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Introduction

Result of this paper is based on two recent works [START_REF] Beilina | Determining the conductivity for a non-autonomous hyperbolic operator in a cylindrical domain[END_REF][START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF]. In [START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF] the authors deal with the inverse problem of determining the time-independent isotropic conductivity coefficient c : Ω → R appearing in the hyperbolic partial differential equation (∂ 2 t -∇• c∇)u = 0, where Ω := ω ×R is an infinite cylindrical domain whose cross section ω is a bounded open subset of R n-1 , n ≥ 2. On the other hand, in [START_REF] Beilina | Determining the conductivity for a non-autonomous hyperbolic operator in a cylindrical domain[END_REF] the authors extend the result of [START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF] to a more general class of conductivities: time and spacedependent conductivities c(x,t).

The goal of this work is to modify the uniqueness and stability result of [START_REF] Beilina | Determining the conductivity for a non-autonomous hyperbolic operator in a cylindrical domain[END_REF] for the case of bounded domain Ω and a finite number of observations. Indeed, in the case of infinite cylindrical domain, some strong assumptions are required concerning the coefficient to be reconstructed (see condition (2.3) in [START_REF] Beilina | Determining the conductivity for a non-autonomous hyperbolic operator in a cylindrical domain[END_REF]). In the current work we weaken these conditions for the case of a bounded domain what will lead to the new stability estimate. Furthermore, in a new stability inequality we have derived estimate of the distance of two sets of coefficients c1 (x,t) and c2 (x,t) through the distance of observations at the lateral boundary of the Neumann derivative of the solutions u 1 and u 2 , respectively. This stability inequality implies the uniqueness of the determination of the coefficient c. Furthermore, we can use it in numerical studies of the determination of the space and time-dependent function c(x,t) from the backscattered noisy observations.

We consider the following initial boundary value problem

   ∂ 2 t u -div ( c(x,t)∇u(x,t)) = 0 in Q := Ω × (0, T ), u(•, 0) = a(x), ∂ t u(•, 0) = 0 in Ω , u = 0 on Σ := ∂ Ω × (0, T ), (1) 
where Ω is a bounded domain and with the set of initial conditions (a, 0), where c is the unknown conductivity coefficient. We assume that c is time and space depending conductivity such that :

c(x,t) = c 0 (x,t) + c(x), (2) 
where c 0 (x,t) is assumed to be known. In other words, we consider the case of the perturbation of a general time and space-dependent conductivity c(x,t) by a spacedependent one c(x). In [START_REF] Li | An inverse problem for Maxwell's equations in isotropic and nonstationary media[END_REF] the authors study a similar general non-stationary media for an inverse problem for Maxwell's equations. The derivation of the stability and uniqueness result of this work is based on a Carleman inequality specifically designed for hyperbolic systems, see, for example, [START_REF] Bellassoued | Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation[END_REF][START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF][START_REF] Bellassoued | Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data[END_REF][START_REF] Bellassoued | Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation[END_REF][START_REF] Bellassoued | Determination of a coefficient in the wave equation with a single measurement[END_REF][START_REF] Imanuvilov | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF][START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with single measurement[END_REF][START_REF] Klibanov | Inverse problems and Carleman estimates[END_REF][START_REF] Klibanov | Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems[END_REF][START_REF] Klibanov | Lipschitz stability of an inverse problem for an accoustic equation[END_REF][START_REF] Yamamoto | Uniqueness and stability in multidimensional hyperbolic inverse problems[END_REF] where have been proven stability results of the reconstruction of one or several unknown coefficients in a hyperbolic equation from a finite number of measurements. However, only theoretical investigations are presented in all these works. Theoretical uniqueness results together with numerical simulations are presented in recent works [START_REF] Beilina | Determining the conductivity for a non-autonomous hyperbolic operator in a cylindrical domain[END_REF][START_REF] Beilina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF].

In numerical examples of this work the goal was to determine the conductivity function c(x,t) that represents a sum of two space-dependent gaussians and one time-dependent function. Since by our assumption the time-dependent function c 0 (x,t) is known inside the domain, then we have reconstructed only the spacedependent part of the conductivity function, c(x). To do that we used the Lagrangian approach together with the domain decomposition finite element/finite difference method of [START_REF] Beilina | Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation[END_REF]. One of the important points of this work is that in our numerical simulations we applied one non-zero initial condition in the model problem which corresponds well to the uniqueness and stability results of this paper. Our threedimensional examples show that we can determine the location and the large con-trast of the space-dependent function. However, the location of this function in the third, x 3 direction, should be improved. This can be done using an adaptive finite element method, see details in [START_REF] Beilina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF][START_REF] Beilina | Adaptive hybrid FEM/FDM methods for inverse scattering problems[END_REF][START_REF] Beilina | Reconstruction of shapes and refractive indices from blind backscattering experimental data using the adaptivity[END_REF].

The outline of the work is the following: in section 2 we derive the main stability estimate and the uniqueness result, in section 3 we present numerical simulations and in section 4 we give conclusions to the work.

2 Main theoretical result

Settings and main result

Let Ω ⊂ R n be a bounded domain with smooth boundary ∂ Ω . We consider an acoustic equation

∂ 2 t u(x,t) -div ( c(x,t)∇u(x,t)) = 0, x ∈ Ω , 0 < t < T. (1) 
To (1) we attach the initial and boundary conditions:

u(x, 0) = a(x), ∂ t u(x, 0) = 0, x ∈ Ω (2) and u(x,t) = h(x,t), (x,t) ∈ ∂ Ω × (0, T ). (3) 
Throughout this paper, we set

∂ j = ∂ ∂ x j , ∂ i ∂ j = ∂ 2 ∂ x i ∂ x j , ∂ 2 t = ∂ 2 ∂t 2 , 1 ≤ i, j ≤ n.
Let T > 0 be given. We assume that coefficient c = c(x,t) of the principal term of ( 1) is time and space depending in form (2) where c 0 (x,t) is given. In this paper, we consider an inverse problem of determining time-independent component c(x) of coefficient c(x,t), from the observations:

u(x,t), x ∈ ∂ Ω × (0, T ).
In order to formulate our results, we need to introduce some notations. Let x 0 ∈ Ω and β > 0. We set

Λ = sup x∈Ω |x -x 0 | 2 -inf x∈Ω |x -x 0 | 2 1 2 . ( 4 
)
We define admissible sets of conductivity coefficients. For arbitrarily fixed functions

η 0 ∈ C 2 (Ω × [0, T ]), η 1 ∈ (C 2 (Ω × [0, T ])) n and constants M 1 > 0, θ 0 > 0, θ 1 > 0, we set U = U M 1 ,θ 1 ,η 0 ,η 1 ,c 0 = c(x,t) = c 0 (x,t) + c(x) ∈ C 2 (Ω × [0, T ]); c = η 0 , ∇ c = η 1 on ∂ Ω × [0, T ], c C 2 (Ω ×[0,T ]) ≤ M 1 , c(x,t) ≥ θ 1 , (x -x 0 ) • ∇ c(x,t) 2 c(x,t) < 1 -θ 0 for all (x,t) ∈ Ω × [0, T ] . (5) 
We note that there exists a constant

M 0 > 0 such that ∇ x,t c C(Ω ×[0,T ]) ≤ M 0 for each c ∈ U k , k = 1, 2.
By x 0 ∈ Ω , there exists a constant β > 0 such that

β + 1 2θ 1 + 1 √ θ 1 λ M 0 β < θ 1 θ 0 , θ 1 inf x∈Ω |x -x 0 | 2 > βΛ 2 . (6) 
We point out that, if c 0 (x,t) satisfies t∂ t c 0 (x,t) c 0 (x,t) ≥ 0 for all (x,t) ∈ Ω × [0, T ], the first inequality in ( 6) can be replaced with

β + λ M 0 √ θ 1 β < θ 1 θ 0 .
We are ready to state our first main result.

Theorem 1. We fix a ∈ C 2 (Ω ) satisfying

(∇a(x) • (x -x 0 )) > 0 for all x ∈ Ω (7) Assume that c 0 ∈ W 4,∞ (Q; R) and ∂ t c 0 (•, 0) = ∂ 3 t c 0 (•, 0) = 0 in Ω .
Let U be defined by ( 5) and let β > 0 satisfy [START_REF] Beilina | Reconstruction of shapes and refractive indices from blind backscattering experimental data using the adaptivity[END_REF]. We assume that

T > Λ β . (8) 
We pick arbitrarily c1 , c2 ∈ U such that the solutions u j , j = 1, 2 to (1)-( 3) where c j is substituted to c are in W 4,∞ (Ω × (0, T ). Then there exists a constant C > 0 such that

c1 -c2 H 1 (Ω ) ≤ C ∂ u 1 ∂ ν - ∂ u 2 ∂ ν κ H 3 (0,T ;L 2 (∂ Ω ))
,

where ν = ν(x) denotes the unit outward normal vector to ∂ Ω at x. Here C > 0 and κ ∈ (0, 1) are two constants depending only on Ω , T , x 0 , M 1 , θ 1 , η 0 , η 1 , a(x) and u j W 4,∞ (Ω ×(0,T ) , j = 1, 2.

The Carleman estimate for a hyperbolic equation

We consider a Carleman estimate which is derived from [START_REF] Isakov | Carleman type estimates and their applications[END_REF].

Let us set Q = Ω × (-T, T ).
For x 0 ∈ Ω and β > 0, we define the functions ψ = ψ(x,t) and ϕ = ϕ(x,t) by

ψ(x,t) = |x -x 0 | 2 -βt 2 (9) 
and ϕ(x,t) = e λ ψ(x,t) [START_REF] Bellassoued | Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation[END_REF] with parameter λ > 0. We add a constant C 0 > 0 if necessary so that we can assume that ψ(x,t) ≥ 0 for (x,t) ∈ Q, so that ϕ(x,t) ≥ 1, (x,t) ∈ Q.

Lemma 1. [START_REF] Isakov | Carleman type estimates and their applications[END_REF] We assume µ ∈ C 1 Q , and satisfies the following conditions

β µ 1 - t∂ t µ 2µ + |t||∇µ| √ µ < 1 - (x -x 0 ) • ∇µ 2µ for all (x,t) ∈ Q, ( 11 
)
and µ(x,t)|x -x 0 | 2 -β 2 t 2 > 0 for all (x,t) ∈ Q (12)
even by choosing β > 0 sufficiently small. Let y ∈ H 1 (Q) satisfy

∂ 2 t y(x,t) -µ(x,t)∆ y = F in Q (13) and y 
(x,t) = 0, (x,t) ∈ ∂ Ω × (-T, T ), ∂ k t y(x, ±T ) = 0, x ∈ Ω , k = 0, 1. ( 14 
)
We fix λ > 0 sufficiently large. Then there exist constants s 0 > 0 and C > 0 such that

Q (s|∇ x,t y| 2 + s 3 |y| 2 )e 2τϕ dxdt ≤ C Q |F| 2 e 2τϕ dxdt +Cs T -T ∂ Ω ∂ y ∂ ν 2 e 2τϕ dxdt (15 
) for all s > s 0 .

Proof. By [START_REF] Bellassoued | Determination of a coefficient in the wave equation with a single measurement[END_REF], we can see that a 0 (x,t) = 1/ µ(x,t) satisfies [START_REF] Isakov | Carleman type estimates and their applications[END_REF] in P. 101 of [START_REF] Isakov | Carleman type estimates and their applications[END_REF]. From [START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF] it follows that A(x,t; ∇ x,t ψ(x,t)) = µ(x,t)|∇ψ(x,t)| 2 -|∂ t ψ(x,t)| 2 is not zero at any point of Ω . Therefore, by Theorem 2.1 in [START_REF] Isakov | Carleman type estimates and their applications[END_REF] and the proof of Corollary 2.5 in [START_REF] Isakov | Carleman type estimates and their applications[END_REF], we can conclude that, for some sufficiently large λ > 0, there exist constants s 0 > 0 and C > 0 such that (15) holds for all s > s 0 .

Henceforth C > 0 denotes generic constants which are independent of choices of c1 , c2 ∈ U and the parameter s > 0 in the Carleman estimates, provided that s > s 0 . 

Numerical Studies

This section presents numerical examples of the reconstruction of the unknown function c(x) in the equation (1). To do this we use the domain decomposition method of [START_REF] Beilina | Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation[END_REF] and decompose Ω into two sub-regions Ω FEM and Ω FDM such that Ω = Ω FEM ∪ Ω FDM .

In Ω FEM we will use the finite element method (FEM) and in Ω FDM -the finite difference method (FDM). We decompose also the boundary ∂ Ω of the domain

Ω such that ∂ Ω = ∂ 1 Ω ∪ ∂ 2 Ω ∪ ∂ 3 Ω .
Here, ∂ 1 Ω and ∂ 2 Ω are the front and back sides of Ω , respectively, and ∂ 3 Ω denotes the remaining part of the boundary ∂ Ω . We collect time-dependent observations S T := ∂ 1 Ω × (0, T ) at the backscattering side ∂ 1 Ω of Ω . We define Ω T := Ω × (0, T ), S 1,1 := ∂ 1 Ω × (0,t 1 ], S 1,2 := ∂ 1 Ω × (t 1 , T ), S 2 := ∂ 2 Ω × (0, T ) and S 3 := ∂ 3 Ω × (0, T ). The model problem used in the computations is following:

∂ 2 u ∂t 2 -∇ • ( c∇u) = 0 in Ω T , u(x, 0) = θ 0 (x), ∂ t u(x, 0) = 0 in Ω , ∂ n u = f (t) on S 1,1 , ∂ n u = -∂ t u on S 1,2 , ∂ n u = -∂ t u on S 2 , ∂ n u = 0 on S 3 . (1) 
In ( 1) the function f (t) presents a plane wave which is initialized at ∂ 1 Ω in time T = [0, 3.0]. We define it as

f (t) = sin (ωt) , if t ∈ 0, 2π ω , 0, if t ≥ 2π ω . (2) 
We initialize initial condition θ 0 (x) at the backscattered side ∂ 1 Ω as

u(x, 0) = f 0 (x) = e -(x 2 1 +x 2 2 +x 3 3 ) • cost| t=0 = e -(x 2 1 +x 2 2 +x 3 3 ) . (3) 
We assume that the functions c(x) = 1 and c 0 (x,t) = 0 inside Ω FDM . The goal of our numerical tests is to reconstruct a smooth function c(x) only inside Ω FEM which we define as

c(x) = 1.0 + 5.0 • e -((x 1 -0.5) 2 /0.2+x 2 2 /0.2+x 3 2 /0.2) + 5.0 • e -((x 1 +1) 2 /0.2+x 2 2 /0.2+x 3 2 /0.2) . (4) 
We also assume that the function c 0 (x,t) is known inside Ω FEM , and we define this function as c 0 (x,t) = 0.01 cost • e -(x 1 2 /0.2+x 2 2 /0.2+x 3 2 /0.2) .

(

) 5 
Figure 1 presents slices of the exact function c(x) given by (4) for c(x) = 1.2 and c(x) = 5.5, correspondingly, and Figure 3 presents isosurfaces of the exact function c in the problem (1) for c = 3.5 at different times. Numerical tests of [START_REF] Beilina | Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation[END_REF] show that the best reconstruction results for the space-dependent function c(x) and for c 0 = 0 in Ω are obtained for ω = 40 in (2), and we take ω = 40 in (2) in all our tests. We introduce dimensionless spatial variables x ′ = x/ (1m) and define Ω FEM and Ω FDM as the following dimensionless computational domains:

Ω FEM = {x = (x 1 , x 2 , x 3 ); x 1 ∈ (-1.6, 1.6), x 2 ∈ (-0.6, 0.6), x 3 ∈ (-0.6, 0.6)} , Ω = {x = (x 1 , x 2 , x 3 ); x 1 ∈ (-1.8, 1.8), x 2 ∈ (-0.8, 0.8), x 3 ∈ (-0.8, 0.8)} .
We choose the mesh size h = 0.1 in the overlapping layers between Ω FEM and Ω FDM as well as in the computations of the inverse problem. However, we have generated our backscattered data using the several times locally refined mesh inside the domain Ω FEM . To generate backscattered data we solve the model problem (1) in time T = [0, 3.0] with the time step τ = 0.003 which satisfies the CFL condition [START_REF] Courant | On the partial differential equations of mathematical physics[END_REF]. We also use additive noise σ = 3%, 10% at ∂ 1 Ω . In all our computations we choose constant regularization parameter γ = 0.01 because it gives smallest relative error in the reconstruction of the function c(x). See [START_REF] Bakushinsky | Iterative Methods for Ill-posed Problems[END_REF][START_REF] Engl | Regularization of Inverse Problems[END_REF][START_REF] Tikhonov | Numerical Methods for the Solution of Ill-Posed Problems[END_REF] for other techniques of choosing regularization parameter. We assume that the reconstructed function c(x) belongs to the set of admissible parameters

M c ∈ {c ∈ C(Ω )|1 ≤ c(x) ≤ 10}. (6) 
To get final images of our reconstructed function c(x) we use a post-processing procedure which is the same as in [START_REF] Beilina | Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation[END_REF].

Table 1. Computational results of the reconstructions together with computational errors in the maximal contrast of c(x) in percents. Here, N is the final number of iteration in the conjugate gradient method. 

Test 1

In this section we present numerical results for determining of the function c(x) given by (4), see Figure 1-a), b), assuming, that the function c 0 (x,t) = 0. In this case we obtain results similar to ones of [START_REF] Beilina | Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation[END_REF]. Figures 4 display results of the reconstruction of the function c(x) given by ( 4) with additive noise σ = 3% in data. Quite similar results are obtained for σ = 10%, see Figure 5. We observe that the location of the maximal value of the function ( 4) is imaged correctly. It follows from Figure 4 and Table 1 that the imaged contrast in this function is 6.66 : 1 = max Ω FEM c 13 : 1, where n := N = 13 is the final iteration in the conjugate gradient method. Similar observation we made using the Figure 5 and Table 1 where the imaged contrast is 8. but are smoothed out since we are using the data post-processing procedure, see details in [START_REF] Beilina | Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation[END_REF][START_REF] Beilina | Reconstruction of shapes and refractive indices from blind backscattering experimental data using the adaptivity[END_REF]. Thus, we are able to reconstruct only maximal values of the function (4). Comparison of Figures 1-c), d), 4, 5 with Figure 1-a), b) reveals that it desirable to improve shape of the function (4) in x 3 direction.

Test 2

In this numerical test we determine the function c(x) defined in (4) by using noisy backscattered data. To get reasonable reconstruction in this test we run the conjugate gradient algorithm in time T = [0, 1.5] with the time step τ = 0.003. We note, that we reduced the computational time compared with the first test since by running in a more longer time T = [0, 3.0] we have obtained some artifacts at the middle of the domain. From other side, reducing of the computational time was resulted in obtaining of a lower contrast in the reconstructed function, see Table 1. We tested reconstruction of the function c(x) with the guess values of c(x) = 1.0 and c 0 (x,t) as in [START_REF] Beilina | Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation[END_REF] since by our assumption this function is known. 

Conclusions

In this work we presented uniqueness and stability results together with numerical studies of the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using results of previous works [START_REF] Beilina | Determining the conductivity for a non-autonomous hyperbolic operator in a cylindrical domain[END_REF][START_REF] Cristofol | Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF] a local Carleman estimate was proved. Here, the noise level in data is σ = 10%. We outline the spherical wireframe of the isosurface with exact value of the function (4), which corresponds to the value of the reconstructed c = 0.7 max Ω FEM c(x).

Our numerical simulations show possibility of the reconstruction of function c(x) in a hyperbolic problem (1) using a hybrid finite element/difference method of [START_REF] Beilina | Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation[END_REF]. In our numerical tests, we have obtained stable reconstruction of the location and contrast of the function c(x) in x 1 x 2 -directions for noisy backscattered data. The size and shape on x 3 direction should still be improved, and this can be done using, for example, an adaptive finite element method, see details in [START_REF] Beilina | Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations[END_REF][START_REF] Beilina | Adaptive hybrid FEM/FDM methods for inverse scattering problems[END_REF][START_REF] Beilina | Reconstruction of shapes and refractive indices from blind backscattering experimental data using the adaptivity[END_REF].
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 512 Fig. 1 Slices of the exact Gaussian function c(x) in Ω FEM given by (4).

Fig. 3

 3 Fig. 3 Slices of the exact space and time-dependent function c for c = 3.5 at different times.
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 14 Fig. 4 Test 1. Isosurfaces of the reconstructed function c(x) with max Ω FEM c(x) = 6.66 for ω = 40 in (2). Here, the noise level in data is σ = 3%. The spherical wireframe of the isosurface with exact value of the function (4), which corresponds to the value of the reconstructed c = 0.7 max Ω FEM c(x).
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 5 Fig. 5 Test 1. Isosurfaces of the reconstructed function c(x) with max Ω FEM c(x) = 8.11 for ω = 40 in (2). Here, the noise level in data is σ = 10%. The spherical wireframe of the isosurface with exact value of the function (4), which corresponds to the value of the reconstructed c = 0.7 max Ω FEM c(x).
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 16 Fig. 6 Test 2. Isosurfaces of the reconstructed function c(x) with max Ω FEM c(x) = 4.1 for ω = 40 in (2).Here, the noise level in data is σ = 3%. We outline also the spherical wireframe of the isosurface with exact value of the function (4), which corresponds to the value of the reconstructed c = 0.7 max Ω FEM c(x).
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 6 Figures 6,[START_REF] Bellassoued | Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation[END_REF] show results of the reconstruction with σ = 3% and σ = 10%, respectively. We observe that the location of the maximal value of the function (4) is imaged very well. Again, as in the previous test, the values of the background in (4) are smoothed out. Comparing figures with results of reconstruction we conclude that it is desirable improve shape of the function c(x) in x 3 direction.
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 17 Fig. 7 Test 2. Isosurfaces of the reconstructed function c(x) with max Ω FEM c(x) = 5.58 for ω = 40 in (2).Here, the noise level in data is σ = 10%. We outline the spherical wireframe of the isosurface with exact value of the function (4), which corresponds to the value of the reconstructed c = 0.7 max Ω FEM c(x).
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