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Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess,

BP 84047, 67034 Strasbourg Cedex 2, France

(Dated: 9 July 2019)

Static and dynamical properties of a model glass-forming oligomer liquid are analysed

using molecular dynamics (MD) simulations. The temperature and system size effects

are assessed for the affine shear modulus µA, the quasi-static shear modulus µs f (obtained

using the stress-fluctuation relation) and the shear relaxation modulus G(t). It is found

that while both µA and µs f are nearly independent of the system size, their variances show

significant system size dependence, in particular, below the glass transition temperature

Tg. It is also shown that the standard deviation of the shear modulus, δ µs f (T ), exhibits a

pronounced peak at T ≈ Tg whose position is nearly independent of the system volume V .

Moreover, the whole function δ µs f (T ) is nearly the same for different system sizes above

the glass transition. We propose a theory which quantitatively predicts δ µs f (T ) at T & Tg

and explains both its independence of V and its peak near Tg. It is also established that

below Tg the variance of the affine modulus follows the standard power law, (δ µA)
2 ∝ 1/V ,

while δ µs f shows anomalously slow decrease with V as
(
δ µs f

)2 ∝ 1/V α with α < 1.

On this basis it is argued that the studied glass-forming systems must show long-range

structural correlations in the amorphous state.
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I. INTRODUCTION

The shear elastic modulus µ of a material is an important property allowing to discriminate

between its liquid state (where µ = 0) and the solid state with µ > 0. Vitrifying liquids cooled

below the glass transition temperature Tg form amorphous solids which show long-time elastic

response to small strains. The glass transition can be conveniently characterized by recording the

long-time (quasi-equilibrium) modulus µ as a function of T : µ(T ) strongly increases as the system

is cooled near Tg.1–6,25–29 Simulation studies suggest that this increase is sharp, but continuous1–5.

Recent studies5,6 also reveal that glass transition is accompanied by strong fluctuations of the shear

modulus µ: its standard deviation δ µ shows a striking peak near Tg.

The study reported herein is inspired by these results. It has two goals: first, we analyzed the

system size effects on the behavior of shear moduli and their fluctuations (cf. sections V, VI);

second, we sought to clarify the physical meaning of the peak of δ µ(T ) and developed a quanti-

tative theory accounting for it (cf. section VI). The first goal was achieved by doing new simu-

lations of a smaller system (similar to that studied before5,6) and by their theoretical analysis (cf.

sections III, IV, V, VI). Based on the two achievements we arrive at a rather coherent picture

showing how fluctuations of elastic moduli and other properties of the studied glass-forming sys-

tems depend on their volume and temperature (cf. section VII). In particular, we show that the

obtained results point to significant long-range spatial correlations within the inherent structures

of the studied glassy systems. The model and the simulation approach are introduced in the next

section. The main results are summarized in the last section VIII.

II. THE MODEL AND ITS STATIC PROPERTIES

A. Model

We studied the same oligomer glass-forming model system as used in the earlier work5–8.

The system is a 3-dimensional model glassformer consisting of M oligomer chains, each of 4

spherical particles (‘monomers’) connected by bonds. All unconnected monomers interact with a

Lennard-Jones (LJ) potential uLJ(r) which is truncated and shifted at r = rcut = 2.3 (rcut ≈ 2rmin

is roughly twice the distance for the potential minimum)6, so that uLJ(r) = 0 for r ≥ rcut and

uLJ(r) = 4
(
r−12 − r−6)+ const for r ≤ rcut (LJ units are used throughout the paper). The bond

potential is harmonic: ub(r) = (kbond/2)(r− lbond)
2; the constants kbond = 1110 and lbond = 0.967
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are chosen such that the probability for bond crossing is virtually null (the bond length cannot

exceed rcut for the same reason).

B. Simulation protocol, density and RDF

We performed standard MD simulations using a velocity-Verlet scheme with time step 0.005

in a cubic box with periodic boundary conditions9. The temperature T and pressure P are im-

posed using the Nosé-Hoover-Andersen algorithm10. We always set P = 0 and start with NPT

equilibration at T = 0.6 which is well above the glass transition5,6. A large number m = 100 of

independent configurations are thus generated in this liquid regime. All the configurations are then

slowly cooled down to T = 0.05 with rate Γ =−∂T/∂ t = 10−5 (at P = 0). The emerging config-

urations are saved at a number of working temperatures (T = 0.55, 0.5, ... 0.05). For each T and

for each system from the m-ensemble we then did (i) NPT tempering for time interval ∆t = 105 at

P = 0; (ii) determination of the average volume42 and switching to the NVT ensemble; (iii) NVT

tempering over ∆t again; (iv) production NVT run, again over ∆t = 105.

The system of M = 3072 short linear chains of LJ beads, with 4 beads per chain, was studied

in refs. 5 and 6. We performed additional simulations of this system along with a detailed study of

a new oligomer system with M = 768 chains, and systematically compared various properties of

the two systems. The linear dimension of the simulation box, L, for the smaller system (768×4)

varies from L = 14.25 to 14.72 LJ units in the T -range from T = 0.05 to 0.55; the size the larger

system (3072×4) is between L = 22.6 and 23.4.

The T -dependence of the mean specific volume (per monomer) is shown in Fig. 1. The two

systems have nearly the same density (the smaller system being a little bit less dense at low temper-

atures). The standard dilatometric criterion gives the glass transition at Tg ≈ 0.38 for both systems

(cf. refs. 5 and 6; note that the dilatometric Tg is a reference estimate: generally Tg depends on the

cooling rate, Tg is lower for a longer relaxation time-scale).

The radial distribution function (RDF) gnb(r) for non-bonded monomer pairs is shown in Fig. 2

for both systems at two temperatures (above and below Tg). One can observe that the RDFs for the

two systems are almost identical (the difference is not visible). The main peak just weakly depends

on T : it is only slightly more pronounced well below Tg (at T = 0.25). In all the cases the obtained

RDFs show no sign of crystallization being typical for liquids (and disordered amorphous solids).

Thus we established that both systems are characterized by virtually the same density and the
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same pair correlation functions (including gnb(r) and the standard Kirkwood RDF, g(r)). This

fact means that all the related static properties like energy, entropy, pressure and the affine shear

modulus (see the next section) must be also nearly identical for both system sizes.

C. Affine shear modulus

The affine moduli are defined via stress response after an infinitesimal canonical affine trans-

formation of positions and velocities of all particles6,31. In the case of shear in the xy plane such

transformation reads

x → x+ γy, vy → vy − γvx

where x,y and vx,vy are coordinates and velocity components of a particle. (Note that there is a

misprint in the kinetic part of the transformation in refs. 30 and 31: the subscripts x and y are

interchanged there.) The instantaneous shear stress increment, δσxy, in the limit of small shear

strain, γ → 0, is linear in γ ⟨
δσxy

⟩
≃ γµA

where the ⟨...⟩ brackets signify an average over the statistical ensemble. The latter equation defines

the ensemble-averaged shear modulus µA (which is also known as the affine modulus)5,6, and leads

to the following general expression (cf. refs. 6 and 31): µA = ⟨µ̃A⟩ where

µ̃A =
1
V ∑

i
miv2

ix +
1
V ∑

l
n2

y
[
r2u′′l (r)n

2
x + ru′l(r)

(
1−n2

x
)]

(1)

Here ‘tilde’ indicates that the modulus is calculated for an instantaneous microstate of the system,

V is its volume, mi and vix are the mass and x-velocity of the i-th particle. The first sum runs over

all particles in the system, the second sum runs over all different pairs (l) of interacting particles,

ul(r) is the interaction potential for the l-pair, u′l , u′′l are its first and second derivatives with respect

to r = |r|, where r = rl is the distance vector, n = rl/rl is the pair orientation vector. The first

term in the above equation is the kinetic (ideal-gas) contribution, while the second (excess) term

is due to monomer interactions. In practice the kinetic term can be always ensemble averaged

giving just cT , where T is temperature in energy units (T = kBTabs with Tabs being the absolute

temperature), c=Nm/V is monomer concentration, and Nm = 4M is the total number of monomers

in the system. While the chosen LJ potential is continuous, its derivative is not, giving rise to a

singular contribution to µA known as an impulsive correction6,11:

∆µA =−2π
15

c2u′LJ(rcut)r4
cutgnb(rcut) (2)
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The above equation is valid for 3-dimensional systems.

The obtained temperature dependencies of the time- and ensemble-averaged affine shear mod-

ulus for both system sizes are shown in Fig. 3a. (If not specified otherwise, an ensemble-averaging

is taken over m = 100 independent configurations and 3 shear planes, xy, yz and xz.) It is clear

that µA is virtually the same for the two system sizes at all temperatures; it increases at low T

reflecting an increase of the system density.

III. RELAXATION MODULUS AND STRESS CORRELATION FUNCTION

The shear-stress relaxation modulus G(t) is a central rheological characteristic of a liquid or

solid material related to its dynamical moduli.12 This relaxation function can be obtained in a

simple-shear experiment recording a shear-stress increment δσ(t) generated by a small prescribed

step-like shear deformation γ0 at t = 0:

G(t) = lim
γ0→0

⟨δσ(t)⟩/γ0 (3)

The instantaneous response is given by G(0) ≡ µA. Note that a mathematically affine (that is,

linear) deformation is assumed here. More precisely, it is a canonical affine transformation in the

phase space that must be applied at t = 0.6,13

The relaxation function G(t) is closely related to the shear stress correlation function

C(t) =
⟨
σ(t + t ′)σ(t ′)

⟩
(4)

where σ(t) = σxy(t) is the instant shear stress averaged over the system volume. As before ⟨...⟩

means ensemble-averaging which is equivalent to averaging over t ′ for ergodic systems.

The stress correlation function C(t) is connected to G(t) via the stress-fluctuation equa-

tion6,13,14 (relating the relaxation modulus in the linear response regime with fluctuations of

the shear stress):

G(t) =
V
T

C(t)+ const (5)

where V is the system volume and T = kBTabs. Eq. 5 comes from the fluctuation-dissipation

theorem (FDT) which is exact for equilibrium systems15,16. The last term (const ) depends on the

boundary conditions applied to obtain C(t)3,5,6,17,31. For example const = 0 with free boundary

(in this case eq. 5 is exact only for V → ∞) or when the boundary is coupled to a highly damping

external medium17. The effect of such overdamped force was implemented in computations with
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periodic boundary conditions (PBC) using a hybrid MD-MC scheme17 involving canonical-affine

shear deformations as MC moves.43 However, the constant in eq. 5 is generally nonzero in standard

simulations with fixed PBC in the canonical ensemble.

While equation 5 is strictly valid for equilibrium systems (in particular, in the liquid state), it

is also valid for glassy (supercooled) systems as argued below: In this latter case the system stays

virtually trapped for a long time in a particular metabasin, MB (a group of inherent structures,

IS, of the potential energy landscape in the configurational space18,19), so it becomes equilibrated

within each MB. Hence, the FDT can be applied individually to each MB provided that transfer

rates f ∼ 1/τα between the glassy states (MBs) are very low, and therefore it must be valid also on

the average (for the ensemble-averaged quantities) with any (generally, non-equilibrium) probabil-

ity distribution between the glassy states (the MBs). The general condition for the FDT relation 5

to be valid is that the system must be equilibrated (prior to the measurements) during a long time

strongly exceeding the time shift t in C(t). For t ∼ ∆t the latter condition ensures that aging is

negligible within the relevant time window ∆t, as was verified earlier6.

Eq. 5 can be rewritten as6

G(t) = µA +
V
T
[C(t)−C(0)] (6)

The latter equation was employed to find the relaxation modulus for both systems at different

temperatures. We obtained the correlation function C(t) by averaging over t ′ (for the time interval

∼ ∆t), over the ensemble of m= 100 independent systems, and over the 3 shear planes. The results

are shown in Fig. 4 (the data for the larger system have been presented in refs. 5 and 6).

At short times, t . 3, G(t) shows oscillations. These oscillations are not just a thermal noise,

nor they are due to numerical errors: the oscillation pattern is reproducible and coincides for the

two systems. It reflects vibrations of the molecular chain bonds20,21. It is, moreover, obvious that

the whole G(t) relaxation is independent of system size in the liquid regime (T > Tg). Below Tg

the relaxation modulus shows a shoulder at t & 3 which gets longer and gradually transforms into

a plateau as T is further decreased. It is remarkable that the G(t) relaxation function is identical

for both system at all temperatures T > 0.25 (both above and below Tg) not only at short times,

but also for a wider time-range, t . 1000, including most of the plateau regime. At longer times

(t & 104) in the glassy regime (T . 0.36) the relaxation of the smaller system (768×4) becomes

retarded with respect to the larger one. For example, the apparent ‘terminal’ relaxation time is

about twice longer for the smaller system at T = 0.25.

What’s the meaning of these results? The G(t) relaxation at short times must reflect the iden-

6



tical local structure of the two systems (in agreement with the RDF data). A slower long-time

relaxation (longer τα ) for smaller system below Tg may seem counterintuitive (also in view of a

slightly lower density of this system). Still this feature agrees with the previous simulation re-

sults and theoretical views on the glassy dynamics6,22,23 (in particular, it was shown22,23 that τα

for binary LJ mixtures increases as the system size decreases at T below the onset of the glassy

dynamics). This effect shows that the terminal α-relaxation is not a local property but rather is

a collective process involving transformations of large parts of the system. The corresponding

dynamical correlation length (the size of the optimal cooperatively rearranging region) may thus

exceed the size of the smaller system (L ∼ 14) leading to its slower relaxation (as the optimal

relaxation pathway gets prohibited due to the system size). Such reasoning is also similar in spirit

to the Adam-Gibbs-DiMarzio theory24 (cf. their argument based on the size dependence of the

configurational entropy23). It is remarkable that at very low T . 0.25 the relaxation modulus G(t)

is a bit higher for the smaller system in the plateau regime. This effect is not due to a difference of

the affine modulus µA = G(0), which is negligible between the two systems; rather it must be due

to long-range relaxation modes which are effective for the larger system, but not for the smaller

one.

Noteworthily, there is actually no contradiction between a lower density and a longer relaxation

in the 768×4 system. The latter feature means that the 768×4 system must be a bit farther from

equilibrium than the larger system at low T in the glassy state. For density this means a stronger

downward shift (cf. Fig. 1) from the equilibrium line, hence lower density as compared with the

3072×4 system.

IV. THE APPROACH TO OBTAIN THE SHEAR MODULUS AND ITS

T -DEPENDENCE

The long-time shear modulus can be defined simply as µ = G(∆t), where ∆t is the longest

accessible laboratory (experimental or simulation) time-scale. Further, the function G(t) can be

obtained using the FDT relation, eq. 6, which takes the form

G(t) = µA −µ0 +
V
T

C(t) (7)

with µ0 measuring the ensemble- and time-averaged square of the shear stress:

µ0 =
V
T

C(0) =
V
T

⟨
σ2
⟩

(8)
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where

σ2 =
1
∆t

∫ ∆t

0
σ(t)2dt

The time-averaged stress is defined for each system of the ensemble as

σ̄ =
1
∆t

∫ ∆t

0
σ(t)dt (9)

As follows directly from the definition of C(t)

⟨
σ̄2⟩= 1

∆t2

∫ ∆t

0
C(t − t ′)dtdt ′ (10)

The above integral can be considered as an average of C(t) over the time scale ∆t. A similar

average of G(t) reads

µs f ≡
1

∆t2

∫ ∆t

0
G
(∣∣t − t ′

∣∣)dtdt ′ (11)

Obviously µs f depends on ∆t. On using eqs. 7, 10, 11 one gets5,6:

µs f = µA −µF (12)

where

µF = µ0 −µ1, µ1 =
V
T

⟨
σ̄2⟩ (13)

The modulus µs f defined in eq. 11 is dominated by the long-time stress response (for t ∼ ∆t), so

µs f serves as a good and useful approximation for the terminal (quasi-static) modulus µ , µs f (∆t)≈

µ(∆t), if the sampling time ∆t is long enough, ∆t ≫ τ0, where τ0 corresponds to the onset of the

glassy elastic plateau below Tg (see Fig. 4 where τ0 ∼ 3). Noteworthily, µs f (∆t) is better defined

statistically than µ = G(∆t).

The fluctuation modulus µF measures the mean-square fluctuation of σ over the sampling time

∆t:5,6

µF =
V
T

⟨
(σ − σ̄)2

⟩
(14)

On the other hand, it can be also considered as an effective drop of G(t) during the time ∆t:

µF(∆t) = G(0)−µs f (∆t) (15)

The modulus µF can be also treated as the average of individual moduli µ̃F defined for each

independent dynamical trajectory of a system from the ensemble:

µF = ⟨µ̃F⟩ (16)
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with

µ̃F =
V
T

(
σ2 − σ̄2

)
≡ µ̃0 − µ̃1 (17)

Apart from the factor V/T , µ̃0 is the mean-square shear stress of the trajectory, and µ̃1 is the square

of the mean stress σ̄ . The latter equation can be rewritten as

µ̃F =
1
2

V
T
(∆t)−2

∫ ∆t

0
[σ(t1)−σ(t2)]

2 dt1dt2 (18)

Eq. 18 directly shows that any constant (quenched) stress does not affect µF . Using eqs. 16, 18 we

get:

µF(∆t) =
2

∆t2

∫ ∆t

0
(∆t − t)h(t)dt (19)

where

h(t) =
1
2

V
T

⟨[
σ(t + t ′)−σ(t ′)

]2⟩
=

V
T
[C(0)−C(t)] = G(0)−G(t) (20)

is proportional to the mean-square shear stress increment. Thus, the functions µF(∆t) and h(t) or

G(t) are closely related defining each other with eq. 19 or with the inverse equation6

h(t) =
1
2

d2

dt2

[
t2µF(t)

]
(21)

The long-time modulus µs f was obtained as a function of temperature using the FDT relation,

eq. 12, for both systems, 768× 4 and 3072× 4 (cf. refs. 5 and 6). The temperature behavior of

the moduli µF and µs f for the sampling time ∆t = 105 (in LJ units)44 is shown in Fig. 3 (the data

for the larger system have been obtained in refs. 5 and 6). The glassy modulus µs f nearly vanishes

at high T ’s (in the liquid state), while it sharply increases (and µF = µA − µs f decreases) as the

temperature is lowered near Tg. Below Tg (in the glassy state) µs f continues to grow, albeit rather

moderately. The moduli µF and µs f are nearly the same for both systems at all temperatures apart

from the low-T region (T . 0.3) where the smaller system shows a bit lower µF and therefore a

bit higher µs f . The latter low-T effect is consistent with two features of stress relaxations (recall

that µF and µs f are directly related to G(t), cf. eqs. 19, 11): (i) G(t) in the ‘plateau’ regime is a

bit higher for the smaller system; (ii) the stress relaxation time τα is longer for this system below

Tg (cf. section III and note that a lower ∆t/τα always leads to a higher effective modulus µs f ).

Let us turn to the sampling time effect for the moduli. The T -dependencies of µs f and µF for

both systems at different ∆t are depicted in Fig. 5. It is obvious that µs f decreases (µF increases)

with increasing ∆t at a given T as it should be (longer relaxation leads to a lower terminal modulus

µs f ). It is also clear that, as expected, the glass transition shifts to lower temperatures as ∆t
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is increased. However, the steepness of the transition (of the growth of µs f near Tg) does not

increase with ∆t being apparently nearly constant (more precisely, the transition becomes sharper

as ∆t increases from 500 to 104 LJ units, but a further increase of ∆t makes it a bit less sharp).45

This feature seems to be a curiosity of the system: at long ∆t we expect the glass transition to

become progressively sharper (see the Discussion). Apparently, much longer sampling times are

required to unambiguously distinguish between the theoretically expected discontinuous25–29 and

continuous1–5 scenarios of the shear modulus behavior at the glass transition.

We attempted to perform the time-temperature superposition (TTS) to collapse the µs f (T )

curves for different ∆t times. The natural idea is that the glass transition occurs when the sam-

pling time ∆t gets comparable to the characteristic time of stress relaxation τα = τα(T ). This

concept implies that the relevant variable is τα(T )/∆t. Assuming Arrhenius (activation) behavior

for the relaxation time, τα(T ) = const exp(E/T ), where E is the activation energy, we arrive at

the relevant time-temperature variable x = 1
T + 1

E ln
(

∆tre f
∆t

)
, where ∆tre f is an arbitrary reference

time. A reasonable collapse of µs f vs. x is achieved for E ≈ 18 (see Fig. 5c). The same acti-

vation energy can be deduced from the temperature behavior of the shear viscosity η near Tg (in

the range 0.37 ≤ T ≤ 0.41) for the larger 3072×4 system (cf. Fig. 13 of ref. 6). The validity of

the TTS verified in Fig. 5c is important as it supports the continuous nature of solidlike elasticity

emergence at the glass transition. In fact, a continuous dependence of Tg on ∆t (which is implied

in the TTS) is incompatible with a discontinuous dependence of shear modulus, µ(T ), at a finite

∆t.

V. FLUCTUATIONS AND CORRELATIONS OF µA

The modulus µA provides an instant stress response to a small instant shear. It is therefore a

static, structural property of the system. The deviations of µA discussed in refs. 5 and 6 refer to

the dispersion of the mean µA values time-averaged along a trajectory. More precisely, the instant

affine moduli were calculated using eq. 1 at regular times separated by ∆tA =500 LJ units, so the

mean µA is based on nA = ∆t/∆tA = 200 configurations for the time-window ∆t = 105LJ. (Note

that the so-called impulsive correction to µA, which is proportional to gnb(rcut), cf. eq. 2, was

taken into account as described in ref. 11.) For better comparison, µA and its standard deviation,

δ µA, were calculated in a similar way for the 768×4 system:

(δ µA)
2 =

⟨
(µ̃A −µA)

2
⟩
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where µ̃A is the mean affine modulus of a trajectory and µA = ⟨µ̃A⟩ is the ensemble-averaged

modulus.

The standard deviations of µA are shown for both system sizes in Fig. 6a. It is clear that δ µA

strongly increases as the system is cooled through the glass transition region. It is also obvious

that δ µA decreases with the system size. The ratio of standard deviations δ µA(768)/δ µA(3072)

is close to 2 at low T . 0.35 (cf. Fig. 6b). This fact points to the standard power-law dependence

of δ µA on the system volume: δ µA ∝ 1/
√

V (note that the system volume is proportional to

the number of particles).46 Therefore µA appears to be a self-averaging quantity whose variance

decreases with the total volume as 1/V . This conclusion is in line with simulation studies of self-

assembling networks30. In view of this property it may be tempting to relate the variance of µA

with some microscopic correlation volume Vc: (δ µA)
2 ≃ (Vc/V )µ2

A. What is the nature of Vc?

Does an increase of δ µA at low T signify an increase of a structural correlation volume? These

and other questions related to the statistics of µA are discussed below in this section.

It is worth stressing that the statistics of the time-averaged µA involve time-correlations between

instant µA along the trajectory. These correlations are dynamical (rather than solely structural) in

nature and therefore strongly depend on temperature. To avoid the dynamical aspect, one has to

consider directly the statistics of the instant moduli µ̃A (nAm values in total for m = 100 indepen-

dent trajectories). The corresponding standard deviation is denoted here as δ1µA; it was calculated

based on 100 independent trajectories for each T . We analysed separately the two non-ideal (ex-

cess) contributions to µA, one due to interactions between bonded monomers (µAb) and another

due to LJ-interactions (µAl j). The overall µA is a sum of µAb, µAl j and the ideal-gas term cT

(c = Nm/V ; the ideal term contributes only ∼ 1% to µA; its fluctuations are totally negligible). The

results for the 768× 4 system are shown in Fig. 7a. One can observe that the mean µA, µAb and

µAl j all increase rather weakly as T is lowered (cf. Fig. 7a). Being static properties the instanta-

neous µA-moduli are expected to show a cusplike feature at the glass transition in analogy with the

T -dependence of density (cf. Fig. 1). Such features (weak virtual cusp near Tg) are indeed visible

in the T -dependencies of µA, µAb and µAl j (cf. Fig. 7a).

Remarkably, however, the standard deviations (across the mnA-ensemble) of the instant values

of the µA-moduli are nearly independent of T (cf. Fig. 7b) in drastic contrast with a strong increase

of δ µA (deviations of the time-averaged µA) near and below Tg (cf. Fig. 7d). Note that δ1µA ≈ δ µA

for T . 0.36, but δ1µA ≫ δ µA for T & 0.4. It means that the amorphous structure stays largely

frozen at low T (so, in particular, bond-orientational fluctuations are suppressed), and therefore
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the fluctuations of µA along the time-trajectory become negligible in this regime (as the system

rests in a virtually single inherent structure within a metabasin). We also observe that generally µA

is dominated by the bond contribution, µAb. A similar statement is even more true for the standard

deviations: the total deviation δ1µA is nearly equal to that for bonds, δ1µAb.

We obtained and compared contributions to the dispersion of the instant µA due to thermal

fluctuations along the trajectory, varF(µA), and due to permanent variations between indepen-

dently cooled configurations (metabasins), varMB(µA): (δ1µA)
2 = varF(µA)+ varMB(µA). Quite

expectedly we found that the MB-contribution dominates well below Tg (at T . 0.3), while both

contributions are comparable near Tg (and, of course, the fluctuation contribution dominates above

Tg).

One may wonder if a structural correlation length ξs can be estimated based on these results.

Below we show that this is not really possible. The point is that both µAb and δ1µAb (providing

dominant contributions to the affine modulus and its standard deviation) can be predicted assum-

ing no correlations between the polymer bonds. This assumption is reasonable since bonding

interactions are much stronger than LJ interactions in our simulation model with kbond = 1110 in

LJ units. (A renormalization of kbond due to LJ interactions can be neglected for the same reason.)

It leads to the following results (small corrections of relative order T/
(
kbondl2

bond

)
are neglected

here):

µAb ≈
1

20
ckbondl2

bond, δ1µAb ≈
1
5

√
2

21
ckbondl2

bond/
√

Nm,
δ1µAb

µAb
≈ 4
√

2
21Nm

(22)

These theoretical results are also shown in Fig. 7a-d. The relative deviations of µAb are thus pre-

dicted to be T -independent: δ1µAb
µAb

≈ 0.0223 for Nm = 768×4, while simulations point to ≈ 0.025

for this ratio (cf. Figs. 7c and 8). It is clear that the predictions are generally in good agreement

with our simulation data: the theory just slightly overestimates µAb and underestimates δ1µAb.

Given that δ1µA ≈ δ1µAb (cf. Fig. 7b), we conclude that structural correlations cannot be resolved

based on fluctuations of instant µA for the model we consider. In other words, µA does not seem

to be an appropriate variable to probe the correlation length ξs. As for the effective correlation

volume Vc, it always corresponds to about 1 particle (monomer) independent of temperature and

the system size (cf. eq. 22).

The revealed T -independence of δ1µA invites the question: why the deviations δ µA of the time-

averaged µA depend on T so strongly (they increase by a factor of ∼ 20 between T = 0.55 and

0.05)? The reason is that while µA is always averaged over nA =200 transient configurations along
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each trajectory, these instant states are independent at T = 0.55 (where relaxation time τα is much

shorter than the time interval ∆tA between the configurations), but they are strongly correlated for

T = 0.05 (τα ≫ ∆tA). As a result δ µA is smaller than δ1µA by a factor 1/
√

nA at high T ’s, but this

reduction is not applicable at low T ’s where δ µA ∼ δ1µA (cf. Figs. 7d and 8).

So far the instant (or time-averaged) µA was calculated for a given fixed shear plane (say,

xy). The instant µA was thus calculated using the general equations 1, 2 (cf. refs. 6, 11, and 31).

Recalling the macroscopic isotropy of the system, we tried a different approach to obtain instant µA

using pre-averaging over all possible shear planes. The resultant expression for the pre-averaged

instant µA does not involve bond orientations and can be conveniently written in terms of pair

correlation functions like g(r), the Kirkwood radial distribution function:

µA = µAl j +µAb + cT (23)

where

µAl j = Adc2
{∫ rcut

0

[
ru′′LJ(r)+(d +1)u′LJ(r)

]
gnb(r)rddr−

[
rd+1u′LJ(r)gnb(r)

]
r=rcut

}

µAb = Adc2
∫ rcut

0

[
ru′′b(r)+(d +1)u′b(r)

]
gb(r)rddr (24)

Here d = 3 is the space dimension, Ad = πd/2

4Γ(d/2+2) =
2π
15 , ub(r) = 0.5kbond (r− lbond)

2 is the in-

teraction potential for bonded monomers, uLJ(r) = 4
(
r−12 − r−6) is the LJ potential in LJ units,

gb(r) is the pair correlation function for bonded monomers (analogous to the Kirkwood function),

and gnb(r) = g(r)−gb(r). Note that∫
gb(r)ddr =

2(N −1)
Nc

=
3
2c

with N = 4

In practice the two integrals in eqs. 24 are replaced by sums according to the rule:

Adc2
∫ rcut

0
X(r)gα(r)rddr → 1

d(d +2)
1
V ∑

l(α)

X(rl)

where α is either ‘b’ (polymer bond) or ‘nb’ (LJ interaction), l(α) runs over all (disordered)

monomer pairs of type α , and X(r) is any function.

We found that the orientation-averaging dramatically reduces the variance of µA: both standard

deviations δ µA and δ1µA (of time-averaged and instant µA values, respectively) decrease as a result

by a factor changing from ∼ 6 to ∼ 20 as T is lowered from 0.55 to 0.05 (see Figs. 7e,f).
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This unexpectedly strong effect has a simple physical meaning: the variance of µA is dom-

inated by bond-orientational fluctuations which are effectively eliminated in the new definition,

eqs. 23, 24. On more quantitative grounds, this effect can be analyzed for the dominant bond-

related part of µA. Fluctuations of the pre-averaged µAb defined in eqs. 23, 24 are due to bond-

length fluctuations which are much weaker than orientational fluctuations. Assuming (as before)

independent bonds we found:

δ1µAb(or) ≈ 0.2clbond

√
3T kbond

Nm
(25)

The standard deviation of instant but orientation-averaged µAb is thus expected to decrease as
√

T

at low temperatures (following the amplitude of bond-length fluctuations). This prediction is in

very good agreement with simulation results for δ1µAb(or) in the whole studied T -range (cf. dashed

black and magenta curves in Fig. 7e).

Comparing eq. 25 with eq. 22 we observe that the standard deviation of µAb is now significantly

reduced by a large factor δ1µAb
δ1µAb(or)

= lbond
3

√
2kbond

7T ≈ 5.74√
T

in quantitative agreement with simulation

results and in qualitative agreement with a similar reduction of δ1µA and δ µA (deviations of instant

and time-averaged µA, cf. Fig. 7f).

Note that fast increase of the ratio of the time-averaged deviations, δ µA/δ µA(or) near Tg (cf.

Fig. 7f) is due to an increase of the orientational relaxation time (leading to a poorer self-averaging

of µA over the sampling time at T < Tg, hence an increase of δ µA), while a decrease of the same

ratio at lower T < 0.3 is due to a slowdown (partial freezing) of bond-length fluctuations leading

to a poorer self-averaging of µA(or), hence an increase of the denominator, δ µA(or), on further

cooling.

To conclude, eqs. 23, 24 are useful to obtain more precise instantaneous affine shear modulus

µA. With the standard definition of µA (without orientational pre-averaging), the standard devia-

tion δ µA becomes comparable to δ µF at low T (in particular, for the smaller 769x4 system, cp.

figures 7e and 9a), so the standard deviation of µs f = µA−µF is somewhat larger than δ µF . Using

µA obtained with eqs. 23, 24 we arrive at less fluctuating µs f with δ µs f ≈ δ µF at all T ’s since

fluctuations of µA in this case are always totally negligible.
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VI. DISPERSION OF µF

The fluctuation modulus µ̃F (cf. eq. 18) is a random variable changing across the mnA-

ensemble; its standard deviation δ µF (with a large ensemble, m ≫ 1) is defined in analogy with

δ µA:

(δ µF)
2 =

⟨
(µ̃F −µF)

2
⟩

(26)

where µF is the mean value defined in eq. 16. The simulation results for the deviations δ µF

at different temperatures are shown for both systems (at ∆t = 105) in Fig. 9a. The data for the

3072× 4 system have been discussed in refs. 5 and 6. It was reported there that both δ µF and

δ µs f ≈ δ µF (this equation comes from eq. 12 and the fact that the variance of µA can be neglected

with respect to the variance of µF , cf. the previous section V and ref. 6) show a peak near the

apparent glass transition temperature Tg. This feature is confirmed here for the new 768×4 system.

The peaks are located at the same temperature T ≈ 0.36. It is interesting that the peak height is

nearly independent of the system volume (the peak is just a bit higher for the smaller system) and

that the deviations, δ µF , are identical for both systems in the liquid regime (T > Tg). On the other

hand, at low temperatures δ µF is significantly larger for the smaller system (as compared to the

larger one).

The sampling time effect on δ µF is illustrated in Fig. 10a. In the liquid regime δ µF signifi-

cantly increases as ∆t is shortened (this behavior is in accord with an increase of effective Tg for

shorter ∆t, cf. end of section IV).47 By contrast, δ µF decreases (albeit rather moderately) for

shorter ∆t in the peak region and below the transition. This tendency (an increase of δ µF with ∆t)

seem to weaken at low T and disappear at the lowest T = 0.05.

The discovered peak of δ µF near Tg is a remarkable feature5,6 demanding an explanation. A

qualitative argument elucidating this behavior is presented in the Discussion. Below, instead, we

describe a quantitative approach predicting δ µF based on the known relaxation modulus G(t).

The fluctuation modulus for a given trajectory, µ̃F , is directly related to the stress function σ(t),

cf. eq. 18, which is a stochastic process characterized by some stationary probability distribution

enveloping all systems of the statistical ensemble we consider. The basic assumption adopted here

is that this distribution is nearly Gaussian (i.e., σ(t) is a Gaussian process). Its validity is discussed

in the next section. It is instructive to consider a discrete version of the theory involving arrays

σi ≡ σ(ti) of stress recorded at times ti = iδ t, where δ t is the time interval between successive

stress calculations (δ t = 0.05 in our simulations), and i is an integer changing from 1 to I = ∆t/δ t.
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Then

µ̃F =
V
T

(
I−1 ∑

i
σ2

i − I−2 ∑
i, j

σiσ j

)
(27)

where j is also changing from 1 to I. The mean value of µ̃F can be obtained noting that

V
T

⟨
σiσ j

⟩
= Gi− j + const (28)

with Gi− j ≡ G(
∣∣ti − t j

∣∣):
µF = G0

(
1− I−1)−2I−2

I−1

∑
s=1

(I − s)Gs (29)

The latter equation can be considered as the discrete version of eq. 19. The variance of µF is

(δ µF)
2 =

⟨
(µ̃F)

2
⟩
−µ2

F

The r.h.s. of the above equation involves terms like
⟨
σiσ jσi′σ j′

⟩
(emerging on recalling eq. 27).

For a Gaussian σ(t) such quartic correlators are reduced to pair correlators

⟨
σiσ jσi′σ j′

⟩
=
⟨
σiσ j

⟩⟨
σi′σ j′

⟩
+ ...

which are related to G(t) via eq. 28. As a result we get

(
δ µ(G)

F

)2
=

2
I4


[
∑
i, j

Gi− j

]2

+ I2 ∑
i, j

G2
i− j −2I ∑

i, j,s
Gs−iGs− j

 (30)

The superscript ‘G’ here means that eq. 30 gives the variance of µF using the Gaussian approxi-

mation.

The ‘Gaussian’ standard deviations, δ µ(G)
F , were calculated for both systems and different T ’s

and sampling times ∆t. (In practice, all the multiple sums in eq. 30 were reduced to single sums

to accelerate the calculation.) The obtained results are compared with simulation data for δ µF

in Fig. 9b. Noteworthily, the T -dependencies of the ‘Gaussian’ deviations δ µ(G)
F are nearly the

same for both systems. One can observe an excellent agreement between δ µ(G)
F and δ µF in the

liquid regime: δ µF ≈ δ µ(G)
F at T > Tg for both systems. Moreover, the Gaussian approximation

correctly reproduces the simulation data also in the peak region (for T & 0.3) for the larger system,

while for the 768× 4 system the peak height is somewhat underestimated by the theory. At low

temperatures, T < 0.3, the predicted δ µ(G)
F strongly decreases while δ µF seems to saturate at a

finite level.
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The above conclusions are supported with Fig. 10b illustrating the temperature dependencies

of δ µF and δ µ(G)
F at different sampling times ∆t. At low T < Tg the effect of ∆t is complicated:

at T & 0.2 the theoretical deviation δ µ(G)
F increases with ∆t, while the opposite tendency works at

lower temperatures (T . 0.15). (Note that δ µF seems to exhibit a qualitatively similar behavior,

albeit with a crossover at a lower T ∼ 0.05, cf. Fig. 10a.) Where such behavior could originate

from? It is relatively easy to clarify this point for δ µ(G)
F . The analysis can be based on the

following equation stemming directly from eq. 30

(
δ µ(G)

F

)2
=

1
2I4 ∑

i ji′ j′

(
Gi− j +Gi′− j′ −Gi− j′ −G j−i′

)2 (31)

At low T ’s the lion’s share of time points falls into the plateau regime where G is nearly constant

(cf. Fig. 4), hence the summand is small: its typical value is (G(∆t)−G(∆t/2)2 ∼ g2, where

g = (∂G/∂ ln t)t∼∆t . The long-time contribution to the variance,
(

δ µ(G)
F

)2
, is therefore ∼ g2 with

small g = g(T,∆t) (g . 1 for T < 0.3). When 2 time points (say, i and j) get close to each other,

the summand can take a much larger value (∼
(
µA −µs f

)2
= µ2

F ), but the ‘probability’ of such an

event is low, ∼ τ0/∆t. Taking into account both contributions we write

(
δ µ(G)

F

)2
∼ g(T,∆t)2 +µ2

Fτ0/∆t, ∆t > τ0 (32)

where τ0 is the time-scale of initial fast stress relaxation (before the plateau regime). The g-factor

here increases with ∆t, but this increase becomes extremely weak at low T (cf. Fig. 4). By contrast,

the second term decreases with ∆t (for ∆t > τ0) and is nearly independent of temperature. It wins

at very low T ’s where the g-variation can be neglected thus leading to a decrease of the whole

variance
(

δ µ(G)
F

)2
with ∆t.

It is interesting that the ∆t-dependence of δ µ(G)
F for ∆t ≫ τ0 is qualitatively similar to its T -

dependence (the main relevant parameter is ∆t/τα which increases either with ∆t or with T ). Both

µF and δ µ(G)
F obviously vanish at ∆t = 0. At high temperatures (above Tg) the Gaussian deviation

δ µ(G)
F first increases with ∆t at the time-scale ∆t . τα and then decreases at longer ∆t. At low T

(T . Tg) the stress relaxation proceeds in two steps with times ∼ τ0 and ∼ τα , and we predict 2

peaks of δ µ(G)
F vs. ∆t: one is related to ∆t ∼ τ0 and the other to much longer time, ∆t ∼ τα .

To sum up, it appears that the Gaussian theory works well above Tg and in the transition (peak)

region, but fails at low T ’s. In the next Discussion section we explain this behavior and deduce

some important information stemming from it.

17



VII. DISCUSSION

A. Solidification transition

Our analysis shows (cf. section IV) that the transition from liquid to amorphous solid behav-

ior (a nearly steplike increase of the static shear modulus µs f ) occurs in the T -region where the

terminal relaxation time is comparable with the sampling time, τα(T ) ∼ ∆t (for long enough ∆t

this regime involves a long-time plateau in the shear relaxation modulus G(t)). The latter condi-

tion defines the apparent glass transition temperature Tg = Tg(∆t) which depends on the explored

time-window ∆t and corresponds to both the steepest increase of µs f = µs f (T ) (cf. Fig. 5b) and

the maximum of its standard deviation δ µs f ≈ δ µF (cf. Fig. 10a).

In terms of relaxation functions like G(t) the vitrification can be considered as a transition

from the glassy plateau regime to the liquid regime with vanishing G(t). This transition occurs at

t ∼ τα(T ), more precisely, in the region where G(t)/G(τα) ∼ 1. Assuming the KWW stretched

exponential relaxation law24 for G(t) it leads to the time-region whose width in log-scale is defined

by δ (ln(t/τα(T )))∼ 1/β , where β is the stretching exponent. Therefore, the temperature width,

δTg, of the glass-transition region (for a given time-window ∆t) can be roughly defined by the

condition δ (ln(τα(T )/∆t)) ∼ 1/β leading to δTg |∂ lnτα/∂T |T=Tg
∼ 1/β . The latter estimate

can be rewritten as

δTg/Tg ∼ 1/
(
βm f

)
where m f = −∂ lnτα/∂ lnT |T=Tg

is the fragility index (a similar dependence of δTg on m f was

predicted in the review41, cf. eq. (4.5a) there). An Arrhenius increase of the relaxation time below

Tg, τα ∼ τ0 exp(E/T ) (τ0 is the time-scale of particle collisions), leads to m f ∼ ln(τα/τ0) ∼

ln(∆t/τ0). Hence, the transition width δTg/Tg is expected to logarithmically decrease with the

sampling time ∆t:

δTg/Tg ∝ 1/ ln(∆t/τ0)

This decrease is very slow, and perhaps this is the reason why it is not apparent in the sim-

ulation data (cf. Fig. 5b). (Note that in the case of a super-Arrhenius increase of τα , τα ∼

τ0 exp(E/(T −T0)) (the VFT law), the fragility index shows a faster, but still logarithmic de-

pendence on τα .) Theoretically, there is no doubt that the transition width must vanish in the limit

∆t → ∞ as long as the glassy plateau24 persists at however low temperatures (and we are not aware

of any data pointing to the contrary). In this case the glass transition becomes asymptotically dis-
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continuous as ∆t → ∞, but the main question is whether the amorphous state is possibly stable at

the transition temperature Tg(∆t) in this limit. Its discussion is outside the scope of the present

paper.

B. Dispersion of µA

In section V we analyzed separately the LJ and chemical bond contributions to the affine shear

modulus µA. It was shown that orientational preaveraging leads to a strong decrease of δ µA, the

standard deviation of µA. This effect elucidates an important role of bond orientational fluctuations

for δ µA.

It is also remarkable that while the fluctuations of the total instant orientation-averaged µA

get weaker at low T roughly in parallel with those for the chemical bond contribution (µAb), the

analogous fluctuations of the LJ-contribution, µAl j(or), show a stronger decay right below Tg (see

Fig. 7e: the green curve for δ1µAl j(or) shows a downward cusp at Tg). What’s the physical meaning

of this feature? The modulus µAl j(or) is sensitive to distances between the neighboring particles, so

the behavior of δ1µAl j(or) (note that this quantity is a static property) indicates that the amorphous

glassy structures below Tg involve progressively weaker dispersion of inter-particle distances as T

is decreased (a similar structural effect for chemical bonds is much less pronounced due to their

high rigidity kbond).

Another interesting feature concerns the behavior of δ µA and δ µA(or) shown in Fig. 7e (cf.

black and red curves): both deviations show a sharp increase as T is lowered in the glass-transition

region, however the increase of δ µA (by a factor of 10) is much stronger than that for δ µA(or)

(roughly by a factor of
√

10). This difference can be explained as follows: µA fluctuations are

mainly due to rotations of chemical bonds, which get virtually frozen below Tg leading to a poorer

self-averaging of µA (hence, to a significant increase of δ µA). By contrast, µA(or) is insensitive to

bond orientations: rather its fluctuations are defined by the bond-length dynamics which become

only partially constrained right below Tg (leading to a weaker increase of δ µA(or)). It is also likely

that bond-length fluctuations get progressively more restricted at lower T leading to a further in-

crease of δ µA(or) (and, hence, to a decrease of the ratio δ µA/δ µA(or), cf. Fig. 7f). The same effect

also results in finite levels of both δ µAb(or) and δ1µAb(or) (and, of course, of δ µA(or) and δ1µA(or))

at T → 0 since not only bond orientational heterogeneities but also bond-length fluctuations must

be arrested in this limit.
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C. Peaks of µF and δ µF

The fluctuation modulus µF shows a peak near Tg (cf. Figs. 3a, 5a). This behavior can be

clarified in a simple way. At high temperatures (above Tg) the terminal shear modulus µ ≈ µs f is

close to 0, so µF ≈ µA by virtue of eq. 12. As T decreases at constant pressure, the instantaneous

modulus µA increases due to stronger interactions between particles: the density (monomer con-

centration c) of the system increases, hence the mean interparticle distance decreases leading to a

higher interaction energy at lower T ; this interaction contribution to µA typically overwhelms the

momentum contribution which is equal to cT . By contrast, at low T . Tg the effective modulus

µs f starts to grow rapidly (the solidification transition). This increase is stronger than the moderate

increase of µA, hence µF = µA − µs f decreases as the system is cooled below Tg (this tendency

also comes from a simple observation that the system dynamics slow down at low T , hence the

drop of G(t) during the same time t ∼ ∆t becomes weaker). As a result µF as a function of T (at a

constant sampling time ∆t) develops a peak near Tg.

Let us turn to the variance of µF , defined in eq. 26, which is nearly equal to the variance of

µs f (cf. section VI) and shows a sharp peak near Tg (cf. Fig. 9a). A qualitative explanation of

this behavior is given below: At high temperatures (T > Tg), in the liquid regime the fluctuation

modulus µ̃F is dominated by the term µ̃0 in eq. 17 (since σ̄ is strongly suppressed by self-averaging

to 0):

µ̃F ≈ µ̃0 = const
∫ ∆t

0
σ(t)2dt (33)

The stresses σ(t1) and σ(t2) are virtually uncorrelated if |t1 − t2| & τα , where τα is the terminal

(longest) stress relaxation time. Above Tg the time τα is short, τα ≪∆t, hence the integral in eq. 33

can be considered as a sum of many (K) uncorrelated similar contributions, K = ∆t/τα ≫ 1. As a

result µ̃F efficiently self-averages in this regime: its variance is small being inversely proportional

to K:

(δ µF)
2 /µ2

F ∼ 1/K = τα/∆t (34)

As a matter of fact, that sort of argument (to get eq. 34) is well-known in the simulation literature

(cf. section 4.2.4 of ref. 33 showing that finite sampling time effects may lead to statistical and

systematic errors of numerical results). Note that the above equation resembles eq. 32 where τ0 is

replaced by τα and the first term is omitted (being negligible) as there is no plateau in the liquid

regime. Therefore, here δ µF ∝
√

τα , and so the standard deviation δ µF increases significantly

as the system is cooled towards Tg, following the behavior of the relaxation time τα = τα(T ).
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Quantitatively, δ µF in the liquid regime (where τα ≪∆t) is accurately predicted with the Gaussian

approximation (cf. eqs. 30, 31) giving

(δ µF)
2 ≃ 4η2/∆t

where

η2 =
∫ ∞

0
G(t)2dt

Turning in passing to the terminal modulus µs f , recall that µs f ≃ 2η/∆t for ∆t ≫ τα (cf. eq. 11

and ref. 6), where η =
∫ ∞

0 G(t)dt is the shear viscosity. Therefrom we find the relative variance

of µs f (also recalling that δ µs f ≃ δ µF )

(
δ µs f /µs f

)2 ≃
(
η2/η2)∆t ∼ ∆t/τα (35)

which is increasing with the time-window ∆t in the liquid regime.

At T < Tg the system enters the glassy regime where the terminal relaxation time is very long,

τα ≫ ∆t. As a result, the time τα becomes irrelevant for δ µF . Close to Tg (but below it) the

standard deviation δ µF is still well-described by the Gaussian approximation (cf. Figs. 9b, 10b),

so we can make use of eq. 32. The second term in this equation is nearly constant below Tg (for a

given ∆t and τ0 ≪ ∆t), while the first term involving g(T,∆t) = (∂G/∂ ln t)t∼∆t strongly decreases

as the system is further cooled below Tg (cf. Fig. 4).

To sum up, the arguments presented above show that δ µF must strongly diminish as T deviates

from Tg getting either cooler or warmer, thus producing a sharp peak near Tg.

The dependencies of δ µs f ≈ δ µF and µs f on T are depicted in Fig. 12. In is obvious that

δ µs f ∼ µs f near the peak of δ µs f (T ): the fluctuations of the long-time shear modulus across the

ensemble are of the same order as its average over all the independent configurations, so the mean

µs f is not necessarily a good reporter of the typical system behavior near the glass transition. This

important finding was mentioned in the previous papers5,6 for the 3072x4 system. It is now clear

that this feature is general. It is also supported by the Gaussian theory: eq. 31 shows that δ µF

is roughly equal to the typical change of G(t) in the region t ∼ ∆t (say, between t1 ∼ ∆t/2 and

t2 ∼ ∆t); this change is comparable to µs f for ∆t ∼ τα (that is, near the glass transition, at the

peak). Noteworthily, the relation δ µs f ∼ µs f also comes from eq. 35 with ∆t ∼ τα .
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D. Gaussian approximation

We developed a theory of µF fluctuations assuming the Gaussian statistics for the instant stress

σ(t) (cf. section VI). This approach can be applied to analyze fluctuations of other properties. As

an example let us consider the mean-square of the time-averaged stress, µ1 =
V
T

⟨
σ̄2⟩ (cf. eq. 13),

which is equal to µs f for well equilibrated systems (at T & 0.3). The Gaussian theory predicts the

following universal relation

δ µ1 =
√

2µ1 (36)

This prediction is verified by our simulation data as presented in Fig. 13. It shows that in this

case the Gaussian approximation works also at low T ’s: its failure to correctly predict δ µF at

T . 0.3 is related to the fact that the Gaussian variance of µF strongly decreases at low T ’s while

the normally subdominant correction stays finite.

E. Finite size effects and dispersion of µF and µs f

The results shown in Fig. 9b indicate that (i) the dispersion of µF at T & Tg (in the liquid regime

and near the glass transition) is well described by the Gaussian approximation, and (ii) δ µF nearly

does not depend on the system size in this regime. The first observation means that the statistics of

stress fluctuations is likely to be nearly Gaussian at T & 0.35, which is quite natural for the liquid

regime. The second point simply follows from the first one (that δ µF ≈ δ µ(G)
F ) and the fact that

δ µ(G)
F does not explicitly depend on the system size (cf. eqs. 30, 31): it is directly defined by the

stress relaxation function G(t) which is system-size independent for T & Tg (cf. Fig. 4).

By contrast, at low temperatures (T . 0.3) the Gaussian deviation is significantly lower than

the total δ µF (for both systems). To characterize this discrepancy we introduce a non-Gaussian

contribution to the variance of µF postulating that

(δ µF)
2 =

(
δ µ(nG)

F

)2
+
(

δ µ(G)
F

)2
(37)

The non-Gaussian term, δ µ(nG)
F , is plotted against T in Figs. 9c, 11a,b for both systems. It is

obviously significant at temperatures well below Tg: δ µ(nG)
F is close to the total δ µF at T . 0.3.

On the other hand, δ µ(nG)
F rapidly decreases near Tg and becomes negligible at higher temperatures

for both systems. It is furthermore apparent that δ µ(nG)
F at low T ’s is significantly higher for the

smaller system (cf. Fig. 9c).
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What is the reason for such system size dependence of the standard deviations δ µF and δ µs f

at low T ’s (recall that δ µs f ≈ δ µF , cf. section VI)? Before turning to this question, let us further

clarify why the stress fluctuations are nearly Gaussian above Tg. The general point is that σ(t) is

never exactly a Gaussian process. However, its statistics are close to Gaussian for large volume V

since σ(t) = (1/V )
∫

V σ(r, t)ddr can be considered as a sum of many quasi-independent contribu-

tions. Assuming that spatial correlations of σ(r, t) are short-range, one can easily deduce that the

non-Gaussian (nG) correction must scale as the inverse volume: var(µF)nG ≡
(

δ µ(nG)
F

)2
∝ 1/V .48

Above Tg this is a small correction, var(µF)nG/(δ µF)
2 ∼Vc/V , where Vc is the stress correlation

volume, Vc ≪ V . This estimate has emerged in analogy with the analysis of standard deviations,

δ µA, of the affine modulus (cf. section V). Below Tg the situation is different: here the Gaussian

contribution is small as δ µ(G)
F strongly decreases for long ∆t at low T (cf. end of section VI).

By contrast, the overall δ µF does not vanish (remains finite) for however low T and long ∆t due

to quenched structural correlations (including stress correlations) characterizing the amorphous

solid-like state of the system. As a result, for a finite V , low T and long ∆t, the variance of µF

becomes dominated by the volume-dependent non-Gaussian term:

(δ µF)
2 ≈ var(µF)nG ∝ Vc/V at T . 0.3 (38)

The ideas described above are qualitatively supported with the data shown in Fig. 9c and 11

showing that δ µ(nG)
F is indeed almost T -independent for T . 0.3 (and, besides, it weakly de-

pends on the sampling time ∆t). It is remarkable, however, that the system volume dependence

of δ µ(nG)
F is significantly weaker than that implied in eq. 38. Based on our simulation data for

the 3 lowest temperatures (T = 0.05, 0.10, 0.15) and different sampling times ∆t = 105, 104 we

find var(µF)nG ≈ 1.22±0.1 for 3072×4 system and var(µF)nG ≈ 3.34±0.3 for 768×4 system.

These data are compatible with the power law var(µF)nG ∝ 1/V α with α ≈ 0.7±0.1.

As mentioned above, at low temperatures the standard deviation of the terminal modulus

δ µs f ≈ δ µF , and δ µF is dominated by the non-Gaussian contribution, δ µ(nG)
F , so the obtained

V -dependence is applicable to δ µs f as well: in this regime
(
δ µs f

)2 ∝ 1/V α . A similar behav-

ior for the variance of the elastic modulus with α ≈ 0.68± 0.08 was obtained by studying more

system sizes than we do in a simulation study of a 2D binary LJ mixture, ref. 32. (This and

a related study35 also report an anomalous behavior of nonlinear elastic coefficients for model

glass-forming systems at T < Tg.) The fact that α < 1 means that the basic physical assumption

of just local (short range) structural stress correlations underlying eq. 38 is not valid. We are
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thus driven to conclude that spatial correlations of local stress and of local structure (including

local rigidity) in the studied amorphous systems are likely to be long-range (in addition to being

persistent in time). Two main possibilities can be anticipated: (i) that the relevant structural cor-

relation length ξs (characterizing the amorphous inherent structure) is finite, but is larger than (or

comparable with) the system size, ξs & L ∼ 20; (ii) that ξs is practically infinite and stress correla-

tions follow a power-law decay with the distance r. The latter scenario is in harmony with recent

theoretical results revealing long-range correlations of the shear stress frozen in the inherent struc-

ture showing a universal decay law, 1/rD (here D is the space dimension)13,36,37. Interestingly, a

large dynamical correlation length is also hinted at by a difference of the long-time behavior of

the relaxation modulus G(t) for the two systems (cf. section III). We believe that further studies

(perhaps, on larger systems) are required to clarify this issue.

VIII. SUMMARY

1. Analyzing a model LJ oligomer glassformer using MD simulations we established its static

and dynamical parameters as a function of temperature and system size (two systems with 3072×4

and 768× 4 particles have been studied). The shear relaxation modulus G(t), obtained using the

fluctuation-dissipation relation, eq. 6, generically shows a fast vibrational relaxation with time-

scale τ0, the terminal relaxation with much longer time-scale τα , and (on cooling from liquid into

the glass state) also an intermediate transient (slowly decaying) quasi-plateau (cf. Fig. 4). The

G(t) relaxation for the smaller system compares well with the results for the larger one (reported

in refs. 5 and 6). The main difference is that the 768×4 system shows somewhat longer τα in the

low-temperature regime (T . Tg).

2. The effective shear modulus of the system, µs f (obtained using the stress-fluctuation re-

lations, eq. 12, 13: µs f = µA − µF , where the fluctuation modulus µF , eq. 14, depends on the

sampling time ∆t) shows a strong increase as the system is cooled below the glass transition tem-

perature Tg. The step-like function µs f (T ) is almost independent of the system size, but it gets

shifted to lower temperatures as the sampling time ∆t is increased. The rise of µs f near Tg is

always sharp but continuous. The transition is narrow, its relative width, δT/Tg ∼ 0.15, is the

same for both systems, and it does not show a visible tendency to decrease as ∆t gets longer for

∆t > 104 (cf. section IV).49 (Here δT = −µ/max
(
∂ µs f /∂T

)
, where µ is µs f right below the

transition.) Theoretically, we anticipate a logarithmic increase of the transition steepness at longer
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∆t: Tg/δT ∝ ln∆t (as argued in section VII A). Curiously, at low temperatures below the transi-

tion zone the shear modulus µs f is a bit higher for the smaller system in spite of its slightly lower

density.

3. Analyzing the instantaneous affine shear modulus µA we revealed that it is dominated by the

contribution of bonds connecting the monomers in chains. A moderate increase of µA at low T ’s

is mainly due to an enhancement of LJ interactions as the density gets slightly higher. The affine

modulus does not depend on the system size. By contrast, var(µA) depends on the system volume

as Vc/V , where Vc is the effective correlation volume corresponding to just one particle (Vc ∼ 1)

suggesting that local contributions to the modulus are virtually independent. Noteworthily, the

volume Vc does not increase as the temperature is lowered (cf. eq. 22).

Moreover, we found that the variance of instantaneous µA, var(µA), is roughly independent of

temperature. Therefore the observed strong increase of the variance of the time-averaged µA at

low T ’s is solely due an increase of the relevant relaxation time worsening the statistics of µA.

Remarkably, we also found that orientational pre-averaging of µA (by rotations of the coordi-

nate frame) leads to a drastic improvement of its statistics: the variance of µA decreases by a factor

between 40 and 600 as a result (with the most dramatic decrease at the lowest temperature). By

contrast, averaging over just 3 fixed shear planes (xy, yz, xz) leads to a reduction factor ∼ 3. The

effect of full pre-averaging has a simple meaning: fluctuations of µA are generally due to variations

of bond orientations and bond length. As shown in section V, the bond orientation fluctuations are

dominant, but are completely wiped out by the orientational averaging.

4. To characterize the heterogeneous nature of the glass-forming systems we obtained the

standard deviations of µs f and µF among different independent configurations and found that they

are always nearly equal: δ µs f ≈ δ µF . For both systems these deviations show a pronounced peak

near Tg in agreement with the results of refs. 5 and 6 for the larger system. For the smaller system

the peak gets a bit higher and broader. Its height also slightly increases for longer sampling time ∆t.

The peak of δ µs f reflects a sharp transition from liquid-like to solid-like behavior; its emergence

is correlated with a strong variation of µs f near Tg (a high slope −∂ µs f /∂T ).

5. We developed a quantitative theory predicting δ µF in terms of the relaxation modulus

G(t). The theory is in excellent agreement with the simulation results in the liquid regime (cf.

Figs. 9b, 10b). In this regime δ µF can be predicted based on the function µF(∆t) which is directly

related to the relaxation modulus (cf. eqs. 19, 21). The peak region is also quantitatively repro-

duced by the theory (which works better for the larger system). The theoretical approach is based
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on the Gaussian approximation for stress fluctuations, which is asymptotically exact for large sys-

tems, V → ∞ (note, however, that the convergence is not uniform: the finite ‘Gaussian’ limit is

approached for L ≫ ℓ(T ), where the length-scale ℓ(T ) strongly increases at low T ). In this limit it

is valid both in the equilibrium (liquid) state and in the glassy state falling out of equilibrium. The

theory thus generally proves that fluctuations of µF and µs f do not vanish for large V , rather they

tend to a T -dependent finite level.

6. The theoretical Gaussian deviations δ µ(G)
F strongly decrease at low temperatures, in con-

trast to simulation data pointing to saturation of δ µF at a significant level at low T for the

studied systems. Moreover, the low-T plateau of δ µF strongly decreases as the system gets

larger. This effect is attributed to a highly heterogeneous amorphous structure of the supercooled

glassy liquids leading to markedly non-Gaussian stress fluctuations coupled to the quenched struc-

tural disorder. Our analysis shows that the non-Gaussian part of the variance of shear moduli,

var(µF)nG ≈ var(µs f )nG, decreases with the system size as 1/V α with α < 1 (α ≈ 0.7± 0.1).

This result indicates that local elastic (structural) properties in the studied amorphous systems

must show long-range spatial correlations (since a structure with uncorrelated elements would

lead to a 1/V dependence of the variance). Such behavior is reminiscent of the so-called Gardner

transition38 possibly associated with a diverging length-scale of static heterogeneity below Tg
39,40.

A long dynamical length-scale comparable with the system size is also suggested by the revealed

size-dependence (at low temperatures) of the terminal decay of the shear relaxation modulus which

is slower for the smaller system (cf. section III).
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FIGURE CAPTIONS

FIG. 1. The volume per monomer at P = 0 vs. T for the two systems: Nm = 3072×4 (black) and

Nm = 768×4 (red). Vertical line: Tg = 0.38.

FIG. 2. The radial distribution functions for non-bonded monomers, gnb(r), for two systems,

3072× 4 and 768× 4 at T = 0.43 (blue and black curves) and at T = 0.25 (green and red

curves). The curves for different systems superimpose perfectly on one another.

FIG. 3. (a) Temperature dependence of the affine modulus µA (blue and green curves) and fluctua-

tion modulus µF (black and red curves) for ∆t = 105 for the two systems (3072×4 and 768×4,

respectively). (b) Temperature dependence of the quasi-static modulus µs f for the same ∆t for

two systems, 3072×4 (black curve), 768×4 (red curve).

FIG. 4. Comparison of the shear relaxation moduli G(t) vs. log(t) for the systems 3072×4 (black

curves) and 768×4 (red curves) at T = 0.40, 0.38, 0.36, 0.30, 0.25, 0.15 (from bottom to top).

Note that the dilatometric Tg is close to 0.38.

FIG. 5. (a) Temperature dependencies of µF for different sampling times ∆t = 105, 5 · 104, 104

for the 2 systems: 3072× 4 (black curves from top to bottom) and 768× 4 (red curves). (b)

The T -dependencies of µs f for different sampling times ∆t for the 2 systems: 768× 4 (3 red

curves and 3 magenta curves, from bottom to top for ∆t = 105, 5 · 104, 104, 5000, 1000, 500)
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and 3072×4 (black curves from bottom to top for ∆t = 105, 5 ·104, 104). (c) Time-temperature

superposition for the effective shear modulus for the 768× 4 system: µs f is plotted vs. x =

1/T +(1/E) ln(∆tmax/∆t), where the activation energy E = 18 LJ units and ∆tmax = 105. The

curves correspond to different sampling times: ∆t = 105 (solid black), 5 · 104 (dashed black),

104 (dotted black), 5000 (solid red), 1000 (dashed blue), 500 (dotted green).

FIG. 6. (a) Comparison of the T -dependencies of δ µA for the 3072×4 system (black curve) with

δ µA for the smaller system, 768× 4 (blue). In both cases δ µA is based on the time-averaged

µA obtained by MD simulations for the ensemble of m = 100 systems and 3 shear planes. (b)

The T -dependence of the ratio of δ µA for 768×4 over that for 3072×4. The ratio is close to

2 for T < 0.35 (below Tg) indicating that δ µA follows the classical 1/
√

V law (self-averaging

of µA).

FIG. 7. The affine modulus and its dispersion for the 768× 4 system. (a) Temperature depen-

dencies of the instantaneous affine modulus µA (black curve), its bond contribution µAb (green

curve), the theoretical µAb (red curve), the LJ-interaction term µAl j (blue curve). Vertical line

corresponds to Tg = 0.38. (b) The standard deviations of the instantaneous affine modulus,

δ1µA (black curve), and of its parts: δ1µAb due to bonds (green curve), theoretical δ1µAb (red

curve), δ1µAl j due to LJ-interactions (blue curve). The bond and LJ contributions to µA are

generally rather weakly correlated, so the following rule of additive variances works with good

accuracy (relative error . 1%): δ1µA ≈
√

δ1µ2
Ab +δ1µ2

Al j. (c) The corresponding relative stan-

dard deviations of instantaneous moduli: δ1µA/µA (black), δ1µAb/µAb (green) and δ1µAl j/µAl j

(blue). (d) Comparison of T -dependencies of instant deviations: δ1µA for the total modulus

(black curve), its theoretical bond contribution δ1µAb (red curve) and standard deviations of

the total time-averaged modulus, δ µA (blue curve). Note that δ1µA ≈ δ µA for T < 0.36. This

means that the inherent structure of the system is virtually frozen in this regime: fluctuations

of µA along the time-trajectory are negligible. (e) The T -dependencies for standard deviations

of the time-averaged µA: δ µA for a fixed shear plane (black curve); δ µA(or) for the orientation-

averaged modulus (red curve). Deviations of the instant but orientation-averaged affine mod-

ulus and its parts (due to bonds and LJ interactions): total δ1µA(or) (blue curve); bond contri-

bution δ1µAb(or) (magenta); theoretical deviation due to bonds (dashed black); LJ contribution

δ1µAl j(or) (green). (f) T -dependence of the ratio δ µA/δ µA(or) (black curve); δ1µA/δ1µA(or)

(red); δ1µAb/δ1µAb(or) (blue); theory for the latter (green).
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FIG. 8. Temperature dependencies of the affine modulus µA, its standard deviation δ µA, theoreti-

cal prediction for its bond part µAb, and theoretical deviation of the instant bond contribution to

the modulus, δ1µAb (respectively, black, blue, red and green curves) for the 3072×4 system.

FIG. 9. Standard deviations of the fluctuation modulus for ∆t = 105: (a) δ µF vs. T for 768×4 (red

curve) and 3072×4 (black curve) systems. Vertical line: reference Tg = 0.38. (b) Temperature

dependence of δ µF (red rhombs and black boxes) and its Gaussian part, δ µ(G)
F (red and black

curves) for 768×4 and 3072×4 systems, respectively. (c) Non-Gaussian deviation δ µ(nG)
F vs.

T for 768×4 and 3072×4 systems (red and black curves, respectively).

FIG. 10. Standard deviations of the fluctuation modulus for the 768×4 system: (a) δ µF vs. T for

different time windows: ∆t = 105 (black), 5 ·104 (red), 104 (blue curve). (b) δ µF (black boxes,

red rhombs and blue crosses) and its Gaussian contribution δ µF
(G) (black, red and blue solid

curves) for different ∆t = 105, 5 ·104, 104.

FIG. 11. The dependence δ µ(nG)
F vs. T for different sampling times, ∆t = 105, 5 ·104, 104 (black,

red and blue curves, respectively): (a) for the 3072×4 system and (b) for the 768×4 system.

FIG. 12. The dependence of µs f (solid curves) and δ µs f (dotted curves) on T for ∆t = 105 for

the two systems (768x4, red and 3072x4, black). The δ µs f data for the 2 systems (768x4 and

3072x4) are indicated with ‘+’ and ‘x’ symbols, respectively.

FIG. 13. The dependence of the ratio δ µ1/µ1 for 768x4 system (black curve), and the prediction,

eq. 36 (red line).
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