefore, in RigorousFourier.jl,
RTAs are implemented as pairs made up of a TP with interval coefficients together with a floating-
point error bound. Operations on them, described in Section 2, are implemented using interval
operations on the interval coefficients, and floating-point operations with the suitable rounding mode
activated for the error component. Finally, a global approximation degree 𝑁 is set by the user so that
TPs and RTAs are automatically truncated to degree 𝑁 after each operation. Note that the degree
𝑁 ′ = 2⌈log2 (𝑁 ) ⌉ ⩾ 𝑁 is used internally for FFT based operations (such as multiplication) for the sake
of efficiency.

Remark 6.1. Using floating-point coefficients for TPs 𝑓 adds rounding errors to the approximation
error w.r.t. to the represented functions 𝑓 . Similarly, using floating-point interval coefficients for
RTAs 𝒇 enlarges the set of functions contained in 𝒇 , due to the growth of the interval widths. However,
it can be easily proved that with 𝑝 ≈ 𝑁 bits for the underlying floating-point arithmetic, the total
contribution of rounding errors in the evaluation of a fixed expression involving TPs or RTAs and
basic operations (addition, subtraction, coefficientwise multiplication, integration, etc.) of Section 2.2
is bounded by 𝑂 (𝑁 𝑐2−𝑁 ) for some 𝑐 > 0. Therefore, these errors will not affect the convergence
result of Theorem 5.2.

The next remark concerns FFT-based operations: interpolation, fast multiplication, division,
composition, etc.

Remark 6.2. Directly using an FFT scheme on intervals rather than floating-point numbers may
lead to gross overestimations. Some works addressed the use of FFT for convolutions in a rigorous
setting with a focus on several related issues (e.g., aliasing errors [Cyranka 2014; Lessard 2018],
overestimation of tail coefficients [Lessard 2018], wrapping effect when input coefficients are given
as large intervals [Liu and Kreinovich 2010]). However, the intrinsic growth of the intervals during
the execution of the FFT algorithm remains an open and insufficiently documented problem in the
literature (see e.g., [Cyranka 2014, §3.4]). We currently propose two approaches to alleviate this
issue when performing fast and rigorous RTA multiplication:
(𝑎) An efficient and numerically stable way is to first “flatten” RTAs (i.e., interval coefficients

are shrunk to their floating-point midpoint, with the error component updated accordingly),
then to apply a floating-point FFT scheme, and finally to update the error component with
known rigorous estimates on the resulting rounding errors (see e.g., [Brisebarre et al. 2020]).
Using 𝑝 ≈ 𝑁 bits of precision, the claimed bounds are in𝑂 (𝑁 22−𝑁 ), which, again, does not
affect the convergence result of Theorem 5.2.
In our current prototype implementation, though, this last step is still missing, because
adapting these error estimates to the precise FFT scheme used in ApproxFun.jl requires
some additional work.

(𝑏) A more direct approach is to apply an interval FFT scheme on the flattened coefficients.
Although quite simple, this method may generate larger error bounds and leads to an
overhead factor of roughly 5 to 8 in timings compared to method (𝑎). We however also
provide the timings for this method (𝑏) since it is the only fully rigorous one in our prototype
code.

13https://www.mpfr.org/
14Intervals are provided by IntervalArithmetic.jl, https://juliaintervals.github.io/IntervalArithmetic.jl/latest/intro/.
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AbelianIntegral.jl (v.0.0.1). In this package, we implemented all routines related to the
evaluation of Abelian integrals, described in Sections 3 to 5. Its main dependencies are:

• the TypedPolynomials.jl package15 for multivariate polynomials used in the data
structures representing integrable systems, oval families and perturbations;
• the DifferentialEquations.jl package16 that provides a numerical ODE solver to

instantiate the DSolve routine used by Algorithm OvalApproxInit to compute the initial
guess (𝑥◦, 𝑦◦). As of today, it uses by default a Tsitouras 5/4 Runge-Kutta method with 4th
order interpolant [Tsitouras 2011]. This package also offers event detection features, which
we use to end the integration when the first return onto the transversal Σ is detected. The
resulting implementation of DSolve is thus compliant with Assumption 3.2.

Remark 6.3. Since Assumption 3.2 is satisfied in our implementation, and considering the rounding
error estimates given in Remarks 6.1 and 6.2 (assuming option (𝑎)), the convergence results of the
preceding sections in 𝑂 (𝜅−𝑁 ) for some 𝜅 ∈ (1, 2) still hold for the floating-point implementation of
AbIntValid. Combining this with the bit complexity of𝑂 (𝑁 log𝑁 ) for arithmetic operations on 𝑁 -bit
floating-point numbers [Harvey and van der Hoeven 2021], a refined version of Theorem 5.2 says
that Algorithm AbIntValid, using degree 𝑁 TPs/RTAs and floating-point arithmetic with 𝑁 bits of
precision (neglecting considerations about the exponent range), computes a rigorous enclosure of
ℑ(ℎ) with 𝑂 (𝑁 ) bits of accuracy in 𝑂 (𝑁 2 log2 𝑁 ) bit operations.

6.2 Concurrent approaches and implementations
Despite the constraint of keeping the mathematical background of the validation routine as minimal as
possible to ease the future formal proof implementation, our algorithm remains sufficiently efficient
for the rigorous high precision evaluation of Abelian integrals. Timings are compared with the
following available software:

• The subdivision algorithm [Johnson and Tucker 2011], by one of the authors of this article,
is, to our knowledge, the only fully algorithmic work dedicated to the rigorous evaluation
of Abelian integrals. The integration domain (the interior of the oval, by using the Green
formula) is safely approximated using boxes. Such a strategy would be a natural candidate
for a formal proof implementation. However, contrary to the exponential convergence of
our method, this routine has only finite order, which makes it unsuitable for high precision
evaluation.
• The CAPD library, developed in C++, is well established among the community of computer

assisted proofs in dynamical systems, both for its efficiency and reliability. Trajectories are
rigorously computed using various higher order methods, including Taylor forms [Neumaier
2003]. Our strategy to evaluate an Abelian integral using CAPD is to augment the plane
(𝑥,𝑦) with a third dimension 𝐼 (the integral), and then add a third component to the vector
field, representing ¤𝐼 , which is equal to the integrand of (1.1), where d𝑥 and d𝑦 are replaced
by the values of ¤𝑥 and ¤𝑦 given by the first two components. However, implementing such
a method in Coq would require significant work to formalize some theory of differential
equations (e.g., the Picard-Lindelöf theorem) and a rigorous ODE solver.
• The Arb library17 [Johansson 2017], developed in C, is a general purpose rigorous numerics

library providing extremely efficient basic routines, including one for arbitrary-precision
numerical integration with rigorous error bounds [Johansson 2018]. Although it cannot
rigorously approximate general algebraic functions yet (in order to approximate the oval),

15https://github.com/JuliaAlgebra/TypedPolynomials.jl.
16https://diffeq.sciml.ai/v2.0/
17https://arblib.org/
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we used it, as a SageMath18 external package, for the first example of Section 7 where
explicit parameterizations can be used. In this case, timings easily outperform our method
and CAPD.

We also wish to mention [Lairez et al. 2019]. This approach should be quite effective to address
Problem 1.1 but we did not include it in our comparisons due to the following two issues: as of today,
there is no ready-to-use implementation and, overall, the algorithms rely on tools that are currently
out of reach for the proof assistant Coq.

7 WORKED EXAMPLES, DISCUSSION AND CONCLUSION
We now apply our algorithm on two problems regarding the isolation of limit cycles in near-integrable
polynomial planar vector fields:

• The first example (Section 7.1) is an integrable quartic system introduced in [Johnson 2011]
to claimH(4) ⩾ 26. Unfortunately, an implementation error led to incorrect evaluation of
the Abelian integrals. An analysis led by the authors of this article (see [Bréhard 2011, Chap.
6]) showed that 24 limit cycles could still be obtained from this example. The particular
form of the potential function 𝐻 makes it possible to divide the ovals into arcs 𝑥 ↦→ 𝑦 (𝑥)
and 𝑦 ↦→ 𝑥 (𝑦) with simple formulas, so that ℑ(ℎ) can easily be computed as a classical
integral over a segment of R with an explicit integrand.
• The second example (Section 7.2) is a cubic Hamiltonian system used in [Li et al. 2009] to

demonstrateZ(3) ⩾ 13. Contrary to our first example, here the ovals of the unperturbed
system cannot be easily parameterized using explicit formulas. Therefore, the evaluation of
the Abelian integrals necessarily requires a method working on the implicit representation
of the ovals.

The tests were executed on an Intel i7-6600U 2.60GHz CPU with a 64-bit Linux-based system.

7.1 Johnson’s symmetric quartic system revisited
In [Johnson 2011], T. Johnson constructed a perturbed quartic pseudo-Hamiltonian vector field of the
form: {

¤𝑥 = −4𝑦2 (𝑦2 − 𝑌0),
¤𝑦 = 4𝑥𝑦 (𝑥2 − 𝑋0) + 𝜀𝑔(𝑥,𝑦),

(7.1)

where 𝑋0 =
9
10 , 𝑌0 =

11
10 , and 𝑔 is a degree 4 perturbation,

𝑔(𝑥,𝑦) = 𝛼00 + 𝛼20𝑥
2 + 𝛼22𝑥

2𝑦2 + 𝛼40𝑥
4 + 𝛼04𝑦

4, (7.2)
with well-chosen coefficients 𝛼𝑖 𝑗 . Using a rigorous validation integration routine, he claimed to prove
the existence of 26 limit cycles, thus surpassing the previously known recordH(4) ⩾ 22 [Christopher
and Li 2007]. Unfortunately, a bug in his implementation led him to observe more zeros in the
Abelian integral than what actually exists. In [Bréhard 2011, Chap. 6], the authors of this article
however showed that by using different values for the coefficients 𝛼𝑖 𝑗 , one can prove the following
Theorem establishingH(4) ⩾ 2419.

Theorem 7.1. The quartic system (7.1) with 𝑋0 = 9
10 , 𝑌0 = 11

10 , and the degree 4 perturbation 𝑔

defined as in (7.2) with coefficients:
𝛼00 = −0.78622148667854837664, 𝛼20 = 0.87723523612653436051, 𝛼22 = 1,
𝛼40 = 0.23742713894293038223, 𝛼04 = −0.21823846173078863753,

18https://www.sagemath.org/
19In the meantime, Prohens and Torregrosa [Prohens and Torregrosa 2019] showed H(4) ⩾ 28 by a different kind of
computer-aided proof (and for a different system).
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has at least 24 limit cycles.

A particularity of the potential function 𝐻 associated to this system is that the ovals can be
parameterized explicitly using arcs 𝑥 (𝑦) and 𝑦 (𝑥) (see Section 7.1.1 below). This was the strategy
adopted in [Johnson 2011] and [Bréhard 2011, Chap. 6] for the rigorous evaluation of the Abelian
integral. In Section 7.1.2, we compare our approach to the other methods described above. Finally, in
Section 7.1.3, we redo the computations using the algorithm presented in this article (which does not
require explicit parameterizations), which gives a rigorous proof of Theorem 7.1.

7.1.1 Potential function, ovals and symmetries. The quartic system (7.1) admits the following
potential function:

𝐻 (𝑥,𝑦) = (𝑥2 − 𝑋0)2 + (𝑦2 − 𝑌0)2, (7.3)

together with the rescaling factor 𝜇 (𝑥,𝑦) = 𝑦.
The level set associated to the parameter ℎ ⩾ 0, represented in the (𝑥2, 𝑦2) plane, is the portion of

the circle of center (𝑋0, 𝑌0) and radius
√
ℎ located in the positive quadrant (see Figure 1a). In the

(𝑥,𝑦) plane, this corresponds to the ovals depicted in Figure 1b. Only those not intersecting the 𝑥-axis
(over which 𝜇 vanishes) must be considered. We call them small and big ovals, respectively:

• When ℎ ∈ (0, 𝑋 2
0 ), the circle in the (𝑥2, 𝑦2)-plane entirely lies in the positive quadrant. In

the (𝑥,𝑦) plane, this results into four symmetric small ovals:

Γ++ (ℎ) = 𝐻−1 (ℎ) ∩ R⩾0 × R⩾0, Γ+− (ℎ) = 𝐻−1 (ℎ) ∩ R⩾0 × R⩽0,

Γ−+ (ℎ) = 𝐻−1 (ℎ) ∩ R⩽0 × R⩾0, Γ−− (ℎ) = 𝐻−1 (ℎ) ∩ R⩽0 × R⩽0 .

• When ℎ ∈ (𝑋 2
0 , 𝑌

2
0 ), a portion of this circle in the (𝑥2, 𝑦2)-plane crosses the 𝑦-axis, yielding

two symmetric big ovals:

Γ+ (ℎ) = 𝐻−1 (ℎ) ∩ R × R⩾0, Γ− (ℎ) = 𝐻−1 (ℎ) ∩ R × R⩽0.

In what follows, the notation Γ(ℎ) stands for the small oval Γ++ (ℎ) when ℎ ∈ (0, 𝑋 2
0 ), and for the

big oval Γ+ (ℎ) when ℎ ∈ (𝑋 2
0 , 𝑌

2
0 ). The corresponding Abelian integral is:

ℑ(ℎ) = −
∫
Γ (ℎ)

𝑔(𝑥,𝑦)
𝑦

d𝑥 .

By symmetry and the fact that 𝑔(𝑥,𝑦) contains only even powers of 𝑥 and 𝑦, it is clear that the Abelian
integrals taken along the other ovals of 𝐻−1 (ℎ) are equal, up to the sign.

Due to the very specific form of the potential function 𝐻 in (7.3), we can divide the ovals into
four arcs 𝑥 ↦→ 𝑦up (𝑥), 𝑥 ↦→ 𝑦down (𝑥), 𝑦 ↦→ 𝑥left (𝑦) and 𝑦 ↦→ 𝑥right (𝑦), parameterized by explicit
algebraic functions involving square roots only (see [Bréhard 2011, §6.2.3]). Therefore, explicit
rigorous quadrature routines, e.g., the one provided by Arb, can be used to address this example.

7.1.2 Timings. In Table 1, we present the execution times of our implementation and its three
alternatives. The timings obtained with our method are comparable to those of the reference CAPD
implementation, which is very encouraging for a future formal proof implementation in Coq.

Concerning the implementations of [Johnson 2011] and in Arb/Sage, they both rely on an explicit
parameterization of the ovals, which is possible only due to the very specific form of the potential
function. While Arb/Sage exhibits remarkable timings due to the particularly efficient implementation
of this library, the code of [Johnson 2011] is limited by the binary64 (double precision) format and
the finite order quadrature used to compute ℑ(ℎ).
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Fig. 1. Level curves of the potential function 𝐻

our method other methods

𝑝 𝑁 (𝑎) (𝑏) CAPD [Johnson 2011] Arb/Sage

4 55 0.32 1.6 0.44 7.9 0.012
6 70 0.59 3.3 0.54 19.0 0.013
8 100 0.60 4.8 0.67 49.4 0.014

16 150 1.5 9.0 2.0 — 0.018
24 225 1.5 9.1 2.2 — 0.021
32 275 3.8 18.7 3.6 — 0.031
48 425 3.8 18.9 6.4 — 0.040
64 570 8.0 42.1 11.1 — 0.043
96 870 9.4 46.1 23.8 — 0.078

128 1165 18.8 96.2 41.7 — 0.084
Table 1. Timings in seconds to rigorously evaluate ℑ(0.25) associated to (7.1) with relative error at most 10−𝑝 ,
using our method with degree 𝑁 RTAs and floating-point FFT (𝑎) or interval FFT (𝑏) for RTA multiplication
(see Remark 6.2), and other software: the CAPD library, the original code of [Johnson 2011] and the Arb library.

7.1.3 Computer-assisted proof ofH(4) ⩾ 24. In Table 2, we compute rigorous interval enclosures
𝑰𝑁 for ℑ(ℎ), for specific values of ℎ, using our algorithm with RTAs of degree 𝑁 as small as possible,
as long as the resulting interval guarantees the sign of ℑ(ℎ). The existence of sufficiently many simple
zeros needed to prove Theorem 7.1 results from the obtained sign alternation. Figures 2 and 3 provide
a graphical representation of the sign alternations on small and big ovals.
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ovals 𝑟 ℎ 𝑁 𝑰𝑁 𝑰 512 sign(ℑ(ℎ))

small 0.5 0.25 17 [3.5963e-5, 9.6953e-5] [6.6457e-5, 6.6458e-5] +

0.78 0.6084 37 [-1.3730e-4, -1.6580e-5] [-7.6939e-5, -7.6938e-5] −

0.88 0.7744 93 [1.6407e-9, 3.1821e-8] [1.6730e-8, 1.6731e-8] +

0.89 0.7921 100 [-3.8327e-8, -1.1066e-9] [-1.9717e-8, -1.9716e-8] −

0.895 0.801025 102 [9.5936e-10, 1.1267e-07] [5.6812e-8, 5.6813e-8] +

0.8987 0.80766169 111 [-5.1962e-7, -5.2103e-8] [-2.8586e-7, -2.8585e-7] −

big 0.901 0.811801 197 [-1.2620e-5, -3.4042e-7] [-6.4798e-6, -6.4797e-6] −

0.93 0.8649 128 [2.0334e-5, 6.2143e-4] [3.2088e-4, 3.2089e-4] +

0.95 0.9025 140 [-1.9667e-4, -7.0461e-6] [-1.0186e-4, -1.0185e-4] −

Table 2. Rigorous evaluation of ℑ(ℎ) with our algorithm and resulting sign alternations on small and big ovals.
Computations are carried out with 256 bits of floating-point precision and the smallest degree 𝑁 for RTAs such
that the rigorous enclosure 𝑰𝑁 guarantees the sign of ℑ(ℎ). Tighter enclosures 𝑰 512 using a high degree 512 are
also provided.

Fig. 2. Rigorously computed interval enclosures of ℑ(ℎ) on small ovals, for ℎ ∈
{0.25, 0.6084, 0.7744, 0.7921, 0.801025, 0.80766169}, proving the existence of 5 zeros. The right plot is
a zoom of the blue box in the left plot.

Fig. 3. Rigorously computed interval enclosures of ℑ(ℎ) on big ovals, for ℎ ∈ {0.811801, 0.8649, 0.9025},
proving the existence of 2 zeros. The right plot is a zoom of the green box in the left plot.
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Proof of Theorem 7.1. Let ℎ𝑖 (1 ⩽ 𝑖 ⩽ 9) denote the 9 values of ℎ in Table 2, taken in increasing
order. The rigorous intervals enclosures given in this table are sufficient to guarantee the sign of
ℑ(ℎ𝑖 ). According to Theorem 1.3, there exists for each ℎ𝑖 , an 𝜀𝑖 > 0 such that 𝑑 (ℎ𝑖 , 𝜀) and ℑ(ℎ𝑖 )
share the same (strict) sign whenever 0 < 𝜀 ⩽ 𝜀𝑖 . Hence, with 𝜀∗ = min0⩽𝑖⩽9 𝜀𝑖 > 0, we have that
the displacement function ℎ ↦→ 𝑑 (ℎ, 𝜀) alternates sign at least 5 times on (0, 𝑋 2

0 ) and at least 2 times
on (𝑋 2

0 , 𝑌
2
0 ), for each fixed 0 < 𝜀 ⩽ 𝜀∗, giving respectively at least 5 and 2 isolated zeros in these

intervals. Using the symmetries on the four small ovals and the two big ovals, we deduce the existence
of at least 5 × 4 + 2 × 2 = 24 limit cycles in the quartic system (7.1) whenever 0 < 𝜀 ⩽ 𝜀∗. □

7.2 Li, Liu and Yang’s cubic system with 13 limit cycles

Fig. 4. Ovals of potential function 𝐻 (7.5), with 𝜆 = 0.7 and 𝜅 = 1.1.

In [Li et al. 2009], C. Li, C. Liu and J. Yang showed thatZ(3) ⩾ 13 using the following perturbed
cubic Hamiltonian system:

{
¤𝑥 = −𝑦3 + 𝜅2𝑦,

¤𝑦 = 𝑥3 + (1 − 𝜆)𝑥2 − 𝜆𝑥 + 𝜀𝑦 (𝛼1 + 𝛼2𝑥 + 𝛼3𝑥
2 + 𝛼4𝑦

2),
(7.4)

, Vol. 1, No. 1, Article . Publication date: December 2023.



Efficient and Validated Numerical Evaluation of Abelian Integrals 29

with well-chosen20 0 < 𝜆 < 1, 𝜅 > 1, and coefficients 𝛼1, 𝛼2, 𝛼3, 𝛼4 ∈ R for the 𝜀-small perturbation.
The critical points of the corresponding first integral,

𝐻 (𝑥,𝑦) = 𝑥4

4
+ 1 − 𝜆

3
𝑥3 − 𝜆

2
𝑥2︸                    ︷︷                    ︸

𝐹 (𝑥 )

+𝑦
4

4
− 𝜅2𝑦2

2
, (7.5)

depicted in Figure 4, are ranked according to their level value:

𝐻 (𝑃3) < 𝐻 (𝑃1) < 𝐻 (𝑃2) < 𝐻 (𝑃6) < 𝐻 (𝑃4) < 𝐻 (𝑃5).

= = = =

𝐻 (𝑃9) 𝐻 (𝑃7) 𝐻 (𝑃8) 0

The resulting families of ovals can be considered as a (horizontally) dissymmeterized version of
the ovals of [Johnson 2011] discussed in the previous section: Γ2 (and symmetrically Γ5) when ℎ ∈
(𝐻 (𝑃3), 𝐻 (𝑃2)), Γ1 (and sym. Γ4) whenℎ ∈ (𝐻 (𝑃1), 𝐻 (𝑃2)), Γ3 (and sym. Γ6) whenℎ ∈ (𝐻 (𝑃2), 𝐻 (𝑃6)),
Γ8 when ℎ ∈ (𝐻 (𝑃6), 𝐻 (𝑃4)), Γ9 when ℎ ∈ (𝐻 (𝑃4), 𝐻 (𝑃5)), and Γ7 when ℎ > 𝐻 (𝑃4).

The Abelian integrals under consideration are:

ℑ𝑗 (ℎ) =
∫
Γ𝑗 (ℎ)

𝑦 (𝛼1 + 𝛼2𝑥 + 𝛼3𝑥
2 + 𝛼4𝑦

2) d𝑥, for 1 ⩽ 𝑗 ⩽ 9.

In Section 7.2.1, we first benchmark our algorithm on the more complex geometry of these ovals
and compare the results with competing software. After that, we show in Section 7.2.2 how our
approach based on numerical experiments and a posteriori validation provides an easy-to-check
instance ofZ(3) ⩾ 13 with effective values for the coefficients 𝜆, 𝜅, 𝛼1, 𝛼2, 𝛼3, 𝛼4 in System (7.4).

Theorem 7.2. Consider System (7.4) with parameters:

𝜆 = 0.17, 𝛼1 = 8.808855593098, 𝛼3 = −2.599597169555 · 10−5,

𝜅 = 20, 𝛼2 = −2.078279433211 · 10−5, 𝛼4 = −7.340712733831 · 10−3.

Then, over their respective interval of definition:
• ℑ2 (and symmetrically ℑ5) has at least one simple zero;
• ℑ3 (and symmetrically ℑ6) has at least 5 simple zeros;
• ℑ7 has at least one simple zero.

As a result, the cubic Hamiltonian system (7.4) has at least 13 limit cycles.

Such an approach complements the detailed but harder-to-check existence proof for such coefficients
in [Li et al. 2009], based on the careful analysis of limit cycles for Liénard systems by F. Dumortier
and C. Li [Dumortier and Li 2003].

7.2.1 Timings. We benchmark our implementation on ovals Γ3 (non symmetric, non convex) and
Γ8 (since it is not even star-shaped). We set 𝜆 = 7

10 and 𝜅 = 11
10 (the same values were used to plot

Figure 4), and 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1. Let 𝑄1 (resp. 𝑄2) denote the topmost intersection of the
homoclinic connection of 𝑃6 (resp. 𝑃4) with the 𝑦-axis. Then, for Γ3, we consider the periodic orbit
starting from 1

10𝑃2 + 9
10𝑄1, and for Γ8, we take as initial point 1

2𝑄1 + 1
2𝑄2 (this corresponds exactly to

the ovals Γ3 and Γ8 depicted in Figure 4).
The execution times in terms of the target relative accuracy for the Abelian integral are given

in Table 3. They show that our method is particularly well-suited for high-precision evaluation of
Abelian integrals, no matter the geometry of the oval. Note however that CAPD still performs better

20Note that it is assumed in [Li et al. 2009] that 𝜅 > 10.
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for low precision (up to standard double precision), probably due to its time interval subdivision
strategy that we have not implemented yet in our method.

Finally, we also tried this example with the algorithm of [Johnson and Tucker 2011]. The resulting
timings were not included in Table 3 since they already exceed 5 minutes for a targeted 4 digit
accuracy. The reason is that the underlying oval subdivision strategy converges too slowly to provide
more than a few digits in a reasonable time.

oval Γ3 oval Γ8

𝑝 𝑁 (𝑎) (𝑏) CAPD 𝑝 𝑁 (𝑎) (𝑏) CAPD

4 100 0.45 2.2 0.25 4 220 0.90 4.6 0.51
6 125 0.46 2.2 0.38 6 280 1.7 11.6 0.83
8 170 1.0 5.8 0.54 8 385 1.8 11.7 1.2

16 400 2.1 11.6 1.7 16 860 4.4 23.7 3.8
24 625 4.3 23.5 4.1 24 1330 8.9 47.5 9.8
32 855 5.0 25.5 8.3 32 1805 10.8 52.7 25.3
48 1310 11.0 52.0 22.1 48 2750 22.3 122.6 64.5
64 1765 11.1 55.4 46.2 64 3695 22.8 136.2 139.5
96 2675 27.4 136.3 158.5 96 5585 59.7 295.8 485.3

128 3580 30.0 137.1 361.6 128 7475 60.7 298.8 1084.0
Table 3. Timings in seconds to rigorously evaluate an Abelian integral along ovals from the Γ3 and Γ8 family
with relative error at most 10−𝑝 , using our implementation with degree 𝑁 RTAs and floating-point FFT (𝑎) or
interval FFT (𝑏) for RTA multiplication (see Remark 6.2), and CAPD.

(a) Ovals of potential function 𝐻 (7.6).
(b) Wronskian 𝑊3 of system {ℑ̃3𝑖 }1⩽𝑖⩽4 (7.7) and a
linear combination ℑ̃3 with 𝜆 = 0.17 and appropriate
𝛽𝑖 realizing 5 zeros {𝑟𝑖 }1⩽𝑖⩽5.

Fig. 5. Obtaining numerical 𝛽𝑖 realizing 5 zeros for ℑ̃3 in Dumortier and Li’s system [Dumortier and Li 2003].

7.2.2 Computer-assisted proof ofZ(3) ⩾ 13. Before proving Theorem 7.2, we present a heuristic
process, directly inspired by [Li et al. 2009], that yields potential relevant parameters. To do so, we
focus on ℑ2 and ℑ3 (once the parameters fixed, the result on ℑ7 will be straightforward to establish
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Fig. 6. Abelian integrals ℑ2, ℑ3, ℑ7 in Li, Liu and Yang’s system (7.4) with the parameters of Theorem 7.2,
having 1, 5 and 1 zeros, respectively.

oval 𝑟 𝑁 ℑ(ℎ) 𝛿 sign

Γ2 0.88 2000 [-9.54e-10, -9.53e-10] 5.45e-22 −

0.92 2000 [5.55e-10, 5.56e-10] 3.92e-21 +

Γ3 0.0002 8000 [-5.21e-13, -5.20e-13] 4.16e-22 −

0.001 8000 [8.45e-13, 8.46e-13] 3.24e-26 +

0.0015 4000 [-2.16e-13, -2.15e-13] 5.11e-21 −

0.0022 4000 [3.52e-13, 3.53e-13] 2.27e-22 +

0.004 4000 [-6.13e-12, -6.12e-12] 6.76e-25 −

0.0045 2000 [2.54e-12, 2.55e-12] 1.86e-20 +

Γ7 25 100 [2718.12, 2718.13] 3.63e-6 +

30 100 [-3419.83, -3419.82] 6.00e-7 −

Table 4. Rigorous evaluations of ℑ2 (ℎ), ℑ3 (ℎ) and ℑ7 (ℎ) with the parameters of Theorem 7.2 using AbIntValid.
The ovals Γ2 (ℎ), Γ3 (ℎ) and Γ7 (ℎ) are parameterized with a variable 𝑟 denoting a position on a transversal, with
ℎ = 𝐻 (−1 + 𝑟, 𝜅), ℎ = 𝐻 (0, 𝜅 + 𝑟 ), and ℎ = 𝐻 (𝑟, 0), respectively. 𝑁 is the degree used for RTAs, and 𝛿 is the
diameter of the computed interval enclosure for ℑ(ℎ).

with our approach). In this case, [Li et al. 2009] uses the change of variable 𝑦 =
𝑦2−𝜅2

2 to obtain a
simpler potential function,

𝐻 (𝑥,𝑦) = 𝑦2 + 𝐹 (𝑥), (7.6)
whose families of ovals Γ̃1, Γ̃2 and Γ̃3 are depicted in Figure 5a. The corresponding Abelian integrals
ℑ̃𝑗 for 1 ⩽ 𝑗 ⩽ 3 are:

ℑ̃𝑗 (ℎ) =

∫
Γ̃𝑗 (ℎ)

𝑦 (𝛽1 + 𝛽2𝑥 + 𝛽3𝑥
2 + 𝛽4𝑦

2) d𝑥 = 𝛽1ℑ̃𝑗1 (ℎ) + 𝛽2ℑ̃𝑗2 (ℎ) + 𝛽3ℑ̃𝑗3 (ℎ) + 𝛽4ℑ̃𝑗4 (ℎ). (7.7)

The authors of [Li et al. 2009] establish, as soon as 𝜅 is large enough, an equivalence between the
numbers of zeros of ℑ2 and ℑ̃2, resp. ℑ3 and ℑ̃3.

Zeros of ℑ̃2 and ℑ̃3. By combining the main existence result of [Dumortier and Li 2003] with some
asymptotic analysis, C. Li, C. Liu and J. Yang prove [Li et al. 2009, Lemma 1] that if 𝜆 is close to a
certain critical value 𝜆∗, then there exist coefficients 𝛽1, 𝛽2, 𝛽3, 𝛽4 such that ℑ̃2 has at least one simple
zero and ℑ̃3 has at least 5 simple zeros. The reason why 5 zeros can be obtained from the 4-term linear
combination ℑ̃3 is that for this critical value 𝜆∗, the Wronskian𝑊3 (ℎ) = det

(
ℑ̃
(𝑖−1)
3𝑗 (ℎ)

)
1⩽𝑖, 𝑗⩽4

has a
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double zero ℎ̃0 = 𝑟 2
0 (see Figure 5b). Then, an appropriate perturbation of 𝜆 around 𝜆∗ creates two

simple zeros for𝑊 (ℎ), from which one hopes to deduce the existence of values for the 𝛽𝑖 realizing 5
zeros21.

In contrast with the non-constructive existence proof in [Li et al. 2009], we confirm this heuristic
in a constructive way, by determining candidate values for 𝜆 and the 𝛽𝑖 purely numerically. To do so,
we compute Chebyshev approximations of the Wronskian 𝑟 ↦→𝑊3 (𝑟 2)22 for several values of 𝜆 and
count the number of zeros. This is done by interpolating the Abelian integrals on a large number of
Chebyshev nodes, with very high precision for each value23. The value 𝜆 = 0.17 is found to fulfill
those requirements, that is 2 zeros ℎ̃1 = 𝑟 2

1 < 𝑟 2
2 = ℎ̃2 for𝑊3 (at least numerically, see Figure 5b), with

𝑟1 and 𝑟2 not too close for better numerical stability.
Now, to obtain values for the 𝛽𝑖 , we fix 𝛽1 = 1, and numerically solve for 𝛽2, 𝛽3 and 𝛽4 the equations

ℑ̃3 (𝑟 2
𝑖 ) = 0 for 𝑟1, 𝑟2 and the midpoint 𝑟3 =

𝑟1+𝑟2
2 . As desired, the numerical plot of the resulting

combination 𝑟 ↦→ ℑ̃3 (𝑟 ) in Figure 5b exhibits 2 additional zeros 𝑟4 and 𝑟5, making a total of 5 zeros
for ℑ̃3. Finally, a numerical plot suggests that ℑ̃2 also has one simple zero.

Zeros of ℑ2, ℑ3 and ℑ7. As claimed by [Li et al. 2009, Lemma 2], by selecting a sufficiently large
parameter 𝜅 > 1 in (7.4) and defining the coefficients 𝛼𝑖 from the 𝛽𝑖 using the following formulas:

𝛼1 =
𝛽1

𝜅5 +
3𝛽4

2𝜅
, 𝛼2 =

𝛽2

𝜅5 , 𝛼3 =
𝛽3

𝜅5 , 𝛼4 = −
𝛽4

2𝜅3 ,

the 5 zeros of ℑ̃3 and the single zero of ℑ̃2 are recovered in ℑ3 and ℑ2. Moreover, with these
coefficients, an additional zero can be found for ℑ7, according to [Li et al. 2009, Lemma 3].

Fixing 𝜅 = 20 (based on some experimenting) leads to the desired number of zeros (see plots in
Figure 6), while being not too large, to avoid numerical issues. For the final values of the 𝛼𝑖 , given in
Theorem 7.2 and used for the computer-assisted proof, no less than 13 digits are necessary in the
decimal truncation to keep the expected number of zeros.

We now conclude with a rigorous numerics based proof of the desired sign alternations of the
Abelian integrals, hence ofZ(3) ⩾ 13.

Proof of Theorem 7.2. We perform rigorous evaluations of Abelian integrals ℑ2, ℑ3 and ℑ7 on the
points given in Table 4 using Algorithm AbIntValid, with the values of 𝜆, 𝜅 and the 𝛼𝑖 given in the
statement of the theorem. By continuity of these three functions, it follows that ℑ2, ℑ3 and ℑ7 have at
least 1, 5 and 1 simple zeros, respectively. Moreover, by the symmetry (𝑥,𝑦) ↦→ (𝑥,−𝑦), ℑ5 and ℑ6
have at least 1 and 5 simple zeros, respectively. Finally, by the same argument used in the proof of
Theorem 7.1 and based on Theorem 1.3 (Poincaré-Pontryagin), we obtain that for sufficiently small
𝜀 > 0, System (7.4) has at least 13 limit cycles. □

From a performance point of view, it is noteworthy that rather large degrees for RTAs are necessary
for ℑ2 and ℑ3 (see Table 4), mainly due to the winding number check in OvalValid since the
denominator in line 22 becomes small when the curve gets close to the point (𝑥𝑟 , 𝑦𝑟 ). Alternative
methods for this should be investigated in the future to avoid this phenomenon.

21Indeed, the case of a single (simple) zero for the Wronskian (together with additional non-vanishing conditions on lower-
dimensional Wronskians of the system) would imply that ℑ̃3 cannot exhibit more than 4 zeros (see [Novaes and Torregrosa
2017, Cor. 1.4]).
22For convenience, we use 𝑟 =

√
ℎ instead of ℎ as the independent variable.

23For this we use a plain floating-point evaluation scheme, adapted from AbIntValid by removing all the rigorous numerics
for more efficiency, since error bounds are not necessary at this stage.
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7.3 Conclusion
We have presented a set of algorithms that makes it possible to evaluate Abelian integrals in a fast and
rigorous way. Next steps are the development of a rigorous FFT following [Brisebarre et al. 2020],
cf. (a) in Remark 6.2, and the formalization in Coq of our method. Our hope is that, in particular, it
will be used in the dynamical system community as a basic brick in the quest for new records for the
H(𝑛) andZ(𝑛) bounds.
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A ALGORITHM ISPOSITIVE: CHECKING POSITIVITY OF RTAS
In rigorous numerics, it is common to determine if a function 𝑓 is positive over a given interval using
interval subdivision and branch and bound techniques [Tucker 2011, Chap. 5.1]. In our case, however,
evaluating RTAs of high degree over non-thin intervals yields extremely large overapproximations,
making this process ineffective for our purpose.

The following routine IsPositive is based on an alternative approach. The RTA 𝒇 = (𝑓 , 𝜀) is
preconditioned by an approximate inverse 𝑔 ≈ 1

𝑓
. If 𝒇 does not vanish, then the product 𝑔𝒇 is likely to

be close to 1, which is measured by the quantity ∥1 − 𝑔𝒇 ∥ℓ1 .

Algorithm 7 IsPositive(𝒇 , 𝑁 )

Input: RTA 𝒇 = (𝑓 , 𝜀) and approximation degree 𝑁

Output: Boolean true or false, with true guaranteeing that 𝑓 > 0 for all 𝑓 ∈ 𝒇

1: 𝑎0 ← constant coefficient of 𝑓
2: if 𝑎0 ⩽ 0 then
3: return false
4: else if Bound(𝒇 − 𝑎0) < 𝑎0 then
5: return true
6: else
7: 𝑔← FFT𝑁 (( 1

𝑓𝑗
)2𝑁𝑗=0), where (𝑓𝑗 )2𝑁𝑗=0 ← IFFT𝑁 (𝑓 )

8: if 𝑔 is well defined and Bound(1 − 𝑔𝒇 ) < 1 then
9: return true

10: else
11: return false
12: end if
13: end if

Lemma A.1. Let 𝒇 = (𝑓 , 𝜀) be an RTA. Then,
(𝑖) For any approximation degree 𝑁 , if IsPositive(𝒇 , 𝑁 ) returns true, then 𝑓 > 0 for all 𝑓 ∈ 𝐶0

2𝜋
represented by 𝒇 .
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(𝑖𝑖) If moreover 𝑓 > 0 and 𝜀 < ∥ 𝑓 −1∥−1
ℓ1 (which implies 𝑓 > 0 for all 𝑓 ∈ 𝒇 ), then there is an 𝑁0

such that IsPositive(𝒇 , 𝑁 ) returns true for all 𝑁 ⩾ 𝑁0.
(𝑖𝑖𝑖) IsPositive(𝒇 , 𝑁 ) runs in 𝑂 (𝑁 ′ log(𝑁 ′)) arithmetic operations, where 𝑁 ′ = max(deg𝒇 , 𝑁 ).

Proof. (𝑖) Soundness. Assume IsPositive(𝒇 , 𝑁 ) returns true. A first possibility is that the
condition in line 4 is true, implying that 𝑎0 > 0 and that any function 𝑓 ∈ 𝒇 can be written as 𝑎0 + ℎ
with ∥ℎ∥∞ < 𝑎0, and is therefore positive. The other possibility (line 8) is that we obtained a 𝑔 such
that for any 𝑓 ∈ 𝒇 , ∥1 −𝑔𝑓 ∥∞ < 1, implying that 𝑓 (𝑡) ≠ 0 for all 𝑡 . By continuity, 𝑓 has constant sign
over R. In particular, this is true for 𝑓 . Since the condition in line 2 was false, i.e., 𝑎0 =

∫ 2𝜋
0 𝑓 d𝑡 > 0,

we get 𝑓 > 0. Finally, since the ball in 𝐶0
2𝜋 denoted by 𝒇 is convex, the same statement 𝑓 > 0 is true

for all 𝑓 ∈ 𝒇 .
(𝑖𝑖) Completeness. Suppose conversely that 𝑓 > 0 and that 𝜀 < ∥ 𝑓 −1∥−1

ℓ1 . In particular, 𝜀 < ∥ 𝑓 −1∥−1
∞ =

min𝑡 ∈R 𝑓 (𝑡), implying that 𝑓 > 0 for all 𝑓 ∈ 𝒇 = (𝑓 , 𝜀). We prove that IsPositive(𝒇 , 𝑁 ) returns true
for 𝑁 sufficiently large.

First, the condition in line 2 is false since 𝑎0 =
∫ 2𝜋

0 𝑓 d𝑡 > 0. Then, the algorithm either returns
true if the condition in line 4 is true, or it computes 𝑔 ← I𝑁 (𝑓 −1) in line 7. Since 1/𝑓 is analytic,
∥𝑔 − 𝑓 −1∥ℓ1 converges to 0 as the approximation degree 𝑁 tends to infinity. Hence,

Bound(1 − 𝑔𝒇 ) = ∥1 − 𝑔𝑓 ∥ℓ1 + 𝜀Bound(𝑔) → 0 + 𝜀∥ 𝑓 −1∥ℓ1 < 1 as 𝑁 →∞.
Therefore, there is an 𝑁0 such that for all 𝑁 ⩾ 𝑁0, the degree 𝑁 TP 𝑔 computed by trigonometric
interpolation makes the condition in line 8 true, so that IsPositive(𝒇 , 𝑁 ) returns true.
(𝑖𝑖𝑖) Complexity. The asymptotic complexity is determined by the FFT𝑁 /IFFT𝑁 routines used for
evaluation on the equispaced grid, interpolation and TP/RTA multiplication. □

B PROOF OF LEMMA 3.4 FOR THE PROJECTED PARAMETERIZATION
Proof. The proof consists of three steps. First, we prove the existence of an analytic function

𝑠 : 𝑈 → R over a neighborhood𝑈 ⊆ R4 of

Γ̂(ℎ) =
{
(𝑥,𝑦,𝑢, 𝑣) ∈ R4 s.t. (𝑥,𝑦) ∈ Γ(ℎ) and (𝑢, 𝑣) = ∇𝐻 (𝑥,𝑦)

∥∇𝐻 (𝑥,𝑦)∥2

}
,

that serves as a shift to project any point (𝑥,𝑦) onto Γ(ℎ) in the direction given by (𝑢, 𝑣). Then, we
prove that over a possibly smaller neighborhood 𝑈 ′ ⊆ 𝑈 of Γ̂(ℎ), the Newton iterations N𝑘

𝑥,𝑦,𝑢,𝑣 (0)
(see Eq. (3.5)) converge quadratically fast to 𝑠 (𝑥,𝑦,𝑢, 𝑣) for all (𝑥,𝑦,𝑢, 𝑣) ∈ 𝑈 ′. Finally, we compose
by 𝑡 ∈ [0, 2𝜋] → (𝑥◦ (𝑡), 𝑦◦ (𝑡)) to complete the proof.
• Analytic projection. Consider the equation:

𝐹 (𝑥,𝑦,𝑢, 𝑣, 𝑠) = 𝐻 (𝑥 + 𝑠𝑢,𝑦 + 𝑠𝑣) − ℎ = 0.

By definition, 𝐹 (𝑥,𝑦,𝑢, 𝑣, 0) = 0 for all (𝑥,𝑦,𝑢, 𝑣) ∈ Γ̂(ℎ). Moreover, the derivative with respect to 𝑠,
𝜕𝐹

𝜕𝑠
(𝑥,𝑦,𝑢, 𝑣, 𝑠) = 𝑢

𝜕𝐻

𝜕𝑥
(𝑥 + 𝑠𝑢,𝑦 + 𝑠𝑣) + 𝑣 𝜕𝐻

𝜕𝑦
(𝑥 + 𝑠𝑢,𝑦 + 𝑠𝑣)

satisfies 𝜕𝐹
𝜕𝑠
(𝑥,𝑦,𝑢, 𝑣, 0) = ∥∇𝐻 (𝑥,𝑦)∥2 > 0 for all (𝑥,𝑦,𝑢, 𝑣) ∈ Γ̂(ℎ), since ℎ is a regular value of

𝐻 . By the analytic implicit function theorem [Cartan 1995, Chap. IV, Prop. 6.1], there exists a
neighborhood𝑈 ⊆ R4 of Γ̂(ℎ), a neighborhood𝑉 ⊆ R5 of Γ̂(ℎ) × {0}, and a unique analytic function
𝑠 : 𝑈 → R such that:

((𝑥,𝑦,𝑢, 𝑣, 𝑠) ∈ 𝑉 ∧ 𝐹 (𝑥,𝑦,𝑢, 𝑣, 𝑠) = 0) ⇔ ((𝑥,𝑦,𝑢, 𝑣) ∈ 𝑈 ∧ 𝑠 = 𝑠 (𝑥,𝑦,𝑢, 𝑣)) .
In particular, 𝑠 (𝑥,𝑦,𝑢, 𝑣) = 0 if and only if (𝑥,𝑦) ∈ Γ(ℎ).
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• Convergence of Newton iterations. Since Γ̂(ℎ) is compact, we may assume (up to restricting the
neighborhoods𝑈 and 𝑉 ) that 𝜕𝐹

𝜕𝑠
(𝑥,𝑦,𝑢, 𝑣, 𝑠) ⩾𝑚1 for some𝑚1 > 0, and | 𝜕2𝐹

𝜕𝑠2 (𝑥,𝑦,𝑢, 𝑣, 𝑠) | ⩽ 𝑀2 for
some 𝑀2 > 0, for all (𝑥,𝑦,𝑢, 𝑣, 𝑠) ∈ 𝑉 . Now for any (𝑥,𝑦,𝑢, 𝑣, 𝑠) ∈ 𝑉 , the classical error analysis of
Newton’s method [Tucker 2011, §5.1.2] yields in our case:

|N𝑥,𝑦,𝑢,𝑣 (𝑠) − 𝑠 (𝑥,𝑦,𝑢, 𝑣) | ⩽
𝑀2

2𝑚1
|𝑠 − 𝑠 (𝑥,𝑦,𝑢, 𝑣) |2.

Therefore, by restricting the neighborhood𝑈 of Γ̂(ℎ) ⊆ 𝑠−1 (0) to:

𝑈 ′ =

{
(𝑥,𝑦,𝑢, 𝑣) ∈ 𝑈 , |𝑠 (𝑥,𝑦,𝑢, 𝑣) | ⩽ 𝑚1

𝑀2

}
,

we deduce that the Newton iterations N𝑘
𝑥,𝑦,𝑢,𝑣 (0) converge quadratically fast to the desired limit

𝑠 (𝑥,𝑦,𝑢, 𝑣):

|N𝑘
𝑥,𝑦,𝑢,𝑣 (0) − 𝑠 (𝑥,𝑦,𝑢, 𝑣) | ⩽

(
𝑀2

2𝑚1
|𝑠 (𝑥,𝑦,𝑢, 𝑣) |

)2𝑘−1
|𝑠 (𝑥,𝑦,𝑢, 𝑣) | ⩽ |𝑠 (𝑥,𝑦,𝑢, 𝑣) |

22𝑘−1
. (B.1)

• Composition with the initial guess. Let us fix 𝜂 > 0 such that any (𝑥◦, 𝑦◦) and (𝑢◦, 𝑣◦) 𝜂-close to
(𝑥∗, 𝑦∗) and ∇𝐻 (𝑥∗,𝑦∗ )

∥∇𝐻 (𝑥∗,𝑦∗ ) ∥2 in (𝐶0
2𝜋 )2 satisfy (𝑥◦ (𝑡), 𝑦◦ (𝑡), 𝑢◦ (𝑡), 𝑣◦ (𝑡)) ∈ 𝑈 ′ for all 𝑡 ∈ [0, 2𝜋]. By the

property of composition of analytic functions, the map 𝑡 ↦→ 𝑠# (𝑡) = 𝑠 (𝑥◦ (𝑡), 𝑦◦ (𝑡), 𝑢◦ (𝑡), 𝑣◦ (𝑡)) is
analytic, and so is (𝑥#, 𝑦#) by Eq. (3.4). Also, by choosing 𝜂 > 0 sufficiently small, we can make
(𝑥#, 𝑦#) sufficiently close to (𝑥∗, 𝑦∗), which ensures that the winding number with respect to a given
point inside Γ(ℎ) remains the same (±1 depending on the orientation). This concludes the proof that
(𝑥#, 𝑦#) is an analytic parameterization of Γ(ℎ) with same orientation as (𝑥∗, 𝑦∗), although not equal
to (𝑥∗, 𝑦∗) in general. Finally, the quadratic convergence of the Newton iteration scheme for any point
(𝑥◦ (𝑡), 𝑦◦ (𝑡)) w.r.t. direction (𝑢◦ (𝑡), 𝑣◦ (𝑡)) follows from the preceding analysis. □

C ALGORITHM NEWTONBALL
In order to make effective the a posteriori validation process presented in Section 2.3, we must be
able to automatically determine a radius 𝑟 and a Lipschitz constant 𝜆 satisfying the hypotheses of
Theorem 2.5. To this aim, given a function 𝑟 ↦→ 𝜆(𝑟 ) providing a guaranteed upper bound for the
Lipschitz constant for the fixed-point operator T over 𝐵(𝜑, 𝑟 ), and an upper bound for the defect
𝑑 ⩾ ∥T (𝜑) − 𝜑 ∥, Algorithm NewtonBall implements a simple bisection method to identify the
smallest zero of 𝑟 ↦→ 𝑓 (𝑟 ) := (1 − 𝜆(𝑟 ))𝑟 − 𝑑. Specifically, it maintains a stack of subintervals
[𝑟−, 𝑟+] to be investigated, each of them satisying 𝑓 (𝑟−) ⩽ 0 . Under the reasonable assumption
that 𝜆(𝑟 ) is an increasing function of 𝑟 , the range of 𝑓 over [𝑟−, 𝑟+] can be overapproximated by
[(1 − 𝜆+)𝑟− − 𝑑, (1 − 𝜆−)𝑟+ − 𝑑] where 𝜆± := 𝜆(𝑟±), thus giving a simple test (line 7) to detect
the possible existence of a zero of 𝑓 in [𝑟−, 𝑟+]. If moreover 𝑓 (𝑟+) ⩾ 0, then [𝑟−, 𝑟+] necessarily
contains a zero, and the stack of remaining intervals is cleared (line 8). When the process successfully
terminates, it returns a pair (𝑟+, 𝜆+) satisfying the hypotheses of Theorem 2.5.

Remark C.1. Algorithm NewtonBall ensures a slightly stronger property than Theorem 2.5,
namely the strict inequality 𝑑 + 𝜆+𝑟+ < 𝑟+. By doing so, we make sure that this inequality remains
valid under small perturbations of 𝜆(𝑟 ), which turns out to be essential in the proof of Proposition 4.1
to guarantee that the unique fixed point is not only continuous, but also analytic.

, Vol. 1, No. 1, Article . Publication date: December 2023.



38 Florent Bréhard, Nicolas Brisebarre, Mioara Joldes, and Warwick Tucker

Algorithm 8 NewtonBall(𝑑, 𝜆)

Input: defect 𝑑 ⩾ ∥T (𝜑) − 𝜑 ∥ and procedure 𝜆 s.t. T is 𝜆(𝑟 )-Lipschitz over 𝐵(𝜑, 𝑟 )
Output: (𝑟+, 𝜆+) s.t. T is 𝜆+-contracting over 𝐵(𝜑, 𝑟+) and 𝑑 + 𝜆+𝑟+ < 𝑟+

1: compute 𝑟max s.t. 𝜆(𝑟max) ≈ 0.5
2: push ((0, 𝜆(0)), (𝑟max, 𝜆(𝑟max))) on a new empty stack 𝑆

⊲ Bisection loop
3: while 𝑆 not empty do
4: ((𝑟−, 𝜆−), (𝑟+, 𝜆+)) ← pop(𝑆)

⊲ When interval subdivision is below user-defined 𝛿𝜆
5: if 𝜆+ − 𝜆− ⩽ 𝛿𝜆 and 𝑑 + 𝜆+𝑟+ < 𝑟+ then
6: return (𝑟+, 𝜆+)

⊲ Check whether interval [𝑟−, 𝑟+] may contain a zero
7: else if 𝜆+ − 𝜆− > 𝛿𝜆 and 𝑑 + 𝜆−𝑟+ < 𝑟+ then
8: if 𝑑 + 𝜆+𝑟+ ⩽ 𝑟+ then clear(𝑆) end if ⊲ [𝑟−, 𝑟+] necessarily contains a zero

⊲ Subdivide [𝑟−, 𝑟+] and push resulting intervals on the stack
9: 𝑟𝑚 ← (𝑟− + 𝑟+)/2

10: 𝜆𝑚 ← 𝜆(𝑟𝑚)
11: push(((𝑟𝑚, 𝜆𝑚), (𝑟+, 𝜆+)), 𝑆)
12: push(((𝑟−, 𝜆−), (𝑟𝑚, 𝜆𝑚)), 𝑆)
13: end if
14: end while
⊲ Empty stack

15: return 𝐹𝐴𝐼𝐿
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