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Abstract: This paper presents a new method to optimize, from a working cycle defined by torque
and speed profiles, both the design and the control strategy of permanent magnet synchronous
generators (PMSGs). The case of a 10 MW direct-drive permanent magnet generator for an Offshore
wind turbine was chosen to illustrate this method, which is based on the d–q axis equivalent circuit
model. It allows to optimize, with a reduced computation time, the design, considering either a
flux weakening control strategy (FW) or a maximum torque per Ampere control (MTPA) strategy,
while respecting all the constraints—particularly the thermal constraint, which is characterized by a
transient regime. The considered objective is to minimize the mass and the average electric losses
over all working points. Thermal and magnetic analytical models are validated by a 2D finite element
analysis (FEA).

Keywords: PMSG; co-design optimization; flux weakening control; MTPA control; wind speed
profile; offshore wind energy

1. Introduction

Offshore wind generation has taken an increasingly important place in the European
wind power development, in recent years. It presents high availability, stable wind speed
and less environmental constraints. In order to reduce the costs, increasing the turbine
power is a strong trend. However, it leads to increase in active and structural masses,
which are limited by technology, transport and installation. Therefore, maximizing the
power density is a crucial criterion in the design process.

In that case, variable-speed wind turbines with pitch control are used to optimize the
turbine output power [1,2]. Generally, the working cycle is not taken into account in the
design process. In most cases, the generator is only designed for the rated power [3–6].
Such a method can lead to oversize the generator, particularly when it works in a variable
thermal regime. On the other hand, the maximization of the energy efficiency, that can be
achieved by a flux weakening mode, for example [7], implies that all working points have
to be taken into account [8].

One of the most important issues in a design process which considers several thou-
sands of working points is that, in addition to optimizing the geometric parameters, it
must also optimize the time-dependent control parameters id(t) and iq(t) while respecting
all the constraints in each point, leading to a huge computation time. To overcome this
problem, the solutions currently proposed in the electrical engineering literature limit the
optimization problem to the most representative working points [9–11], which makes the
result approximate, because the control strategy, as well as the thermal transient, is not
managed.

The aim of this paper is to present an optimal design methodology to solve this
problem. The proposed method allows to optimize simultaneously the geometry as well as
the control parameters (id(t) and iq(t)) of each working point for the following two cases:
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a maximum torque per Ampere (MTPA) control with id(t) = 0 and a flux weakening (FW)
control with id(t) = id opt(t) 6= 0. The case of a q—phases 10 MW direct-drive surface
mounted PMSG was chosen to illustrate our study, with an offshore wind speed profile
measured in the North Sea and the two following objective functions: mass minimization
and energy loss minimization.

The paper is organized as follows. In Section 2, the principle of the design methodol-
ogy is presented and, in Section 3, the sizing model and the constraints used are given. In
Section 4, the results are presented and discussed. Finally, the selected optimal machine is
validated by the use of a magnetic and thermal 2D finite element analysis (FEA).

At last, let us note that a first presentation of the methodology was partially presented
at the International Conference on Electrical Machines ICEM 2020 [12], where only the
FW control was considered. The article proposes a more complete version, where the
two controls (FW and MTPA) are studied and compared. The mechanical constraints
considered are also more realistic.

2. Optimal Design Methodology

The presented methodology is based on the d–q axis equivalent circuit model taking
iron losses into account via the iron loss resistanceRµ(t) (see Figure 1) [13,14].
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The optimization parameters can be categorized into three groups as follows:

• The time-dependent control variables are the d–q axis currents ioq(t) and iod(t). In our
method, they will be analytically expressed for the two control strategies considered.

• The rotor variable B f m, the magnitude of the air-gap flux density created by the
magnets represented in the circuit via the electromotive force e0(t). It will be optimized
analytically to minimize the energy losses for the considered working cycle. Note that
the magnets are sized (shape and remanence) afterwards, from B f m opt.

• The stator geometry variables are R, rs, rw, wmag, ns, τLR p and q (see Figure 2),
which are in the expressions of coefficient kφ, armature reactance (X(t)) and resistance
(Rc,Rµ(t)) (see Figure 1). These parameters will be optimized by the use of a genetic
algorithm to minimize both the mass and the energy losses.
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In step 1, for the FW control, the optimal current iod opt(t) that minimizes the total
electric losses Ptot for each working point is expressed analytically. For the MTPA control,
this current is zero. For both of these controls, the q-axis current is directly imposed by the
torque. The analytical expressions of the currents allow to express Ptot as a function of the
other optimization parameters, so that Ptot = f o

(
R, rs, rw, wmag, τLR, ns, p, q, B f m

)
.

In step 2, from the previous expression of Ptot, the optimal flux density B f m opt that min-
imizes the energy losses Wtot is analytically expressed, allowing to express Wtot as a function
of the remaining optimization parameters as Wtot = f o(R, rs, rw, wmag, τLR, ns, p, q

)
.

In step 3, a genetic algorithm is used to minimize both the energy losses Wtot =
f o(R, rs, rw, wmag, τLR, p, q

)
obtained in step 2 and the mass of the generator.

Let us note that, with the elimination of the time-dependent optimization parameters
ioq(t) and iod(t) in the objective function Wtot, the computation time is significantly reduced
to an acceptable value (a few minutes), while it would have been of several months
otherwise.

2.1. Basics Equations

Due to the high inertia of the turbine, speed and torque variations are very slow. Thus,
it is possible to neglect the terms in d/dt, which means that, from a sizing point of view, the
machine operation can be seen as a succession of static points. Then, the main equations,
such as the d–q axis stator voltages (vod(t), voq(t)) and the electromagnetic power (Pem(t)),
can be expressed as

vod(t) = X(t)ioq(t) (1)

voq(t) = −X(t)iod(t) + kφΩ(t) (2)

Pem(t) = ioq(t) kφΩ(t) (3)

The expression of the copper losses Pc(t) is given by

Pc(t) = Rc

(
i2d(t) + i2q(t)

)
(4)

with

id(t) = iod(t)− iµd(t) = iod(t)−
vod(t)
Rµ(t)

(5)

iq(t) = ioq(t)− iµq(t) = ioq(t)−
voq(t)
Rµ(t)

(6)

From (1)–(6), the copper losses, for a given power Pem and a given speed Ω, can be
expressed as follows:

Pc(t) = Rc

(
1 + X2(t)

R2
µ(t)

)
i2od(t)−

2RcX(t)kφΩ(t)
R2

µ(t)
iod(t) + . . .

+Rc

((
X(t)Pem(t)

kφΩ(t)Rµ(t)

)2
+
(

Pem(t)
kφΩ(t)

)2
+
(

kφΩ(t)
Rµ(t)

)2
− 2Pem(t)
Rµ(t)

) (7)

For the iron losses, we have:

Pmg(t) =
v2

od(t) + v2
oq(t)

Rµ(t)
(8)

From (1), (2) and (8) it is possible to write

Pmg(t) =
X2(t)
Rµ(t)

i2od(t)−
2X(t)kφΩ(t)
Rµ(t)

iod(t) +

(
k2

φΩ2(t)

Rµ(t)
+

X2(t)P2
em(t)

k2
φΩ2(t)

)
(9)
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2.2. Analytical Expressions of d- and q-Axis Currents

The optimal currents allow the generator to satisfy the requested power Pem(t) and
speed Ω(t). For a surface mounted PMSG, the q-axis current ioq opt(t) is directly imposed
by the electromagnetic power. According to (3), whatever the control strategy (MTPA or
flux weakening controls), this current is expressed as follows:

ioq opt (t) =
Pem(t)
kφΩ(t)

(10)

In an MTPA control, the d-axis current is zero:

iod MPTA (t) = 0 (11)

In an FW control, the d-axis current, that minimizes both the copper losses and the
iron losses, can be analytically expressed. It’s possible to show that

iod FW (t) =
kφΩ(t) X(t) B(t)

A(t)
(12)

where the terms A(t) and B(t) depend on the resistances and the reactance as follows:

A(t) = Rc +Rc

(
X(t)
Rµ(t)

)2
+

X2(t)
Rµ(t)

(13)

B(t) =
Rc +Rµ(t)
R2

µ(t)
(14)

2.3. Analytical Expression of B f mopt

The magnitude of the flux density B f m produced by the magnets in the air-gap is
constant during the cycle. This parameter is then optimized by the minimization of the
energy losses over the cycle. With kφ = kB f m (see (21)), it is possible to express optimal
expression of the magnet flux density.

In an MTPA control, since (7), (9), (10) and (11), the lost energy can be written as

Wtot MPTA = k2
φB2

f m

∫ T

0

(
B(t)
Rµ(t)

)
Ω2(t)dt +

1
k2

φB2
f m

∫ T

0

A(t)P2
em(t)

Ω2(t)
dt− 2Rc

∫ T

0

Pem(t)
Rµ(t)

dt (15)

Then, the flux density that minimizes the energy losses for the MTPA control is

B f m MPTA opt =
1
k


∫ T

0
A(t)P2

em(t)
Ω2(t)

dt∫ T
0

(
B(t)
Rµ(t)

)
Ω2(t)dt


1
4

(16)

In an FW current control, since (7), (9), (10) and (12), the lost energy can be written as

Wtot MPTA = k2
φB2

f m

∫ T

0

(
B(t)
Rµ(t)

− B2(t)X2(t)
A(t)R2

µ(t)

)
Ω2(t)dt +

1
k2

φB2
f m

∫ T

0

A(t)P2
em(t)

Ω2(t)
dt− 2Rc

∫ T

0

Pem(t)
Rµ(t)

dt (17)

Then, the flux density that minimizes the energy losses for the MTPA control is:

B f m FW opt =
1
k


∫ T

0
A(t)P2

em(t)
Ω2(t)

dt∫ T
0

(
B(t)
Rµ(t)

− B2(t)X2(t)
A(t)R2

µ(t)

)
Ω2(t)dt


1
4

(18)
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2.4. Analytical Expression of Energy Losses

Finally, in an MTPA control, given (15) and (16), the expression of the lost energy is

Wtot MPTA = 2

√∫ T

0

(
B(t)
Rµ(t)

)
Ω2(t)dt

√∫ T

0

A(t)P2
em(t)

Ω2(t)
dt− 2Rc

∫ T

0

Pem(t)
Rµ(t)

dt (19)

and in an FW control, given (17) and (18), the expression of the lost energy is

Wtot FW = 2

√√√√∫ T

0

(
B(t)
Rµ(t)

− B2(t)X2(t)
A(t)R2

µ(t)

)
Ω2(t)dt

√∫ T

0

A(t)P2
em(t)

Ω2(t)
dt− 2Rc

∫ T

0

Pem(t)
Rµ(t)

dt (20)

In Equations (19) and (20), the remaining optimization variables are the geometrical
ones (R, rs, rw, wmag, τLR, ns, p, q). Such an expression can be thereby minimized by the
use of a genetic algorithm without an excessive computation time.

3. Modeling

We consider a q-phase surface mounted permanent magnet synchronous generator. A
1D magnetic model is used, with steel parts assumed infinitely permeable. The winding
is concentrated with one slot/pole/phase and the slots are assumed skewed by one slot
pitch to reduce the torque ripple. The slot width to slot pitch ratio is 0.6. We also neglect
losses in permanent magnets, assuming it is possible to reduce significantly their impact by
the use of segmented magnets. The design, with only one pole pair represented, is shown
in Figure 2.

3.1. Electromagnetic Model

The back-emf eO(t) is proportional to kφ which can be written as

kφ = kB f m = 2
√

2
√

q nsτLRrsR2 pB f m (21)

The iron loss resistanceRµ(t) can be deduced from (8); for q phases:

Rµ(t) =
v2

od(t) + v2
oq(t)

Pmg(t)
=

qV2
m

2Pmg(t)
(22)

where Vm is the magnitude of the voltage, which can be expressed from the magnitude of
the resulting flux density in the air-gap Brm as follows:

Vm = 4pnsΩRLBrm (23)

The iron losses (eddy currents + hysteresis) can be also written as a function of Brm, as
described in [15], such as

Pmg(t) = B2
rmγ(t) (24)

with

γ(t) = πkad

(
kec p2Ω2(t) + kh pΩ(t)

)( (1 + rw)r2
s

p2(1− rw)
+

(
r2

w − r2
s
)
rs

ktrw

)
LR2 (25)

Thus, from (20)–(23), it follows that

Rµ(t) =
8
π

qn2
s τLR

1
kad(kec pΩ(t) + kh)

pΩR(
1
kt

r2
w−r2

s
rwrs

+ 1−r2
w

p2(1−rw)
2

) (26)
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The winding resistance (Rc) of a q-phase machine can be written as

Rc =
16
π

q

(
kL

(1− kt)k f σc

)
n2

s τLR
p2

r2
w − r2

s

1
R

(27)

where kL is the coefficient that corrects the active length due to the end windings and k f
the slot fill factor. For the synchronous reactance X(t) of a q-phase PMSG it is possible to
show that

X(t) =
8
π

qτLRµ0n2
s

rsR2

wag + wPM
pΩ(t) (28)

3.2. Mass Calulcation

Only the mass of the active parts will be considered here. Mc, MFe and MPM are,
respectively, the mass of the copper, the mass of the iron and the mass of the magnets. They
are calculated as follows:

Mc = πτLR

(
r2

w − r2
s

)
krR3ρc (29)

MFe = πτLR
((

r2
w − r2

s
)
kt + 1− r2

w
)

R3ρFe + · · ·
+
(
(2rs + rw − 1)R− 2wag − 2wPM

)
(1− rw)πτLR R2ρFe.

(30)

MPM = 2πR
(

rsR−Wag −
WPM

2

)
WPMβPMτLRρPM (31)

In the proposed design, the electric magnet pole arc βPM is set to 6
7 . 180◦ and the

magnet thickness to airgap thickness ratio WPM/Wag is set to 7/3.

3.3. Thermal Constraint

During operation, the hottest point in the machine must remain smaller than the
maximum permissible temperature in the winding θmax, such as:

θw(t) ≤ θmax (32)

For each evaluated machine, the dynamic behavior of the temperature in the winding
θw(t) is calculated from the lumped parameter thermal model represented in Figure 3b [16,17].
In this study, the heat flow is assumed unidirectional in the radial direction and each
cylindrical element can be modeled by an equivalent circuit, as shown in Figure 3a. The
thermal resistance, as well as the thermal capacity, is calculated from the geometry and
the thermal properties of the materials via (33)–(35). At the internal radius Ro and at the
external radius R, the heat is extracted by convection with, respectively, hint = 10 (for a
natural convection) and hext = 100 W/m2K (for air cooled convection). The time-dependent
temperature at node i is evaluated with (36).

Rx1 =
1

2λmatβmatL

2
(

Rext
Rint

)2
ln
(

Rext
Rint

)
(

Rext
Rint

)2
− 1

− 1

 (33)

Rx2 =
1

2λmatβmatL

1−
2ln
(

Rext
Rint

)
(

Rext
Rint

)2
− 1

 (34)

Cx = Cp
1

2π
ρmatβmat

(
R2

ext − R2
int

)
L (35)

Cx
dθi
dt

+
θi − θi−1

Rx2
+

θi − θi+1

Rx1
= P (36)

where P is heat generated inside the element.
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Figure 3. (a) Thermal equivalent circuit of a cylindrical element; (b) lumped parameter thermal
model of PMSG.

3.4. Saturation Constraint

The maximum flux densities in the yoke and teeth must be limited at the saturation
level, such as

Btm(t) =
1
kt

Brm ≤ Bsat (37)

Bym(t) =
rs

p(1− rw)
Brm ≤ Bsat (38)

3.5. Electrical Constraint

We consider a voltage limit Vlimit imposed by the power electronics converter. This
voltage depends on the topology of the power converter and the voltage rating of the power
semiconductor devices. The two-level, back-to-back voltage source converter (BTB 2L-VSC)
is mostly used in the wind turbines for powers up to a few megawatts [18]. However, in
the 10 MW range and above, the increase in voltage, current and losses (switching losses)
requires an increase in the number of components and the number of levels. Among all the
proposed converter topologies, the three-level active neutral-point diode clamped converter
(3L-NPC) is one of the most popular [19]. Without going into the optimization of the power
converter, which will be the subject of a future work, we impose a maximum phase voltage
of 3000 V, which would be authorized by the use of medium voltage IGBT transistors (up
to 6.5 kV) [20]. For q-phases machines, the voltage limitation is formulated as√

V2
d + V2

q ≤
√

q
2

Vlimit (39)

3.6. Mechanical Constraints

Due to severe mechanical stresses, the obtained designs must respect minimum yoke
and tooth thicknesses, or the stresses will be transferred to the structural components [21].
Today, these constraints are the main limitation in the scale-up in off-shore wind power and
the manufacturers do not communicate these data, which are strategic. As a consequence,
the academic literature presents a lot of dispersion in the proposed constraints values and
designs. For example, for a power of 10 MW, the minimum thickness of the stator yoke
Wy min observed in papers varies between 14 mm and 109 mm and the minimum width of
the teeth Wt min varies between 15.3 mm and 50 mm. On the basis of these observations, we
set these values at 40 mm and 20 mm, respectively [22,23]. The slot depth to tooth width
ratio is also limited to 8 [24]. Concerning the outer radius R, setting a maximum value is
more difficult, especially because the smallest radii do not necessarily lead to the lowest
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masses, here [25]. According to [21], if the external diameter is too large, the stress on the
mechanical structure becomes too great. Consequently, according to the observed values,
we will limit the space requirement by limiting the outer radius Rmax to 5 m.

4. Design Optimization

In this section, the methodology previously presented is applied to design a direct-
drive PMSG for a 10 MW wind turbine (see specifications given in Table 1). A wind
speed profile of 4500 points (one point every 10 min), measured in the North Sea during
one month, will be considered (Figure 4) [26]. The case of a three-bladed pitch-regulated
variable speed wind turbine is considered in this study. It operates at the maximum power
point between a cut-in wind speed of 2.5 m/s and a rated wind speed of 12.4 m/s. Above
this speed, the maximum power is limited and kept constant.

Table 1. Specifications of the considered wind turbine.

Parameters Values

Blade radius 82 m
Maximal power 10 MW

Cut-in speed 2.5 m/s
Rated speed 12 m/s

Cut-out wind speed 25 m/s
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Table 1. Specifications of the considered wind turbine. 
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Blade radius 82 m 

Maximal power 10 MW 

Cut-in speed 2.5 m/s 

Rated speed 12 m/s 

Cut-out wind speed 25 m/s 

Figure 4. Wind speed profile measured at the North Sea in January.

The speed and power profiles of the PMSG can be deduced from the wind speed
profile and the specifications of the wind turbine, considering the four different operation
modes [27] of the wind turbine, as represented in Figure 5.
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In the second region, between vcut−in and the rated speed vrated, the maximum power
point tracking approach (MPPT) is adopted in order to maximize the captured power [28].
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In the third region, the pitch angle is regulated to limit the turbine output power. The rotor
speed and the output power in this region are constants and equal to their rated values.
Finally, the speed and torque profiles of the generator can be obtained; these are presented
in Figure 6.
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The main constant parameters used for the optimization are summarized in Table 2.
The optimization parameters are listed in Table 3.

Table 2. Constant parameters.

Parameters Values

Bsat 1.6 T
Vlimit 2.5 kV

Wt min 20 mm
Wy min 40 mm

kad 2
kec 0.035
kh 30

hint 10 W/m2k
hext 100 W/m2k
θmax 140 ◦C
θamb 20 ◦C
ρc 8960 Kg/m3

ρFe 7800 Kg/m3

ρPM 7600 Kg/m3

Cpc 390 J/Kg/K

Table 3. Optimization parameters.

Parameters Min Max

p 20 200
rs 0 1
rw 0 1
R 2 5

τLR (L/2R) 0.2 0.6
Wmag 10 mm 100 mm

ns 1/2 10
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4.1. Results

The NGSAII algorithm is used to solve the two objective functions:

Min

{
Wtot FW or Wtot MPTA

Mg = Mc + MFe + MPM
(40)

Note that the method proposed in this paper would also minimize the cost of the
generator, either by replacing the second objective function or by adding a third objective
function. In this paper, we have only chosen to minimize the mass of the generator, without
minimizing its cost. According to [21], this criterion is indeed essential, today, in a context
of increasing wind turbine power. However, we will present the detailed costs of the two
lightest generators obtained for the two considered control strategies.

In order to analyze the effect of the number of phases, Figure 7 presents the Pareto-
optimal fronts obtained when the number of phases q was fixed at three and five. For
both cases, the two current mode controls (FW and MTPA) were considered. The NSGA II
algorithm developed by [29] and available in a Matlab code [30] was used with a number
of generations and a population size of, respectively, 3000 and 500.
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According to the results, for a given number of phases, the optimal Pareto fronts are
overlaid. However, it can be seen that the minimum mass is always obtained for the MTPA
current mode control. The result shows how the current mode control can impact the result
(performance and design) of the machine when it is taken into account in the optimization
process. For a three-phase machine, the variation is closed to 15%. Regarding the number
of phases, the optimum is obtained for q = 3. As represented in Figure 7, the mass of the
machine increase with q. This result is mainly due to the reduction of the pole pair number
p with q because of the limitation of maximum number of possible slots at a given slot
width. However, the increase of q allows to reduce the phase current, which is necessary to
reduce the constraints and the losses in the power converter when more powerful machines
are investigated.

Figure 8 represents the profile of the currents ido and iqo during the cycle for the lightest
three-phase machine only. In the case of the FW current mode control, the current ido is
adjusted at each working point to minimize the electrical power losses according to (12).
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In Table 4, the costs of the four lightest machines presented in Figure 7 are given for
comparison. The following material costs were considered [25]: 50 EUR/kg for the magnets,
3 EUR/kg for iron and 15 EUR/kg for copper. As it can be seen, machines optimized
considering a MTPA control are less expensive compared to the machines optimized
considering an FW control (28% and 18% for q = 3 and q = 5, respectively). Such a result is
mainly due to the volume of magnets, lower for the MTPA, which represents a significant
part of the cost of the machine. This difference is in agreement with (16) and (18), where
B f m MPT opt is lower than B f m FW opt.

Table 4. Cost of the optimal solutions.

q = 3 q = 5

FW MTPA FW MTPA

Cost of magnets (kEUR) 371 218 458 311
Cost of iron (kEUR) 135 126 141 138

Cost of copper (kEUR) 296 228 315 299
Total material cost (kEUR) 802 572 914 748

4.2. Optimal Machine

For high power offshore wind turbines, mechanical constraints strongly affect the
design of the machines. To satisfy the safety of the structure, it is important to limit the mass
of the nacelle to be as low as possible. Therefore, here, we consider the lower mass machine,
i.e., the lower masse machine with q = 3 optimized for an MTPA current mode control. In
this particular case, and only because the steady state thermal regime is reached, we find
the result obtained by classical methods only when the mass is minimized considering the
rated power with an MTPA control. Beside the fact that it is an element of validation of the
proposed method, it is important to note that an optimization for the rated power with a
steady-state thermal regime not reached (which was not obvious in advance) would lead
to oversizing the machine.

Table 5 summarizes the optimal geometry of the optimal generator.



Energies 2021, 14, 4486 12 of 17

Table 5. Optimal machine parameters.

Parameter Value

q 3
p 156
R 5 m

L (τLR) 1.15 m (0.23)
rs 0.968
rw 0.992
Br 1.2 T

B f m 1 T
Btm 1.59 T
Bym 0.79 T
Wag 8 mm

WPM 18.7 mm
Total active material weight 61.75 tons

Iron weight 42.2 tons
Copper weight 15.2 tons
Magnet weight 4.36 tons
Average losses 253 kW

Nominal voltage Vs 2990 V
Nominal current Is 1030 A

Nominal cosϕ 0.98

Figures 9 and 10 show the flux densities and the temperature in the winding during
the cycle for the optimal machine. Magnetic and thermal constraints are always fulfilled
with the control of the thermal transient regime. Here, due to long operating times, the
permanent thermal regime is reached. It should be noted that, for some applications (tidal
turbine for example), where the steady state thermal regime is not reached, the optimization
method presented in this article would avoid an oversizing of the generator.
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4.3. FEA Validation

In this part, the results for the optimum generator are validated by a 2D finite element
analysis (FEA). Figure 11 shows the flux lines and flux density in the optimal machine at
the rated torque with the current Is = 1.03 kA. The average torque obtained validates the
analytical model with a variation lower than 10% (see Table 6). The magnitude of the flux
densities, measured in the middle of the most saturated teeth and in the middle of the yoke
(see Figure 11), also validates the analytical model.
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Table 6. Maximum torque and EMF at 10 MW and 11 rpm.

Quantity Analytical Model FEA Variation

Btm 1.59 1.6 0.7%
Bym 0.79 0.84 6.3

Torque (MNm) 8.6 8.13 5.47%
Magnitude of the EMF (1st

harmonic) (kV) 3.02 2.96 2%
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In order to validate the thermal model and its transient regime, the evolution of the
temperature in the winding was calculated considering a step of power (see Figure 12)
with copper and iron losses in the yoke and tooth (see Table 7) at full load, for Is = 1.03 kA.
The result shows that both the transient and the final temperature in the winding are in
good agreement.
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Table 7. Losses of the optimal generator at the maximal power (10 MW, 1.03 kA).

Analytical Model FEA Variation

Iron losses in the yoke 20 kW 13 kW −35%
Iron losses in the teeth 139 kW 173 kW 25%
Total iron of the stator 159 kW 163kW 3%

Copper losses 173 kW

5. Conclusions

In this paper, we showed how to take into account all the operating points of a working
cycle with the control strategy in the optimization process of a PMSG. It should be noted
that, by its formulation, this method is also applicable to other kinds of machines, either
synchronous (with or without magnets, with or without salience) or variable reluctance
machine. Contrary to “classical” methods, which reduce the problem to a few significant
points of the working cycle in order to reduce the computation time, the method presented
in this paper allows to consider all the points, which makes it possible to control the
constraints at any point of the cycle, in particular the thermal one, characterized by a
transient regime. The 1D model used was validated by a 2D finite element analysis. The
dynamic thermal behavior is also controlled, avoiding an oversizing of the machine in case
the permanent thermal regime is not reached. Finally, this approach, with its quickness
and simplicity, constitutes a first step toward a design optimization of the complete turbine
system, including the power electronics components, which will be discussed in future
works.
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Abbreviations

vd, vq d- and q- axis terminal voltages (V)
id, iq d- and q- axis currents (A)
e0 back electromotive force (V)
Rc armature resistance (Ω)
Rµ iron loss resistance (Ω)
X synchronous reactance
Pc copper losses (W)
Pmg iron losses (W)
kad additional iron loss coefficient
kec eddy currents specific loss coefficient
kh hysteresis specific loss coefficient
k f slot fill factor
kt tooth opening to the slot pitch ratio
kL coefficient for correcting the active length
L active length
τLR length to outer stator radius ratio
R outer stator radius
Ro inner rotor radius (m)
Rs inner stator radius
Rr outer rotor radius
rs reduced inner stator radius
Rw outer winding radius
rw reduced outer winding radius
wag air-gap thickness
wmag magnetic airgap (magnet + mechanical airgap) (m)
wPM permanent magnet height (m)
wt slot width (m)
wy armature yoke thickness (m)
bPM permanent magnet width (m)
ns number of turns per phase per pole
p number of pole pairs
q number of phases
βPM electrical magnet pole arc (rad)
σc electric conductivity
Ωm machine mechanical angular velocity (rad/s)
θmax maximal permissible temperature (◦C)
θc temperature in the copper (◦C)
θamb ambient temperature (◦C)
heq heat transfer coefficient (W/m2K)
ρc copper density (kg/m3)
ρFe steel density (kg/m3)
ρPM permanent magnet density (kg/m3)
Cpc specific heat capacity of copper (J/Kg/K)
CpFe specific heat capacity of steel (J/Kg/K)
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