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A B S T R A C T   

Passive microwave remote sensing at L-band (1.4 GHz) provides an unprecedented opportunity to estimate 
global surface soil moisture (SM) and vegetation water content (via the vegetation optical depth, VOD), which 
are essential to monitor the Earth water and carbon cycles. Currently, only two space-borne L-band radiometer 
missions are operating: the Soil Moisture and Ocean Salinity (SMOS) and the Soil Moisture Active Passive (SMAP) 
missions in orbit since 2009 and 2015, respectively. This study presents a new mono-angle retrieval algorithm 
(called SMAP-INRAE-BORDEAUX, hereafter SMAP-IB) of SM and L-band VOD (L-VOD) from the dual-channel 
SMAP radiometric observations. The retrievals are based on the L-MEB (L-band Microwave Emission of the 
Biosphere) model which is the forward model of SMOS-IC and of the official SMOS retrieval algorithms. The 
SMAP-IB product aims at providing good performances for both SM and L-VOD while remaining independent of 
auxiliary data: neither modelled SM data nor optical vegetation indices are used as input in the algorithm. Inter- 
comparison with other SM and L-VOD products (i.e., MT-DCA, SMOS-IC, and the new versions of DCA and SCA-V 
extracted from SMAP passive Level 3 product) suggested that SMAP-IB performed well for both SM and L-VOD. 
In particular, SMAP-IB SM retrievals presented the higher scores (R = 0.74) in capturing the temporal trends of 
in-situ observations from ISMN (International Soil Moisture Network) during April 2015–March 2019, followed 
by MT-DCA (R = 0.71). While the lowest ubRMSD value was obtained by the new version of SMAP DCA (0.056 
m3/m3), SMAP-IB SM retrievals presented best scores for R, ubRMSD (~ 0.058 m3/m3) and bias (0.002 m3/m3) 
when considering only products independent of optical vegetation indices (e.g., NDVI). L-VOD retrievals from 
SMAP-IB, MT-DCA, and SMOS-IC were well correlated (spatially) with aboveground biomass and tree height, 
with spatial R values of ~0.88 and ~ 0.90, respectively. All three L-VOD products exhibited a smooth non-linear 
density distribution with biomass and a good linear relationship with tree height, especially at high biomass 
levels, while the L-VOD datasets incorporating optical information in the algorithms (i.e., SCA-V and DCA) 
showed obvious saturation effects. It is expected that this new algorithm can facilitate the fusion of both SM and 
L-VOD retrievals from SMOS and SMAP to obtain long-term and continuous L-band earth observation products.   
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1. Introduction 

Global monitoring of surface soil moisture (SM) and vegetation 
features from space is essential to better understand the water (Koster 
et al., 2004), energy fluxes (Anderson et al., 2008), and carbon cycles 
(Liu et al., 2015; Jung et al., 2017) as well as to improve weather pre-
dictions (Tuttle and Salvucci, 2016) and management of water and food 
resources (Dobriyal et al., 2012). Passive microwave remote sensing at 
low frequencies, especially at L-band (1.4 GHz), provides an unprece-
dented opportunity to estimate SM and vegetation water content (via 
vegetation optical depth, VOD) from regional to global scales due to its 
high sensitivity to surface dielectric properties, deep penetration into 
vegetation, frequent revisits (i.e., every 2–3 days globally) and all- 
weather sensing capability (Schmugge et al., 1986; Jackson et al., 
2010; Kurum, 2013; Wigneron et al., 2017). Currently, only two space- 
borne L-band radiometer missions are in operation: Soil Moisture and 
Ocean Salinity (SMOS) developed by European Space Agency (ESA) and 
Soil Moisture Active Passive (SMAP) developed by National Aeronautics 
and Space Administration (NASA) (Kerr et al., 2010; Entekhabi et al., 
2010a). 

The SMOS mission, launched on November 2, 2009, is equipped with 
a large Y-shaped interferometric radiometer allowing dual-polarized 
and multi-angular brightness temperature (TB) observations (Kerr 
et al., 2010). This observational capability is the key to simultaneously 
retrieving SM and L-band vegetation optical depth at nadir (L-VOD) 
(Wigneron et al., 2000, 2007; Kerr et al., 2012). Currently, there are 
three main physically-based SMOS SM and L-VOD retrieval products 
available: SMOS level 2 (L2) (Kerr et al., 2012), SMOS level 3 (L3) (Al 
Bitar et al., 2017) and SMOS-IC (Fernandez-Moran et al., 2017b; 
Wigneron et al., 2021). The three different SMOS SM and L-VOD 
retrieval algorithms are all based on the inversion of the L-band Mi-
crowave Emission of the Biosphere (L-MEB) model (Wigneron et al., 
2007), which used the τ-ω radiative transfer equation to simulate the 
land surface microwave emission. The development history, rationale 
and objectives of these three SMOS products are related to a certain 
extent (see Wigneron et al., 2021 for a review and more details on that 
topic), of which SMOS-IC is the latest one. 

Relative to the multi-angular configuration of SMOS, the SMAP in-
strument launched on January 31, 2015 only provides mono-angular TB 
observations with a full-polarization mode at the incidence angle θ of 
40

◦

(Entekhabi et al., 2010a). Single-angle observations render more 
difficult simultaneous retrievals of SM and L-VOD as the Horizontal (H-) 
and Vertical (V-) polarized TB may contain shared information, which 
leads to ill-posed nonlinear inverse problems (Konings et al., 2017; 
Ebtehaj and Bras, 2019). The current SMAP inversion algorithms 
(available products) are mainly divided into two categories depending 
on the number of polarization observations used: the single-channel 
algorithm (SCA) (Jackson, 1993) and the dual-channel algorithm 
(DCA) (Njoku and Entekhabi, 1996; Njoku et al., 2003). SCA only re-
trieves SM using H or V polarization of TB as inputs, while L-VOD, as a 
key ancillary data for the SM retrievals, is estimated based on the 
climatology of the normalized difference vegetation index (NDVI) data 
(Jackson et al., 1999; Chan et al., 2013). In contrast, DCA retrieves both 
SM and L-VOD simultaneously based on a nonlinear least-squares 
minimization process using both the H and V polarization channels 
(Crow et al., 2005; O’Neill et al., 2015; Wigneron et al., 1993). However, 
after comparing these different algorithms, the classic DCA was found to 
provide noisier SM (Chan et al., 2016; Konings et al., 2017) and the 
SMAP official SM baseline algorithm is initially SCA based on the V 
polarization (SCA-V) (O’Neill et al., 2020). 

Since L-VOD is considered as a promising ecological indicator 
(Frappart et al., 2020; Konings et al., 2017; Tian et al., 2018) and direct 
retrievals of L-VOD could alleviate propagation of uncertainty of ancil-
lary data into the SM retrievals (Chaubell et al., 2020; Dong et al., 2018), 
several advanced DCA algorithms have been proposed for retrieving SM 
and L-VOD from the SMAP data. According to the different technologies 

used to reduce the uncertainty in the classic DCA inversion process, 
these algorithms can be classified between spatio-temporal constrained 
algorithms and regularized DCA ones (Gao et al., 2021). The spatio- 
temporal constrained algorithms use additional information from 
multi-temporal or spatial observation to resolve the under-determined 
problem of the SMAP classic DCA algorithm (Konings et al., 2017; 
Karthikeyan et al., 2019), including the multi-temporal dual channel 
algorithm (MT-DCA) (Konings et al., 2016), the constrained multi- 
channel algorithm (CMCA) (Ebtehaj and Bras, 2019), the combined 
CMCA (C-CMCA) (Gao et al., 2020a), and the spatially CMCA (S-CMCA) 
(Gao et al., 2020b). Specifically, MT-DCA retrieves SM, L-VOD and 
single scattering albedo using a 7-day time window of TB observa-
tions—over which, it is assumed that L-VOD remains constant (Konings 
et al., 2017). However, this assumption contrasts with recent studies 
that showed non-negligible L-VOD changes over the day following 
rainfall events (Feldman et al., 2018; Wigneron et al., 2021), leading to 
the development of the “CMCA” type algorithms, which also constrain 
the physical bounds of SM and the climatological range of L-VOD 
derived from optical data sources (Gao et al., 2021). More recently, a 
modified DCA algorithm (MDCA) was also proposed (O’Neill et al., 
2020) in which the cost function is augmented by an additional regu-
larization term incorporating a priori information from NDVI to prevent 
noise amplification. 

However, a priori information should be used with caution as it: i) 
may bring uncertainty to the retrievals (Gao et al., 2020c; Wigneron 
et al., 2017); ii) makes the final product not independent of it by inte-
grating its content in a hidden way (Fernandez-Moran et al., 2017b; 
Wigneron et al., 2021). As a consequence, the direct use of VOD 
climatology derived from MODIS (Moderate Resolution Imaging Spec-
troradiometer) NDVI to represent the L-VOD value (τ) in SMAP SCA 
could fail to represent the real-time dynamics of L-VOD and cause sub-
sequently errors in the SCA SM retrievals (Gao et al., 2020c; Dong et al., 
2018; Zwieback et al., 2018). Besides, most of the aforementioned DCA 
algorithms use MODIS NDVI-based VOD climatology as initial guess for 
retrieving (O’Neill et al., 2020) or determining the physical range 
(Ebtehaj and Bras, 2019) of L-VOD. This undoubtedly limits the 
consideration of L-VOD and optical vegetation indices as independent 
proxies for monitoring the vegetation dynamics such as phenology and 
carbon cycle, as the retrieved L-VOD is, in this case, not completely 
independent of the optical data (Li et al., 2021). In addition, integration 
of optical vegetation indices in the L-VOD retrieval, may bring circu-
larity when evaluating remotely-sensed products against modelled ones 
(Wigneron et al., 2021). 

In contrast, SMOS-IC was developed with the objective of simplifying 
the input of the L-MEB model by not using any external hydrologic or 
vegetation products, making the SMOS-IC product very interesting for 
inter-comparison analyses and robust applications (Wigneron et al., 
2021). Using in-situ measurements, recent inter-comparisons with other 
passive products have showed the good performances of the SMOS-IC 
SM product (Al-Yaari et al., 2019; Ma et al., 2019). Higher spatial cor-
relations were also found between SMOS-IC L-VOD and vegetation- 
related features (aboveground biomass, tree height and vegetation 
indices) than other products (Rodríguez-Fernández et al., 2018; Li et al., 
2021). Benefiting from this, the SMOS-IC L-VOD with an 11-year global 
dataset has been widely used for monitoring the vegetation seasonality 
(Tian et al., 2018; Al-Yaari et al., 2020; Li et al., 2021) and aboveground 
carbon stocks (Brandt et al., 2018; Fan et al., 2019; Tong et al., 2020; 
Wigneron et al., 2020; Qin et al., 2021; see Wigneron et al., 2021 for a 
review). Therefore, extending the use of the L-MEB inversion approach 
from the SMOS retrievals to the SMAP retrievals appears to be poten-
tially very interesting. First, it would allow obtaining microwave prod-
ucts that are independent of any modelled SM products or optical 
vegetation indexes. Second, it would contribute to facilitate the fusion of 
both SM and L-VOD retrievals from SMOS and SMAP to obtain long-term 
and continuous L-band earth observation products. However, this fusion 
is still hindered as the aforementioned SMOS and SMAP algorithms are 
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different and are developed for different objectives. For instance, SCA-V 
is dedicated to the quality of SM (Chan et al., 2016; O’Neill et al., 2020), 
while MT-DCA is focused more on the performance of L-VOD (Konings 
et al., 2017; Bai et al., 2019). In general, there is still a lack of mono- 
angle (SMAP or SMOS) retrieval algorithm that considers the perfor-
mance of both SM and L-VOD while remaining relatively independent of 
auxiliary data, i.e., optical observations. 

In this context, a new algorithm based on the inversion of the L-MEB 
forward emission model to retrieve both SM and L-VOD from SMAP data 
is proposed in present study, called SMAP-INRAE-BORDEAUX (SMAP- 
IB). The main objectives of the SMAP-IB product are (i) searching for 
good performances in both the SM and L-VOD products, instead of 
focusing on the quality of only one of them; (ii) remaining independent 
of hydrologic and vegetation auxiliary data, as done currently in SMOS- 
IC. To cope with the under-determined problem of retrieving two pa-
rameters from only two correlated SMAP observations, the cost function 
of SMAP-IB imposes constraints on both SM and L-VOD by using pre-
vious multi-temporal retrieval information to initialize the correspond-
ing retrievals (See Section 2.2.2). This paper aims at presenting the 
SMAP-IB algorithm and illustrating the main features of the SMAP-IB 
SM and L-VOD products at the global scale, in comparison to SMOS-IC 
V2 as well as to the three other SMAP products, including MT-DCA 
and the recent SMAP passive Level 3 products retrieved from SCA-V 
and the regularized MDCA (O’Neill et al., 2020). To achieve this, all 
five SM products were inter-compared against the International Soil 
Moisture Network (ISMN) in-situ measurements from April 2015 to 
March 2019, while the L-VOD products were compared to NDVI, canopy 
height (Lang et al., 2021) and AGB datasets (Saatchi et al., 2011). 

This paper is organized as follows: the used datasets and the SMAP-IB 
algorithm are described in Section 2. In Section 3, the performance of 
SMAP-IB SM and L-VOD retrievals are inter-compared with the four 
other products. Discussions about the limitations and potential im-
provements of SMAP-IB are presented in Section 4. Concluding remarks 
and outlook are given in Section 5. 

2. Materials and methods 

2.1. Datasets 

2.1.1. SMAP Level3 TB products 
The SMAP-IB retrieval algorithm was applied to four years of 

brightness temperatures (TB) from the SMAP level-3 (L3) passive 
product (SPL3SMP, Version 7) from April 2015 to March 2019. The daily 
SPL3SMP TB product, obtained from the NSIDC (National Snow and Ice 
Data Center), consists of Horizontally (H-) and Vertically (V-) polarized 
brightness temperatures observed at an incidence angle θ of 40

◦

(O’Neill 
et al., 2020). The dataset is projected on a global cylindrical Equal Area 
Scalable Earth Grid version 2.0 (EASE-Grid 2.0), with a grid sampling 
resolution of 36 km. The SPL3SMP is a daily composite of the SMAP 
passive level 2 half-orbit product, which contains gridded TB data of 
both descending (06:00 am local time) and ascending (06:00 pm local 
time) SMAP radiometer-based observations and quality-assessment flags 
(O’Neill et al., 2020). In this study, only TB observations with acceptable 
quality flags acquired at descending orbit were used. SPL3SMP is freely 
available at https://nsidc.org/data/SPL3SMP/versions/7. 

2.1.2. ECMWF ERA5 reanalysis data 
We used the ECMWF modelled SM of the soil layer 1 (top 0–7 cm), 

the skin temperature, and the soil temperatures of layer 1 (0–7 cm) and 
layer 3 (28–100 cm). These hourly ECMWF variables were derived from 
the ERA5 reanalysis dataset, which is based on improved historical 
measurements and at a finer horizontal resolution (31km) than its 
predecessor ERA-Interim (80 km) (Hersbach et al., 2020). ERA5 surface 
soil temperature also presents visible improvements compared to ERA- 
Interim (Ma et al., 2021). More details on the set-up of ERA5 can be 
found in Hersbach et al. (2020). ECMWF skin and soil temperatures from 

layers 1 and 3 were used to estimate the vegetation and soil effective 
temperatures of the SMAP-IB algorithm, while the reanalyzed SM was 
used to calibrate the model parameters (see Section 2.2.2). All these 
ECMWF variables were resampled to 36 km EASE-Grid 2.0 using the 
linear averaging method over the same study period. Recent evaluations 
show that ERA5 SM can well represent the global soil moisture vari-
ability (Hersbach et al., 2020) and it has higher scores than four other 
reanalysis SM products when compared against ground measurements 
(Li et al., 2020a). 

2.1.3. ISMN in-situ SM measurements 
To evaluate the skills of the SMAP-IB SM retrievals, in-situ SM data 

from the ISMN database were used (Dorigo et al., 2021). ISMN is an 
international cooperation to construct and maintain a global in-situ SM 
database, which is essential for promoting scientific studies on the 
calibration/validation and improvement of global remotely-sensed 
products as well as land surface models (Dorigo et al., 2013). 
Currently, the ISMN database (https://ismn.geo.tuwien.ac.at/en/) hosts 
SM field stations from ~60 networks mainly located over the US and 
Europe. In this study, only the top 0–5 cm of in-situ SM data from April 
2015 to March 2019 with sufficiently long time series of observations 
were used. To close the resolution gap and ensure the accuracy of the in- 
situ SM data, only gauge measurements flagged as “Good” quality from 
the same network within a 36 km footprint were spatially averaged (Al- 
Yaari et al., 2019; Dorigo et al., 2013; Li et al., 2020b). Consequently, 19 
networks (Table 1) covering a total of 417 SMAP footprints were 
retained from ISMN. Fig. 1 shows the locations of these SMAP footprints 
with a land cover classification map based on the International Geo-
sphere Biosphere Programme (IGBP) schema as background. 

2.1.4. Vegetation-related proxies for assessing L-VOD 
Three vegetation parameters, including aboveground biomass 

(AGB), canopy height (as a proxy of the total amount of vegetation 
matter) and NDVI (as a proxy of the green vegetation cover and vege-
tation density), were selected to evaluate the SMAP-IB L-VOD retrievals. 
These vegetation parameters are related to the vegetation information 
expressed by VOD and are widely used for VOD evaluation and inter- 
comparison (Tian et al., 2016; Grant et al., 2016; Li et al., 2021; 
Wigneron et al., 2021). We refer the readers to Li et al. (2021), who 
globally assessed and inter-compared nine commonly used VOD prod-
ucts, for more details. 

To investigate the spatial relationship between L-VOD and AGB, we 
used the AGB dataset representing aboveground biomass circa 2015 
updated from Saatchi et al. (2011). The 1-km Saatchi AGB map is 
generated using multiple datasets sources, including ground-based in-
ventory plots and satellite observations from Shuttle Radar Topography 
Mission (SRTM), ICESat, MODIS, and Quick Scatterometer (QSCAT). 
Saatchi AGB is considered here because it has been widely used as a 
benchmark to convert L-VOD to carbon density (Tong et al., 2020; 
Wigneron et al., 2020; Qin et al., 2021). In this study, we aggregated the 
static AGB dataset to 36 km by simple spatial averaging as suggested by 
Li et al. (2021) and Fan et al. (2019). 

The 0.5-degree resolution LIDAR canopy height estimation made in 
2019 from the Global Ecosystem Dynamics Investigation (GEDI) (Lang 
et al., 2021) is applied to evaluate the spatial correlation between L-VOD 
and vegetation height. This canopy height dataset is estimated based on 
the first four months (April – July 2019) of the GEDI Level 1B LIDAR 
waveforms and Bayesian deep learning with an RMSE accuracy of 2.7 m; 
more details about this dataset can be found in Lang et al. (2021). The 
latter dataset is selected mainly because the total vegetation amount is 
highly correlated with canopy height (Li et al., 2021). Moreover, as the 
first space-based LIDAR dedicated to measuring vertical forest structure, 
GEDI is expected to serve as an interesting source of information for AGB 
mapping (Silva et al., 2021) and canopy height estimation (Liu et al., 
2021a). 

To evaluate the seasonality of the L-VOD retrievals, we collected 16- 
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day NDVI data from the MODIS product (MOD13A2 Collection 6) for the 
same period (i.e., April 2015–March 2019), which is mapped on a 1 km 
× 1 km grid. As a proxy for vegetation greenness, NDVI is widely used 
not only for monitoring vegetation phenology (Hmimina et al., 2013), 
but for VOD inter-comparison, as these two vegetation variables have 
generally highly correlated seasonal cycles and interannual variations 
(Tian et al., 2018; Liu et al., 2011; Liu et al., 2021b; Wang et al., 2021). 
In this study, only NDVI observations flagged as “good quality” were 
retained as done by Li et al. (2021). The NDVI dataset was then 
resampled to 36 km applying the averaging method. 

2.1.5. Other SM and L-VOD products used in the inter-comparison 
To better appreciate the capability of the SMAP-IB SM and L-VOD 

retrievals, we inter-compared SMAP-IB with SMOS-IC as well as with 
three other SMAP products (i.e., MT-DCA, and the recent SMAP passive 
L3 products retrieved from regularized MDCA and SCA-V), which were 
all collected from April 2015 to March 2019 and aggregated to the 36 
km EASE-Grid 2.0. Note that in the recent update (August 31, 2020) of 
the SMAP official products, in addition to the SM retrievals from SCA-V, 
two other optional algorithms were added: MDCA and SCA-H (O’Neill 
et al., 2020). As SCA-H and SCA-V are both single-channel algorithms 
and as SCA-V still performs better than SCA-H (Colliander et al., 2021), 
we only selected SCA-V and MDCA here for comparison. Moreover, to be 
consistent with the ATBD of the official SMAP product (i.e., rename 
“MDCA” to “DCA”), we also used the “SMAP DCA” term in this paper to 
refer to this updated algorithm instead of referring to the classic DCA. To 
the best of our knowledge, DCA will be soon updated to replace SCA-V as 
the baseline algorithm for SMAP SM retrieval (O’Neill et al., 2021). 
More details about these SM and L-VOD products are presented in 
Supplementary text. 

2.1.6. Ancillary datasets 
Several ancillary datasets aggregated to 36 km were also utilized in 

this study, including soil texture, land cover classification, and daily 
precipitation from the Global Precipitation Measurement (GPM) L3 
product (Huffman et al., 2019; Long et al., 2020). The soil texture at-
tributes in terms of clay fraction as input to SMAP-IB were compiled 
from the Harmonized World Soil Database and several regional datasets 
(Peng et al., 2019). In addition, to comprehensively evaluate SMAP-IB, 
the MODIS-based global land cover classification map (Fig. 1) with 
full details described in Brodzik and Knowles (2011) was used to analyze 
the inter-comparison results, as earlier studies have shown that the 
performance of the remotely-sensed SM (Al-Yaari et al., 2019; Ma et al., 
2019; Bai et al., 2019) or VOD retrievals (Li et al., 2021; Rodrí-
guez-Fernández et al., 2018) may vary as a function of the land cover 
types. 

2.2. Methodology 

The flow chart illustrating the methodology of this study is shown in 
Fig. 2, which consists of three steps: parameter calibration, SM and L- 
VOD production and the performance evaluation step. 

2.2.1. The SMAP-IB forward model 
The SMAP-IB algorithm is based on a 2-Parameter (i.e., SM and L- 

VOD) inversion of the L-band Microwave Emission of the Biosphere (L- 
MEB) model as defined in Wigneron et al. (2000, 2007). L-MEB, which 
has been progressively improved and refined since its first release 
(Wigneron et al., 2021; Wigneron et al., 2017), uses the Tau-Omega 
(τ-ω) radiative transfer model to simulate the land surface microwave 
emission expressed in terms of TB (Mo et al., 1982). The τ-ω model es-
timates above-canopy TB at p polarization (TBp), where p = {H, V}, as a 

Table 1 
List of in-situ networks from ISMN. The VOD level is defined according to the SMOS-IC L-VOD value as: VOD-I (0–0.1); VOD-II (0.1–0.2); VOD-III (0.2–0.3); VOD-IV 
(0.3–0.4); VOD-V (0.4–0.5) and VOD-VI (> 0.5).  

Network 
name 

Country No. of footprints 
covered 

IGBP land cover VOD level Reference 

SCAN USA 130 Diverse land cover types: 
ENF (1), DBF (6), MF (3), SH (14), WS (11), G 
(53), C (22), CNVM (17) and BSV (3) 

Diverse VOD levels: 
VOD-I (22), VOD-II (44), VOD-III (31), VOD- 
IV (12), VOD-V (9) and VOD-VI (12) 

(Schaefer et al., 2007) 

SNOTEL USA 130 Diverse land cover types: 
ENF (42), MF (1), SH (1), WS (4) and G (82) 

Diverse VOD levels: 
VOD-I (3), VOD-II (34), 
VOD-III (31), VOD-IV (27), VOD-V (17) and 
VOD-VI (18) 

(Serreze et al., 2001) 

AMMA- 
CATCH 

Benin, 
Niger 

2 WS (1) and CNVM (1) VOD-I (1) and VOD-II (1) (Lebel et al., 2009) 

DAHRA Senegal 1 G (1) VOD-I (1) (Tagesson et al., 2015) 
FR_Aqui France 2 MF (1) and WS (1) VOD-IV (2) (Al-Yaari et al., 2018) 
HOAL Austria 1 MF (1) VOD-V (1) (Blöschl et al., 2016) 
MAQU China 4 G (4) VOD-II (4) (Su et al., 2011) 
NAQU China 2 G (2) VOD-I (2) 
NGARI China 1 BSV (1) VOD-II (1) 
RISMA Canada 6 C (5) and CNVM (1) VOD-II (5) and VOD-III (1) (http://aafc.fieldvision. 

ca/) 
SMOSMANIA France 17 MF (6), WS (1) and C (10) Diverse VOD levels: 

VOD-II (4), VOD-III (7), VOD-IV (5) and VOD- 
V (1) 

(Albergel et al., 2008) 

SOILSCAPE USA 3 SH (1) and WS (2) VOD-I (1), VOD-III (1) and VOD-VI (1) (Moghaddam et al., 
2010) 

TERENO Germany 2 MF (1) and C (1) VOD-III (1) and VOD-IV (1) (Zacharias et al., 2011) 
USCRN USA 86 Diverse land cover types: 

ENF (5), DBF (3), MF (8), SH (7), WS (4), G (31), 
C (16), CNVM (11) and BSV (1) 

Diverse VOD levels: 
VOD-I (15), VOD-II (25), VOD-III (17), VOD- 
IV (11), VOD-V (9) and VOD-VI (9) 

(Bell et al., 2013) 

HOBE Denmark 2 C (2) VOD-II (1) and VOD-III (1) (http://www.hobe.dk/) 
MySMNet Malaysia 1 CNVM (1) VOD-VI (1) (Kang et al., 2019) 
OZNET Australia 7 G (4) and C (3) VOD-I (4) and VOD-II (3) (Smith et al., 2012) 
REMEDHUS Spain 3 C (3) VOD-I (3) (González-Zamora 

et al., 2019) 
RSMN Romania 17 C (15) and CNVM (2) VOD-II (8), VOD-III (7) and VOD-IV (2) (http://assimo.meteoro 

mania.ro/) 

Note: the number of stations/pixels included in each IGBP land cover or VOD level is also listed. 
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sum of three components: (1) direct upwelling emission from soil and 
attenuated by the canopy TG(1 − rGp)γp; (2) direct upwelling emission 
from canopy TC(1 − ω)(1 − γp); and (3) downwelling emission from 
canopy reflected upwards by soil Tc(1 − ω)(1 − γp)rGpγp: 

TBp = TG
(
1 − rGp

)
γp + TC(1 − ω)

(
1 − γp

)
+TC(1 − ω)

(
1 − γp

)
rGpγp (1)  

where TG and TC are the effective temperature of soil and vegetation (K), 
which are, respectively, estimated from ERA5 soil and skin temperatures 
following the parameterization method of Wigneron et al. (2001, 2007); 
ω represents the effective scattering albedo, which is usually assumed 
polarization-independent (Kurum, 2013); γp represents the slanted 
vegetation attenuation factor (also called vegetation transmissivity), 
which is also assumed to be isotropic and polarization-independent. The 
vegetation attenuation can be described as a function of L_VOD (τ) and 
the incidence angle (θ) via γp = exp (− L_VOD/cosθ). The parameter rGp is 
the rough soil reflectivity at polarization p and is estimated through a 
semi-empirical model as suggested by Wigneron et al. (2007) including 
two components: the smooth soil reflectivity (r*

Gp) and the roughness 
effects parameterized by HR and NRp (p = {H, V}). In SMAP-IB, we used 
the values of ω, HR, and NRp calibrated for SMOS-IC (Fernandez-Moran 
et al., 2017a; Parrens et al., 2016), and the values of ω were assigned as a 
function of the IGBP land cover types (Table S1). Table S1 also contains 
the values of ω proposed by the other algorithms involved in this study. 

2.2.2. Retrieval of SM and L-VOD 
The retrieval process of SMAP-IB is achieved by minimizing the 

following cost function (CF) that includes the squared weighted differ-
ences between observed (TBp

mes) and simulated TB (TBp*) using a 
generalized least-squares iterative algorithm modified to account for a 
priori information available on the model input parameters (Wigneron 
et al., 2007): 

CF =

∑(
TBmes

p − TB*
p

)2

σ(TB)2 +

(
SMini − SM*)2

σ(SM)2 +
(L VODini − L VOD*)

2

σ(L VOD)
2 (2)  

where SM* (L_VOD*) is the value of the retrieved soil moisture 

(vegetation optical depth); σSM (σL_VOD) is the standard deviation of SM 
(L-VOD). 

To alleviate the possible ill-conditioning issue due to highly corre-
lated H- and V-polarized SMAP TB observations, three kinds of a priori 
information were used in Eq. (2) to constrain the SMAP-IB inversion 
process:  

i) a constraint based on the initial value (or “first guess”) of SM 
retrieval was added, i.e., item SMini;  

ii) a constraint based on the initial guess of L-VOD retrieval was 
added, i.e., item L_VODini;  

iii) multi-temporal (MT) information was incorporated into the 
algorithm. 

Among these three different items, the first two are considered in Eq. 
(2), while the third item (MT approach) is implicit during the optimi-
zation of SMini and L_VODini and the corresponding σSM and σL_VOD. 
Specifically, the MT approach was developed to take into account the 
fact that L-VOD changes relatively slowly over time, as originally used in 
the SMOS retrieval algorithm (Wigneron et al., 2000), and as widely 
used later by several algorithms (e.g., SMOS L3 (Kerr et al., 2016); SMAP 
MT-DCA (Konings et al., 2017); SMOS-IC V2 (Wigneron et al., 2021), 
and AMSR-E sensor-based algorithm (Karthikeyan et al., 2019)). The 
relatively slow temporal change of L-VOD can be used as an extra 
constraint in the retrieval process of SM and VOD, and this constraint 
takes various forms (based on different assumptions) in different algo-
rithms. For instance, MT-DCA incorporates the temporal observations of 
the TB values over a window of time by assuming L-VOD is time- 
invariant. In contrast, SMOS-IC V2 uses the averaged L-VOD retrievals 
from the previous (over a 10-day period) days as L_VODini and also as-
signs a strong constraint on L-VOD (σL_VOD = 0.05) to achieve the above 
assumption (Wigneron et al., 2021). In SMAP-IB, we adopted the same 
MT strategy as in the development of SMOS-IC V2, but we used it for SM 
too. Specifically, to retrieve SM and L-VOD at a date t (i.e., SM*(t) and 
L_VOD*(t)), we computed SMini(t) and L_VODini(t), respectively, as the 
mean values of SM* and L_VOD* retrieved from the previous w days 
(these previous dates are represented here as t− 1, t− 2, … t-w): 

Fig. 1. Locations of the SMAP footprints used for validation. The overlaid MODIS land cover map is based on the IGBP classification scheme, which was aggregated 
to 36 km resolution by dominant class and combined into 12 vegetation types including ENF (Evergreen needleleaf forest), EBF (Evergreen broadleaf forest), MF 
(Mixed forests), DBF (Deciduous broadleaf forest), DNF (Deciduous needleleaf forest), WS (Woody savannas), S (Savannas), CNVM (Cropland/natural vegetation 
mosaics), SH (Open Shrublands and Closed Shrublands), C (Croplands), G (Grasslands), and BSV (Barren or sparsely vegetated). 
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L VODini(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

average
(

L VOD*
t− 1,L VOD*

t− 2,⋯,L VOD*
t− w

)
if available

L VODm(t)if meanL VODvalueof previouswdaysnotavailable

SMini(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

average
(
SM*

t− 1,SM*
t− 2,⋯,SM*

t− w

)
if available

SMm(t)if meanSMvalueof previouswdaysnotavailable

(3)  

where L_VODm(t) (SMm(t)) is the average monthly L-VOD (SM) value of 
the month corresponding to date t. L_VODm(t) and SMm(t) are both 12- 
element vector containing pixel-based average monthly L-VOD (or 
SM) values estimated from previous runs based on an iterative process to 
initialize the inversion (Wigneron et al., 2021). These values are used 
only if average values of L-VOD (or SM) cannot be computed over the 
time interval [t-w, t]. This may happen especially in the high-latitude 
areas where the frozen period limits the number of days where the re-
trievals can be made. 

In SMAP-IB, we set the value of w = 10 days, which is the same as 
SMOS-IC V2, as a smaller window may not ensure a stable mean value of 
previous retrievals before date t and a larger window may violate the 
assumed rate of change of L-VOD (Li et al., 2020c; Wigneron et al., 
2021). Note that this value of w is also close to the time window (i.e., one 

Fig. 2. Flow chart presenting the development and assessment of SMAP-IB: inputs (in orange), parameter (i.e., σSM and σL_VOD) calibration (in deep blue), SM and L- 
VOD production (in light blue), and performance analysis step (in yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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week) used in the above-mentioned MT algorithms (Kerr et al., 2016; 
Konings et al., 2017). In this model setup, the two variables σSM and 
σL_VOD, which determine the confidence of (or the distance from) the 
estimated first guess value of SMini and L_VODini, still need to be opti-
mized in the SMAP-IB algorithm. For this purpose, the two following 
performance criteria were considered during the parameter 
optimization:  

i) criterion for SM, quality of SMAP-IB SM was evaluated vs the global 
daily ERA5 reanalysis SM dataset;  

ii) criterion for L-VOD, quality of SMAP-IB L-VOD was evaluated 
considering the spatial correlation between time averaged L-VOD 
and Saatchi AGB; 

The optimal estimation of the two variables (σSM and σL_VOD) based 
on these 2 criteria was performed using the four metrics presented later 
in Section 2.2.3. As in the SMOS-IC V2 algorithm configuration, which 
sets a global constant value of σL_VOD = 0.05, we initially set both σSM 
and σL_VOD globally equal to 0.05 (e.g., σSM

ini= 0.05 m3/m3 and 
σL_VOD

ini= 0.05). The performance of the SM retrievals under this 
configuration was better than SMOS-IC V2 in most land cover types 
(Table S2–5). However, considering that the vegetation water content 
depends on the vegetation structure (or types) (Li et al., 2021) and there 
are large spatio-temporal variations in soil moisture (Wigneron et al., 
2017), we attempted to improve this result and evaluated other cases 
corresponding to different pixel-based σSM and σL_VOD values. In these 
cases, σSM and σL_VOD were linear multiples of the daily standard devi-
ation (i.e., SDSM

ini and SDL_VOD
ini) calculated from the SM and L-VOD 

retrieved from the initial configuration (i.e., σSM
ini= 0.05 m3/m3 and 

σL_VOD
ini= 0.05), and were as follows: 

σSM = {SDSM
ini, 1.5 * SDSM

ini}; 
σL_VOD = {SDL_VOD

ini, 1.5 * SDL_VOD
ini, 3 * SDL_VOD

ini}; 
Note that the range of the σSM and σL_VOD values tested here are 

relatively narrow, because they have been shortened after some pre-
liminary tests (not shown here to focus on the main results of the cali-
bration step). Moreover, to highlight the effect of using a dynamic 
initialization of SM, we also tested the results of all σL_VOD cases corre-
sponding to the use of the same initialization (weakly constrained) of SM 
as that of the SMOS-IC algorithm, that is, the initial SM value and σSM are 
both globally set to 0.2 m3/m3. The results obtained for these cases were 
assessed by comparison to the aforementioned calibration datasets 
(Saatchi AGB for L-VOD and ERA5 SM for SM). 

2.2.3. Metrics used for assessing the SMAP-IB retrievals 
The retrievals of SM and L-VOD from SMAP-IB as well as from four 

other algorithms were evaluated for both SM and L-VOD against, 
respectively, in-situ measurements and vegetation-related proxies (i.e., 
MODIS NDVI, AGB and tree height), and then, the resulting statistical 
metrics were inter-compared. For consistency and reliability purposes, 
the following criteria (or data pre-processing strategies) were adopted: i) 
to ensure a fair inter-comparison, the evaluation of the SM and L-VOD 
products was performed for the same period from April 2015 to March 
2019 for all products and using observations acquired during the 
morning overpass at 6:00 am (i.e., ascending for SMOS and descending 
for SMAP) rather than afternoon because of better thermal equilibrium 
conditions between the soil and the vegetation canopy (Wigneron et al., 
2007; Ma et al., 2019); ii) applying same data filtering to all products for 
SM values outside of [0, 0.6 m3/m3] and L-VOD values outside of [0,2] 
(Li et al., 2020b); iii) all potentially spurious observations caused by 
open water fraction, snow coverage, frozen conditions and radio fre-
quency interference (RFI) were filtered using the respective flags of each 
product. For instance, both the SMAP-IB and SMOS-IC daily retrievals 
were excluded when the flag of “Scene Flags” > 1 to filter out retrievals 
impacted by strong topography, pixel heterogeneity (e.g., water and 
urban fractions) and presence of frozen conditions (e.g., snow, ice); we 
also used the SMOS-IC filter defined by “TB-RMSE” > 8 K to reduce the 

impact of strong RFI (Li et al., 2020b; Wigneron et al., 2021). Note that 
SMAP-IB has the same product attribute layer as SMOS-IC, which is 
defined in Supplementary data format of Wigneron et al. (2021). For 
SMAP DCA and SCA-V retrievals, pixels with more than 5% of water 
fraction or more than 10% of frozen fraction were filtered out. Note that 
“the recommended value by the retrieval quality flag”, a filter criterion 
often used in previous validation efforts (Al-Yaari et al., 2019; Bai et al., 
2019), was only applied to non-forest areas in this study. This was done 
here as a recent assessment made by the SMAP team shows that SMAP 
has also a great potential to retrieve SM in forest areas where quality 
flags are typically triggered as non-recommended (Ayres et al., 2021). 

The assessment of the L-VOD retrievals was based on the analysis of 
the temporal and spatial correlation with vegetation-related proxies as 
in Li et al. (2021) using the Pearson correlation coefficient (R). The 
assessment of the SM retrievals was made using four classical statistical 
metrics including R, Bias (m3/m3), RMSD (m3/m3; Root Mean Square 
Difference), and the unbiased RMSD (ubRMSD; m3/m3), as suggested by 
Al-Yaari et al. (2019). Among which, the R and ubRMSD metrics, which 
are less impacted than Bias and RMSD by the issue of no 1 to 1 reference 
SM values available (Entekhabi et al., 2010b; Xing et al., 2021), were 
regarded as first-order metrics in both the calibration and evaluation 
steps of this study. Specifically, this consideration was made as the in-situ 
measurements or ECMWF model outputs do not represent the SM values 
as “observed” by the satellites considering (i) the scale/resolution gap 
between point-scale in-situ observations and grid-scale satellite foot-
prints and (ii) the different “sampling” depths of the in-situ or ECMWF 
modelled SM and satellite-based observations (Wigneron et al., 2021). 
Moreover, to narrow the time discrepancy between the in-situ mea-
surements and the satellite observations, we only considered the in-situ 
SM values matching with the instantaneous overpass of the satellite 
observations within a time window of 1 h for each product. To get robust 
statistical results after calculating the metrics between the satellite data 
and the in-situ observations, we also discarded several cases from the 
analyses: i) sites where the number of data pairs is less than 31 days 
(~one month) or where non-significant correlations were obtained (p- 
values >0.05); ii) sites where all five SM products obtained R values 
lower than 0.4 (Ma et al., 2019; Li et al., 2020b). It should be noted that, 
although the representativeness errors of in-situ measurements could 
affect the absolute values of the metrics (Abowarda et al., 2021; Gruber 
et al., 2020) and decay the ability to detect differences between the 
products, the analysis presented here is comparative in nature and 
tended to provide information on relative pros and cons of each product. 
Finally, the median of each metric for all sites pertaining to a L-VOD 
level defined in Table 1 or an IGBP land cover type was calculated 
(Wigneron et al., 2017, 2021). 

3. Results 

In this section, we first focused on the calibration of the σSM and 
σL_VOD parameters of the SMAP-IB inversion model. Then, the perfor-
mance of SMAP-IB for the retrieval of SM and L-VOD was separately 
assessed through an inter-comparison with four other products (i.e., 
SMOS-IC V2, SMAP MT-DCA, SMAP DCA and SCA-V). 

3.1. Calibration of σSM and σL_VOD 

Based on the inter-comparison results of the different cases (Table 2 
and S2–6), we found that the values of σSM and σL_VOD parameters pro-
ducing the highest temporal correlation values were not very consistent 
with those producing the lowest ubRMSD values especially for different 
vegetation types when evaluating SMAP-IB retrieved SM against ERA5 
modelled SM. However, it was obvious that using the method proposed 
in this study, that is, applying a dynamic SM value to initialize the 
inversion, improved results were obtained compared to using a static 
constant initial SM value. Moreover, it was also found that changing the 
values of σSM and σL_VOD had only a slight impact on the metrics of SMAP- 
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IB L-VOD in this model setup. Specifically, the spatial correlation be-
tween the time averaged L-VOD and Saatchi AGB was globally ~0.88 for 
all cases. This means that the possible circularity when using the same 
AGB data in the “calibration” and “assessment” steps of L-VOD is very 
limited in this study, as the value of different settings has a very low 
impact on the L-VOD results (Wigneron et al., 2021). In contrast, for the 
SM retrievals, the calibration step based on model simulations is totally 
independent of the evaluation step which is based on independent ISMN 
observations (see Section 3.2). Furthermore, the small performance 
difference between these test configurations and the initial configura-
tion also demonstrated that the final results of SMAP-IB depend very 
weakly on the quality of the calibration data. 

Combining Table 2 and S2–6, it can be seen that for a given value of 
σSM, σL_VOD

IB = 3 * SDL_VOD
ini is the optimum σL_VOD value in terms of both 

temporal correlation and ubRMSD for non-forest areas, while σL_VOD
IB =

SDL_VOD
ini is the optimum value for forest areas. Therefore, we tested 

another set of combined σL_VOD, namely σL_VOD
IB = 3 * SDL_VOD

ini for non- 
forest areas and σL_VOD

IB = SDL_VOD
ini for forest areas. For this combined 

and optimum σL_VOD setting, best scores in terms of both temporal cor-
relation and lowest ubRMSD were obtained for σSM

IB = SDSM
ini. This 

latter value was selected for the SMAP-IB algorithm. 

3.2. Soil moisture retrievals 

3.2.1. Global spatial patterns and temporal dynamics 
At a global scale, SMAP-IB SM retrievals presented similar spatial 

patterns as SMAP DCA and SCA-V, with lowest SM values over the arid 
and semi-arid areas (e.g., Sahara, Australia and desert areas in central 
Asia) and highest SM values in tropical rainforests (Fig. 3e, g, i). The 
same patterns could generally be observed in SMOS-IC and MT-DCA but 
with drier values, especially over densely vegetated areas (Fig. 3a, c). 
There are a few exceptions and notably the SMAP-IB SM retrievals in the 
Appalachian region of the eastern US were almost as wet as in the intact 
forests of South America, while other SM products showed a gradient 
between these two regions. In addition, the obvious dry-wet gradient 

between the tropical intact forests and non-forest areas found with 
SMAP-IB, SCA-V, and DCA was not well reflected in SMOS-IC and MT- 
DCA. More surprisingly, MT-DCA had an inverse dry-wet gradient be-
tween the Amazon rainforests and the southeastern Brazil and Uruguay 
compared to the four other SM products, which was also evidenced in 
Konings et al. (2017). In terms of absolute SM values, DCA exhibited 
higher SM values than SMAP-IB and SCA-V over most of the globe, 
except for high latitudes (above ~60◦N), where the SM values of SMAP- 
IB were the highest. Conversely, SMAP-IB was more humid than SCA-V 
in tropical intact forests and southeastern China (Fig. 3g, i). 

To further analyze the dynamics of the different SM products, the 
mean annual seasonal amplitude (SA) was calculated, as shown in the 
second column of Fig. 3. The seasonal amplitude is the difference be-
tween the peak defined by the 95% percentile and the trough defined by 
the 5% percentile of the SM time-series after applying a 45-day sliding- 
average window to the data (Konings et al., 2017). Regarding the dis-
tribution of SA, analogous spatial patterns could generally be found 
among SMAP-IB, SCA-V, DCA and SMOS-IC. For example, all datasets 
had relatively high SA values in western Russia, Sahel, Miombo wood-
lands and Indochina, while the SA values of MT-DCA were globally 
higher, even for the dense forest areas of the Amazon and Congo basins 
and the southwestern US regions, which were known to be relatively 
drier than the eastern US regions (Sheffield et al., 2004). In terms of 
absolute values of SA, the SMAP-IB SM retrievals presented generally 
lower values compared to DCA and MT-DCA, but similar to SCA-V and 
SMOS-IC in the tropical forest areas. The Hovmöller diagrams showing 
the monthly mean SM values per latitude (Hovmöller, 1949; Al-Yaari 
et al., 2014) confirmed some of the above results (Fig. S1). It can be 
viewed that SMAP-IB SM had generally common periodical features 
with the four other SM products in terms of time and latitude. For 
instance, all the five SM products showed a distinct seasonal pattern in 
the Southern Hemisphere (> 35◦S) and all of them could well detect the 
meridional shift of the Intertropical Convergence Zone (ITCZ), but 
SMAP-IB, DCA and SCA-V showed changes with a higher seasonal cycle, 
as found in the MERRA-Land modelled soil moisture (Al-Yaari et al., 

Table 2 
Calibration of σSM and σL_VOD: the results obtained for these cases were assessed by comparison to the calibration datasets (Saatchi AGB for L-VOD and ERA5 SM for 
SM).  

SM initialization type Configurations Retrieved SM vs ERA5 SM Retrieved L-VOD vs Saatchi 
AGB 

σL_VOD σSM (m3/ 
m3) 

Temporal 
R 

ubRMSD(m3/ 
m3) 

Bias (m3/ 
m3) 

RMSD(m3/ 
m3) 

Spatial R 

Dynamic SMini (Eq. (3)) 0.05 0.05 0.73 0.046 − 0.061 0.094 0.89 
SDL_VOD

ini SDSM
ini 0.73 0.048 − 0.057 0.095 0.89 

SDL_VOD
ini 1.5 * 

SDSM
ini 

0.73 0.051 − 0.055 0.096 0.89 

1.5 * SDL_VOD
ini SDSM

ini 0.74 0.047 − 0.054 0.094 0.88 
1.5 * SDL_VOD

ini 1.5 * 
SDSM

ini 
0.73 0.050 − 0.051 0.095 0.88 

3 * SDL_VOD
ini SDSM

ini 0.74 0.046 − 0.050 0.093 0.88 
3 * SDL_VOD

ini 1.5 * 
SDSM

ini 
0.74 0.049 − 0.047 0.094 0.88 

non-forest area: 3 * 
SDL_VOD

ini 

forest area: SDL_VOD
ini 

SDSM
ini 0.74 0.046 ¡0.054 0.093 0.88 

non-forest area: 3 * 
SDL_VOD

ini 

forest area: SDL_VOD
ini 

1.5 * 
SDSM

ini 
0.74 0.049 − 0.052 0.094 0.88 

Global constant SMini (SMini = 0.2 
m3/m3) 

0.05 0.2 0.72 0.052 − 0.074 0.100 0.86 
SDL_VOD

ini 0.2 0.71 0.053 − 0.072 0.099 0.87 
1.5 * SDL_VOD

ini 0.2 0.72 0.051 − 0.070 0.097 0.86 
3 * SDL_VOD

ini 0.2 0.73 0.049 − 0.067 0.094 0.85 
non-forest area: 3 * 
SDL_VOD

ini 

forest area: SDL_VOD
ini 

0.2 0.72 0.051 − 0.070 0.097 0.86 

SMOS-IC (SMini = 0.2 m3/m3) 0.05 0.2 0.69 0.052 − 0.107 0.126 0.88 

Note: SDL_VOD
ini or SDSM

ini is the daily standard deviation of L-VOD or SM calculated from the retrieval results of the initial configuration (i.e., σL_VOD
ini= 0.05 and 

σSM
ini= 0.05 m3/m3). The configuration bolded in the table represents the selected setting for the SMAP-IB retrieval algorithm. 
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2014). 

3.2.2. Network-based validations 
The statistics of the validation results of the five SM products against 

the in-situ measurements are shown in Table 3, except RMSD (Table S7). 
In the table, as performed in previous evaluation studies (Al-Yaari et al., 
2019; Li et al., 2020b), the median values of all metrics (i.e., R, ubRMSD 
and Bias) were calculated for each ISMN network used in this study. In 
terms of temporal variations of in-situ SM, SMAP-IB presented the 
highest overall median R value of 0.74, followed by MT-DCA (R = 0.71), 
which was slightly better than SCA-V, DCA and SMOS-IC with the same 

R value of 0.69 (“All” item in last rows of Table 3). To be noted, among 
these networks, SMAP-IB obtained the highest R values of all the five SM 
products over most of the networks (15 over 19). Regarding the different 
networks, it can be seen that the overall best R value for all the five SM 
products was obtained over the SOILSCAPE network. In contrast, the 
lowest correlations for SMAP-IB, DCA, SCA-V were found for the RSMN 
network, while the lowest ones for MT-DCA and SMOS-IC were obtained 
for the MySMNet network (R < 0.6). In terms of characterizing the ab-
solute value of in-situ SM, DCA performed best compared to the four 
other SM products, with a lowest median ubRMSD value of 0.056 m3/ 
m3. Interestingly, in line with the recent validation work of Ayres et al. 

Fig. 3. Global distribution of time averaged and mean annual seasonal amplitude (SA) of the different SM products from April 2015 to March 2019 for a-b) SMOS-IC, 
c-d) MT-DCA, e-f) DCA, g-h) SCA-V and i-j) SMAP-IB. Note that the seasonal cycle is defined by applying a 45-day moving window filter to the data when calculating 
the seasonal amplitude. 
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(2021) and Colliander et al. (2021), DCA yielded similar (or even the 
best) scores to (than that of) SCA-V over most of the networks, which 
confirms the quality of the new version of the modified DCA. 

Very close to DCA, SCA-V and SMAP-IB had similar performances in 
terms of ubRMSD, with values of 0.058 m3/m3 and 0.059 m3/m3, 
respectively. The ubRMSD values obtained by SMAP-based products 
were all lower than 0.060 m3/m3, except for MT-DCA with a median 
value of 0.063 m3/m3. Regarding the different networks, the best and 
poorest values obtained by the different products were not consistent, 
although it is noted that some networks may include a low number of SM 
stations and cover fewer footprint pixels (Table 1). For instance, the 
lowest ubRMSD values of SMAP-IB and SMOS-IC were obtained over 
DAHRA, while those of MT-DCA and DCA were obtained over AMMA- 
CATCH and SCA-V over NGARI. Among these networks, DCA obtained 
the highest performances in terms of ubRMSD over most of the networks 
(10 over 19), followed by SMAP-IB with 5 networks and SCA-V with 4. 
We also noted that SMAP-IB presented lower ubRMSD values than MT- 
DCA in almost all networks, except for AMMA-CATCH, NAQU, SOIL-
SCAPE and TERENO. Regarding Bias, both SMAP-IB and SCA-V obtained 
best results, with very small bias values of 0.002 m3/m3 and 0.008 m3/ 
m3. They were followed by MT-DCA (small underestimation) and DCA 
(small overestimation) with a similar absolute bias value of ~0.013 m3/ 
m3. Different from the previous evaluation efforts (Al-Yaari et al., 2019; 
Ma et al., 2019), which found that the SMAP products are generally drier 
than the ISMN observations, we found here that the new version of 
SMAP SCA-V and DCA products are wetter than the ground observations 
in most networks. But consistent with previous evaluations, the new 
version of SMOS-IC (V2) still obtained a higher bias value, with a me-
dian value of − 0.054 m3/m3. It should be noted that a supplementary 
evaluation considering only dense observation footprints defined as 36 
km footprint cells comprising a number of ground stations >3, especially 
for bias (Table S7), is consistent with the inter-comparison results ob-
tained above. 

As an alternate way to visualize the performance of each product at 
the site scale, Fig. 4 illustrates the time series of the five SM products at 
two in-situ sites with low (SCAN) and moderate (SMOSMANIA) vegeta-
tion coverage. It can be seen that in both sites, the SM estimates of 
SMAP-IB, like the other four products, tracked quite well the dry-down 
trends of the in-situ measurements. 

3.2.3. Assessment based on different vegetation conditions 
To ease the inter-comparison between the different SM products, a 

map illustrating which SM products had the best scores in terms of per- 
site temporal correlation and ubRMSD against the in-situ measurements 
is provided in Fig. 5. Note that the number of sites with the best per-
formance for each product was also counted, as shown in the brackets 
after the product name in Fig. 5. In general, SMAP-IB presented the 
highest R values with the in-situ observations over more than one-half 
(234) of the sites, which were mainly distributed in the mid-western 
US covered by grasslands and mid-eastern US covered by croplands, 
while the highest R values in the central and southeast coastal regions of 
the US were obtained from other SMAP algorithm products, e.g., DCA, 
SCA-V and MT-DCA. Here, consistent with Table 3, it once again 
confirmed the ability of SMAP-IB to capture temporal trends of in-situ 
SM, as R is generally considered to be the most important indicator in 
quantifying the skills of satellite-based SM, especially when a large 
number of sparse observation networks are used (Zeng et al., 2020; Ma 
et al., 2019). In terms of ubRMSD, while the five products had compa-
rable performance at 138 sites, SCA-V demonstrated the best perfor-
mance over 78 sites mainly distributed in US and southeastern Europe, 
followed very closely by SMAP-IB (74) and DCA (72). However, unlike 
SCA-V and DCA, which were evenly distributed throughout the US, the 
best performing sites of SMAP-IB were mainly concentrated in the 
northeastern US. It was generally found from Fig. 5 that SMAP-based 
products presented better scores than SMOS-based products especially 
in Europe and Asia, which may be due to the fact SMOS is more affected 
by RFI in these areas than elsewhere and is consistent with the validation 
conducted by Al-Yaari et al. (2019). 

To further shed light on the effects of vegetation density on the SM 
estimates among the different products, the gauge-based error metrics 
were stratified based on different L-VOD levels obtained from SMOS-IC 
(Fig. 6). Regarding the temporal correlation (R) metric (the first row of 
Fig. 6), it was found that all the five SM products presented a relatively 
low sensitivity to the vegetation effects directly parameterized by L-VOD 
here, as their R values did not show a decreasing trend as the L-VOD 
value increases. On the contrary, the R values with the in-situ mea-
surements were even higher in middle-level VODs (e.g., VOD-IV and 
VOD-V) than low-level VODs (e.g., VOD-II). In particular, all SM prod-
ucts had the highest R values for the VOD-V range by exhibiting a me-
dian R value above 0.71, except for SMAP-IB, which achieved the 

Table 3 
The network-based statistical validation results of SMOS-IC, MT-DCA, DCA, SCA-V and SMAP-IB against ISMN in-situ measurements for April 2015–March 2019. Best 
performance of the five SM products in each network is typeset in boldface.  

Metrics R(p < 0.05) ubRMSD(m3/m3) Bias(m3/m3) 

Networks SMOS- 
IC 

MT- 
DCA 

DCA SCA- 
V 

SMAP- 
IB 

SMOS- 
IC 

MT- 
DCA 

DCA SCA- 
V 

SMAP- 
IB 

SMOS- 
IC 

MT- 
DCA 

DCA SCA-V SMAP- 
IB 

SCAN 0.70 0.72 0.69 0.69 0.74 0.056 0.059 0.050 0.050 0.054 − 0.048 − 0.025 0.009 0.005 0.007 
SNOTEL 0.61 0.67 0.65 0.63 0.72 0.073 0.076 0.067 0.066 0.066 − 0.073 − 0.016 ¡0.002 − 0.013 − 0.018 
AMMA- 

CATCH 
0.86 0.90 0.89 0.88 0.91 0.033 0.033 0.031 0.035 0.035 0.015 0.027 0.036 0.047 0.035 

DAHRA 0.79 0.74 0.77 0.66 0.75 0.023 0.040 0.032 0.050 0.029 − 0.019 ¡0.001 0.006 0.020 − 0.009 
FR_Aqui 0.60 0.67 0.63 0.62 0.85 0.069 0.071 0.076 0.071 0.054 0.013 0.073 0.084 0.086 0.132 
HOAL 0.57 0.68 0.69 0.67 0.79 0.047 0.045 0.047 0.047 0.038 − 0.174 − 0.121 − 0.025 ¡0.005 − 0.012 
MAQU 0.73 0.65 0.65 0.62 0.66 0.063 0.065 0.070 0.074 0.063 ¡0.018 − 0.099 0.064 0.043 0.093 
NAQU 0.78 0.86 0.86 0.87 0.86 0.065 0.041 0.037 0.086 0.057 0.070 − 0.026 0.016 0.139 0.107 
NGARI 0.74 0.68 0.65 0.65 0.78 0.030 0.043 0.038 0.026 0.032 − 0.056 − 0.027 0.011 − 0.017 − 0.013 
RISMA 0.66 0.61 0.69 0.69 0.68 0.059 0.068 0.051 0.052 0.061 − 0.088 − 0.088 − 0.018 0.012 − 0.030 
SMOSMANIA 0.76 0.75 0.78 0.78 0.80 0.053 0.061 0.055 0.050 0.054 − 0.133 − 0.010 ¡0.006 − 0.010 − 0.029 
SOILSCAPE 0.91 0.93 0.92 0.92 0.93 0.050 0.061 0.036 0.037 0.086 − 0.029 0.049 0.030 0.014 0.068 
TERENO 0.79 0.79 0.76 0.74 0.80 0.046 0.044 0.042 0.045 0.047 − 0.179 − 0.146 − 0.036 ¡0.023 − 0.085 
USCRN 0.73 0.72 0.70 0.72 0.77 0.051 0.054 0.048 0.049 0.052 − 0.049 − 0.018 0.013 0.008 0.008 
HOBE 0.67 0.70 0.67 0.65 0.76 0.050 0.056 0.058 0.055 0.053 − 0.026 − 0.046 0.050 0.047 0.002 
MySMNet 0.42 0.56 0.63 0.63 0.70 0.072 0.040 0.046 0.048 0.034 0.169 0.066 0.241 0.261 0.170 
OZNET 0.79 0.80 0.81 0.77 0.82 0.062 0.073 0.058 0.063 0.070 0.003 0.034 0.053 0.052 0.031 
REMEDHUS 0.79 0.78 0.80 0.79 0.82 0.043 0.049 0.038 0.040 0.046 − 0.031 0.031 0.011 0.007 0.010 
RSMN 0.60 0.62 0.57 0.58 0.65 0.072 0.070 0.056 0.058 0.070 0.008 0.025 0.095 0.089 0.048 
All 0.69 0.71 0.69 0.69 0.74 0.060 0.063 0.056 0.058 0.059 − 0.054 − 0.013 0.014 0.008 0.002  
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highest R value of 0.77 in VOD-III. In general, SMAP-IB presented higher 
R values than the other SM products in all VOD intervals, especially for 
VOD conditions from 0 to 0.4, while similar performances between the 
four other SM products (MT-DCA, DCA, SCA-V and SMOS-IC) could be 
found from VOD-III to VOD-V. A relatively large difference between 
DCA (lower performance) and the other three products was found in 
VOD-I, where MT-DCA performed slightly better, followed by SCA-V and 
SMOS-IC. Leaving this category aside, it was interesting to find that the 
new versions of DCA and SCA-V had comparable performance in all the 
other VOD conditions, consistent with the overall results in Table 3. 

In terms of bias, all the five SM products overestimated the in-situ 
measurements in VOD-VI, especially for DCA, showing a highest bias 
value of 0.15 m3/m3, while SMOS-IC generally underestimated the in- 
situ measurements in the other VOD categories particularly for VOD-II, 
VOD-III and VOD-IV. Considering the ubRMSD and RMSD metrics, it 
was found that all the five SM products presented a relatively high 

sensitivity to the vegetation effects, as these metric values increased 
slowly with the increase of L-VOD value (Fig. 6). The newly updated 
DCA was generally found to have the best performance in all VOD cat-
egories, except for category VOD-V, where its ubRMSD value (0.066 m3/ 
m3) was slightly higher than the four other products. Overall, in terms of 
ubRMSD, SMAP-IB had comparable performance to SCA-V and SMOS-IC 
in most VOD categories, and the three of them were slightly better than 
MT-DCA. 

Fig. 7 shows the impact of the vegetation types on the performance of 
the different SM products. Regarding correlation, SMAP-IB correlated 
better with the in-situ observations over most of the vegetation types, 
except for woody savannas, where DCA and SCA-V ranked the top, with 
the highest R value of 0.85. Similar skills between the four other prod-
ucts (MT-DCA, DCA, SCA-V and SMOS-IC) were generally found over the 
forest types, croplands and cropland/natural vegetation mosaics. By 
exhibiting the lowest R value of 0.57, a larger difference between DCA 

Fig. 4. Time series of the five SM products between April 2015 and March 2019 at a) CochoraRanch; and b) Narbonne, from the SCAN and SMOSMANIA networks, 
respectively. Each plot also contains daily precipitation (mm/day) shown in axis on the right side (light blue bar). Note that a 7-day moving window filter was applied 
to the in-situ observations to distinguish them from the satellite-based SM. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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and the other three products was found over shrublands. Interestingly, 
DCA and SCA-V, which were usually triggered as non-recommended 
values in forest areas, had performances over forests which were com-
parable to some low vegetation types (e.g., mixed forests vs croplands), 
which confirmed the latest conclusions of the evaluation of SMAP 
products in forest areas (Ayres et al., 2021). In terms of ubRMSD, SMAP- 
IB, while presenting the poorest performance over woody savannas, 
performed similarly to SCA-V over most of the other vegetation types. 
All five products were found to have the largest bias over the forest 
types, e.g., DCA over evergreen needleleaf forest with a bias value of 
0.092 m3/m3, and over deciduous broadleaf forest for all the other 
products (absolute bias >0.070 m3/m3). SMAP-IB agreed well with DCA 
and SCA-V in terms of the sign of bias in most vegetation types, for 
instance, they presented overestimations over forest types, and under-
estimation over grasslands. 

3.3. Vegetation optical depth retrievals 

3.3.1. Global spatial patterns and temporal dynamics 
Fig. 8 shows the global maps of time averaged L-VOD retrievals from 

SMAP-IB and the four other products from April 2015 to March 2019. 
Similar spatial patterns were generally found for the five L-VOD prod-
ucts, except for the high latitudes in the Northern Hemisphere, where 
the L-VOD distribution of SMAP-IB, MT-DCA and SMOS-IC did not show 
a markedly decreasing gradient starting from ~60◦N contrary to DCA 
and SCA-V, and the spatial patterns of the latter two were very close 
(Fig. 8g, j). It should be noted that, unlike the latter two, the algorithm of 
the first three products were independent of the optical vegetation 
index, that is, no a priori information from MODIS NDVI was used to 
initialize (DCA) or directly estimate L-VOD (SCA-V). Considering the 
magnitude of L-VOD, MT-DCA presented a higher L-VOD value than 
DCA, SMAP-IB and SMOS-IC over most of the globe (e.g., tropical for-
ests, western US, Alaska forests and east Siberian taiga), except for 
eastern US, western and central Europe, where the L-VOD value of DCA 

was the highest. 
In addition to calculating the seasonal amplitude (SA) of the five L- 

VOD products in a similar way to Fig. 3, we also computed the high- 
frequency variations in their L-VOD time series though mapping their 
standard deviation (SDhf) after removing the seasonal trend (Fig. 8). 
Regarding SDhf, since SCA-V was estimated based on NDVI climatolog-
ical data, its L-VOD globally presented low high-frequency variations. 
Similar spatial distribution patterns of SDhf and SA were generally found 
between SMAP-IB, SMOS-IC, DCA, and SCA-V, all showing relatively 
high SDhf and SA over Mexico, eastern Brazil, Sahel, eastern Australia, 
India and boreal forests of Russia, where annual rainfall in most of these 
regions controlled the vegetation production. In contrast, MT-DCA 
presented highest SDhf and SA values over the tropical forests (e.g., 
Amazon and Congo basins). Similar to the findings obtained for SM in 
Fig. 3, the magnitude of SA and SDhf of L-VOD obtained from MT-DCA 
were also globally higher than the four other L-VOD products, except 
for high latitudes (above ~60◦N), where the SA and SDhf values of 
SMAP-IB L-VOD were the highest. The spatio-temporal variations of L- 
VOD for the five products, summarized using Hovmöller diagrams 
(monthly mean L-VOD averaged along the longitude range by latitude 
bands), directly reflected some of the above findings (Fig. S2). In addi-
tion, a notable difference between DCA, SCA-V and the three other L- 
VOD products was found over the northern hemisphere (> 45◦N), where 
the latter exhibited obvious seasonal patterns with higher L-VOD values 
over the summer corresponding to the period of maximum leaf pro-
duction and vegetation growth, while this signature was not obvious for 
DCA and SCA-V. 

3.3.2. Spatial performances of the different L-VOD products 
Fig. 9 illustrates the density plots of the five L-VOD products with 

respect to AGB, canopy height and NDVI. Some common features could 
be found among these five products: they all presented the highest 
spatial R value when compared to the forest canopy height, while they 
presented the lowest R value when compared to NDVI, although with 

Fig. 5. Maps showing the SM products presenting the best performance with in-situ measurements for a) R and b) ubRMSD for each site. Note: the sites for which the 
difference in R (ubRMSD) is lower than 0.02 (0.01 m3/m3) are indicated by a black colour. 
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large differences depending on the product. This is due to the fact L-VOD 
is sensitive to the whole vegetation layer including the woody compo-
nents, while NDVI is more sensitive to the features of the upper green 
canopy layer. Most of the L-VOD products had a very good linear rela-
tionship with tree height, even for tall forests (height > 20 m), which is 
in line with the VOD evaluation work conducted by Rodríguez-Fernán-
dez et al. (2018) and Li et al. (2021). Fig. 9 also demonstrated that there 
is a non-linear relationship between L-VOD and AGB, and the obtained R 
values with the different products were very close (differences by only 
0.02 from 0.87 to 0.89). Moreover, most of the L-VOD products could 
predict well the spatial gradients of AGB, with a correlation value R of 
~0.92 calculated between predicted and observed AGB (first column of 
Fig. 9). Similar results were obtained when comparing L-VOD with tree 
height: MT-DCA and SMAP-IB presented the highest R with a value of 
0.91, while SCA-V had a close value of 0.89. 

Some notable differences between the five products could also be 

found in terms of density distribution (Fig. 9). For instance, the density 
of the higher L-VOD values (> 1.2) obtained with MT-DCA was higher 
than the one obtained with the four other L-VOD products at the global 
scale, which is consistent with Fig. 8. Conversely, DCA and SCA-V L-VOD 
exhibited obvious saturation effects when AGB ~ 250 Mg ha− 1 (L-VOD 
~ 1.2). In addition, several unevenly concentrated bands could be found 
for DCA and SCA-V (Fig. 9g,j), which was not the case for SMOS-IC, MT- 
DCA and SMAP-IB. On the contrary, the latter three presented a smooth 
relationship with AGB, and there was no strong sign of saturation, which 
is consistent with the evaluation of several SMOS L-VOD datasets 
(Rodríguez-Fernández et al., 2018; Mialon et al., 2020). However, the 
density distribution shapes obtained with them showed a certain degree 
of distortion when L-VOD is in the range of [0.6, 0.9], corresponding to a 
range of [200, 300 Mg ha− 1] for AGB. The inter-comparison with the 
global tree height (second column of Fig. 9) confirmed the results pre-
sented above. It can be seen that both DCA and SCA-V had high density 

SMOS-IC

MT-DCA

DCA

SCA-V

SMAP-IB 

Fig. 6. Boxplot of metrics (R, Bias (m3/m3), RMSD (m3/m3), and ubRMSD (m3/m3)) stratified by different L-VOD levels for SMOS-IC, MT-DCA, DCA, SCA-V and 
SMAP-IB across all ISMN sites during the period of April 2015–March 2019: VOD-I (n = 52 sites/pixels); VOD-II (n = 130 sites/pixels); VOD-III (n = 97 sites/pixels); 
VOD-IV (n = 60 sites/pixels); VOD-V (n = 37 sites/pixels); VOD-VI (n = 41 sites/pixels). The center dot mark in each box indicates the median value, and the top and 
bottom edges indicate the 25th and 75th percentiles. 
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concentration and saturation around L-VOD ~ 1.2 and tree height ~ 28 
m, and there were even a large number of L-VOD values distributed 
around ~0 when the tree height reaches 8–16 m, while the three other 
products showed a good linearity with tree height. In contrast, when 
compared with NDVI, both DCA and SCA-V L-VOD were less scattered 
than the other three products. Similar dispersion and distribution shapes 
between DCA and SCA-V L-VOD (Fig. 9g-l) demonstrated that the new 
version of DCA initialized with the NDVI climatology may integrate 
optical information from the latter. 

3.3.3. Temporal performances of the different L-VOD products 
As the L-VOD obtained with DCA and SCA-V both contain NDVI in-

formation and to avoid circularity, we only examined the pixel-wise 
temporal correlation (R) between the other three L-VOD products (i.e., 
SMOS-IC, MT-DCA and SMAP-IB) and NDVI, as shown in Fig. 10. By 
exhibiting relatively high R values over Sahel, southern Africa, eastern 
US, eastern Brazil, Siberian boreal forests and Australia and non- 
significant (p > 0.05) R values over the desert and low inter-annual 
vegetation dynamic areas (e.g., tropical intact forests), similar spatial 
distributions of the temporal R values were generally found for the three 
L-VOD products. In addition, there was asynchrony between the three L- 
VOD estimates and NDVI over southeast China, Indochina Peninsula and 
Miombo woodlands, with negative R values below than - 0.5 for the 
latter area. This decoupling signature originates from the time lags be-
tween L-VOD and NDVI due to their different sensitivities to the woody 

and leafy vegetation components and the decoupling of vegetation 
water content from foliar greenness, consistent with the findings of Tian 
et al. (2018) and Li et al. (2021). 

The L-VOD product which presented the strongest per-pixel temporal 
R with NDVI (by considering an absolute difference of R value larger 
than 0.1) is also provided (Fig. 10d). When discarding non-significant 
relationships (p > 0.05), SMAP-IB L-VOD exhibited the highest R 
values with NDVI over 33.55% of the pixels, mainly distributed over 
central Australia, Miombo woodlands, central Europe and Western US, 
followed by MT-DCA and SMOS-IC, which account for 30.01% and 
29.86% of the pixels, respectively. SMOS-IC presented the highest R 
values over south America, Mexico, central US, Alaska and southeastern 
Africa. When only considering SMAP-based products (Fig. 10b,c), 
SMAP-IB was better correlated with NDVI than MT-DCA in particular 
over middle and low latitudes, e.g., central Australia, Africa and 
Contiguous US, while MT-DCA performed better over higher latitudes, e. 
g., over most of the Russian boreal region and Alaska. 

To better understand the seasonal dynamics of the different L-VOD 
products, several pixels with different vegetation types and climates 
were selected to investigate their time series (Fig. 11). The seasonal 
dynamics of the five L-VOD products were synchronized with NDVI over 
most of the non-forest types, except for woody savannas in the Miombo 
woodlands (Fig. 11b), which is consistent with Fig. 10. Over this latter 
area, most of the L-VOD products showed a negative correlation with 
NDVI, except for SCA-V L-VOD, which was estimated from a NDVI 

SMOS-IC

MT-DCA

DCA

SCA-V

SMAP-IB 

Fig. 7. Same as Fig. 6 except here stratified by different IGBP vegetation types: ENF (n = 48 sites/pixels); DBF (n = 9 sites/pixels); MF (n = 21 sites/pixels); SH (n =
23 sites/pixels); WS (n = 24 sites/pixels); G (n = 177 sites/pixels); C (n = 77 sites/pixels); CNVM (n = 33 sites/pixels); Barren (n = 5 sites/pixels). 

X. Li et al.                                                                                                                                                                                                                                        



Remote Sensing of Environment 271 (2022) 112921

15

climatology. Interestingly, although DCA L-VOD was initialized from a 
NDVI climatology, it exhibited asynchrony with NDVI at this site. 
However, over the evergreen broadleaf Amazon forest site with a higher 
vegetation density (Fig. 11a), DCA L-VOD exhibited very similar char-
acteristics as SCA-V L-VOD, showing almost constant time series simi-
larly to NDVI, whereas the three other L-VOD estimates presented larger 
temporal variations. At this site, SMAP-IB tended to be smoother, while 
MT-DCA presented a strong high frequency variability, which explained 
the higher SDhf values of MT-DCA over tropical forests in Fig. 8e. The 
open shrublands site (Fig. 11c) in the south of Australia exhibited 
another exception: while the other four L-VOD products showed distinct 
dynamics like NDVI, SCA-V L-VOD had small fluctuations. When only 
considering products independent of NDVI, SMAP-IB, MT-DCA and 
SMOS-IC were generally found to have similar seasonal dynamics, and 

they all fluctuated more strongly when L-VOD is relatively low and when 
rainfall occurs. However, the amplitude of this seasonal dynamics varied 
depending on the sites. For instance, over the cropland/natural vege-
tation mosaic site (Fig. 11e), SMAP-IB exhibited a higher seasonal dy-
namic than MT-DCA and SMOS-IC. 

4. Discussion 

Based on the evaluation and inter-comparison results shown above in 
Section 3.2 for SM and Section 3.3 for L-VOD, it was generally found that 
no algorithm showed an absolute advantage over the others with respect 
to different error metrics, whether SM and L-VOD were considered 
together or separately. This is consistent with the previous evaluation 
results of SM (Al-Yaari et al., 2019; Ma et al., 2019) and VOD retrievals 

Fig. 8. Global distribution of time averaged, standard deviation of the high-frequency variations (SDhf) and mean annual seasonal amplitude (SA) of the different L- 
VOD products from April 2015 to March 2019 for a-c) SMOS-IC, d-f) MT-DCA, g-i) DCA, j-l) SCA-V and m-o) SMAP-IB. Note that SDhf was computed after removing 
the seasonal trend. 

X. Li et al.                                                                                                                                                                                                                                        



Remote Sensing of Environment 271 (2022) 112921

16

(Li et al., 2021) of these algorithms, although these previous studies did 
not use exactly the same versions of the products as here. Nevertheless, 
to simultaneously retrieve SM and L-VOD from the mono-angle SMAP 
observations while remaining as independent as possible from auxiliary 
data, we have implemented a multi-temporal (MT) retrieval approach in 
SMAP-IB leaning on the findings made in SMOS-IC version 2 (Wigneron 
et al., 2021). Conversely to MT-DCA, the MT approach used in SMAP-IB 
not only considers the fact that L-VOD changes slowly over time, but also 
considers that the initial value of SM may change with time and space, 
rather than using a constant value as in SMOS-IC. This innovative 
approach led to good performances for both SM and L-VOD as shown in 

the inter-comparison with other products: 

– For SM retrievals, when evaluated against ISMN in-situ measure-
ments, SMAP-IB SM exhibited highest overall temporal correlation 
(R = 0.74) followed by MT-DCA (R = 0.71), and best scores for R 
were also obtained by SMAP-IB over most of the networks (15 over 
19, Table 3), sites (Fig. 5) or vegetation conditions (Figs. 6 and 7). 
Conversely, DCA obtained best scores for ubRMSD (ubRMSD = 0.056 
m3/m3), followed closely by SCA-V and SMAP-IB (ubRMSD ~ 0.058 
m3/m3). It should be noted that the R values (in particular for SMAP 
DCA and SCA-V) obtained here are in line with a recent validation 

Fig. 9. Density scatter plots of the five L-VOD products (time averaged values) against AGB (first column), canopy height (second column) and NDVI (last column) at 
the global scale. The blue circles correspond to the distribution of mean AGB values in bins of L-VOD, while the fitting relationships between L-VOD and AGB are 
displayed as solid blue lines using the function as in Li et al. (2021). R1 is the spatial correlation coefficient between L-VOD and corresponding proxies, while R2 is the 
correlation between predicted AGB (based on L-VOD using above non-linear function) and reference AGB. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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study using sparse network grassland sites, but with a slightly higher 
ubRMSD value (Fig. 4 and Table VIII in Colliander et al., 2021), and 
also larger than those reported by Chan et al. (2016) and Colliander 
et al. (2017). The former discrepancy is due to the fact that our study 
was carried out at the 36 km spatial resolution, while Colliander 
et al. (2021) evaluated the SMAP 9 km enhanced product. The latter 
discrepancy may be due to the fact we used more sparse networks 
from ISMN, which may be affected by representativeness errors (Al- 
Yaari et al., 2019). Thus, it was not expected that the overall results 
obtained in this study could achieve very similar values as those 
reported by Chan et al. (2016) and Colliander et al. (2017) using the 
core sites. Moreover, we considered more vegetation types 
(including forests). But interestingly, as in Ayres et al. (2021), we 
also found a good potential of SMAP for SM retrieval in forest areas.  

– For VOD retrievals, as there is a lack of reference values from in-situ 
observations or models to do a direct inter-comparison, we only 
implemented an indirect evaluation based on vegetation-related 
proxies at the global scale by using semi-monthly L-VOD observa-
tions as done in (Li et al., 2021; Wigneron et al., 2021). An assess-
ment for specific terrestrial ecosystems (e.g., Africa, tropical and 
boreal forests) or different seasons may provide a more detailed 
understanding of the performances of the different L-VOD products 
(Rodríguez-Fernández et al., 2018; Fan et al., 2019; Mialon et al., 
2020). Noting these limitations, we found that, consistently, better 
scores were generally obtained for SMAP-IB, MT-DCA and SMOS-IC 
for all the criteria: relatively high temporal (Fig. 10) or spatial 
(Table S8) correlation (R) values between NDVI and L-VOD were 
found especially over short vegetation types and all three products 
presented a smooth non-linear relationship with AGB and a good 
linear relationship with tree height, even for tall forests (Fig. 9). 
However, this was not the case for the L-VOD products (i.e., DCA and 
SCA-V) incorporating NDVI information, which exhibited a certain 
degree of saturation. Nevertheless, it was interesting to find that DCA 
L-VOD also exhibited asynchrony with NDVI over the Miombo 
woodlands (Figs. 11b and S3), like the other L-VOD products which 
were independent of the optical vegetation index. This may be 

related to the value of the regularization parameter (λ) in DCA, 
which was used to determine the degree of freedom to converge to 
values far enough from the initial value (Chaubell et al., 2020; 
O’Neill et al., 2020). This signature also reminded us that the dif-
ferences in the L-VOD spatial patterns shown in Fig. 8 (especially in 
the high latitudes) between DCA and the other products may also be 
due to the different HR and ω values used by each product as sum-
marized in Table 2 of Li et al. (2021) and Chaubell et al. (2020). 

Although SMAP-IB presented good performances for both SM and L- 
VOD, there is still room to improve this first version (V1) of the algo-
rithm in the next step. For instance, SMAP-IB had a relatively poor 
performance in SM retrievals over woody savannas (Fig. 7) when eval-
uated against the ISMN observations and a strange high seasonal L-VOD 
amplitude in the very high latitudes (above ~60◦N) (Fig. 8). The former 
result relative to the SM retrievals may lead us to consider performing an 
update of the calibration parameters including both HR and ω (Table S1) 
over woody savannas, as the current values were derived from the 
calibration of Fernandez-Moran et al. (2017a) based on a different 
retrieval approach. The latter case relative to the L-VOD retrievals may 
lead us to consider to improve the algorithms considering the specific 
environmental conditions of the boreal regions. For instance, the frozen 
conditions may interrupt the MT method used in this study (Wigneron 
et al., 2021), and the presence of a large amount of soil organic matter 
(SOM) may require the use of a specific soil dielectric model (Mironov 
et al., 2019). Another possible reason explaining the SMAP-IB results in 
the boreal regions could be related to the distortion of EASE-Grid V2.0 at 
high latitudes when using global cylindrical projection (Colliander et al., 
2021). In addition, uncertainties associated with the pixel heterogeneity 
may also affect the L-VOD retrievals and need to be considered in the 
inversion, as a certain degree of distortion was found in the density 
distribution between the multiple L-VOD products and AGB (Fig. 9 a, 
d & m). 

Fig. 10. Pixel-wise temporal correlation (R) between 16-day average values of L-VOD and MODIS NDVI from April 2015 to March 2019 for a) SMOS-IC, b) MT-DCA, 
c) SMAP-IB, d) maps of above three L-VOD products showing the highest absolute R values with NDVI. Pixels with non-significant (p > 0.05) R values are shown in 
gray. White areas mean “no valid data”. 
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5. Concluding remarks and outlook 

This paper presents a new mono-angle retrieval algorithm (referred 
to SMAP-IB) for SM and L-VOD from the dual-channel SMAP L-band 
radiometric observations. The main features of SMAP-IB were illustrated 
by assessing and inter-comparing it with four other satellite SM and L- 
VOD products (i.e., MT-DCA, SMAP new version DCA, SCA-V and SMOS- 
IC) during April 2015–March 2019. To achieve this, the skills of all five 
SM products in capturing the temporal variations of in-situ observations 
from ISMN were evaluated, while the L-VOD products were evaluated 
against vegetation-related proxies including AGB, tree height and NDVI 
from a spatial and temporal perspective. 

We found that SMAP-IB performs well for both SM and L-VOD. In 
terms of SM retrievals, SMAP-IB obtained best scores for capturing the 

temporal variations of ISMN SM, with an overall median R value of 0.74. 
Regarding ubRMSD, while the lowest value was obtained by SMAP new 
version DCA (ubRMSD = 0.056 m3/m3), SMAP-IB and SCA-V had both 
very close scores (ubRMSD ~ 0.058 m3/m3). Considering different 
vegetation conditions, SMAP-IB showed best scores for correlation and 
similar scores to SCA-V for ubRMSD over most of the vegetation types 
except for woody savannas. Overall, SMAP-IB SM retrievals presented 
best scores for R, ubRMSD and Bias (0.002 m3/m3) among the three 
products independent of NDVI (the other two are MT-DCA and SMOS- 
IC). With respect to L-VOD, SMAP-IB had good performances in both 
space and time. In particular, similar to SMOS-IC and MT-DCA, SMAP-IB 
L-VOD correlated well with aboveground biomass and tree height, with 
spatial R values of ~0.88 and ~ 0.90, respectively. All three L-VOD 
retrievals presented a smooth non-linear density distribution with AGB 

(b) Congo (Miombo Woody Savannas) 

(c) South Australia (Open Shrublands) 

(e) South East US (Cropland/natural Vegetation Mosaic) 

(d) Central US (Grasslands) 

(a) Amazon (Evergreen Broadleaf Forest) 

Fig. 11. Temporal series of the five L-VOD products (smoothed with a 7-day moving window filter) over selected pixels between April 2015 and March 2019. Each 
plot also contains daily precipitation (mm/day) and NDVI information. Note: the scale value of SCA-V in Fig. 11c is marked in blue, and the latitude and longitude 
information of these pixels are shown in Table S9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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and a good linear relationship with tree height, even for tall forests. 
While exhibiting a higher seasonal amplitude in the high latitudes 
(above ~60◦N), SMAP-IB was generally found to show similar seasonal 
vegetation dynamics to those of MT-DCA and SMOS-IC, and all of them 
could well capture the short-vegetation dynamics expressed by NDVI. 

Other conclusions, non-specific to SMAP-IB, could also be drawn 
from the results: i) the SMAP new version DCA SM retrievals had similar 
(or slightly better) performance to SCA-V with respect to both correla-
tions and ubRMSD, while they both exhibited acceptable accuracy over 
some forest types (comparable to non-forest types), although forest 
types were typically triggered as non-recommended values; ii) consid-
ering different L-VOD ranges parameterizing the vegetation effects, we 
found the temporal R values of all five SM products presented a rela-
tively low sensitivity to vegetation effects, while the ubRMSD metric was 
relatively more sensitive to these effects; iii) notable differences between 
MT-DCA L-VOD and the four other products were found over tropical 
forests concerning absolute values, standard deviations and seasonal 
amplitudes; iv) the new version of DCA initialized with NDVI clima-
tology may integrate optical information from the latter as its density 
distribution had a similar dispersion and distribution shape to SCA-V, 
and both showed obvious saturation effects at L-VOD ~ 1.2, and AGB 
around ~250 Mg ha− 1 or tree height around ~28 m. 

Our results suggest that cautions may need to be taken when using a 
priori information to constrain retrievals in microwave models, because 
of the likelihood that the final retrievals are dependent on it. This lack of 
independence (as found here for DCA) may limit the interest of using 
DCA L-VOD for monitoring the vegetation dynamics (phenology, carbon 
cycle, etc.). Moreover, it may reduce the possibility of developing 
complementary applications between microwave data sources (usually 
coarse resolution) and high-resolution optical-near infrared remote 
sensing data (Li et al., 2021). Considering that SMAP-IB exhibits a good 
compromise in terms of high accuracy for both SM and L-VOD, in a 
future step, we will apply it to the SMOS observation at the angle of 40◦

to promote the fusion of the SMOS and SMAP products. This step is 
important to ensure the continuity of L-band SM and L-VOD observa-
tions, in view of the possible failing of one of the sensors (SMOS or 
SMAP) in the near future. Note that the retrieval approach of the SMAP- 
IB algorithm proposed here to solve the ill-posed issue of simultaneously 
retrieving SM and VOD from one-angle and dual-polarization observa-
tions can also be extended to other passive microwave satellites (e.g., 
AMSR2). 

Data availability 

SMAP-IB was developed by INRAE (Institut national de recherche 
pour l’agriculture, l’alimentation et l’environnement) Bordeaux and 
will be made available at the INRAE Bordeaux remote sensing lab 
website (https://ib.remote-sensing.inrae.fr/). 
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Blöschl, G., Blaschke, A.P., Broer, M., Bucher, C., Carr, G., Chen, X., Eder, A., Exner- 
Kittridge, M., Farnleitner, A., Flores-Orozco, A., Haas, P., Hogan, P., Kazemi 
Amiri, A., Oismüller, M., Parajka, J., Silasari, R., Stadler, P., Strauss, P., 
Vreugdenhil, M., Wagner, W., Zessner, M., 2016. The hydrological open air 
laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory. Hydrol. Earth 
Syst. Sci. 20, 227–255. 

Brandt, M., Wigneron, J.P., Chave, J., Tagesson, T., Penuelas, J., Ciais, P., Rasmussen, K., 
Tian, F., Mbow, C., Al-Yaari, A., Rodriguez-Fernandez, N., Schurgers, G., Zhang, W., 
Chang, J., Kerr, Y., Verger, A., Tucker, C., Mialon, A., Rasmussen, L.V., Fan, L., 
Fensholt, R., 2018. Satellite passive microwaves reveal recent climate-induced 
carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835. 

Brodzik, M.J., Knowles, K., 2011. EASE-Grid 2.0 Land Cover Classifications Derived from 
Boston University MODIS/Terra Land Cover Data, Version 1. NASA National Snow 
and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA. 
https://doi.org/10.5067/XR8523MC24TB.  

Chan, S.K., Bindlish, R., Hunt, R., Jackson, T.J., Kimball, J.S., 2013. SMAP Ancillary Data 
Report Vegetation Water Content; Version 1. Jet Propulsion Laboratory, Pasadena, 
CA, USA.  

Chan, S., Bindlish, Rajat, O’Neill, Peggy, Njoku, Eni, Jackson, Tom, Colliander, Andreas, 
Chen, Fan, Burgin, Mariko, Dunbar, Scott, Piepmeier, Jeffrey, Yueh, Simon, 
Entekhabi, Dara, Cosh, Michael H., Caldwell, Todd, Walker, Jeffrey, Wu, Xiaoling, 
Berg, Aaron, Rowlandson, Tracy, Pacheco, Anna, McNairn, Heather, 
Thibeault, Marc, Martínez-Fernández, José, González-Zamora, Ángel, 
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