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Simultaneous determination of two coefficients
in Itô diffusion processes: theoretical and
numerical approaches

M. Cristofol and L. Roques

Abstract In this paper, we consider a one-dimensional Itô diffusion process Xt

with possibly nonlinear drift and diffusion coefficients. In a first part, we show that
both coefficients are simultaneously uniquely determined by the observation of the
expectation and variance of the process, during a small time interval, and starting
from any values X0 in a given subset of R. Then in a second part, we present some
numerical simulations which illustrate that this type of observation can be used in
practice to estimate the coefficients of a diffusion process.

1 Introduction

The following results are partially based on a recent work by the same authors [12].
We are interested with a one-dimensional Itô diffusion process Xt ∈ R satisfying
stochastic differential equations of the form:

dXt = b(Xt)dt +σ(Xt)dWt , t ∈ [0,T ]; X0 = x, (1)

where T > 0, Wt is the one-dimensional Wiener process and b : R→ R, σ : R→
R,σ > 0, are Lipschitz-continuous functions. Under these assumptions, the solution
of the equation (1) is unique in the sense of Theorem 5.2.1 in [18]. The term b(Xt)dt
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can be interpreted as the deterministic part of the equation, while σ(Xt)dWt is the
stochastic part of the equation. In the sequel, the functions b and σ are called the
drift term and diffusion term, respectively.

These equations arise in several domains of applications, such as biology, physics
or financial mathematics with non-constant coefficients α , β , to model stock prices
in the Black-Scholes model. The reconstruction of unknown parameters in stochas-
tic differential equations has been largely addressed recently. We can refer among
others to [1, 2, 16, 17] with different analytic strategies and to [22] for a survey on
the topic, this list being far from to be exhaustive.

The aim of our study is to determine the drift term b and the diffusion term σ for
general equations of the form (1), based on observations of the stochastic process
Xt . Equivalently, this means showing the uniqueness of the coefficients b and σ that
correspond to a given observation. The main type of observation that we consider
is the expectation Ex[ f (Xt)] = E[ f (Xt)|X0 = x], of some function of the stochastic
process Xt , for instance a momentum if f (s) = sk for some k ≥ 0. The observation
is carried out during a small time interval and for initial conditions X0 in a small
neighborhood of a given x0 ∈ R. In that respect we use parabolic partial differential
equation (PDE) technics inspired from the theory of inverse problems.

The Itô diffusion processes are related to PDEs by the Kolmogorov’s backward
theorem (see e.g. theorem 8.1.1 in [18]). Consider a function

f ∈C2(R) such that | f (x)| ≤C eδx2
, (2)

for δ > 0 small enough and some C > 0. Define

u(t,x) = Ex [ f (Xt)] = E [ f (Xt)|X0 = x] , (3)

where Xt is the solution of (1) with X0 = x. The Kolmogorov’s backward theorem
implies that u is the unique solution in C2

1(R+×R) of:

∂tu =
1
2

σ
2(x)∂xxu+b(x)∂xu, t ≥ 0; u(0,x) = f (x). (4)

For parabolic equations of the form (4), several inverse problems have already been
investigated. In all cases, the main question is to show the uniqueness of some co-
efficients in the equation, based on exact observations of the solution u(t,x), for
(t,x) in a given observation region O ⊂ [0,+∞)×R. Furthermore, one of the most
challenging goal is to obtain such uniqueness results using the smallest possible
observation region.
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Most uniqueness results in inverse problems for parabolic PDEs have been ob-
tained using the method of Carleman estimates [4] on bounded domains. This
method requires, among other measurements, knowledge of the solution u(τ,x) at
some time τ > 0 and for all x in the domain [3, 10, 11, 14, 23, 24]. Other approaches
are based on a semi-group formulation of the solutions, but use the same type of ob-
servations of the solution on the whole domain, at a given time [5]. More recent
approaches [7, 19, 20, 21] lead to uniqueness results for one or several coefficients,
under the assumption that u and its first spatial derivative are known at a single point
x0 of a bounded domain, and for all t in a small interval (0,ε), and that the initial
data u(0,x) is known over the entire domain. On the other hand, the case of un-
bounded domains is less addressed (see [8]).
Here, contrarily to most existing approaches:

- the domain is unbounded. All of the results in [7, 19, 20, 21] require a bounded
domain assumption. Most of the studies based on other methods (e.g., Carleman
estimates) also assume that the domain is bounded; see [8] or [9] for some results
on unbounded domains, in the case of parabolic and hyperbolic operators;

- we determine simultaneously two coefficients in front of a second and a first
order term in the PDE. The reconstruction of several coefficients, including a
coefficient in front of a second order term, is very challenging not only from
the theoretical point of view, but also from the numerical one [13, 6]. Up to our
knowledge, theoretical studies on the determination of the diffusion and the drift
coefficients from localized observations have not been proposed before;

- our results are interpreted in terms of nonlinear stochastic diffusion processes;
- as in the above-mentioned studies [7, 19, 20, 21], we assume that the observation

set is reduced to a neighborhood of single point x0, during a small time interval.

Our manuscript is organized as follows. In Section 2 we detail our assumptions
on the unknown coefficients, on the observations and we state our main results. In
Section 3 we present some numerical simulations which illustrate that the type of
observation that we use in our theoretical results can be used in practice to estimate
the coefficients of a diffusion process. Lastly, the results are proved in Section 4.
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2 Assumptions and main results

2.1 Observations.

We consider one main type of observations. Let ε ∈ (0,T ) and ω an open and
nonempty subset in R. The observation sets are of the form

Ok[Xt ] = {Ex[(Xt)
k], for t ∈ (0,ε) and x ∈ ω}, (5)

for k = 1,2. We assume ε > 0 and ω can be chosen as small as we want. For the
sake of simplicity, and with a slight abuse of notation, for two processes X and X̃ ,
we say that Ok[Xt ] = Ok[X̃t ] if and only if Ex[(Xt)

k] = Ex[(X̃t)
k] for k = 1,2, for all

t ∈ (0,ε) and x ∈ ω .

2.2 Unknown functions.

We assume that the unknown functions belong to the function space:

M := {ψ is Lipschitz-continuous and piecewise analytic in R}. (6)

A continuous function ψ is called piecewise analytic if there exist n ≥ 1 and an
increasing sequence (κ j) j∈Z such that lim

j→−∞
κ j =−∞, lim

j→+∞
κ j =+∞, κ j+1−κ j > δ

for some δ > 0, and
ψ(x) = ∑

j∈Z
χ[κ j ,κ j+1)(x)ϕ j(x), for all x ∈ R;

here ϕ j are some analytic functions defined on the intervals [κ j,κ j+1], and χ[κ j ,κ j+1)

are the characteristic functions of the intervals [κ j,κ j+1) for j ∈ Z.
In practice, the assumption ψ ∈M is not very restrictive. For instance, the set of

piecewise linear functions in R is a subset of M .

2.3 Main results.

Determining several coefficients of parabolic PDEs is generally far more involved
than determining a single coefficient. It requires more and well-chosen observations.
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For instance, four coefficients of a Lotka-Volterra system of parabolic equations
have been determined in [21], based on the observation of the solution, starting with
three different initial conditions. See also [5, 11] with different methods. Here, our
result shows that, if the first momentum (expected value) and the second momentum
of Xt are observed during a small time interval and for X0 = x in a small set ω ⊂ R,
then both coefficients b and σ in (1) are uniquely determined.

Theorem 1. Let b, b̃,σ , σ̃ ∈M . Consider Xt , X̃t the solutions of (1) and of dX̃t =

b̃(X̃t)dt + σ̃(X̃t)dWt , t ∈ [0,T ]; X̃0 = x, respectively. Assume that Ok[Xt ] = Ok[X̃t ]

for k = 1,2. Then, b≡ b̃ and σ ≡ σ̃ in R.

An immediate corollary of Theorem 1 is that b and σ are uniquely determined by
the observation of the mean and variance V x[Xt ] = Ex[X2

t ]−(Ex[Xt ])
2 of the process

Xt during a small time interval and for X0 = x in a small set ω ⊂ R. More precisely,
define the set

Ov[Xt ] = {V x[Xt ], for t ∈ (0,ε) and x ∈ ω}, (7)

we have the following result.

Corollary 1. Let b, b̃,σ , σ̃ ∈M . Consider Xt , X̃t the solutions of (1) and dX̃t =

b̃(X̃t)dt + σ̃(X̃t)dWt , t ∈ [0,T ]; X̃0 = x, respectively. Assume that O1[Xt ] = O1[X̃t ]

and Ov[Xt ] = Ov[X̃t ]. Then, b≡ b̃ and σ ≡ σ̃ in R.

Remark 1. Our result remains true if the observation (5) is replaced by punctual
observations at a given point x0 ∈ R instead of observations in a subdomain ω .
More precisely, if (5) is replaced by

O
′
k[Xt ] = {Ex0 [(Xt)

k], ∂xEx[(Xt)
k]|x=x0 , for t ∈ (0,ε) and x ∈ ω}, (8)

for k = 1,2, the result of our theorem and corollary can still be obtained, by using
the Hopf’s Lemma in addition to the strong parabolic maximum principle.

3 Numerical simulations

We have shown that non-constant and possibly nonlinear drift and diffusion co-
efficients of a one-dimensional Itô diffusion process can be determined, based on
observations of expectations of some functionals of the process, during a small time
interval, and starting any from values X0 = x0 in a given small subset of R. These
results are based on ideal observations, in the sense that they assume that expecta-
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tions are observed (and not only sample paths), and that these observations are not
noisy.

The objective of this section is to illustrate that the type of observations in Corol-
lary 1 can be used in practice to estimate the coefficients b and σ in

dXt = b(Xt)dt +σ(Xt)dWt , t ∈ [0,T ]; X0 = x. (9)

We recall that these observations correspond to the expectation

O1[Xt ] = {Ex[Xt ], for t ∈ (0,ε) and x ∈ ω}, (10)

together with the variance

Ov[Xt ] = {V x[Xt ], for t ∈ (0,ε) and x ∈ ω}. (11)

Generation of the observations. We fix two functions b and σ in some finite-
dimensional subspaces M1, M2 ⊂M . For any fixed x ∈ R and t ∈ (0,ε) we esti-
mate Ex[Xt ] and V x[Xt ] by simulating N = 106 trajectories X i

t , for t ∈ (0,ε). Namely,
setting Xx

t = (X1
t , . . .X

N
t ), we compute the “empirical” mean and variance

E (Xx
t ) =

1
N

N

∑
i=1

X i
t , V (Xx

t ) =
1
N

N

∑
i=1

(X i
t )

2−E 2(Xx
t ),

at discrete times t = t1, . . . , tK ∈ (0,ε).
In practice, we set

M1 =
{

p(x) = α0 +α1 x+α2 x2 +α3 x3, α0, α1, α2, α3 ∈ R
}
,

and
M2 = {q(x) = 0.1+ |β0 +β1 x|, β0, β1 ∈ R} .

The coefficients b(x) and σ(x) are defined by setting α0 = 1, α1 = 1, α2 = 1, α3 =

−1 and β0 = 0.5, β1 = 1. We assume 100 observation times t j, regularly spaced in
[0,1] (K = 100).

The simulation of the trajectories X i
t is carried out with the simulate function in

Matlab Financial Toolboxr. The observations are generated with two different ini-
tial conditions: x = 0 and x = 0.1 (see Remark 1 for some comment about punctual
observations).

Functional to be minimized (objective function). For any b̃ ∈M1 and σ̃ ∈M2, we
estimate Ex[X̃x

t ] and V x[X̃x
t ] by simulating Ñ trajectories of
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dX̃t = b̃(X̃t)dt + σ̃(X̃t)dWt , t ∈ [0,ε]; X̃0 = x, (12)

and by computing the associated quantities E (X̃x
t ) and V (X̃x

t ), with X̃x
t =(X̃1

t , . . . X̃
Ñ
t )

(with initial condition x). For each initial condition X0 = X̃0 = x, the match between
the trajectories generated with (b̃, σ̃) and the observations E (Xx

t ), V (Xx
t ) is mea-

sured by:

F(b̃, σ̃ ,x) =
k

∑
j=1

(E (Xx
t j
)−E (X̃x

t j
))2 +

k

∑
j=1

(V (Xx
t j
)−V (X̃x

t j
))2.

As the observations correspond to two initial conditions x = 0 and x = 0.1, the
objective function is:

MS(b̃, σ̃) = F(b̃, σ̃ ,0)+F(b̃, σ̃ ,0.1).

Note that this objective function is stochastic, as it depends on the trajectories in
Xx

t . In our computations, MS(b̃, σ̃) is either computed with Ñ = 102 or Ñ = 103

trajectories.

Estimation algorithm. We check whether the coefficients b and σ can be numerically
determined by minimizing MS(b̃, σ̃) over M1×M2. As the objective function MS
is stochastic, the minimization of MS(b̃, σ̃) in M1×M2 is a stochastic optimization
problem. To solve it, we use a the Matlab built-in simulated annealing algorithm [15]
(simulannealbnd function in Matlab Global Optimization Toolboxr, with initial
temperature 104, and at most 500 evaluations of the function MS).

We first check that the objective function MS tends to be smaller as the esti-
mated coefficients tend to resemble the “true” coefficients (b,σ). In that respect,
we depicted in Fig. 1, the squared L2 distance (in (−2,2)) between b and b̃ (Fig. 1,
a) and between σ and σ̃ (Fig. 1, b) vs the corresponding value of MS(b̃, σ̃). The
crosses corresponds to the (500) computations of MS carried out during the simu-
lated annealing algorithm (with Ñ = 103). We observe that, in spite of the fact that
the objective function MS is stochastic, smaller values of MS are associated with
coefficients (b̃, σ̃) which tend to be closer to (b,σ). Next, we depict in Fig. 2 the
result of the minimization procedure, i.e., the functions (b̃, σ̃) associated with the
smallest value of MS(b̃, σ̃) obtained with the simulated annealing algorithm, with
either Ñ = 102 and Ñ = 103. In both cases, the global shape of the coefficients (b,σ)

is well-estimated. Higher values of Ñ lead to a better accuracy of the estimation
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(a) (b)

Fig. 1 (a) Squared L2 distance (in (−2,2)) between b and b̃ vs corresponding value of MS(b̃, σ̃);
(b) L2(−2,2) distance between σ and σ̃ vs corresponding value of MS(b̃, σ̃). Each cross corre-
spond to one evaluation of the function MS carried out by the simulated annealing algorithm (with
Ñ = 103).

(a) (b)

Fig. 2 (a) blue line: unknown function b; dashed red line: function b̃ obtained by minimization of
MS, with Ñ = 102 (‖b− b̃‖2

L2(−2,2) = 26.1); continuous red line: function b̃ obtained by minimiza-

tion of MS, with Ñ = 103 (‖b− b̃‖2
L2(−2,2) = 3.7); (b) blue line: unknown function σ ; dashed red

line: function σ̃ obtained by minimization of MS, with Ñ = 102 (‖σ − σ̃‖2
L2(−2,2) = 3.7); continu-

ous red line: function σ̃ obtained by minimization of MS, with Ñ = 103 (‖σ − σ̃‖2
L2(−2,2) = 0.6).

4 Proof of Theorem 1

In this case, we reconstruct simultaneously two coefficients from the principal part
and the first order term in equation (4) and this implies to repeat the observations
and to consider adapted weight functions in the form (5). We define, for all t ∈ [0,T )
and x ∈ R, and for f (s) = sk,
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u(t,x) = Ex[ f (Xt)] = E[ f (Xt)|X0 = x],
ũ(t,x) = Ex[ f (X̃t)] = E[ f (X̃t)|X0 = x],

(13)

and u and ũ are respectively the unique solutions of:

∂tu =
1
2

σ
2(x)∂xxu+b(x)∂xu, t ∈ [0,T ), x ∈ R; u(0,x) = f (x), (14)

and
∂t ũ =

1
2

σ̃
2(x)∂xxũ+ b̃(x)∂xũ, t ∈ [0,T ), x ∈ R ũ(0,x) = f (x). (15)

Define

B(x) = b(x)− b̃(x), Σ(x) =
1
2
(σ2(x)− σ̃

2(x)), and U(t,x) = u(t,x)− ũ(t,x).

Then U(t,x) satisfies

∂tU =
1
2

σ
2(x)∂xxU +b(x)∂xU +B(x)∂xũ+Σ(x)∂xxũ, t ∈ [0,T ), x ∈ R, (16)

and U(0,x) = 0 for all x ∈ R.
Let x0 ∈ ω . We define:

x∗B = sup{x > x0 such that B≡ 0 on [x0,x]},
x∗

Σ
= sup{x > x0 such that Σ ≡ 0 on [x0,x]}.

(17)

Then, four cases may occur.

Case 1: we assume that x∗B < x∗
Σ

. Using the piecewise analyticity of B, and from the
definitions of x∗B, we obtain the existence of some x2 ∈ (x∗B,x

∗
Σ
) such that B(x) 6= 0

for all x ∈ (x∗B,x2], i.e., B has a constant strict sign in (x∗B,x2]. Moreover, Σ(x) = 0
for all x ∈ (x∗B,x2], thus U satisfies:

∂tU−LU = B(x)∂xũ, t ∈ [0,T ), x ∈ (x0,x2), (18)

where LU := 1
2 σ2(x)∂xxU + b(x)∂xU . Take k = 1 in the definition of f (s) = sk.

We have ∂xũ(0,x) = f ′(x) = 1 for all x ∈ R, which implies that there exists ε ′ ∈
(0,ε) such that ∂xũ(t,x) is positive on [0,ε ′)× [x0,x2]. Finally, the term B(x)∂xũ in
the right hand side of (18) has a constant sign in (0,ε ′)× [x0,x2]. Without loss of
generality, we can assume that:

B(x)∂xũ≥ 0 for (t,x) in [0,ε ′)× [x0,x2]. (19)
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We then observe that ∂tU(0,x2) = B(x2) ≥ 0 and, from the definition of x2, the
inequality is strict: ∂tU(0,x2)> 0. Thus, (even if it means reducing ε ′ > 0),

U(t,x2)> 0 for t ∈ (0,ε ′). (20)

Finally, U satisfies 
∂tU−LU ≥ 0, t ∈ (0,ε ′), x ∈ (x0,x2),

U(t,x0) = 0, U(t,x2)> 0, t ∈ (0,ε ′),

U(0,x) = 0, x ∈ (x0,x2).

(21)

From strong parabolic maximum principle U(t,x) > 0 in (0,ε ′)× (x0,x2). This
contradicts the assumption O1[Xt ] =O1[X̃t ] of Theorem 1. Thus, Case 1 is ruled out.

Case 2: we assume that x∗B > x∗
Σ

. With the same type of arguments as in Case 1, we
obtain the existence of some x2 ∈ (x∗Σ ,x∗B) such that Σ(x) 6= 0 for all x∈ (x∗

Σ
,x2], i.e.,

Σ has a constant strict sign in (x∗
Σ
,x2]. Moreover, B(x) = 0 for all x ∈ (x∗

Σ
,x2], thus

U satisfies:
∂tU−LU = Σ(x)∂xxũ, t ∈ [0,T ), x ∈ (x0,x2). (22)

Take k = 2 in the definition of f (s) = sk. We have ∂xxũ(0,x) = f ′′(x) = 2 for all
x ∈ R. Thus, with the same arguments as in Case 1, we get:

Σ(x)∂xxũ≥ 0 for (t,x) in [0,ε ′)× [x0,x2], (23)

and ∂tU(0,x2)> 0. Thus, U again satisfies (21), and the strong parabolic maximum
principle implies U(t,x)> 0 in (0,ε ′)× (x0,x2), leading to a contradiction with the
assumption O2[Xt ] = O2[X̃t ] of Theorem 1. Thus, Case 2 is ruled out.

Case 3: we assume that x∗B = x∗
Σ
<+∞. Let us set

G(t,x) = B(x)∂xũ+Σ(x)∂xxũ,

corresponding to the right-hand side in (16). Then, set

l∗ = lim
x→x∗B,x>x∗B

Σ(x)
B(x)

.

From the analyticity of Σ and B in a right neighborhood of x∗B, l∗ is well-defined and
only two situations may occur: either |l∗|<+∞ or |l∗|=+∞.

Assume first that |l∗|<+∞. Take k = 1 in the definition of f (s) = sk. Thus,
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∂xũ(0,x) = 1 and ∂xxũ(0,x) = 0. (24)

Let x2 > x∗B such that B(x) 6= 0 in (x∗B,x2] and Σ(x)/B(x) remains bounded in (x∗B,x2].
Without loss of generality, we can assume that B > 0 in (x∗B,x2]. Using (24), and
since |l∗|<+∞, we obtain the existence of ε ′ ∈ (0,ε) such that

G(t,x)
B(x)

= ∂xũ+
Σ(x)
B(x)

∂xxũ > 0 for (t,x) in (0,ε ′)× (x0,x2),

and G(t,x) satisfies the same inequality. Thus, again, U satisfies (21), and the strong
parabolic maximum principle implies that U(t,x) > 0 in (0,ε ′)× (x0,x2) and a
contradiction with the assumption O1[Xt ] = O1[X̃t ] of Theorem 1. The assumption
|l∗|<+∞ is then ruled out.

Assume now that |l∗|=+∞. Take k = 2 in the definition of f (s) = sk. This time,

∂xũ(0,x) = 2x and ∂xxũ(0,x) = 2. (25)

Let x2 > x∗
Σ

such that

Σ(x) 6= 0 and |2x(B(x)/Σ(x))|< 1 in (x∗Σ ,x2].

Without loss of generality, we assume that Σ > 0 in (x∗
Σ
,x2]. Using (25), and since

|l∗|=+∞, we can define ε ′ ∈ (0,ε) such that

G(t,x)
Σ(x)

=
B(x)
Σ(x)

∂xũ+ ∂xxũ > 0 for (t,x) in (0,ε ′)× (x0,x2).

Again, using the strong parabolic maximum principle, we get a contradiction with
the assumption O2[Xt ] = O2[X̃t ] of Theorem 1. Case 3 is then ruled out.

Finally, as Cases 1, 2, 3 are ruled out, we necessarily have x∗B = x∗
Σ
=+∞, which

show that B≡ Σ ≡ 0 in (x0,+∞). Using the same arguments with (x∗B)
− = inf{x <

x0 such that B≡ 0 on [x,x0]} and (x∗
Σ
)− = inf{x < x0 such that Σ ≡ 0 on [x,x0]}, in-

stead of x∗B and x∗
Σ

, we also check that B ≡ 0 in B ≡ Σ ≡ 0 in (−∞,x0) and conse-
quently B≡ Σ ≡ 0 in R which concludes the proof of Theorem 1. �
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