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Uniqueness, stability and numerical

reconstruction of a time and space-dependent

conductivity for an inverse hyperbolic problem

L. Beilina, M. Cristofol and S. Li

This paper is devoted to the reconstruction of the time and space-dependent coeffi-

cient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman

estimate we prove the uniqueness and a Hölder stability in the determining of the

conductivity by a single measurement on the lateral boundary. Our numerical exam-

ples show possibility of the determination of the location and the large contrast of

the space-dependent function in three dimensions.

Key words: Inverse Problem, Carleman estimate, time and space-dependent coef-

ficient, infinite domain, hyperbolic equation

1 Introduction

Result of this paper is based on two recent works [2, 12]. In [12] the authors deal

with the inverse problem of determining the time-independent isotropic conductivity

coefficient c : Ω →R appearing in the hyperbolic partial differential equation (∂ 2
t −

∇ · c̃∇)u= 0, where Ω :=ω×R is an infinite cylindrical domain whose cross section

ω is a bounded open subset of Rn−1, n ≥ 2. On the other hand, in [2] the authors
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extend the result of [12] to a more general class of conductivities: time and space-

dependent conductivities c̃(x, t).
The goal of this work is to modify the uniqueness and stability result of [2] for the

case of bounded domain Ω and a finite number of observations. Indeed, in the case

of infinite cylindrical domain, some strong assumptions are required concerning the

coefficient to be reconstructed (see condition (2.3) in [2]). In the current work we

weaken these conditions for the case of a bounded domain what will lead to the

new stability estimate. Furthermore, in a new stability inequality we have derived

estimate of the distance of two sets of coefficients c̃1(x, t) and c̃2(x, t) through the

distance of observations at the lateral boundary of the Neumann derivative of the

solutions u1 and u2, respectively. This stability inequality implies the uniqueness

of the determination of the coefficient c̃. Furthermore, we can use it in numerical

studies of the determination of the space and time-dependent function c̃(x, t) from

the backscattered noisy observations.

We consider the following initial boundary value problem







∂ 2
t u−div(c̃(x, t)∇u(x, t)) = 0 in Q := Ω × (0,T ),

u(·,0) = a(x), ∂tu(·,0) = 0 in Ω ,
u = 0 on Σ := ∂Ω × (0,T ),

(1)

where Ω is a bounded domain and with the set of initial conditions (a,0), where c̃ is

the unknown conductivity coefficient. We assume that c̃ is time and space depending

conductivity such that :

c̃(x, t) = c0(x, t)+ c(x), (2)

where c0(x, t) is assumed to be known. In other words, we consider the case of the

perturbation of a general time and space-dependent conductivity c̃(x, t) by a space-

dependent one c(x). In [21] the authors study a similar general non-stationary media

for an inverse problem for Maxwell’s equations.

The derivation of the stability and uniqueness result of this work is based on a

Carleman inequality specifically designed for hyperbolic systems, see, for example,

[7, 8, 9, 10, 11, 15, 16, 18, 19, 20, 22] where have been proven stability results of

the reconstruction of one or several unknown coefficients in a hyperbolic equation

from a finite number of measurements. However, only theoretical investigations are

presented in all these works. Theoretical uniqueness results together with numerical

simulations are presented in recent works [2, 3].

In numerical examples of this work the goal was to determine the conductiv-

ity function c̃(x, t) that represents a sum of two space-dependent gaussians and

one time-dependent function. Since by our assumption the time-dependent func-

tion c0(x, t) is known inside the domain, then we have reconstructed only the space-

dependent part of the conductivity function, c(x). To do that we used the Lagrangian

approach together with the domain decomposition finite element/finite difference

method of [5]. One of the important points of this work is that in our numerical

simulations we applied one non-zero initial condition in the model problem which

corresponds well to the uniqueness and stability results of this paper. Our three-

dimensional examples show that we can determine the location and the large con-
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trast of the space-dependent function. However, the location of this function in the

third, x3 direction, should be improved. This can be done using an adaptive finite

element method, see details in [3, 4, 6].

The outline of the work is the following: in section 2 we derive the main stability

estimate and the uniqueness result, in section 3 we present numerical simulations

and in section 4 we give conclusions to the work.

2 Main theoretical result

2.1 Settings and main result

Let Ω ⊂R
n be a bounded domain with smooth boundary ∂Ω . We consider an acous-

tic equation

∂ 2
t u(x, t)−div(c̃(x, t)∇u(x, t)) = 0, x ∈ Ω , 0 < t < T. (1)

To (1) we attach the initial and boundary conditions:

u(x,0) = a(x), ∂tu(x,0) = 0, x ∈ Ω (2)

and

u(x, t) = h(x, t), (x, t) ∈ ∂Ω × (0,T ). (3)

Throughout this paper, we set ∂ j =
∂

∂x j
, ∂i∂ j =

∂ 2

∂xi∂x j
, ∂ 2

t = ∂ 2

∂ t2 , 1 ≤ i, j ≤ n.

Let T > 0 be given. We assume that coefficient c̃ = c̃(x, t) of the principal term

of (1) is time and space depending in form (2) where c0(x, t) is given. In this paper,

we consider an inverse problem of determining time-independent component c(x)
of coefficient c̃(x, t), from the observations:

u(x, t), x ∈ ∂Ω × (0,T ).

In order to formulate our results, we need to introduce some notations. Let x0 6∈Ω
and β > 0. We set

Λ =

(

sup
x∈Ω

|x− x0|2 − inf
x∈Ω

|x− x0|2
)

1
2

. (4)

We define admissible sets of conductivity coefficients. For arbitrarily fixed functions

η0 ∈ C2(Ω × [0,T ]), η1 ∈ (C2(Ω × [0,T ]))n and constants M1 > 0,θ0 > 0,θ1 > 0,

we set

U = UM1,θ1,η0,η1,c0
=

{

c̃(x, t) = c0(x, t)+ c(x) ∈C2(Ω × [0,T ]); c̃ = η0, ∇c̃ = η1 on ∂Ω × [0,T ],
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‖c̃‖C2(Ω×[0,T ]) ≤ M1, c̃(x, t)≥ θ1,
(x− x0) ·∇c̃(x, t)

2c̃(x, t)
< 1−θ0 for all (x, t) ∈ Ω × [0,T ]

}

.

(5)

We note that there exists a constant M0 > 0 such that ‖∇x,t c̃‖C(Ω×[0,T ]) ≤ M0 for

each c̃ ∈ Uk, k = 1,2.

By x0 6∈ Ω , there exists a constant β > 0 such that

β +

{

1

2θ1
+

1√
θ1

}

λM0

√

β < θ1θ0, θ1 inf
x∈Ω

|x− x0|2 > βΛ 2. (6)

We point out that, if c0(x, t) satisfies
t∂t c0(x,t)

c0(x,t)
≥ 0 for all (x, t) ∈ Ω × [0,T ], the

first inequality in (6) can be replaced with

β +
λM0√

θ1

√

β < θ1θ0.

We are ready to state our first main result.

Theorem 1. We fix a ∈C2(Ω) satisfying

(∇a(x) · (x− x0))> 0 for all x ∈ Ω (7)

Assume that c0 ∈W 4,∞(Q;R) and ∂tc0(·,0) = ∂ 3
t c0(·,0) = 0 in Ω . Let U be defined

by (5) and let β > 0 satisfy (6). We assume that

T >
Λ
√

β
. (8)

We pick arbitrarily c̃1, c̃2 ∈U such that the solutions u j, j = 1,2 to (1)–(3) where c̃ j

is substituted to c̃ are in W 4,∞(Ω × (0,T ). Then there exists a constant C > 0 such

that

‖c̃1 − c̃2‖H1(Ω) ≤C

∥

∥

∥

∥

∂u1

∂ν
− ∂u2

∂ν

∥

∥

∥

∥

κ

H3(0,T ;L2(∂Ω))

,

where ν = ν(x) denotes the unit outward normal vector to ∂Ω at x. Here C > 0 and

κ ∈ (0,1) are two constants depending only on Ω , T , x0, M1, θ1, η0, η1, a(x) and

‖u j‖W 4,∞(Ω×(0,T ), j = 1, 2.

2.2 The Carleman estimate for a hyperbolic equation

We consider a Carleman estimate which is derived from [17].

Let us set

Q = Ω × (−T,T ).
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For x0 6∈ Ω and β > 0, we define the functions ψ = ψ(x, t) and ϕ = ϕ(x, t) by

ψ(x, t) = |x− x0|2 −β t2 (9)

and

ϕ(x, t) = eλψ(x,t) (10)

with parameter λ > 0. We add a constant C0 > 0 if necessary so that we can assume

that ψ(x, t)≥ 0 for (x, t) ∈ Q, so that

ϕ(x, t)≥ 1, (x, t) ∈ Q.

Lemma 1. [17] We assume µ ∈C1
(

Q
)

, and satisfies the following conditions

β

µ

[

1− t∂t µ

2µ
+

|t||∇µ |√
µ

]

< 1− (x− x0) ·∇µ

2µ
for all (x, t) ∈ Q, (11)

and

µ(x, t)|x− x0|2 −β 2t2 > 0 for all (x, t) ∈ Q (12)

even by choosing β > 0 sufficiently small. Let y ∈ H1(Q) satisfy

∂ 2
t y(x, t)−µ(x, t)∆y = F in Q (13)

and

y(x, t) = 0, (x, t) ∈ ∂Ω × (−T,T ), ∂ k
t y(x,±T ) = 0, x ∈ Ω , k = 0,1. (14)

We fix λ > 0 sufficiently large. Then there exist constants s0 > 0 and C > 0 such that

∫

Q
(s|∇x,ty|2 + s3|y|2)e2τϕ dxdt ≤C

∫

Q
|F |2e2τϕ dxdt +Cs

∫ T

−T

∫

∂Ω

∣

∣

∣

∣

∂y

∂ν

∣

∣

∣

∣

2

e2τϕ dxdt

(15)

for all s > s0.

Proof. By (11), we can see that a0(x, t) = 1/
√

µ(x, t) satisfies (17) in P. 101 of

[17]. From (12) it follows that A(x, t;∇x,tψ(x, t)) = µ(x, t)|∇ψ(x, t)|2 −|∂tψ(x, t)|2
is not zero at any point of Ω . Therefore, by Theorem 2.1 in [17] and the proof of

Corollary 2.5 in [17], we can conclude that, for some sufficiently large λ > 0, there

exist constants s0 > 0 and C > 0 such that (15) holds for all s > s0.

Henceforth C > 0 denotes generic constants which are independent of choices of

c̃1, c̃2 ∈ U and the parameter s > 0 in the Carleman estimates, provided that s > s0.



6 L. Beilina, M. Cristofol and S. Li

a) c(x) = 1.2 b) c(x) = 5.5

Fig. 1 Slices of the exact Gaussian function c(x) in ΩFEM given by (4).

a) σ = 3% b) σ = 10%

Fig. 2 Reconstructions obtained in Test 1 for different noise level σ in data. All figures are visual-

ized for c(x) = 3.5.

3 Numerical Studies

This section presents numerical examples of the reconstruction of the unknown

function c(x) in the equation (1). To do this we use the domain decomposition

method of [5] and decompose Ω into two sub-regions ΩFEM and ΩFDM such that

Ω = ΩFEM ∪ΩFDM . In ΩFEM we will use the finite element method (FEM) and in

ΩFDM - the finite difference method (FDM). We decompose also the boundary ∂Ω
of the domain Ω such that ∂Ω = ∂1Ω ∪ ∂2Ω ∪ ∂3Ω . Here, ∂1Ω and ∂2Ω are the

front and back sides of Ω , respectively, and ∂3Ω denotes the remaining part of the

boundary ∂Ω .

We collect time-dependent observations ST := ∂1Ω ×(0,T ) at the backscattering

side ∂1Ω of Ω . We define ΩT := Ω × (0,T ), S1,1 := ∂1Ω × (0, t1], S1,2 := ∂1Ω ×
(t1,T ), S2 := ∂2Ω × (0,T ) and S3 := ∂3Ω × (0,T ). The model problem used in the

computations is following:
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∂ 2u

∂ t2
−∇ · (c̃∇u) = 0 in ΩT ,

u(x,0) = θ0(x), ∂tu(x,0) = 0 in Ω ,

∂nu = f (t) on S1,1,

∂nu =−∂tu on S1,2,

∂nu =−∂tu on S2,

∂nu = 0 on S3.

(1)

In (1) the function f (t) presents a plane wave which is initialized at ∂1Ω in time

T = [0,3.0]. We define it as

f (t) =

{

sin(ωt) , if t ∈
(

0, 2π
ω

)

,
0, if t ≥ 2π

ω .
(2)

We initialize initial condition θ0(x) at the backscattered side ∂1Ω as

u(x,0) = f0(x) = e−(x2
1+x2

2+x3
3) · cos t|t=0 = e−(x2

1+x2
2+x3

3). (3)

We assume that the functions c(x) = 1 and c0(x, t) = 0 inside ΩFDM . The goal of

our numerical tests is to reconstruct a smooth function c(x) only inside ΩFEM which

we define as

c(x) = 1.0+5.0 · e−((x1−0.5)2/0.2+x2
2/0.2+x3

2/0.2)

+5.0 · e−((x1+1)2/0.2+x2
2/0.2+x3

2/0.2).
(4)

We also assume that the function c0(x, t) is known inside ΩFEM , and we define this

function as

c0(x, t) = 0.01 cos t · e−(x1
2/0.2+x2

2/0.2+x3
2/0.2). (5)

Figure 1 presents slices of the exact function c(x) given by (4) for c(x) = 1.2 and

c(x) = 5.5, correspondingly, and Figure 3 presents isosurfaces of the exact function

c̃ in the problem (1) for c̃ = 3.5 at different times. Numerical tests of [5] show that

the best reconstruction results for the space-dependent function c(x) and for c0 = 0

in Ω are obtained for ω = 40 in (2), and we take ω = 40 in (2) in all our tests.

We introduce dimensionless spatial variables x′ = x/(1m) and define ΩFEM and

ΩFDM as the following dimensionless computational domains:

ΩFEM = {x = (x1,x2,x3); x1 ∈ (−1.6,1.6), x2 ∈ (−0.6,0.6), x3 ∈ (−0.6,0.6)} ,
Ω = {x = (x1,x2,x3); x1 ∈ (−1.8,1.8), x2 ∈ (−0.8,0.8), x3 ∈ (−0.8,0.8)} .

We choose the mesh size h = 0.1 in the overlapping layers between ΩFEM and

ΩFDM as well as in the computations of the inverse problem. However, we have

generated our backscattered data using the several times locally refined mesh inside
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t= 1.2 t = 1.8

t=2.4 t = 2.7

Fig. 3 Slices of the exact space and time-dependent function c̃ for c̃ = 3.5 at different times.

the domain ΩFEM . To generate backscattered data we solve the model problem (1)

in time T = [0,3.0] with the time step τ = 0.003 which satisfies the CFL condition

[13]. We also use additive noise σ = 3%,10% at ∂1Ω . In all our computations we

choose constant regularization parameter γ = 0.01 because it gives smallest relative

error in the reconstruction of the function c(x). See [1, 14, 23] for other techniques

of choosing regularization parameter.

We assume that the reconstructed function c(x) belongs to the set of admissible

parameters

Mc ∈ {c ∈C(Ω)|1 ≤ c(x)≤ 10}. (6)

To get final images of our reconstructed function c(x) we use a post-processing

procedure which is the same as in [5].
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Table 1. Computational results of the reconstructions together with computational errors in the

maximal contrast of c(x) in percents. Here, N is the final number of iteration in the conjugate

gradient method.

σ = 3% σ = 10%

Case maxΩFEM
cN error, % N

Test 1 6.66 11 13

Test 2 4.1 32 9

Case maxΩFEM
cN error, % N

Test 1 8.11 35 15

Test 2 5.58 7 10

prospect view x1x2 view

x2x3 view x3x1 view

Fig. 4 Test 1. Isosurfaces of the reconstructed function c(x) with maxΩFEM
c(x) = 6.66 for ω = 40

in (2). Here, the noise level in data is σ = 3%. The spherical wireframe of the isosurface with exact

value of the function (4), which corresponds to the value of the reconstructed c= 0.7maxΩFEM
c(x).

3.1 Test 1

In this section we present numerical results for determining of the function c(x)
given by (4), see Figure 1-a), b), assuming, that the function c0(x, t) = 0. In this

case we obtain results similar to ones of [5].

Figures 4 display results of the reconstruction of the function c(x) given by (4)

with additive noise σ = 3% in data. Quite similar results are obtained for σ = 10%,

see Figure 5. We observe that the location of the maximal value of the function (4)

is imaged correctly. It follows from Figure 4 and Table 1 that the imaged contrast in

this function is 6.66 : 1 = maxΩFEM
c13 : 1, where n := N = 13 is the final iteration in

the conjugate gradient method. Similar observation we made using the Figure 5 and

Table 1 where the imaged contrast is 8.11 : 1 = maxΩFEM
c15 : 1, n := N = 15. These

figures show that the values of the background of function (4) are not reconstructed
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prospect view x1x2 view

x2x3 view x3x1 view

Fig. 5 Test 1. Isosurfaces of the reconstructed function c(x) with maxΩFEM
c(x) = 8.11 for ω = 40

in (2). Here, the noise level in data is σ = 10%. The spherical wireframe of the isosurface with exact

value of the function (4), which corresponds to the value of the reconstructed c= 0.7maxΩFEM
c(x).

but are smoothed out since we are using the data post-processing procedure, see

details in [5, 6].

Thus, we are able to reconstruct only maximal values of the function (4). Com-

parison of Figures 1-c), d), 4, 5 with Figure 1-a), b) reveals that it is desirable to

improve shape of the function (4) in x3 direction.

3.2 Test 2

In this numerical test we determine the function c(x) defined in (4) by using noisy

backscattered data. To get reasonable reconstruction in this test we run the conjugate

gradient algorithm in time T = [0,1.5] with the time step τ = 0.003. We note, that

we reduced the computational time compared with the first test since by running in

a more longer time T = [0,3.0] we have obtained some artifacts at the middle of

the domain. From other side, reducing of the computational time was resulted in

obtaining of a lower contrast in the reconstructed function, see Table 1. We tested

reconstruction of the function c(x) with the guess values of c(x) = 1.0 and c0(x, t)
as in (5) since by our assumption this function is known.
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prospect view x1x2 view

x2x3 view x3x1 view

Fig. 6 Test 2. Isosurfaces of the reconstructed function c(x) with maxΩFEM
c(x) = 4.1 for ω = 40

in (2). Here, the noise level in data is σ = 3%. We outline also the spherical wireframe of the

isosurface with exact value of the function (4), which corresponds to the value of the reconstructed

c = 0.7maxΩFEM
c(x).

Figures 6, 7 show results of the reconstruction with σ = 3% and σ = 10%, re-

spectively. We observe that the location of the maximal value of the function (4) is

imaged very well. Again, as in the previous test, the values of the background in

(4) are smoothed out. Comparing figures with results of reconstruction we conclude

that it is desirable improve shape of the function c(x) in x3 direction.

4 Conclusions

In this work we presented uniqueness and stability results together with numerical

studies of the reconstruction of the time and space-dependent coefficient in an in-

verse hyperbolic problem in a bounded domain. Using results of previous works

[2, 12] a local Carleman estimate was proved.
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prospect view x1x2 view

x2x3 view x3x1 view

Fig. 7 Test 2. Isosurfaces of the reconstructed function c(x) with maxΩFEM
c(x) = 5.58 for ω =

40 in (2). Here, the noise level in data is σ = 10%. We outline the spherical wireframe of the

isosurface with exact value of the function (4), which corresponds to the value of the reconstructed

c = 0.7maxΩFEM
c(x).
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Our numerical simulations show possibility of the reconstruction of function c(x)
in a hyperbolic problem (1) using a hybrid finite element/difference method of [5].

In our numerical tests, we have obtained stable reconstruction of the location and

contrast of the function c(x) in x1x2-directions for noisy backscattered data. The size

and shape on x3 direction should still be improved, and this can be done using, for

example, an adaptive finite element method, see details in [3, 4, 6].
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