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WEIGHTS OF SPIN MODULES AND NILPOTENT ORBITS I. THE CASE OF CARTAN SUBALGEBRAS FOR sl(n, C)

We relate the weights of the spin representation for the pair (sl(n, C), t), where t is a Cartan subalgebra of sl(n, C), to partitions of n(n-1) 2

, which parametrize nilpotent orbits of sl(

, C). Then we deduce an explicit and tractable combinatorial formula to compute the multiplicities of the weights.

February 7, 2022 1. Introduction Nilpotent orbits play an important role in representation theory of Lie groups, for example through associated cycles and associated varieties of Harish-Chandra modules or through Springer correspondence for representations of Weyl groups (e.g., [Spr] [Vog]). Nilpotent orbits are also used in mathematical physics to model phase spaces of "massless" particles (e.g., [DbM] [Meh] [Sou]). In this paper, we calculate the multiplicities of the weights of the spin representation of a classical simple Lie algebra in terms of an algorithm which suggests a geometric interpretation in terms of nilpotent orbits.

Let g be a complex simple Lie algebra with adjoint group G and t ⊂ g a fixed Cartan subalgebra. The simultaneous diagonalization of the (adjoint) endomorphisms ad(X) of g, X ∈ t, coincides with the root space decomposition of g:

g = t + α∈Φ(g,t)
g α where Φ(g, t) is the set of roots (eigenforms) α ∈ t , α = 0, and g α is the corresponding root space (eigenspace). We choose a positive system Φ + (g, t) for Φ(g, t).

More generally, suppose W is a representation of g and λ ∈ t is a weight, i.e., the weight space {v ∈ W | λ(X)v ∀v ∈ W } is non-zero. Denote by Λ(W ) the set of weights of W . Recall that λ is a dominant integral highest weight if λ , α is a non-negative integer for every root α ∈ Φ + (g, t) and if for all µ ∈ Λ(W ), λ -µ is a non-negative integer combination of positive roots. Here , denotes the inner product on t induced by the Killing form. The highest weight Theorem asserts that irreducible finite-dimensional representations of g stand in one-to-one correspondence with dominant integral weights (e.g., [Hum]).

A finite-dimensional representation of particular interest is the spin representation. More precisely, suppose that h is a quadratic subalgebra of g, i.e., the restriction to h of the Killing form of g remains nondegenerate. There is therefore an orthogonal decomposition g = h ⊕ q with [h, q] ⊂ q. Assume that t ⊂ h, so 2010 Mathematics Subject Classification. Primary: 05E15, 17B08; Secondary: 17B10.

1 that q is even-dimensional and Φ(g, t) = Φ(h, t) ∪ Φ(q, t). Choose the positive system Φ + (q, t) = {α ∈ Φ + (g, t) | g α ⊂ q} and define ρ(q) := 1 2 α∈Φ + (q,t) α. There are two maximally isotropic dual subspaces V and V in q such that q = V + V . Then S := V is a spin representation for h, the action being given by inner and exterior products. Moreover every weight of S is of the form µ A := ρ(q)-< A > for some subset A ⊂ Φ + (q, t), where < A > denotes the sum of elements in A (e.g., [GW]).

On the other hand, recall that a nilpotent orbit for G is the adjoint orbit of a nilpotent element in g (i.e., an element whose adjoint endomorphism is nilpotent). Unlike semisimple orbits, there is a finite number of nilpotent G-orbits in g. It turns out that in the case of classical Lie algebras, nilpotent orbits can be parametrized by partitions of integers, or equivalently by Young tableaux [CM].

In this paper, we consider the case when g = sl(n, C) and h = t. In Section 2, we recall the construction of the spin module S along with some basic properties of the weights, while in Section 3 we establish useful features of the multiplicities. In Section 4, we first parametrize the set Λ(S) of weights of S by certain n × n matrices as in 4.1. In turn, such a matrix defines a partition of the integer n(n-1)

2

, which corresponds to a nilpotent orbit for sl( n(n-1) 2 , C). Then, in the remaining of the section, we elaborate an explicit combinatorial formula to compute the multiplicities of the weights (Theorem 4.7) and we provide several illustrative examples. We also describe an alternative enumerative formula for multiplicities (Theorem 4.11).

In a forthcoming paper we study simple Lie algebras of types B, C and D, and we discuss a geometric interpretation of the algorithm defined in Theorem 4.7.

The spin module of a Cartan subalgebra

Let g be a complex reductive Lie algebra, h ⊂ g a Cartan subalgebra, Φ = Φ(g, h) the corresponding root system, and g = α∈Φ g α the root space decomposition. Moreover, we fix a set of positive roots Φ + = {α 1 , . . . , α n } ⊂ Φ and we consider the corresponding decomposition

g = h ⊕ n + ⊕ n -where n ± = α∈Φ ± g α .
In particular

dim n + = n = |Φ + |. Let S = n + = n k=0 ∧ k n + .
For every subset A = {α i1 , . . . , α i k } ⊂ Φ + , we denote

S A = g αi 1 ∧ • • • ∧ g αi k .
We therefore have

S = A⊂Φ + S A with dim S A = 1,
and thus dim S = 2 n .

The spin module is the space S endowed with the following action of h,

h • x = 1 2 β∈Φ + \A β(h) - α∈A α(h) x whenever h ∈ h, x ∈ S A .
The maps

(2.1)

µ A := 1 2 β∈Φ + \A β - α∈A α , for A ⊂ Φ + ,
are therefore called the weights of S, and we denote by Λ(S) the set of weights of S. The multiplicity of the weight µ ∈ Λ(S) is defined by

mult(µ) = #{A ⊂ Φ + : µ A = µ}.
Note also that there is a partial order on weights, specifically we set

µ ≤ µ if µ -µ ∈ α∈Φ + Q ≥0 α.
We also denote as usual by ρ = 1 2 α∈Φ + α the half sum of positive roots.

Lemma 2.1.

(a) ρ = µ ∅ ∈ Λ(S).
(b) For all A ⊂ Φ + , we have µ A = ρ -α∈A α. In particular, µ ≤ ρ for all µ ∈ Λ(S). In this text, we study the multiplicities of the weights of the spin module S.

General properties of multiplicities

By α ∨ ∈ h we denote the coroot associated to α ∈ Φ + . Let ∆ ⊂ Φ + be the subset of simple roots. By Λ we denote the set of weights of h, i.e., elements ω ∈ h * such that ω, α ∨ ∈ Z. A weight ω is said to be

dominant if ω, α ∨ ≥ 0 for all α ∈ ∆.
We have ρ, α ∨ = 1 for all simple root α, which implies that ρ is a dominant weight. Let W = W (g, h) be the Weyl group and consider the usual action of w on h * , which restricts to an action on roots and weights.

By this action, every weight ω can be transformed into a dominant weight.

Lemma 3.1. Let µ be a weight of S.

(a) If w ∈ W , then w • µ is a weight of S with the same multiplicity as µ.

(b) In particular, -µ is a weight of S with the same multiplicity.

Proof. (a) For every subset A ⊂ Φ + and w ∈ W , we denote

w • A = w(A ∪ -(Φ + \ A)) ∩ Φ + (3.1) = {α ∈ Φ + : w -1 (α) ∈ A or -w -1 (α) ∈ Φ + \ A}.
Then, for µ = µ A , we have

w • µ = 1 2 α∈Φ + \A w • α - α∈A w • α = 1 2 β∈w(Φ + \A)∩Φ + β - β∈w(Φ + \A)∩(-Φ + ) (-β) - β∈w(A)∩Φ + β + β∈w(A)∩(-Φ + ) (-β) = 1 2 α∈Φ + \w•A β - β∈w•A β = µ w•A .
Hence w • µ ∈ Λ(S). Moreover, from (3.1) it is readily seen that

w -1 • (w • A) = {α ∈ Φ + : w(α) ∈ w(A) ∩ Φ + or -w(α) ∈ Φ + \ w(-(Φ + \ A))} = A. Thus the map A → w • A establishes a bijection (3.2) {A ⊂ Φ + : µ = µ A } ∼ -→ {A ⊂ Φ + : w • µ = µ A }.
Since the multiplicities mult(µ) and mult(w • µ) are respectively the cardinalities of the sets on the left-hand side and on the right-hand side of (3.2), we conclude that these multiplicities are equal.

(b) Let w 0 ∈ W be the longest element, i.e., the (unique) element such that w 0 (Φ + ) = -Φ + . For this element, we have w 0 • A = Φ + \ A for all A ⊂ Φ + (see (3.1)). Hence w 0 • µ = -µ (see (2.1)) and therefore, -µ is a weight of S with the same multiplicity as µ (by part (a)).

We aim to characterize the weights of S of multiplicity one. To this end, we rely on the following definition.

Definition 3.2. We say that a subset A ⊂ Φ + is saturated if the following condition is satisfied:

∀α, β ∈ A, α + β ∈ Φ ⇒ α + β ∈ A; and ∀γ, δ ∈ Φ + \ A, γ + δ ∈ Φ ⇒ γ + δ / ∈ A. Proposition 3.3. Let µ ∈ Λ(S). Let A ⊂ Φ + be a subset such that µ = µ A .
The following conditions are equivalent:

(i) mult(µ) = 1; (ii) A is saturated; (iii) There is w ∈ W such that µ = w • ρ.
Proof. By Lemma 2.1, we have mult(ρ) = 1. The implication (iii)⇒(i) is obtained by combining this observation with Lemma 3.1.

(i)⇒(ii): Arguing indirectly, assume that A is not saturated. If there are α, β ∈ A such that γ

:= α + β ∈ Φ + \ A, then A := A ∪ {γ} \ {α, β} is a subset different from A such that µ A = µ A = µ. If there are γ, δ ∈ Φ + \ A such that α := γ + δ ∈ A, then A := A ∪ {γ, δ} \ {α} is different from A and such that µ A = µ A = µ.
In both cases, we conclude that mult(µ) ≥ 2.

(ii)⇒(iii): We argue by induction on |A|. If |A| = 0, i.e., A = ∅, then µ = ρ and (iii) holds with w = 1.

Let |A| = k ≥ 1 and assume that the claim is satisfied for any subset A with |A | < k. We claim that A contains at least one simple root α ∈ ∆. Indeed, we can choose an element δ ∈ A which is minimal for the partial order ≤ on roots determined by the set of positive roots. If δ is not a simple root, then there is a simple root α and a positive root γ such that δ = α + γ. Then, by minimality of δ, we have α, γ / ∈ A, and this contradicts the assumption that A is saturated.

Hence we can choose a simple root α which belongs to A. Invoking Lemma 2.1, it follows that

µ = ρ - β∈A β = (ρ -α) - β∈A\{α} β = s α (ρ) - β∈A s α (β) = s α • µ A
where we set

A = s α (A \ {α}).
Note that the simple reflection s α permutes the positive roots distinct from α, and this implies that A is also a subset of Φ + , so that the notation µ A makes sense. In addition

|A | = k -1. We claim that (3.3) A is saturated. Once (3.3) is verified, we get the desired conclusion that µ = s α • µ A ∈ W • ρ, due to the induction
hypothesis. Therefore, it remains to show (3.3). To do this, we first assume γ, δ ∈ A such that γ + δ is a root. Since γ + δ is not a simple root, we have γ + δ = α, hence s α (γ + δ) is a positive root, and we have s α (γ + δ) = s α (γ) + s α (δ), where s α (γ) and s α (δ) belong to A. Since A is saturated, this implies that

s α (γ + δ) ∈ A. Moreover, s α (γ + δ) = α (because s α (α) ∈ -Φ + ), whence γ + δ ∈ s α (A \ {α}) = A . We next assume γ, δ ∈ Φ + \ A such that γ + δ is a root, and let us show that γ + δ / ∈ A . If γ, δ are different from α, then s α (γ), s α (δ) ∈ Φ + \ A,
and this implies that s α (γ + δ) = s α (γ) + s α (δ) / ∈ A due to the fact that A is saturated, and therefore, γ + δ / ∈ A . Finally assume that γ = α and δ = α. We have to show that γ + α does not belong to A . Arguing by contradiction, assume that γ + α ∈ A , hence s α (γ + α) ∈ A. Note that

s α (γ + α) + α = s α (γ) -α + α = s α (γ) is a root. Since α, s α (γ + α) ∈ A, we must have s α (γ) ∈ A (because
A is saturated), and so γ ∈ A , a contradiction.

Remark 3.4. 0 is a weight of S if and only if the weight ρ can be expressed as a sum of (pairwise distinct)

positive roots. This is not always the case; for instance, when g = sl n (C), we have 0 ∈ Λ(S) if and only if n is odd. Note that, given any subset A ⊂ Φ + , the following equivalences hold:

µ A = 0 ⇔ α∈A α = ρ ⇔ α∈Φ + \A α = ρ.
In particular, the mapping A → Φ + \ A induces an involution without fixed point on the set {A ⊂ Φ + : µ A = 0}, which implies that mult(0) is always even.

We end this section with inductive properties of multiplicities. A subset I ⊂ ∆ of simple roots gives rise to a parabolic subalgebra p I ⊂ g and a standard Levi factor l I . We also denote by Φ I := Φ ∩ I and Φ + I := Φ + ∩ I the root system and set of positive roots for l I . Finally, let S I be the spin module relative to l I . For every weight ν ∈ Λ(S I ), let mult I (ν) be its multiplicity in S. Finally, for every subset A ⊂ Φ + I , let µ I,A ∈ Λ(S I ) be the corresponding weight, that is

µ I,A = 1 2 α∈Φ + I \A α - α∈A α = ρ I - α∈A α where ρ I = 1 2 α∈Φ + I α.
Since A is also a subset of Φ + , the weight µ A and the multiplicity mult(µ A ) can be considered. The following lemma relates the weights µ I,A and µ A and their multiplicities.

Lemma 3.5. Let I ⊂ ∆ be a subset of simple roots and let

A ⊂ Φ + I . Then, mult(µ A ) = mult I (µ I,A ).
Proof. By Lemma 2.1, it suffices to show the equality of sets

{A ⊂ Φ + I : α∈A α = α∈A α} = {A ⊂ Φ + : α∈A α = α∈A α}.
Since the inclusion ⊂ is immediate, we only have to show the reverse inclusion. So let A ⊂ Φ + be a subset such that α∈A α = α∈A α. Since α∈A α ∈ I , every simple root which arises as a summand of a root in A has to belong to I. This implies that A ⊂ Φ + I and therefore, the claim follows.

We finally give a multiplicative formula for the multiplicity in the case where the subset A can be decomposed as the union of subsets lying in disconnected subsystems of roots.

Proposition 3.6. Let I 1 , . . . , I k ⊂ ∆ be subsets of simple roots such that I i ⊥ I j whenever i = j. Assume

that A = k j=1 A j where A j ⊂ Φ + Ij . Then, mult(µ A ) = k j=1 mult(µ Aj ).
Proof. It is sufficient to deal with the situation where k = 2, i.e., A = A 1 ∪ A 2 ; afterthat, the result follows from an easy induction on k ≥ 2. By Lemma 2.1, we know that

mult(µ A ) = |{A ⊂ Φ + : α∈A α = α∈A α}|.
We claim that there is a bijection

{A 1 ⊂ Φ + I1 : α∈A 1 α = α∈A1 α} × {A 2 ⊂ Φ + I2 : α∈A 2 α = α∈A2 α} → {A ⊂ Φ + : α∈A α = α∈A α}
given by (A 1 , A 2 ) → A 1 ∪A 2 . This map is clearly well defined. It is injective since

A i = (A 1 ∪A 2 )∩ I i for all i ∈ {1, 2}. For the surjectivity, since α∈A α = α∈A α ∈ I 1 ∪ I 2 = I 1 ⊕ I 2 , then A ⊂ Φ + I1∪I2 = Φ + I1 ∪ Φ + I2 , hence A = A 1 ∪A 2 with A i ⊂ Φ +
Ii , and we have α∈A A = α∈A 1 α+ α∈A 2 α = α∈A1 α+ α∈A2 α,

hence α∈A i α = α∈Ai α for i ∈ {1, 2}
, by considering the direct sum I 1 ⊕ I 2 . This establishes the desired bijection. Thereby, mult(µ A ) = mult(µ A1 ) • mult(µ A2 ), by Lemmas 2.1 and 3.5.

Calculation of multiplicities of weights

In this section we assume that g = sl(n, C) (n ≥ 1) is the Lie algebra of n × n complex matrices with zero trace. Let h be the Cartan subalgebra consisting of diagonal matrices diag(t 1 , t 2 , • • • , t n ) with

t 1 + t 2 + • • • + t n = 0. For i ∈ {1, . . . , n}, let i ∈ h * be defined by i : diag(t 1 , t 2 , • • • , t n ) → t i .
Positive roots and simple roots are

Φ + = { i -j | 1 ≤ i < j ≤ n} with |Φ + | = n(n -1) 2 , ∆ = {α 1 , . . . , α n-1 } where α i = i -i+1 .
The ith fundamental weight is i = 1 + . . .

+ i . The weight lattice is Λ = n-1 i=1 Z i . A weight µ = n i=1 x i i is dominant if x i ≥ 0 for all i.
The half-sum of positive roots is

ρ = n -1 2 1 + n -3 2 2 + . . . - (n -3) 2 n-1 - (n -1) 2 n = i + . . . + n-1 .
In this section, we calculate the multiplicities of weights µ ∈ Λ(S) by means of a combinatorial algorithm that involves partitions of n 2 . It is well known that these partitions parametrize nilpotent orbits of sl( n 2 , C), or equivalently nilpotent orbits of gl(n + ). A forthcoming paper will be devoted to a geometric interpretation based on nilpotent orbits. 

λ = (λ 1 ≥ . . . ≥ λ n ) with λ 1 + . . . + λ n = n 2 .
(b) Let P(n) ⊂ Part( n 2 ; n) be the subset of partitions satisfying in addition the condition

λ 1 + . . . + λ i ≤ (n -1) + . . . + (n -i) for all i ∈ {1, . . . , n}.
Recall the dominance order on partitions:

given λ = (λ 1 , . . . , λ n ), λ = (λ 1 , . . . , λ n ) in Part( n 2 ; n), we set λ λ if λ 1 + . . . + λ i ≤ λ 1 + . . . + λ i for all i ≥ 1.
Thus P(n) is the set of partitions of n 2 with at most n parts, which are λ 0 for the partition

λ 0 := (n -1, n -2, . . . , 1, 0).
Example 4.2. Let n = 5. The elements of P(5) correspond to the Young diagrams

λ 0 = , , , , , , , , . 
We define the dominant weight associated to a partition λ ∈ Part( n 2 ; n):

Definition 4.3. Given λ = (λ 1 , . . . , λ n ) ∈ Part( n 2 ; n), we define µ[λ] = (λ 1 -λ 2 ) 1 + . . . + (λ n-1 -λ n ) n-1 .
In particular, µ[λ 0 ] = ρ.

Proposition 4.4. The map λ → µ[λ] establishes a bijection between the set of partitions P(n) and the set of weights of the spin module Λ(S).

The proposition is shown in Section 4.3 below. In Sections 4.3 and 4.4, we calculate the multiplicities of weights mult(µ[λ]) in terms of the corresponding partitions λ. Before this, in the following subsection, we introduce more combinatorial material.

4.2. Preliminary approach to weights of the spin module through matrices. We define a bijection between the set of subsets of Φ + and a set of square matrices as follows. Given A ⊂ Φ + , let a A = (a ij ) 1≤i,j≤n

be the matrix such that a i,j ∈ {0, 1}, a i,i = 0, (4.1)

a i,j + a j,i = 1 if i = j
and specifically defined by letting (4.2)

a i,j = 0 if i -j ∈ A 1 if i -j ∈ A when i < j, so that |A| = i>j a ij .
Conversely, given a matrix a = (a ij ) which satisfies (4.1), we define a set A a ⊂ Φ + by letting

(4.3) A = { i -j | i < j and a ij = 0}.
For a matrix a, let [a] i * denote the sum in the i-th row of a. For A = A a ⊂ Φ + , we have

µ A = 1 2 1≤i<j≤n aij =1 ( i -j ) - 1≤i<j≤n aij =0 ( i -j ) = 1 2 1≤i<j≤n a ij ( i -j ) + 1≤i<j≤n aij =0 ( j -i ) = 1 2 i,j a ij ( i -j ) = n j=1 - 1 2 n i=1 a ij j + n i=1 1 2 n j=1 a ij i = n i=1 [a] i * - n -1 2 i = n-1 j=1 [a] i * -[a] n * i
and thus (4.4)

µ A = n-1 i=1 [a] i * -[a] i+1 * i .
In particular, the multiplicity mult(µ) of a weight µ := n-1 k=1 y k k can be reformulated as:

(4.5) mult(µ) = a = (a ij ) | (4.1) is satisfied with [a] i * = y i + [a] i+1 * ∀j = 1, . . . , n -1 .
Lemma 4.5. (a) Let a = (a i,j ) be a matrix satisfying (4.1) and let A = A a ⊂ Φ + be the corresponding subset and µ = µ A the corresponding weight. Then µ is dominant if and only if

(4.6) [a] 1 * ≥ [a] 2 * ≥ . . . ≥ [a] n * .
This means that the number of 1's per row is nonincreasing from top to bottom. Proof. (a) follows from (4.4). In (b), the fact that the sequence is a partition of n 2 is directly implied by (4.1) and (4.6). The last claim follows from (4.4).

Iterative formula for multiplicities. For a partition

λ = (λ 1 , . . . , λ n ) ∈ Part( n 2 ; n), let N λ = mult(µ[λ]).
Hence (by (4.5) and Lemma 3.1)

N λ = |M n (λ)| where M n (λ) :=    a = (a i,j ) | (4.1) is satisfied with n j=1 a ij = λ i    .
We give an inductive formula for computing the numbers N λ . To this end, we introduce the following notation.

Notation 4.6. Let λ = (λ 1 , . . . , λ n ) ∈ P(n) be a partition viewed as a Young diagram. Fix an index p ∈ {1, . . . , n}. We call p-marking the datum of a subset of boxes µ ⊂ λ such that

• µ contains exactly n -1 boxes;

• µ contains all the boxes of the p-th row of λ;

• in the other rows of λ, only the rightmost box may belong to µ.

Let M p (λ) be the set of p-markings of λ. For µ ∈ M p (λ), by arranging the lengths of the rows of the subset λ \ µ ⊂ λ in nonincreasing order, we get a partition of n 2 -(n -1) = n-1 2 , which we denote by λ -µ.

Theorem 4.7. Given a partition λ = (λ 1 , . . . , λ n ) ∈ P(n) with at most n positive parts, given any p ∈ {1, . . . , n}, we have

N λ = µ∈Mp(λ) N λ-µ .
Proof. For a = (a i,j ) ∈ M n (λ), the p-th row of a contains exactly λ p coefficients equal to 1 while the p-th column contains exactly r := (n -1) -λ p coefficients equal to 1, situated in rows i 1 < • • • < i r , distinct from p. Let µ(a) be the p-marking formed by the p-th row of λ and the rightmost boxes of the rows numbers i 1 , . . . , i r . We get in this way a map

φ : M n (λ) → M p (λ), a → µ(a).
On the other hand, let a → a[p] be the map which maps a matrix a of size n to the matrix of size n -1 obtained by erasing the p-th row and the p-th column. Then, it is readily seen that, for all µ ∈ M p (λ), the map a → a[p] yields a bijection

φ -1 (µ) ∼ → M n-1 (λ -µ), hence #φ -1 (µ) = #M n-1 (λ -µ) = N λ-µ .
The claimed inductive formula ensues.

With the help of Theorem 4.7, we are now in position to prove Proposition 4.4:

Proof of Proposition 4.4. We have to show that, given λ ∈ Part( n 2 ; n), the following equivalence holds:

N λ = 0 ⇔ λ ∈ P(n).
We argue by induction on n ≥ 1. The initialization is clear. Assume the result shown until rank n -1.

First assume that λ = (λ 1 ≥ . . . ≥ λ n ) ∈ P(n). This means that λ 1 +. . .+λ j ≤ (n-1)+(n-2)+. . .+(n-j) for all j. Note that λ n-1 = 0 because otherwise the previous inequality fails for j = n-2. There is a partition λ of the form λ = (n -1, λ 2 , . . . , λ n ) with λ j ∈ {λ j -1, λ j } for all j ∈ {2, . . . , n}, such that λ is obtained from λ by moving n -1 -λ 1 boxes to the first line, at most one per row, chosen in the longest possible rows. This clearly implies that λ λ (n -1, n -2, . . . , 1). Note also that (λ 2 , . . . , λ n ) (n -2, . . . , 1).

Moreover, in view of the induction formula N (λ 2 ,...,λ n ) is one of the terms arising in the sum N λ . By induction

hypothesis N (λ 2 ,...,λ n ) > 0, hence N λ > 0.
Next assume that λ ∈ Part( n 2 ; n)\P(n). Let j be minimal such that λ 1 +. . .+λ j > (n-1)+. . .+(n-j). This implies that λ

1 +. . .+λ j -(n-1) > (n-2)+. . .+(n-j). If λ = (λ 2 , . . . , λ n ) is a partition of (n-1)(n-2) 2
obtained from λ by considering any 1-marking, then we must have λ 2 + . . . + λ j ≥ λ 1 + . . . + λ j -(n -1), and therefore λ (n -2, . . . , 1). This yields N λ = 0 (by induction hypothesis). Since N λ is a sum of such terms, we conclude that N λ = 0.

Example 4.8. (a) Let λ = (3, 3, 2, 1, 1) ∈ P(5), viewed as the Young diagram λ = .

Let p = 5. Then, the 5-markings of λ are 2,1,1) + N (2,2,2) + 2N (3,2,1 (n = 2)

• • • • , • • • • , • • • • , • • • • . Whence the formula N λ = N (2,
N (1) = 1. (n = 3) N (2,1) = N (1) = 1; N (1 3 ) = 2N (1) = 2. (n = 4) N (3,2,1) = N (2,1) = 1; N (3,1 3 ) = 2N (2,1) = 2; N (2 3 ) = N (1 3 ) = 2; N (2 2 ,1 2 ) = N (1 3 ) + 2N (2,1 ) = 4. (n = 5) N (4,3,2,1) = N (3,2,1) = 1; N (4,3,1 3 ) = 2N (3,2,1) = 2; N (4,2 3 ) = N (3,1 3 ) = 2; N (4,2 2 ,1 2 ) = 2N (3,2,1) + N (3,1 3 ) = 4; N (3 3 ,1) = N (2 3 ) = 2; N (3 2 ,2 2 ) = N (2 2 ,1 2 ) = 4; N (3 2 ,2,1 2 ) = N (2 2 ,1 2 ) + N (3,1 3 ) + 2N (3,2,1) = 8; N (3,2 3 ,1) = N (2 3 ) + 3N (2 2 ,1 2 ) = 14; N (2 5 ) = 4 2 N (2 2 ,1 2 ) = 24.
Some consequences. We make the following observation:

Lemma 4.9. Let λ ∈ P(n). Then, the following alternative holds:

• If λ = (n -1, n -2, . . . , 1), then N λ = 1; • If λ = (n -1, n -2, . . . , 1), then N λ is even.
Proof. In the former case, we have λ = λ 0 , hence N λ = mult(ρ) = 1. In the latter case, we show that N λ is even by arguing by induction on n. For n ≤ 5, the result follows from Example 4.8 (b). Assume n ≥ 2 such that the result is true until rank n -1. The definition of P(n) implies that λ (n -1, n -2, . . . , 1). Write λ = (λ 1 , . . . , λ n ). By Theorem 4.7, we have that

N λ = c 1 N λ 1 + . . . + c k N λ k
where λ 1 , . . . , λ k are partitions of (n-1)(n-2) 2 and c 1 , . . . , c k are positive integers. Specifically, c i is the number of 1-markings µ ∈ M 1 (λ) such that λ -µ = λ i , with the notation of Theorem 4.7. If λ i = (n -2, n -3, . . . , 1), then the induction hypothesis implies that N λ i is even. It suffices to consider the situation where there is i such that λ i = (n -2, n -3, . . . , 1) and to show that the number c i is even in this case. The fact that there is a 1-marking µ ∈ M 1 (λ) such that λ -µ = (n -2, n -3, . . . , 1), combined with the fact that λ ≤ (n -1, n -2, . . . , 1), implies that

λ 1 ∈ {n -2, n -1}.
Moreover the case where λ 1 = n -1 is impossible, since it would imply that λ = (n -1, n -2, . . . , 1), a contradiction. Hence λ 1 = n -2, and a 1-marking of λ is obtained by marking exactly one box in one row of λ apart from the first row. This implies that there is exactly one index j 0 ∈ {2, . . . , n} such that λ j = n -j for all j ∈ {2, . . . , n} \ {j 0 }, λ j0 = n -j 0 + 1.

In particular, the j 0 -th and (j 0 -1)-th rows of λ have the same length, and there are exactly two elements µ 1 , µ 2 in M 1 (λ): µ 1 consists of the first row of λ and the rightmost box of the j 0 -th row, whereas µ 2 consists of the first row of λ and the rightmost box of the (j 0 -1)-th row. We conclude that c i = 2. The proof of the lemma is complete.

4.4. Enumerative formula for multiplicities. We give an enumerative formula for the multiplicities mult(ω), or equivalently for the numbers N λ . We rely on the following combinatorial definition.

Definition 4.10. (a) Let λ = (λ 1 , . . . , λ n ) ∈ P(n). We call spin tableau a tableau τ of shape λ, which fulfills the following conditions:

• For every i ∈ {1, . . . , n -1}, τ contains i boxes of entry i, all located within the first i + 1 rows;

• The rows (resp. columns) of τ are nondecreasing from left to right (resp. top to bottom); moreover, on the i-th row, the entries ≥ i are increasing.

Let ST (λ) be the set of spin tableaux of shape λ.

(b) We denote by N τ the number defined as follows. For all i ∈ {1, . . . , n -1}, all column number j, we denote by c i,j the number of i's in the j-th column of τ within the first i rows and we denote by d i,j the number of entries ≤ i in the j-th column of τ within the first i rows, whose right neighbor (if there is one) is > i. Then we set

N τ = n-1 i=1 j≥1 d i,j c i,j . 
Theorem 4.11. Let λ ∈ P(n). Then,

N λ = τ ∈ST (λ) N τ .
Proof. We prove the result by induction on n ≥ 2. For n = 2, the only possible partition is λ = (1) and the unique tableau is τ = 1 . We have N λ = N τ = 1, according to the claimed formula. Now assume that the formula is established until the rank n -1 ≥ 2.

Recall that M n (λ) denotes the set of n-markings of λ (see Notation 4.6). If τ ∈ ST (λ), then note that the subset µ(τ ) ⊂ λ formed by the boxes with entry n -1 in τ is an n-marking of λ. An n-marking µ of λ is such that λ -µ = λ -µ(τ ) if and only if µ and µ(τ ) have the same number of boxes in each column. The number of boxes of µ(τ ) in the j-th column is the number denoted by c n-1,j and the number of boxes of the j-th column which are the rightmost box of a row (apart from the n-th row) is d n-1,j . This implies that the number of n-markings of λ such that λ

-µ = λ -µ(τ ) is {µ ∈ M n (λ) : µ = µ(τ )} = j≥1 d n-1,j c n-1,j . 
Note that two tableaux τ, τ yield the same marking µ(τ ) = µ(τ ) if and only if they differ only by their subtableaux τ | ≤n-1 , τ | ≤n-1 formed by the entries ≤ n -1, which in fact belong to ST (λ -µ(τ )). Moreover, we have

N τ = N τ | ≤n-1 • j≥1 d n-1,j c n-1,j = N τ | ≤n-1 • {µ ∈ M n (λ) : µ = µ(τ )}.
Let ST (λ) = τ 1 . . . τ k be the decomposition into classes for the equivalence relation defined by letting

τ ∼ τ if µ(τ ) = µ(τ ). For all i ∈ {1, . . . , k}, let µ i = µ(τ i ). Then τ ∈ST (λ) N τ = k i=1 τ ∈τi N τ = k i=1 τ ∈τi N τ | ≤n-2 • {µ ∈ M n (λ) : λ -µ = λ -µ i } = k i=1 {µ ∈ M n (λ) : λ -µ = λ -µ i } σ∈ST (λ-µi) N σ = µ∈Mn(λ) σ∈ST (λ-µ) N σ = µ∈Mn(λ) N λ-µ (by induction hypothesis) = N λ (by Theorem 4.7).
The proof of the theorem is complete.

Example 4.12. (a) For n = 5, let λ = (2 5 ). There are two spin tableaux of shape λ, namely

τ 1 = 1 2 2 3 3 4 3 4 4 4 , τ 2 = 1 3 2 3 2 4 3 4 4 4
.

The matrices C k = (c i,j (τ k )) and N k = (n i,j (τ k )) are respectively given by

C 1 =     1 0 1 1 1 1 0 2     , N 1 =     1 0 1 1 1 2 0 4     , C 2 =     1 0 1 0 0 2 0 2     , N 2 =     1 0 2 0 1 2 0 4     .
This yields Then

N λ = N τ1 + N τ2 = 2 1 4 2 + 2 1 4 2 = 24 
N λ = N µ × N ν .
Proof. Take matrices a (1) ∈ M n-m (µ) and a (2) ∈ M m (ν). Let a be the blockwise matrix

a = a (1) 1 0 a (2)
where 1 and 0 represent blocks whose coefficients are all equal to 1, resp. 0. Then the sums of the rows of a (from top to bottom) yield the partition λ. Moreover, the subset A ⊂ Φ + corresponding to a is of the form A = A 1 ∪ A 2 where A 1 ⊂ { ij : 1 ≤ i < j ≤ m} and A 2 ⊂ { ij : m < i < j ≤ n} correspond to a (1) and a (2) , respectively. By Proposition 3.6, we deduce:

N λ = mult(µ A ) = mult(µ A1 ) × mult(µ A2 ) = N µ × N ν .
The proof is complete. 4.6. The case of singletons. In this section, we consider the case of a singleton A = {α} where α is a positive root. Thus µ A = ρ -α. In the case where α is a simple root, we have µ A = ρ -α = s α (ρ), and we know that mult(µ A ) = mult(ρ) = 1 in this case; note also that µ A is not dominant in this case.

In the case where α is not simple, we show that µ A is always dominant and we compute its multiplicity:

Proposition 4.15. Let A = { ij } where 1 ≤ i < j ≤ n and j -i > 1, that is, α := ij is not a simple root. Then µ A is a dominant weight. The corresponding partition/Young diagram (in the sense of Proposition 4.4) is obtained from λ 0 = (n, n -1, . . . , 1, 0) by moving one box from the (n -j + 1)-th row to the (n -i + 1)-th row. Moreover, mult(µ A ) = 2 j-i-1 .

  Parts (a) and (b) are immediate in view of the definitions of µ ∅ and µ A . It follows from (b) that we have µ A = ρ if and only if A = ∅, so that part (c) ensues.

4. 1 .

 1 Encoding dominant weights of S with partitions. Definition 4.1. (a) We denote by Part( n 2 ; n) the set of partitions of n 2 with at most n parts, i.e., sequences of nonnegative integers

( b )

 b Let a satisfy (4.1) and (4.6). Thenλ a := ([a] 1 * , . . . , [a] n * ) is a partition of n 2 . Moreover, µ Aa = µ[λ a ],with the notation of Definition 4.3.

  ) .(b) We have computed the numbers N λ associated to the partitions λ ∈ P(n), for n ≤ 5. The values are listed below.

  12 + 36 + 12 + 6 + 6 + 36 + 12] × 20 = 2640. 4.5. Another combinatorial relation. Our aim is to exploit Proposition 3.6 for obtaining the following combinatorial relation. Proposition 4.13. Let λ ∈ Part( n 2 ; n) be a partition that can be written in the form:λ = (m + µ 1 , . . . , m + µ n-m , ν 1 , . . . , ν m )where 1 ≤ m ≤ n -1, µ = (µ 1 , . . . , µ n-m ) ∈ P(n -m), ν = (ν 1 , . . . , ν m ) ∈ P(m).

  Example 4.14. For n = 7, the diagram λ = satisfies the relation with m = 3. It is formed by assembling a 4 × 3 rectangle, and two diagrams µ = ∈ P(4) and ν = ∈ P(3). This yieldsN λ = N µ × N ν = 4 × 2 = 8.

Proof. Note that the matrix a which corresponds to A, in the sense of Section 4.2, differs from the strictly upper triangular matrix with 1's over the diagonal by the fact that its coefficient (i, j) is 0 and its coefficient (j, i) is 1. Hence the k-th row of the matrix contains n -k coefficients equal to 1, except the i-th row and the j-th row which contain respectively n -i -1 and n -j + 1 1's. In particular, since i, j are not consecutive, the number of 1's in the rows is nonincreasing from top to bottom, and this implies that the weight µ A is dominant, and the corresponding partition is obtained by considering the list of sums of the rows of a from top to bottom. The difference with λ 0 is therefore as indicated in the statement.

For completing the proof, we have to show that if λ is the Young diagram obtained from λ 0 = (n -1, n -2, . . . , 1, 0) by moving one box from the k-th down to the -th row (k < -1), then N λ = 2 -k-1 . We show this by induction on n. If 1 < k, then by applying Theorem 4.7 with p = 1, we can erase the first row of λ and the claim follows from the induction hypothesis. If < n, then by applying Theorem 4.7 with p = n, we can erase the first column of λ and again the claim follows from the induction hypothesis. Hence it remains to deal with the case where k = 1, = n, that is, λ = (n -2, n -2, n -3, n -4, . . . , 3, 2, 1, 1). We aim to apply Theorem 4.7 with p = 1. A 1-marking of λ is obtained by marking the first row of λ and an additional box in the q-th row for q ∈ {2, . . . , n}. Then let λ (q) be the Young diagram λ -µ so obtained. We have

for q ∈ {n -1, n}, we have λ (q) = (n -2, n -3, . . . , 2, 1, 0) hence N λ (q) = 1 in this case. For 2 ≤ q ≤ n -2, we have λ (q) = (n -2, n -3, . . . , n -(q -1), n -(q + 1), n -(q + 1), n -(q + 2), . . . , 3, 2, 1, 1), hence λ (q) is obtained from (n -2, n -3, . . . , 2, 1, 0) by moving one box from the (q -1)-th row to the (n -1)-th row.

Hence N λ (q) = 2 n-q-1 due to the induction hypothesis. This yields N λ = 2 n-3 + 2 n-4 + . . . + 2 2 + 2 + 1 + 1 = 2 n-2 as claimed. The proof is complete.