

A Kinetic Modeling Study for the Effect of NOx on Oxymethylene ethers (OMEn, n = 0 and 1) oxidation

Krishna Prasad Shrestha, Binod Raj Giri, Lars Seidel, Aamir Farooq, Fabian

Mauss

To cite this version:

Krishna Prasad Shrestha, Binod Raj Giri, Lars Seidel, Aamir Farooq, Fabian Mauss. A Kinetic Modeling Study for the Effect of NOx on Oxymethylene ethers (OMEn, $n = 0$ and 1) oxidation. 10th European Combustion Meeting, Apr 2021, Naples, Italy. hal-03560985

HAL Id: hal-03560985 <https://hal.science/hal-03560985v1>

Submitted on 7 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License](http://creativecommons.org/licenses/by-nc/4.0/)

A Kinetic Modeling Study for the Effect of NO_x on Oxymethylene ethers (OME_n , $n = 0$ and **1) oxidation**

Krishna Prasad Shrestha*^{,1}, Binod Raj Giri², Lars Seidel³, Aamir Farooq², Fabian Mauss¹

1. Thermodynamics and Thermal Process Engineering, Brandenburg University of Technology, Siemens-Halske-Ring 8, 03046 Cottbus, Germany

2. Clean Combustion Research Center, King Abdullah University of Science and Technology

Thuwal 23955-6900 Kingdom of Saudi Arabia

3. LOGE Deutschland GmbH, Burger Chaussee 25, 03044 Cottbus, Germany

Abstract

We present a detailed kinetic model for the oxidation of dimethyl ether (OME₀) and dimethoxymethane (OME₁) in presence of NOx. We further explored the effect of NO*^x* chemistry on the oxidation kinetics of the two OMEs. Our kinetic model is validated against the recent flow reactor data from Zhang et al. (Combust. Flame. 224 (2021) 94– 107). The results indicated that NO doping severely alters the oxidation kinetics of both fuels. The onset temperature for total fuel consumption is significantly shifted to lower temperatures for both fuels, which is in line with the experimental observation. We found that the addition of NO significantly inhibited the NTC behaviour of dimethyl ether. This inhibiting effect appears to stem from the competition between CH₃OCH₂O₂ radical consumption by NO directly and the isomerization/dissociation reactions of CH₃OCH₂O₂. Unlike dimethyl ether, dimethoxymethane does not exhibit a strong NTC behavior, and NO addition completely inhibited its weak NTC behavior.

Introduction

For future sustainability, carbon-neutral fuels can be key platform chemicals to achieve zero net $CO₂$ emission. They can be produced from renewables feedstocks and synthetic gas in a sustainable carbon cycle (see ref.1 (Fuel 291 (2021) 120217) and references cited therein). Among carbon-neutral fuels, the oxymethylene ethers $(CH₃O(CH₂O)_nCH₃$, OME_n) are particularly interesting fuel candidates for several reasons. They possess a high cetane number, high oxygen content, and no C–C bonds which allows for soot-free and low-NO*^x* combustion. The number of oxymethylene groups (n) influences the properties of the fuel. If n is increased, the cetane number rises, and diesel-like boiling temperatures are reached [1,2]. Additionally, OMEs are non-toxic making them good candidates for blending with diesel fuel. Such blends have shown a significant reduction of soot emissions [3,4]. Soot emissions were reduced when oxygenated hydrocarbons were blended with regular diesel fuel [5]. The amount of fuel-born oxygen has a direct correlation with the propensity of soot reduction. It was found that each fuel-born oxygen of the oxygenated species added to the fuel has approximately the same effectiveness in reducing soot emissions, but it does not depend on the chemical nature of the oxygen-containing species (see Ren et al. [4] and Natarajan et al. [6])

The oxidation chemistry of dimethyl ether (DME, OME0) has been extensively studied [7–9]. In CI engines exhaust products are often recirculated to the combustion chamber. The use of oxygenated fuels in CI engines in neat or as additives requires the fundamental understanding of fuels and NO_x interaction. The complex fuel-specific chemical interactions between fuel and NO are still not well understood. Most earlier studies focused to explore the interactions between hydrocarbons and NO, while studies on emerging renewable alternative fuels are still limited. Unlike hydrocarbon-fuel/NO^x system, studies related to the oxygenated-fuel/NO^x system are scarce. To our knowledge, only a few studies are rendering to DME/NO_x system to date [10–13]. As discussed earlier, OMEs produce less NO*^x* due to less favorable conditions for thermal NO formation. For this reason, the NO_x effect on the oxidation kinetics of OMEs did not receive much attention. However, NO_x is also one of the by-products along with other exhaust products during fuel combustion.

In a recent work [14], we carried out a detailed kinetic modeling study by investigating NO*^x* interaction during the oxidation of methanol and ethanol. Here, we extend our campaign by investigating the sensitizing effect of NO_x on the oxidation kinetics of dimethyl ether ($OME₀$) and dimethoxy methane (OME₁). Recently, Zhang *et al*. [15] studied NO interaction with dimethyl ether (DME, $OME₀$) and dimethoxymethane (DMM, $OME₁$) in a flow reactor. They simulated their experimental results by using four different kinetic mechanisms from the literature including the one from our recent study [16]. They reported that none of the available mechanisms adequately captured the experimental data. This observation warranted additional work aiming to improve the predictive capabilities of the kinetic model. Our aim is to improve our recently published mechanism [17] and provide a better understanding of the combustion behavior of DME $(OME₀)$ and DMM $(OME₁)$ in presence of NO_x. Such study will serve as a baseline for the understanding of NO*^x* interaction kinetics with larger OME_n $(n>1)$.

l

Corresponding author: shrestha@b-tu.de

Proceedings of the European Combustion Meeting 2021

Chemical kinetic modeling

The mechanism proposed here builds upon our recent work on the oxidation kinetics of DME and DMM, and their interactions with NO_x chemistry [17]. We validated our kinetic model [17] against various experimental targets of the chemical systems comprising C_1-C_2 fuels. Our kinetic model satisfactorily captured the oxidation kinetics of C_1 - C_2 hydrocarbons/oxygenates - NO_x chemistry interaction as well as NO formation in C_1 - C_2 premixed flames. However, we could not test our model against DMM/NO system due to the unavailability of the experimental data at that time. Therefore, we added new reaction pathways to improve the predictive capabilities of our kinetic model describing the low-temperature oxidation chemistry of DME and DMM and their interactions with NO*x* chemistry. We employed LOGEresearch v1.10.0 [18] software package for all kinetic simulations.

Results and Discussion

As stated earlier, our study particularly emphasizes on DME/NO_x and DMM/NO_x system. The performance of our kinetic model is compared with the recent experimental data from Zhang et al. [15]. Unless stated otherwise, the lines in the figures below represent the simulation results of this work; whereas the symbols represent the experimental data from Zhang et al. [15].

NO^x chemical effect on DME Oxidation

Figure 1 compares the model predictions with the experimental data. The experimental data were taken from Zhang et al. [15] who investigated the oxidation kinetics of DME and DMM with/ without NO (0, 1000, 2000 ppm) in a plug-flow reactor over the temperature range of 400-1000 K, the pressure of 1 atm and $\phi = 0.8$. As seen in Figure 1a, the onset of DME oxidation without NO occurs at \sim 510 K. Interestingly, the presence of NO shifts the onset of DME oxidation at a higher temperature e.g. 560 K for 1000 ppm of NO and 580 K for 2000 ppm of NO. NO clearly displays inhibiting effect on the oxidation kinetics of DME in the cool flame temperature regime. More interestingly, NO addition weakens the NTC behavior of DME (see Fig 1a-1c). The NTC behavior of DME completely disappears for 2000 ppm of NO. Unlike low temperatures, the addition of NO expedites the chemistry of DME at relatively high temperatures. For example, the complete fuel conversion of DME occurs at \sim 70 K lower for 2000 ppm of NO as opposed to neat DME. Our kinetic model accurately captures DME consumption with or without NO at lower temperatures; however, at the intermediate of 630 – 860 K, our model either overpredicts or underpredicts DME concentration depending upon the amount of NO added (see Fig 1a-1c). For major species $(CO, CO₂, and H₂O)$, the model follows the experimental trend very well capturing the peak concentration satisfactorily. At low temperature (≤ 600 K), our model suggests that neat DME decomposes mainly *via* the following route DME $+OH$ CH₃OCH₂ $+O_2$ CH₃OCH₂O₂ isomerization/dissociation CH₂OCH₂O₂H/2CH₂O+OH.

The formed $CH_2OCH_2O_2H$ further undergoes second O_2 addition to form $O_2CH_2OCH_2O_2H$ which finally decomposes to ketohydroperoxides and OH radicals. In presence of NO, the decomposition channel of DME follows the following reaction pathways $DME \longrightarrow CH_3OCH_2 \longrightarrow CH_3OCH_2O_2 \longrightarrow CH_3OCH_2O_2$ OCH₂O/2CH₂O+OH. In presence of NO, CH₃OCH₂O₂ does not isomerize, and hence second $O₂$ addition does not happen. Rather $CH₃OCH₂O₂$ reacts with NO to form $CH_3OCH_2O + NO_2$ and CH_3OCH_2O dissociates to CH3OCHO+H. The shift of the reaction pathways explains the weakening of cool flame chemistry of DME in presence of NO. As the temperature increases, the isomerization and dissociation pathways of $CH₃OCH₂O₂$ compete, and the dissociation pathway forming 2CH₂O+OH is more favorable at high temperatures.

Figure 2 shows the evolution of NO and $NO₂$ mole fraction profiles for the conditions specified in Fig. 1b-c. Experiments show the onset of NO consumption starting at \sim 550 K and \sim 570 K for 1000 ppm (Fig. 2a) and 2000 ppm (Fig. 2b) of NO, respectively. However, our model predicts the onset of NO consumption at somewhat lower temperatures, ~ 50 K lower for both cases. Despite this, the kinetic model was able to capture the experimental trend of NO consumption and $NO₂$ formation reasonably well.

Figure 1: DME $(OME₀)/O₂/Ar$ oxidation in a plug-flow reactor with different NO concentrations (0, 1000, and 2000 ppm) at ϕ = 0.8 and 1 atm. Symbols: experimental data from Zhang et al. [15], Solid lines: modeling results from this work.

Interestingly, we made an observation that experiments reveal an early evolution of $NO₂$ before any fuel or $NO₂$ was consumed (see Fig. 2a). This is not likely and may point to an high experimental uncertainty. Our model predictions for $NO₂$ are much closer to the experiments as compared to NO profiles. Figure 3 shows reaction flux analysis for "NO-NO² looping" reactions. Note that only major pathways are shown. NO mainly reacts with $RO₂$ (CH3OCH2O2) forming NO² and RO (CH3OCH2O) *via* $CH₃OCH₂O₂+NO=CH₃OCH₂O+NO₂ reaction.$

Figure 2: NO and NO_2 profiles during DME $/O_2/Ar$ oxidation in a flow reactor with different NO concentrations (a: 1000 ppm and b: 2000 ppm) at ϕ = 0.8 and 1 atm. Symbols: experimental data from Zhang et al. [15], Solid lines: the results of our modeling work.

This reaction is one of the most sensitive reactions for DME consumption (see Fig. 4). Under lean conditions, more HO_2 is available to react with NO forming NO_2 and OH. The formed $NO₂$ can further react with CH₃ radical to form a more stable product $CH₃NO₂$ (nitromethane). Furthermore, $NO₂$ can also react with fuel (DME) and the radicals like CH₃O and RO₂H (CH₃OCH₂O₂H) to give HONO to eventually produce NO via "NO-NO₂ looping" reactions. The formed CH₃NO₂ further reacts with OH radical to give CH₂NO₂ which eventually dissociates to recycle back NO. During NO-NO² looping, reactive OH radicals are produced which expedite the oxidation kinetics of DME/NO at higher temperatures (>700 K). Figure 4 shows the most sensitive reactions for DME consumption in presence of 1000 ppm of NO. As can be seen, the most sensitive reactions are $DME + NO₂$ and DME + OH radical reactions. The former reaction is a chain branching reaction producing HONO as one of the radicals that yields OH and NO radicals upon decomposition. Both of these radicals accelerate DME chemistry at high temperatures.

Figure 3: Integrated mass flux analysis based on N-atom at 700 K for 1000 ppm NO case during the oxidation of DME oxidation for the conditions shown in Figure 1b.

Figure 4: Reaction sensitivity analysis towards DME at 700 K for 1000 ppm NO case during DME oxidation as shown in Figure 1b.

NO^x chemical effect on DMM Oxidation

The modeling results are displayed in Figures 5 and 6 and compared with the experimental mole fractions (symbols). Again, the experimental data for DMM/NO oxidation were taken from Zhang *et al.* [15] who measured the species profiles in a plug-flow reactor at ϕ $= 0.8$ and 1 atm over the temperature range of $400 - 1000$ K with and without NO in the mixture. Unlike DME, DMM does not exhibit low temperature reactivity. As a result, no discernible NTC behavior was observed for neat DMM. This observation is in line with our earlier findings [17]. As can be seen in Fig. 5a, the actual onset of fuel oxidation occurs at $~660$ showing slower reactivity than DME. Not much consumption of DMM was achieved up to 820 K. Beyond 820 K, DMM gets consumed rapidly. Adding 1000 ppm of NO, DMM gets consumed rapidly at $~160$ K lower temperature than that of neat DMM. In addition, the weak NTC behavior was completely disappeared (see Fig. 5a and 5b). This is also true for the 2000 ppm NO case (Fig. 4c). For all cases, our model captures the fuel consumption profiles very closely within the experimental uncertainty of ± 20 K. For 2000 ppm NO case, the experimental data contradicts our modeling results. The onset of the reaction of DMM/2000 ppm NO is 40 K higher than DMM/1000 ppm NO, whereas the modeling does not discriminate the onset temperature between the two cases. For major species (H_2O , CO, and CO₂), the modeling results follow the experimental trend very well. They closely agree with the measurements and more so with NO doped cases as compared to neat DMM oxidation.

Figure 5: DMM $(OME₁)/O₂/Ar$ oxidation in a flow reactor with varying concentrations of NO (0, 1000, and 2000 ppm) at ϕ = 0.8 and 1 atm. Symbols and solid lines represent the experimental data from Zhang et al. [15] and model predictions of this work.

At 700 K, our model suggests that the consumption of DMM occurs via H-atom abstraction reactions by OH radical forming the terminal $(CH_3OCH_2OCH_2$, R1) and central (CH3OCHOCH3, R2) radicals. Both channels are found to be equally important for DMM consumption. DMM consumption occurs via the reaction pathways: DMM $+OH$ \overrightarrow{O} R1/R2
 \overrightarrow{O} CHO+CH₃ \overrightarrow{S} \overrightarrow{O} R1/R2 +02/dissociation ϵ R1OO/CH₃OCHO+CH₃ OH dissociation $\frac{1}{2}$,3,5-trioxane+OH. At 700 K, only 13% of DMM is consumed when NO is not present while doping with 1000 ppm of NO, 42% of DMM gets consumed. In NO doped cases, $DMM + NO₂=R1+HONO$ appears to be the topmost sensitive reaction (see Fig. 7 and 8). $NO₂$ accelerates the H-abstraction reaction by consuming DMM and forming 13% more R1 than R2 unlike the oxidation of neat DMM. Note that two primary hydrogen abstraction reactions consuming DMM show the opposite trend (see Fig. 8). The H-abstraction reaction at terminal C-atom enhances the reactivity while inhibiting the system reactivity at the central C-atom. Our results predict an earlier consumption of NO compared to the experimental data e.g. ~ 60 K and ~ 100 K lower temperature for 1000 ppm (Fig. 6a) and 2000 ppm (Fig. 6b) NO doped cases. At \sim 700 K, our model reveals a complete consumption of NO contrary to the experimental observation. Despite this, the model captured the experimental trend very well. Fig. 6 also

displays simulated $NO₂$ profiles. No experimental $NO₂$ profiles are available for comparison. Similar to the DME case (Fig. 2), the modeled $NO₂$ profiles peaked out before NO was completely consumed. However, the experimental data suggested otherwise (see Fig. 2) revealing that NO₂ concentration reaches a maximum at a temperature of maximum NO consumption. For these reasons, further improvement of the model is highly desirable to improve NO and $NO₂$ predictions.

We now briefly explore the important reaction pathways for "NO-NO² looping" in the oxidation kinetics of the DMM/NO chemical system. Figures 7 and 8 show the mass flux analysis based on the N-atom and DMM sensitivity analysis during oxidation kinetics of DMM in presence of 1000 ppm of NO, respectively.

Figure 6: NO and NO₂ species profiles during DMM $\overline{O_2}/\overline{Ar}$ oxidation in a plug-flow reactor for varying NO concentrations (a: 1000 ppm and b: 2000 ppm) at ϕ = 0.8 and 1 atm. Symbols represent measurement data from Zhang et al. [15] and the solid lines from this work.

Unlike the NO doped DME reaction system, the model suggests that the reactions of NO with DMM fuel-derived radicals $(R1O₂)$ and $RO₂$) have minor contributions. NO mainly reacts with HO_2 and CH_3O_2 to produce NO_2 via $NO+HO_2=NO_2+OH$ and $NO+CH_3O_2=NO_2+CH_3O$ reactions.

Figure 7: Integrated mass flux analysis based on N-atom carried out at $T = 700$ K, $\phi = 0.8$ and P = 1 atm for 1000 ppm NO/DMM case.

The formed $NO₂$ reacts with CH₃ radical forming $CH₃NO₂$ i.e backward reaction of $CH₃NO₂(+M)$ $=CH₃+NO₂(+M)$. This is also one of the most sensitive reactions towards DMM (see Fig. 8). As discussed above, $CH₃NO₂$ eventually recycles back NO. NO₂ can react with fuel (DMM) and HNO/CH₃O to yield HONO. The thermal dissociation of HONO recycles back NO producing reactive OH radicals which further enhances the reactivity of the system by increasing the radical pool.

Figure 8: DMM sensitivity analysis carried out at $T =$ 700 K, $φ = 0.8$ and $P = 1$ atm for 1000 ppm NO/DMM case.

Conclusions

We compiled a kinetic model based on our previous work to characterize the oxidation behaviour of dimethyl ether and dimethoxymethane with or without NOx. We validated the robustness of our model against recently published plug-flow reactor data. Our results indicated that NO doping strongly affects the oxidation kinetics of both fuels. The sensitizing effects of NO_x on DME and DMM oxidation kinetics are severe. NO_x addition dramatically altered the shape of the fuel consumption profiles. The addition of NO in both fuels enhanced the reactivity of the system by moving the onset temperature of complete fuel oxidation at a lower temperature. However, NO was found to severely inhibit the reactivity of DME in the cool flame temperature regime. The inhibiting of the NTC behavior is mainly due to the competition of $CH₃OCH₂O₂$ radical reaction with NO $(CH₃OCH₂O₂ + NO = CH₃OCH₂O+NO₂)$ and the isomerization $(CH_2OCH_2O_2H)/dissociation = (CH_2O$ $+CH₂O + OH$) channels. Unlike DME, DMM does not exhibit a strong NTC behavior. The weak NTC behavior of DMM is completely suppressed in presence of NO. For both fuels, the reaction of $NO₂$ with the parent fuel appears to be the most sensitive (DME/DMM + $NO₂$ = $CH_3OCH_2/CH_3OCH_2OCH_2 + HONO$). However, some discrepancies between the modeling and experimental results were observed. Therefore, more experimental studies focusing on NO_x interaction with DME and DMM fuels system are needed. Such studies will improve the current mechanistic understanding for DME and DMM oxidation in presence of NO_x . Moreover, these efforts will form the basis of model development of larger ethers-NO^x systems.

References

- [1] J. Burger, M. Siegert, E. Ströfer, H. Hasse, Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts, Fuel. 89 (2010) 3315–3319. doi:10.1016/j.fuel.2010.05.014.
- [2] M. Münz, A. Feiling, C. Beidl, M. Härtl, D. Pélerin, G. Wachtmeister, Oxymethylene ether (OME1) as a synthetic low-emission fuel for DI diesel engines, in: 2016: pp. 537–553. doi:10.1007/978-3-658-12918-7_41.
- [3] R. Zhu, X. Wang, H. Miao, X. Yang, Z. Huang, Effect of dimethoxy-methane and exhaust gas recirculation on combustion and emission characteristics of a direct injection diesel engine, Fuel. 90 (2011) 1731–1737. doi:10.1016/j.fuel.2011.01.035.
- [4] Y. Ren, Z. Huang, H. Miao, Y. Di, D. Jiang, K. Zeng, B. Liu, X. Wang, Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends, Fuel. 87 (2008) 2691– 2697. doi:10.1016/j.fuel.2008.02.017.
- [5] N. Miyamoto, H. Ogawa, N.M. Nurun, K. Obata, T. Arima, Smokeless, Low NOx, high thermal efficiency, and low noise diesel combustion with oxygenated agents as main fuel, in: SAE Tech. Pap., 1998. doi:10.4271/980506.
- [6] M. Natarajan, E.A. Frame, D.W. Naegeli, T. Asmus, W. Clark, J. Garbak, A. Manuel, D. González, E. Liney, W. Piel, J.P. Wallace, Oxygenates for advanced petroleum-based diesel fuels: Part 1. Screening and selection methodology for the oxygenates, in: SAE Tech. Pap., 2001. doi:10.4271/2001-01-3631.
- [7] P. Dagaut, C. Daly, J.M. Simmie, M. Cathonnet, The oxidation and ignition of dimethylether from low to high temperature (500-1600 K): Experiments and kinetic modeling, in: Symp. Combust., 1998: pp. 361–369. doi:10.1016/S0082-0784(98)80424-4.
- [8] A. Rodriguez, O. Frottier, O. Herbinet, R. Fournet, R. Bounaceur, C. Fittschen, F. Battin-Leclerc, Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether, J. Phys. Chem. A. 119 (2015) 7905–7923. doi:10.1021/acs.jpca.5b01939.
- [9] H. Hashemi, J.M. Christensen, P. Glarborg, High-pressure pyrolysis and oxidation of DME and DME/CH 4, Combust. Flame. (2019) 80– 92. doi:10.1016/j.combustflame.2019.03.028.
- [10] M.U. Alzueta, J. Muro, R. Bilbao, P. Glarborg, Oxidation of dimethyl ether and its interaction with nitrogen oxides, Isr. J. Chem. 39 (1999) 73–86.
- [11] L. Marrodán, Á.J. Arnal, Á. Millera, R. Bilbao, M.U. Alzueta, The inhibiting effect of NO

addition on dimethyl ether high-pressure oxidation, Combust. Flame. 197 (2018) 1–10. doi:10.1016/j.combustflame.2018.07.005.

- [12] P. Dagaut, J. Luche, M. Cathonnet, The low temperature oxidation of DME and mutual sensitization of the oxidation of DME and nitric oxide: Experimental and detailed kinetic modeling, Combust. Sci. Technol. 165 (2001) 61–84. doi:10.1080/00102200108935826.
- [13] T. Yamamoto, S. Kajimura, Kinetic Study on NO Reduction Using Dimethyl Ether as a Reburning Fuel, Energy and Fuels. 31 (2017) 12500–12507. doi:10.1021/acs.energyfuels.7b02243.
- [14] K.P. Shrestha, L. Seidel, T. Zeuch, F. Mauss, Kinetic Modeling of NOx Formation and Consumption during Methanol and Ethanol Oxidation, Combust. Sci. Technol. 191 (2019) 1628–1660. doi:10.1080/00102202.2019.1606804.
- [15] H. Zhang, S. Schmitt, L. Ruwe, K. Kohse-Höinghaus, Inhibiting and promoting effects of NO on dimethyl ether and dimethoxymethane oxidation in a plug-flow reactor, Combust. Flame. 224 (2021) 94–107. doi:10.1016/j.combustflame.2020.08.027.
- [16] K.P. Shrestha, S. Eckart, A.M. Elbaz, B.R. Giri, C. Fritsche, L. Seidel, W.L. Roberts, H. Krause, F. Mauss, A comprehensive kinetic model for dimethyl ether and dimethoxymethane oxidation and NOx interaction utilizing experimental laminar flame speed measurements at elevated pressure and temperature, Combust. Flame. 218 (2020) 57–74. doi:10.1016/j.combustflame.2020.04.016.
- [17] K.P. Shrestha, S. Eckart, A.M. Elbaz, B.R. Giri, C. Fritsche, L. Seidel, W.L. Roberts, H. Krause, F. Mauss, A comprehensive kinetic model for dimethyl ether and dimethoxymethane oxidation and NOx interaction utilizing experimental laminar flame speed measurements at elevated pressure and temperature, Combust. Flame. 218 (2020) 57–74. doi:10.1016/j.combustflame.2020.04.016.
- [18] http://logesoft.com/loge-software/.