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Abstract

In this paper, we advocate the use of setwise contests for aggregating a set of input rankings
into an output ranking. We propose a generalization of the Kemeny rule where one min-
imizes the number of k-wise disagreements instead of pairwise disagreements (one counts
1 disagreement each time the top choice in a subset of alternatives of cardinality at most
k differs between an input ranking and the output ranking). After an algorithmic study
of this k-wise Kemeny aggregation problem, we introduce a k-wise counterpart of the ma-
jority graph. This graph reveals useful to divide the aggregation problem into several sub-
problems, which enables to speed up the exact computation of a consensus ranking. By in-
troducing a k-wise counterpart of the Spearman distance, we also provide a 2-approximation
algorithm for the k-wise Kemeny aggregation problem. We conclude with numerical tests.

Keywords: Computational social choice, Generalized Kemeny rule, Weighted majority
graph, Computational complexity

1. Introduction1

Rank aggregation aims at producing a single ranking from a collection of rankings of2

a fixed set of alternatives. In social choice theory (see, for example, the book by Moulin3

[2]), where the alternatives are candidates to an election and each ranking represents the4

preferences of a voter, aggregation rules are called Social Welfare Functions (SWFs). Apart5

?This is a long version of a work presented at the 34th AAAI Conference on Artificial Intelligence (AAAI
2020) [1].
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from social choice, rank aggregation has proved useful in many applications, including6

preference learning [3, 4], collaborative filtering [5], genetic map creation [6], similarity7

search in database systems [7] and design of web search engines [8, 9]. In the following, we8

use interchangeably the terms “input rankings” and “preferences”, “output ranking” and9

“consensus ranking”, as well as “alternatives” and “candidates”.10

The well-known Arrow’s impossibility theorem states that there exists no aggregation11

rule satisfying a small set of desirable properties [10]. In the absense of an “ideal” rule, var-12

ious aggregation rules have been proposed and studied. Following Fishburn’s classification13

[11], we can distinguish between the SWFs for which the output ranking can be computed14

from the majority graph alone, those for which the output ranking can be computed from15

the weighted majority graph alone, and all other SWFs. The majority graph is obtained16

from the input rankings by defining one vertex per alternative c and by adding an edge17

from c to c′ if c is preferred to c′ in a strict majority of input rankings. In the weighted18

majority graph, each edge is weighted by the majority margin. The many SWFs that rely19

on these graphs alone take therefore only pairwise comparisons into account to determine20

an output ranking. Note that Fishburn’s classification actually applies to social choice21

functions, which prescribe a subset of winning alternatives from a collection of rankings,22

but the extension to SWFs is straightforward. For a compendium of SWFs that rely solely23

on (weighted) majority graphs, we refer the reader to the book chapter by Zwicker [12].24

The importance of this class of SWFs can be explained by their connection with the25

Condorcet consistency property, stating: if there is a Condorcet winner (i.e., an alternative26

with outgoing edges to every other ones in the majority graph), then it should be ranked27

first in the output ranking. Nevertheless, as shown by Baldiga and Green [13], the lack of28

Condorcet consistency is not necessarily a bad thing, because this property may come into29

contradiction with the objective of maximizing voters’ agreement with the output ranking.30

The following example illustrates this point.31

Example 1 (Baldiga and Green [13]). Consider an election with 100 voters and 3 can-32

didates c1, c2, c3, where 49 voters have preferences c1 � c2 � c3, 48 have preferences33

c3 � c2 � c1 and 3 have preferences c2 � c3 � c1. Candidate c2 is the Condorcet win-34

ner, but is the top choice of only 3 voters. In contrast, candidate c1 is in slight minority35

against c2 and c3, but c1 is the top choice of 49 voters. This massive gain in agreement36

may justify to put c1 instead of c2 in first position of the output ranking.37

Following Baldiga and Green [13], we propose to handle this tension between the pairwise38

comparisons (leading to ranking c2 first) and the plurality choice (leading to ranking c1 first)39

by using SWFs that take into account not only pairwise comparisons but setwise contests.40

More precisely, given input rankings on a set C of candidates and k ∈ {2, . . . , |C|}, the41

idea is to consider the plurality score of each candidate c for each subset S⊆C such that42
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Table 1: Results of setwise contests in Example 1. The cell at the intersection of the row corresponding to
a set S and the column corresponding to a candidate c displays the number of voters who rank c first in S.

set c1 c2 c3

{c1, c2} 49 51 –
{c1, c3} 49 – 51
{c2, c3} – 52 48
{c1, c2, c3} 49 3 48

2≤|S|≤k, where the plurality score of c for S is the number of voters for which c is the top43

choice in S. The results of setwise contests for the preferences of Example 1 are given in44

Table 1 for k= 3. Note that the three top rows obviously encode the same information as45

the weighted majority graph while the bottom row makes it possible to detect the tension46

between the pairwise comparisons and the plurality choice.47

One can then define a new class of SWFs, those that rely on the results of setwise48

contests alone to determine an output ranking. The many works that have been carried49

out regarding voting rules based on the (weighted) majority graph can be revisited in this50

broader setting. This line of research has already been investigated by Lu and Boutilier51

[14] and Baldiga and Green [13]. However, note that both of these works consider a setting52

where candidates may become unavailable after voters express their preferences. We do53

not make this assumption. We indeed believe that this new class of SWFs makes sense in54

the standard setting where the set of candidates is known and deterministic, as it amounts55

to generate an output ranking by examining the choices that are made by the voters on56

subsets of candidates of various sizes (while usually only pairwise choices are considered).57

A natural SWF in this class consists in determining an output ranking that minimizes58

the number of disagreements with the results of setwise contests for sets of cardinality at59

most k. This is a k-wise generalization of the Kemeny rule, obtained as a special case for60

k= 2. We recall that the Kemeny rule consists in producing a ranking that minimizes the61

number of pairwise disagreements [15].62

Example 2. Let us come back to Example 1 and assume that we use the 3-wise Kemeny63

rule. Consider the output ranking r = c1 � c2 � c3. For set S = {c1, c2}, the number of64

disagreements with the results of setwise contests is 51 because c2 is the top choice in S for65

51 voters (see Table 1) while it is c1 for r. Similarly, the number of disagreements induced66

by {c1, c3}, {c2, c3} and {c1, c2, c3} are respectively 51, 48 and 3+48. The total number67

of disagreements is thus 51+51+48+3+48 = 201. This is actually the minimum number68

of disagreements that can be achieved for these input rankings, which makes r the k-wise69

Kemeny ranking.70

The purpose of this paper is to study the k-wise Kemeny aggregation problem. Section 271
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formally defines the problem and reports on related work. Section 3 is devoted to some72

axiomatic considerations of the corresponding voting rule, and to an algorithmic study73

of the problem. More precisely, we show that the decision variant of the k-wise Kemeny74

aggregation problem is NP-complete for any constant k ≥ 2 and we provide an efficient75

fixed-parameter algorithm for parameter m which relies on dynamic programming. We then76

investigate a k-wise variant of the majority graph in Section 4. We prove that determining77

this graph is easy for k = 3 but becomes NP-hard for k > 3, and we show how to use it78

in a preprocessing step to speed up the computation of the output ranking. In Section 5,79

we propose a 2-approximation algorithm for the k-wise Kemeny aggregation problem, by80

introducing a k-wise variant of the Spearman distance. Numerical tests are presented81

in Section 6 to assess both the efficiency of our exact methods and the accuracy of our82

approximation algorithm.83

2. Preliminaries84

Adopting the terminology of social choice theory, we consider an election with a set85

V of n voters and a set C of m candidates. Each voter v has a complete and transitive86

preference order rv over candidates (also called ranking). The collection of these rankings87

defines a preference profile P .88

2.1. Notations and Definitions89

Let us introduce some notations related to rankings. We denote by R(C) the set of m!90

rankings over C. Given a ranking r and two candidates c and c′, we write c �r c′ if c is in91

a higher position than c′ in r. Given a ranking r and a candidate c, rk(c, r) denotes the92

rank of c in r. For instance, rk(c, rv) = 1 if c is the preferred candidate of voter v (the93

candidate ranked highest in rv). Given a ranking r and a set S ⊆ C, we define rS as the94

restriction of r to S and topr(S) as the top choice (i.e., preferred candidate) in S according95

to r. Similarly, given a preference profile P and a set S ⊆ C, we define PS as the restriction96

of P to S. Lastly, we denote by tailk(r) (resp. headk(r)) the subranking compounded of97

the k least (resp. most) preferred candidates in r.98

We are interested in SWFs which, given a preference profile P , should return a consensus99

ranking which yields a suitable compromise between the preferences in P . One of the most100

well-known SWFs is the Kemeny rule, which selects a ranking r with minimal Kendall tau101

distance to P . We recall:102

103

Definition 1. The Kendall tau distance between two rankings r and r′ is defined by

δKT(r, r
′) =

∑
(c,c′)∈C2

disagreec,c′(r, r
′)

4



where disagreec,c′(r, r
′) = 1 if c �r c′ and c′ �r′ c, and 0 otherwise.104

Stated differently, δKT measures the distance between two rankings by the number of
pairwise disagreements between them. The distance δKT(r,P) between a ranking r and a
preference profile P is then obtained by summation:

δKT(r,P) =
∑
r′∈P

δKT(r, r
′).

105

However, the Kendall tau distance only takes into account pairwise comparisons, which106

may entail counterintuitive results as illustrated by Example 1. To address this issue, the107

Kendall tau distance can be generalized to take into consideration disagreements on sets of108

cardinality greater than two. Given a set S ⊆ C and t ≤ m, we denote by ∆t(S) the set109

of subsets of S of cardinality lower than or equal to t, i.e., ∆t(S) = {S ′ ⊆ S s.t. |S ′| ≤ t}.110

When S is not specified, it is assumed to be C, i.e., ∆t=∆t(C).111

Definition 2. Let k≥2 be an integer. The k-wise Kendall tau distance δkKT between r and
r′ is defined by:

δkKT(r, r
′) =

∑
S∈∆k

disagreeS(r, r′)

where disagreeS(r, r′)=1 if topr(S) 6= topr′(S), and 0 otherwise.112

In other words, δkKT measures the distance between two rankings by the number of top-
choice disagreements on sets of cardinality lower than or equal to k. It is not hard to see
that δkKT(r, r

′) can also be computed by using the following formula:

δkKT(r, r
′) =

∑
(c,c′)∈C2

disagreec,c′(r, r
′) |∆k−2(Belowc(r) ∩ Belowc′(r′)|

=
∑

(c,c′)∈C2

disagreec,c′(r, r
′)
k−2∑
i=0

(
| Belowc(r) ∩ Belowc′(r′)|

i

)
(1)

where Belowc(r) = {x ∈ C s.t. c �r x} is the set of candidates that are ranked below c113

in r. Formula 1 amounts to counting, for any pair {c, c′} of candidates such that c �r c′114

and c′ �r′ c, the number of sets in ∆k on which there is a disagreement because the115

top choice is c for r while it is c′ for r′. Such sets are of the form S ∪ {c, c′}, where116

S ∈ ∆k−2(Belowc(r)∩ Belowc′(r′)), otherwise c and c′ would not be the top choices. Hence117

the formula.118

Several observations can be made regarding δkKT. Firstly, the following result states that119

δkKT has all the properties of a distance:120
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Proposition 1. The function δkKT has all the properties of a distance: non-negativity, iden-121

tity of indiscernibles, symmetry and triangle inequality.122

Proof. Non-negativity and symmetry are obvious from the definition of δkKT. It also verifies123

identity of indiscernibles: if δkKT(r, r
′) = 0, then rankings r and r′ must in particular agree124

on each pairwise comparison, hence δKT(r, r
′) = 0 and r= r′ because δKT verifies identity of125

indiscernibles. Lastly, triangular inequality comes from the fact that given three rankings126

r1, r2 and r3 and a set S, disagreeS(r1, r3) ≤ disagreeS(r1, r2) + disagreeS(r2, r3).127

Secondly, as mentioned in the introduction, we have δ2
KT=δKT. Thirdly and maybe most128

importantly, δkKT(r, r
′) can be computed in polynomial time in the number m of candidates:129

Proposition 2. Given two rankings r and r′, δkKT(r, r
′) can be computed in O(m3) by using130

Formula 1.131

Proof. We prove the O(m3) complexity of the method. First note that the computation of132

all binomial coefficients
(
p
i

)
for i ∈ {0, . . . , k−2} and p ∈ {i, . . . ,m−2} can be performed133

in O(mk) thanks to Pascal’s formula
(
p
i

)
+
(
p
i+1

)
=
(
p+1
i+1

)
. Then the computation of the134

sums
∑k−2

i=0

(
p
i

)
for p ∈ {0, . . . ,m− 2} can also be computed in O(mk). For each pair135

{c, c′} of candidates such that topr({c, c′}) = c and topr′({c, c′}) = c′, the computation136

of | Belowc(r) ∩ Belowc′(r
′)| can be performed in O(m). As there are at most O(m2) such137

pairs, the overall complexity of the method is O(m3 +mk) = O(m3).138

The distance δkKT induces a new SWF, the k-wise Kemeny rule, which, given a profile P ,
returns a ranking r with minimal distance δkKT to P , where:

δkKT(r,P) =
∑
r′∈P

δkKT(r, r
′).

Note that this coincides with the rule we used in the introduction, by commutativity of
addition: ∑

r′∈P

∑
S∈∆k

disagreeS(r, r′) =
∑
S∈∆k

∑
r′∈P

disagreeS(r, r′).

Determining a consensus ranking for this rule induces an optimization problem that we139

term the k-wise Kemeny Aggregation Problem (k-KAP for short).140

k-WISE KEMENY AGGREGATION PROBLEM (k-KAP)
INSTANCE: A profile P with n voters and m candidates.
SOLUTION: A ranking r of the m candidates minimizing δkKT(r,P).

141

142

6



When discussing the complexity of the problem, we may also refer to the decision version143

of the problem, k-KAP-DEC:144

k-KAP-DEC
INSTANCE: A profile P with n voters and m candidates and a threshold τ ∈ N.
QUESTION: Does there exist a ranking r of the m candidates such that δkKT(r,P) ≤ τ?

145

146

2.2. Related Work147

Several other variants of the Kemeny rule have been proposed in the literature, either148

to obtain generalizations able to deal with partial or weak orders [9, 16], to penalize more149

some pairwise disagreements than others [17], or to account for candidates that may become150

unavailable after voters express their preferences [13, 14].151

Despite its popularity, the Kemeny rule has received several criticisms. One of them is152

that the Kendall tau distance counts equally the disagreements on every pair of candidates.153

This property is undesirable in many settings. For instance, with a web search engine, a154

disagreement on a pair of web pages with high positions in the considered rankings should155

have a higher cost than a disagreement on pairs of web pages with lower ones. This drawback156

motivated the introduction of weighted Kendall tau distances by Kumar and Vassilvitskii157

[17].158

2.2.1. Comparison between the k-wise and the weighted Kendall tau distances159

As mentioned above, Kumar and Vassilvitskii proposed that disagreements on highly160

ranked candidates be more costly than disagreements on lowly ranked ones. To achieve this,161

they defined a position-weighted version of Kendall tau, denoted by Kw, where an inversion162

of the two candidates at positions i and i− 1 has a cost wi. For convenience, a cost w1 = 1163

is also defined. Given the costs wi, one can then measure the average swap-cost of moving164

a candidate from position i to j by computing the ratio
pi−pj
i−j where pi =

∑i
j=1wj. This165

observation motivated the following definition for a position-weighted version of Kendall166

tau [17]:167

Definition 3. Let w=(w1, . . . , wm) be a vector of m weights wi>0. The position-weighted
Kendall tau distance Kw between r and r′ is defined by:

Kw(r, r′) =
∑

(c,c′)∈C2

disagreec,c′(r, r
′) p(r, r′, c)p(r, r′, c′)

where p(r, r′, c) =
prk(c,r) − prk(c,r′)

rk(c, r)− rk(c, r′)
and p(r, r′, c) = 1 if rk(c, r) = rk(c, r′).168
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Put another way, if two rankings r and r′ disagree on a pairwise comparison between169

two candidates c and c′, then the cost of this disagreement is weighted by the product of the170

average swap-cost of moving c from its position in r to its position in r′ with the average171

swap-cost of moving c′ from its position in r to its position in r′. Note that if wi = 1 for172

all i in {1, . . . ,m}, one obtains the usual Kendall tau distance.173

Both the position-weighted Kendall tau distance and the k-wise Kendall tau distance174

can be used in order to penalize more strongly disagreements on candidates with high175

ranks (i.e., candidates that appear near the top of the ranking). For the k-wise Kendall tau176

distance, this property results from the fact that for a pair {c, c′} such that topr({c, c′}) 6=177

topr′({c, c′}) the number of resulting subsets S for which topr(S) 6=topr′(S) is all the larger178

as c and c′ are ranked high in r and r′. Note however that the position-weighted Kendall tau179

distance requires to specify the m− 1 parameters w2, . . . , wm, the tuning of which does not180

seem to be obvious. In comparison, the k-wise Kendall tau distance only requires to choose181

the value of k, from which the cost of each disagreement on a pair {c, c′} of candidates is182

naturally entailed: it corresponds to the number of subsets of C of size less than or equal to183

k for which the top choice in r is c while the top choice in r′ is c′ (see Section 2, Equation 1184

for the formal expression of swap-costs according to k).185

Let us illustrate with the following example that the k-wise Kendall tau distance is also186

well suited to penalize more the disagreements involving alternatives at the top of the input187

rankings.188

Example 3. Consider rankings r1, r2, r3 defined by c1 �r1 c2 �r1 c3, c1 �r2 c3 �r2 c2, and189

c2 �r3 c1 �r3 c3. We have δKT(r1, r2) = δKT(r1, r3) = 1 while δ3
KT(r1, r2) = 1 < 2 = δ3

KT(r1, r3)190

because r1 and r3 disagree on both subsets {c1, c2} and {c1, c2, c3}. Put another way,191

δ3
KT(r1, r3) > δ3

KT(r1, r2) because r1 and r3 disagree on their top-ranked alternatives whereas192

r1 and r2 disagree on the alternatives ranked in the last places.193

2.3. Comparison with aggregation models where candidates may become unavailable194

The two works closest to ours are related to another extension of the Kemeny rule.195

This extension considers a setting in which, besides the fact that voters have preferences196

over a set C, the election will in fact occur on a subset S ⊆ C drawn according to a197

probability distribution [13, 14]. The optimization problem considered is then to find a198

consensus ranking r which minimizes, in expectation, the number of voters’ disagreements199

with the chosen candidate in S (a voter v disagrees if toprv(S) 6=topr(S)). The differences200

between the work of Baldiga and Green [13] and the one of Lu and Boutilier [14] are then201

twofold. Firstly, while Baldiga and Green mostly focused on the axiomatic properties of202

this aggregation procedure, the work of Lu and Boutilier has more of an algorithmic flavor.203

Secondly, while Baldiga and Green mostly study a setting in which the probability P(S) of204

S is only dependent on its cardinality (i.e., P(S) is only a function of |S|), Lu and Boutilier205
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study a setting that can be viewed as a special case of the former, where each candidate is206

absent of S independently of the others with a probability p (i.e., P(S) = p|C\S|(1− p)|S|).207

The Kemeny aggregation problem can be formulated in both settings, either by defining208

P(S)=0 for |S|≥3, or by defining a probability p that is “sufficiently high” w.r.t. the size209

of the instance [14]. Lu and Boutilier conjectured that the determination of a consensus210

ranking is NP-hard in their setting, designed an exact method based on mathematical211

programming, two approximation greedy algorithms and a polynomial-time approximation212

scheme.213

Our model can be seen as a special case of the model of Baldiga and Green where the214

set S is drawn uniformly at random within the set of subsets of C of cardinality smaller215

than or equal to a given constant k≥ 2. While it cannot be casted in the specific setting216

studied by Lu and Boutilier, our model is closely related and may be used to obtain new217

insights on their work.218

3. Aggregation with the k-wise Kemeny Rule219

In this section, we investigate the axiomatic properties of the k-wise Kemeny rule, and220

then we turn to the algorithmic study of k-KAP.221

3.1. Axiomatic Properties of the k-wise Kemeny Rule222

Several properties of the k-wise Kemeny rule have already been studied by Baldiga and223

Green [13], because their setting includes the k-wise Kemeny rule as a special case. Among224

other things, they showed that the rule is not Condorcet consistent. That is to say, a225

Condorcet winner may not be ranked first in any consensus ranking even when one exists,226

as illustrated by Example 2. The example indeed shows that the k-wise Kemeny rule is not227

Condorcet consistent for k= 3, as the Condorcet winner is not ranked first in the unique228

consensus ranking for the 3-wise Kemeny rule. Note that any k > 3 would yield the same229

consensus ranking, as there are only m=3 candidates in the profile, hence the result holds230

for any k≥3. The example can be generalized to show that the result holds even if m≥k:231

Proposition 3. The k-wise Kemeny rule is not Condorcet consistent for any k ≥ 3, even232

if m ≥ k.233

Proof. We provide an example similar to Example 2. Consider an election with k candidates234

c1, c2, . . . , ck and 100 voters, with:235

– 49 voters having preferences r1 defined by c1 � c2 � c3 � c4 � . . . � ck;236

– 49 voters having preferences r2 defined by c3 � c2 � c1 � c4 � . . . � ck;237

– 2 voters having preferences r3 defined by c2 � c1 � c3 � c4 � . . . � ck.238

Note that c2 is a Condorcet winner and that the ranking r1 has a k-wise Kemeny score239
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worth 0 + 49 × (2k−2 + 2k−3 + 2k−3) + 2 × 2k−2 = 100 × 2k−2 while ranking r3 has a score240

worth 49× 2k−2 + 49× (2k−2 + 2k−3) + 0=122.5× 2k−2. It is easy to convince oneself that241

r3 is the best possible ranking if c2 is ranked first. Indeed, candidates c1, c2 and c3 are242

ranked higher than other candidates in all three rankings r1, r2 and r3 and therefore should243

be placed at the top in a consensus ranking (see Lemma 1). Additionally, c1 and c3 have244

symmetric positions in rankings r1 and r2, and c1 is preferred to c3 in r3, thus c1 should be245

placed before c3 in a consensus ranking. The result follows.246

The authors also show that the k-wise Kemeny rule is neutral, i.e., all candidates are247

treated equally, and that for k ≥ 3 it is different from any positional method or any method248

that uses only the pairwise majority margins (among which is the standard Kemeny rule).249

We provide here some additional properties satisfied by the k-wise Kemeny rule:250

• Monotonicity : up-ranking cannot harm a winner; down-ranking cannot enable a loser251

to win. Let us state this axiom more formally. Let R∗P denote the set of consensus252

rankings for preference profile P . Then for any candidate c ∈ C and profiles P253

and P ′ such that P ′ can be obtained from P by decreasing the position of c in254

some ranking in P (all other things being equal): c ∈ {topr(C) : r ∈ R∗P ′} implies255

c ∈ {topr(C) : r ∈ R∗P} and c /∈ {topr(C) : r ∈ R∗P} implies c /∈ {topr(C) : r ∈ R∗P ′}.256

• Unanimity : if all voters rank c before c′, then c is ranked before c′ in any consensus257

ranking.258

• Reinforcement : let R∗P and R∗P ′ denote the sets of consensus rankings for preference259

profiles P and P ′ respectively. If R∗P ∩R∗P ′ 6= ∅ and P ′′ is the profile obtained by260

concatenating P and P ′, then R∗P ′′ = R∗P ∩R∗P ′ .261

Examples of voting rules for which the monotonicity property does not hold are plurality with262

run-off (a two-round election system where, if some candidate is top ranked by a majority263

of the voters, it wins in round 1; otherwise, round 2 consists of the majority rule applied to264

the two candidates with highest plurality score in round 1) and single transferable vote (at265

each stage, the candidate with lowest plurality score is dropped from all votes and each vote266

for which this candidate was top ranked is transferred to the next remaining candidate in267

the ranking; at the first stage for which some candidate c sits atop a majority of the votes,268

c is declared the winner). For more details, the reader may refer to the book chapter by269

Zwicker [12]. The unanimity property is obviously desirable for any reasonable voting rule.270

Finally, the reinforcement property has been introduced by Young [18], originally calling it271

consistency, for the axiomatization of Borda’s rule viewed as a social choice function, i.e.,272

returning a (set of) winning candidate(s). Reinforcement states that a candidate elected273

by two disjoint electorates should remain a winning candidate if one merges the voters,274
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and that a candidate elected by only one electorate is in some sense not as “good” as a275

candidate elected by both electorates. The adaptation of the property to social welfare276

functions, i.e., functions returning a (set of) consensus ranking(s), has been proposed by277

Young and Levenglick [19] for an axiomatic characterization of Kemeny’s rule: they show278

that it is the unique Condorcet consistent social welfare function that satisfy neutrality and279

reinforcement, where the neutrality property states that all candidates are treated equally280

(in the sense that permuting the names of the candidates in the input rankings result in281

the same permutation in the consensus rankings).282

While the fact that the k-wise Kemeny rule satisfies neutrality and reinforcement is283

quite obvious from its definition, the two following results state that the monotonicity and284

unanimity conditions also hold.285

Proposition 4. The k-wise Kemeny rule satisfies monotonicity.286

Proof. Let r be a ranking and v be a voter such that c and c′ are consecutive in rv and287

c′ �rv c. Let us denote by rc↔c
′

v the ranking obtained from rv by switching the positions288

of c and c′. Then, the sets S for which toprv(S) 6= toprc↔c′
v

(S) are of the form {c, c′} ∪ S ′289

where S ′ ⊆ Belowc(rv). Furthermore, if such a set S contains a candidate c′′ such that290

c′′ �r topr({c, c′}), then we will both have topr(S) 6= toprv(S) and topr(S) 6= trc↔c′
v

(S).291

Hence, the sets which account for the difference between δkKT(r, rv) and δkKT(r, r
c↔c′
v ) are of292

the form {c, c′} ∪ S ′ where S ′ ⊆ Belowc(rv) ∩ Belowtopr({c,c′})(r).293

More precisely, using Equation 1, we obtain that δkKT(r, r
c↔c′
v ) is equal to:294

• δkKT(r, rv)−
∑k−2

i=0

(| Belowc′ (rv)∩Belowc(r)|
i

)
if c �r c′;295

• δkKT(r, rv) +
∑k−2

i=0

(| Belowc(rv)∩Belowc′ (r)|
i

)
if c′ �r c.296

Hence, δkKT(r, rv) will decrease if r ranks c before c′ and the decrease is maximal when c is297

ranked first in r (because it maximizes | Belowc′(rv)∩Belowc(r)|). Repeating this argument298

shows that no winner is harmed by up-ranking. Similarly, δkKT(r, rv) will increase if r ranks299

c′ before c and the increase is maximal when c′ is ranked first in r (because it maximizes300

| Belowc(rv)∩ Belowc′(r)|). Repeating this argument shows that no loser can win by down-301

ranking.302

Proposition 5. The k-wise Kemeny rule satisfies unanimity.303

Proof. Let c, c′ ∈ C be two candidates and P be a preference profile such that for all ranking304

r′′ in P , c �r′′ c′. Let r be a ranking such that c′ �r c, and r′ be the ranking obtained from305

r by exchanging the positions of c′ and c. Moreover, let K denote the set of candidates306

between c and c′ in r. Let us assume for the sake of contradiction that r minimizes δkKT(·,P).307
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We will prove that for any r′′ ∈ P , δkKT(r
′, r′′) < δkKT(r, r

′′). Let r′′ ∈ P and S ⊆ C such308

that topr′(S) 6= topr′′(S) and topr(S) = topr′′(S). Then S must contain either c or c′, and309

does not contain any element ranked higher than c′ in r because otherwise we would have310

topr(S) = topr′(S). This implies that either topr′(S) = c (if c ∈ S) or topr(S) = c′ (if311

c′ ∈ S). These situations are exclusive: there cannot be both c and c′ in S as we cannot312

have topr′′(S) = c′ if c ∈ S. To sum up, there are two possibilities:313

1. topr′(S) = c and topr′′(S) = topr(S) = c′′ is in K. This implies that c′′ is the second314

choice of r′ in S and that c′′ �r′′ c′ as c′′ �r′′ c. In this case, necessarily, c′ 6∈ S and315

we consider S ′ = (S \ {c}) ∪ {c′}.316

2. topr′(S) ∈ K and topr′′(S) = topr(S) = c′. In this case, necessarily, c 6∈ S and we317

consider S ′ = S ∪ {c}.318

In both cases, we obtain a set S ′ such that topr′(S
′) = topr′′(S

′) and topr(S
′) 6= topr′′(S

′).319

Note that any set S will induce a different S ′ and that {c, c′} is not one of these sets S ′.320

As we also have topr′({c, c′}) = topr′′({c, c′}) and topr({c, c′}) 6= topr′′({c, c′}), this proves321

that for any r′′ ∈ P , δkKT(r
′, r′′) < δkKT(r, r

′′) and hence the claim.322

Besides, the k-wise Kemeny rule does not satisfy Independence of irrelevant alternatives,323

i.e., the relative positions of two candidates in a consensus ranking can depend on the324

presence of other candidates. Let us illustrate this point with the following example.325

Example 4. Considering the preference profile from Example 1, the only consensus ranking326

for δ3
KT is c1�c2�c3. Yet, without c3 the only consensus ranking would be c2�c1.327

Lastly, note that there exists a noise model such that the k-wise Kemeny rule can be328

interpreted as a maximum likelihood estimator [20]. In this view of voting, one assumes329

that there exists a “correct” ranking r, and each vote corresponds to a noisy perception330

of this correct ranking. Consider the conditional probability measure P on R(C) defined331

by P(r′|r)∝ e−δkKT(r,r′). It is easy to convince oneself that the k-wise Kemeny rule returns332

a ranking r∗ that maximizes P(P |r∗) =
∏

r′∈P P(r′|r∗) and is thus a maximum likelihood333

estimate of r.334

3.2. Computational Complexity of k-KAP335

We now turn to the algorithmic study of k-KAP. After providing a hardness result, we336

will design an efficient Fixed Parameter Tractable (FPT) algorithm for parameter m.337

While k-KAP is obviously NP-hard for k = 2 as it then corresponds to determining a338

consensus ranking w.r.t. the Kemeny rule, we strengthen this result by showing that k-339

KAP-DEC is also NP-complete for any constant value k≥3. To prove this result, we first340

need two lemmas.341
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Lemma 1. If the candidates in a set S ⊆ C are ranked in the |S| last positions by all342

voters and in the same order, then for any k ≥ 2, any consensus ranking w.r.t. the k-wise343

Kemeny rule has the same property.344

Proof. This is a simple consequence of the unanimity property that is satisfied by the k-wise345

Kemeny rule.346

Lemma 2. For any p ∈ N∗ and ε ∈ (0, 1
2p

) we have the following inequality:

(1 + ε)p < 1 + 2pε

Proof. We prove the claim by induction. It is obvious for p= 1. Consider the claim true
for p=k, then for ε ∈ (0, 1

2(k+1)
)

(1+ε)k+1 =(1 + ε)(1+ε)k <(1+ε)(1+2kε)

=1+2kε+ε+2kε2 <1+2(k + 1)ε

where the first inequality uses the induction hypothesis and the second inequality uses the347

fact that 2kε2<ε because 2kε<1 for ε∈(0, 1
2(k+1)

).348

We can now prove the hardness result, by using a reduction from 2-KAP-DEC.349

Theorem 1. For any constant k≥3, k-KAP-DEC is NP-complete, even if the number of350

voters equals 4 or if the average range of candidates is less than or equal to 2 (where the351

range of a candidate c is defined by maxr∈P rk(c, r) − minr∈P rk(c, r) + 1 and the average352

is taken over all candidates).353

Proof. Membership in NP follows from Proposition 2. We obtain our hardness result via a354

reduction from the standard Kemeny aggregation problem (2-KAP-DEC), which is known355

to be NP-complete [21]. Consider a preference profile P with n ≥ 1 voters and m ≥ k ≥ 3356

candidates and an integer τ . We wish to determine if there exists a ranking r of the m357

candidates such that δKT(r,P) ≤ τ . Stated otherwise, we wish to determine if the Kemeny358

score of a consensus ranking is lower than or equal to τ . Note that we can assume m ≥ k359

as k is a constant and 2-KAP is fixed parameter tractable w.r.t. m [22]. We add to the360

problem λ= 4nm4 candidates c∗1, . . . , c
∗
λ that are ranked last by all voters and in the same361

order, i.e., c∗1 �r . . . �r c∗λ for all r in P . We denote the resulting set of candidates by C ′362

(i.e., C ′=C ∪ {c∗1, . . . , c∗λ}) and the resulting preference profile by P ′. By using Lemma 1,363

we will restrict our attention to rankings that rank these additional voters last and in the364

same order as the voters, because they are the only possible consensus rankings. Lastly, in365

the resulting k-KAP-DEC instance, we set τ ′ = (1 +
∑k−2

i=1

(
4nm4

i

)
)(τ + 1)− 1.366
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Given two such rankings r and r′, we have by Equation 1 that δkKT(r, r
′) is equal to:

∑
(c,c′)∈C2

disagreec,c′(r, r
′)
k−2∑
i=0

(
| Belowc(rC) ∩ Belowc′(r′C)|+ λ

i

)

=
∑

(c,c′)∈C2

disagreec,c′(r, r
′)

(
1 +

k−2∑
i=1

(
| Belowc(rC) ∩ Belowc′(r′C)|+ λ

i

))

because there is no disagreement for {c, c′} 6⊆ C and
(| Belowc(rC)∩Belowc′ (r′C)|+λ

0

)
=1.367

From 0 ≤ | Belowc(rC) ∩ Belowc′(r′C)| < m, we deduce:

k−2∑
i=1

(
λ

i

)
≤

k−2∑
i=1

(
| Belowc(rC) ∩ Belowc′(r′C)|+ λ

i

)
<

k−2∑
i=1

(
m+ λ

i

)
.

Consequently:

δKT(rC , r
′
C)

(
1 +

k−2∑
i=1

(
λ

i

))
≤ δkKT(r, r

′) < δKT(rC , r
′
C)

(
1 +

k−2∑
i=1

(
m+ λ

i

))

because
∑

(c,c′)∈C2

disagreec,c′(r, r
′) = δKT(rC , r

′
C); from which we obtain:

δKT(rC ,P)

(
1 +

k−2∑
i=1

(
λ

i

))
≤ δkKT(r,P ′) < δKT(rC ,P)

(
1 +

k−2∑
i=1

(
m+ λ

i

))
(2)

because
∑

r′∈P ′ δKT(rC , r
′
C) = δKT(rC ,P) and

∑
r′∈P ′ δ

k
KT(r, r

′) = δkKT(r,P ′), provided that368

tailλ(r)=c∗1�r . . .�r c∗λ and tailλ(r
′)=c∗1�r′ . . .�r′ c∗λ ∀r′∈P ′.369

Now, note that:(
m+ λ

i

)
=

λ!

i!(λ− i)!

∏m
j=1(λ+ j)∏m

j=1(λ− i+ j)
=

(
λ

i

) m∏
j=1

λ+ j

λ+ j − i
. (3)

If one sets λ=4nm4, the following inequalities hold:

4nm4 + j

4nm4 + j − i
= 1 +

i

4nm4 + j − i
≤ 1 +

i

4nm4 − i

≤ 1 +
2i

4nm4
≤ 1 +

1

2nm3
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where the second inequality follows from 4nm4/(4nm4 − i) ≤ 2 for i ∈ J1,mK.370

From Equation 3, we deduce then:(
m+ 4nm4

i

)
≤
(

4nm4

i

)
(1 +

1

2nm3
)m ≤

(
4nm4

i

)
(1 +

1

nm2
)

where the second inequality follows from Lemma 2 with ε = 1
2nm3 because 1

2nm3 <
1

2m
for371

m≥3.372

Coming back to Equation 2, this implies:

δKT(rC ,P) ≤ δkKT(r,P ′)
1 +

∑k−2
i=1

(
4nm4

i

) < δKT(rC ,P) +
1

nm2
δKT(rC ,P)

and therefore:

δKT(rC ,P) ≤ δkKT(r,P ′)
1 +

∑k−2
i=1

(
4nm4

i

) < δKT(rC ,P) + 1

because δKT(rC ,P) ≤ n
(
m
2

)
≤ nm2. In particular, δKT(rC ,P) ≤ τ for an integer τ iff373

δkKT(r,P ′) ≤ (1 +
∑k−2

i=1

(
4nm4

i

)
)(τ + 1)− 1 = τ ′. This shows that (P , τ) is a yes instance of374

2-KAP-DEC iff (P ′, τ ′) is a yes instance of k-KAP-DEC.375

It is known that 2-KAP-DEC is NP-complete even if the number n of voters equals 4 [9]376

and even if the average range of candidates equals 2 [22]. As the reduction above preserves377

the number of voters and decreases the average range of candidates, the same results hold378

for k-KAP-DEC.379

Although the above proof uses a conversion from the k-wise Kemeny rule to the standard380

Kemeny rule, note that it means in no way that both rules are equivalent. There indeed381

exist instances with arbitrary large sets of candidates such that the k-wise Kemeny rule382

differs from the Kemeny rule. Consider for instance the election described in Example 1.383

The only k-wise Kemeny consensus ranking is c1 � c2 � c3, while the only pairwise Kemeny384

consensus ranking is c2 � c3 � c1. Now modify the preference profile of the previous election385

by adding candidates c4 to ck, with k arbitrarily large such that for any ranking r in the386

new preference profile, headk−3(r) = ck � ck−1 � . . . � c4. With this new preference profile,387

the only k-wise Kemeny consensus ranking is ck � ck−1 � . . . � c4 � c1 � c2 � c3, while388

the only pairwise Kemeny consensus ranking is ck � ck−1 � . . . � c4 � c2 � c3 � c1.389

Despite Theorem 1, k-KAP is obviously FPT w.r.t. the number m of candidates, by390

simply trying the m! rankings in R(C). We now design a dynamic programming procedure391

which significantly improves this time complexity.392
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Proposition 6. If r∗ is an optimal ranking for k-KAP, then δkKT(r
∗,P) = dkKT(C), where,

for any subset S ⊆ C, dkKT(S) is defined by the recursive relation:

dkKT(S) = min
c∈S

[dkKT(S \ {c})

+
∑
r∈PS

∑
c′�rc

k−2∑
i=0

(
|S| − rk(c′, r)− 1

i

)
] (4)

dkKT(∅) = 0.

Proof. Given S ⊆ C and c ∈ S, let us define Rc(S) as {r ∈ R(S) s.t. topr(S) = c}. The
set ∆k(S) can be partitioned into ∆k

c (S) = {S ′ ∈ ∆k(S) s.t. c ∈ S ′} and ∆k
c (S) = {S ′ ∈

∆k(S) s.t. c 6∈ S ′} = ∆k(S \ {c}). Given a preference profile P over C and a ranking
r̂∈Rc(S), the summation defining δkKT(r̂,PS) breaks down as follows:

δkKT(r̂,PS) =
∑
r∈PS

∑
S′∈∆k(S)

disagreeS′(r̂, r)

= δkKT(r̂S\{c},PS\{c}) +
∑
r∈PS

∑
S′∈∆k

c (S)

disagreeS′(r̂, r). (5)

Using the same reasoning as in Equation 1 on page 5, the second summand in Equation 5
can be rewritten as follows:∑

r∈PS

∑
c′�rc

k−2∑
i=0

(
| Belowc(r̂) ∩ Belowc′(r)|

i

)
because topr̂(S

′) = c for all S ′∈∆k
c (S). Note that Belowc(r̂)=S\{c} and Belowc′(r)={c′′∈

S s.t. c′�r c′′} ⊆S, thus | Belowc(r̂) ∩ Belowc′(r)|= |S| − rk(c′, r)− 1. Hence, δkKT(r̂,PS) is
equal to:

δkKT(r̂S\{c},PS\{c}) +
∑
r∈PS

∑
c′�rc

k−2∑
i=0

(
|S| − rk(c′, r)− 1

i

)
. (6)

Consider now a ranking r∗ ∈ R(S) such that δkKT(r
∗,PS) = minr∈R(S) δ

k
KT(r,PS). We have:

δkKT(r
∗,PS) = min

c∈S
min

r̂∈Rc(S)
δkKT(r̂,PS)

= min
c∈S

(
( min
r̂∈R(S\{c})

δkKT(r̂,PS\{c}))

+
∑
r∈PS

∑
c′�rc

k−2∑
i=0

(
|S| − rk(c′, r)− 1

i

))
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because the second summand in Equation 6 does not depend on r̂ (it only depends on c,393

which is the argument of the first min operator). If one denotes minr∈R(S) δ
k
KT(r,PS) by394

dkKT(S), one obtains Equation 4. This concludes the proof.395

A candidate c∈S that realizes the minimum in Equation 4 can be ranked in first position396

in an optimal ranking for PS. Once dkKT(S) is computed for each S ⊆ C, a ranking r∗397

achieving the optimal value dkKT(C) can thus be determined recursively starting from S=C.398

The complexity of the induced dynamic programming method is O(2mm2n) as there are 2m399

subsets S ⊆ C to consider and each value dkKT(S) is computed in O(m2n) by Equation 4.400

The min operation is indeed performed on m values and the sum
∑

c′�rc

∑k−2
i=0

(|S|−rk(c′,r)−1
i

)
401

is computed incrementally in O(m), which entails an O(mn) complexity for the second402

summand in Equation 4 (the n factor is due to the sum over all r∈PS). The computation403

of binomial coefficients
(
p
i

)
for i ∈ {0, . . . , k − 2} and p ∈ {i, . . . ,m − 2} is performed in404

O(mk) in a preliminary step thanks to Pascal’s formula.405

4. The k-Wise Majority Digraph406

We now propose and investigate a k-wise counterpart of the pairwise majority digraph,407

that will be used in a preprocessing procedure for k-KAP.408

As stated in the introduction, the pairwise Kemeny rule is strongly related to the pair-409

wise majority digraph. We denote by GP the pairwise majority digraph associated to profile410

P . We recall that in this digraph, there is one vertex per candidate, and there is an arc411

from candidate c to candidate c′ if a strict majority of voters prefers c to c′. In the weighted412

pairwise majority digraph, each arc (c, c′) is weighted by wP(c, c′) := |{r ∈ P s.t. c �r413

c′}| − |{r ∈ P s.t. c′ �r c}|.414

Example 5. Consider a profile P with 10 voters and 6 candidates such that:415

– 4 voters have preferences c1 � c2 � c4 � c3 � c5 � c6;416

– 4 voters have preferences c1 � c3 � c2 � c4 � c5 � c6;417

– 1 voter has preferences c6 � c1 � c2 � c4 � c3 � c5;418

– 1 voter has preferences c6 � c1 � c4 � c3 � c2 � c5.419

The weighted pairwise majority digraph GP is displayed on the left of Figure 1.420

From GP , we can define a set of consistent rankings:421

Definition 4. Let G be a digraph whose vertices correspond to the candidates in C. Let422

B1(G), . . . , Bσ(G)(G) denote the subsets of C corresponding to the Strongly Connected Com-423

ponents (SCCs) of G, and O(G) denote the set of linear orders <G on {1, . . . , σ(G)} such424

that if there exists an arc (c, c′) from c∈Bi(G) to c′∈Bj(G) then i<G j. Given <G∈O(G),425

we say that a ranking r is consistent with <G if the candidates in Bi are ranked before the426

ones of Bj when i<G j.427
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Figure 1: Weighted k-wise majority digraph in Example 5 for k = 2 (left) and k = 3 (right).

The following result states that, for any <GP∈O(GP), there exists a consensus ranking428

for δKT among the rankings consistent with <GP .429

Theorem 2 (Theorem 16 in [23], by Charon and Hudry). Let P be a profile over C
and assume that the SCCs of GP are numbered according to a linear order <GP∈O(GP).
Consider the ranking r∗, consistent with <GP , obtained by the concatenation of rankings
r∗1, . . . , r

∗
t(GP ) where δKT(r

∗
i ,PBi(GP ))=minr∈R(Bi(GP )) δKT(r,PBi(GP )). We have:

δKT(r
∗,P)= min

r∈R(C)
δKT(r,P).

That is, r∗ is a consensus ranking according to the Kemeny rule. Furthermore, if O(GP) =430

{<GP} and wP(c, c′) > 0 for all c ∈ Bi(GP) and c′ ∈ Bj(GP) when i<GP j, then all consensus431

rankings are consistent with <GP .432

This result does not hold anymore if one uses δkKT (with k≥3) instead of δKT, as shown433

by the following example.434

Example 6. Let us denote by P the profile of Example 1. The pairwise majority digraph435

GP has three SCCs B1(GP) = {c2}, B2(GP) = {c3} and B3(GP) = {c1}. In this example,436

O(GP) = {<GP} where 1 <GP 2 <GP 3. The only ranking consistent with <GP is c2 � c3 � c1437

while the only consensus ranking w.r.t. the 3-wise Kemeny rule is c1 � c2 � c3.438

In order to adapt Theorem 2 to the k-wise Kemeny rule, we now introduce the con-439

cept of k-wise majority digraph. Let ∆k
cc′(S)={S ′ ∈ ∆k(S) s.t. {c, c′} ⊆ S ′}. If S is not440

specified, it is assumed to be C. Given a ranking r, we denote by ∆k
r(S, c, c

′) the set441

18



{S ′ ∈∆k
cc′(S) s.t. topr(S

′) = c}. Given a profile P , we denote by φkP(S, c, c′) the value442 ∑
r∈P |∆k

r(S, c, c
′)| and by wkP(S, c, c′) the difference φkP(S, c, c′)−φkP(S, c′, c). This def-443

inition implies that wkP(S, c′, c) =−wkP(S, c, c′). The value wkP(S, c, c′) is the net agree-444

ment loss that would be incurred by swapping c and c′ in a feasible solution r of k-KAP445

where rk(c′, r)=rk(c, r)+1 and S=Belowc′(r)∪{c, c′}. If maxS∈∆m
cc′
wkP(S, c, c′)≥0 (resp.446

minS∈∆m
cc′
wkP(S, c, c′)>0) then, in a consensus ranking r for δkKT where c and c′ would be447

consecutive, it is possible (resp. necessary) that c �r c′.448

Definition 5. The k-wise majority digraph associated to a profile P over a set C of can-
didates is the digraph GkP=(V ,A), where V=C and (c, c′)∈A iff:

∃S ∈ ∆m
cc′ s.t. wkP(S, c, c′) > 0.

In the weighted k-wise majority digraph, each edge (c, c′) is weighted by:

wkP(c, c′) := max
S∈∆m

cc′
wkP(S, c, c′).

Note that, if k ≥ 3, we may obtain edges (c, c′) and (c′, c) both with strictly positive449

weights (which is impossible in the pairwise case). For instance, for the profile P of Exam-450

ple 5, w3
P(c3, c4)=w3

P({c2, c3, c4}, c3, c4)=1 and w3
P(c4, c3)=w3

P({c3, c4, c5}, c4, c3)=4. For il-451

lustration, let us explain how w3
P({c3, c4, c5}, c4, c3) yields 4. Table 2 summarizes the number452

of times c4 and c3 appear in top position of {c3, c4} or {c3, c4, c5} for each ranking r in P . By453

summing over r∈P : φ3
P({c3, c4, c5}, c4, c3)−φ3

P({c3, c4, c5}, c3, c4)=(4×2+2+2)−(4×2)=4.454

Table 2: Number of times c4 and c3 appear in top position of {c3, c4} or {c3, c4, c5} for each ranking r in
the profile P of Example 5.

r |∆3
r({c3, c4, c5}, c4, c3)| |∆3

r({c3, c4, c5}, c3, c4)|
c1 � c2 � c4 � c3 � c5 � c6 (×4) 2 0
c1 � c3 � c2 � c4 � c5 � c6 (×4) 0 2
c6 � c1 � c2 � c4 � c3 � c5 (×1) 2 0
c6 � c1 � c4 � c3 � c2 � c5 (×1) 2 0

The obtained weighted digraph G3
P is shown on the right of Figure 1 (an efficient manner455

to compute a set S maximizing wkP(S, c, c′) will be explained later on page 24). Besides,456

for any P , G2
P is the pairwise majority digraph as ∆2

cc′(S) = {{c, c′}} ∀S∈∆m
cc′ . Theorem 2457

adapts as follows for an arbitrary k:458

19



B1 = {c1} B2 = {c2} B3 = {c3, c4} B4 = {c5, c6}

Figure 2: The meta-graph of SCCs of G3
P in Example 5.

Theorem 3. Let P be a profile over C and assume that the SCCs of GkP are numbered459

according to a linear order <GkP∈O(GkP). Among the rankings consistent with <GkP , there460

exists a consensus ranking w.r.t. the k-wise Kemeny rule. Besides, if O(GkP)={<GkP} and461

minS∈∆m
cc′
wkP(S, c, c′)>01 for all c∈Bi(GkP) and c′∈Bj(GkP) when i<GkP j, then all consensus462

rankings are consistent with <GkP .463

Proof. Assume that the SCCs of GkP are numbered according to a linear order <GkP∈O(GkP)464

and consider a ranking r which is not consistent with <GkP . Hence, there exists a pair465

(c, c′) such that c directly follows c′ in r while c ∈ Bi(GkP) and c′ ∈ Bj(GkP) with i < j.466

Since i < j, there is no arc from c′ to c in GkP (i.e., ∀S ∈ ∆m
cc′ , w

k
P(S, c, c′) ≥ 0). Let S467

be the set composed of c′ and all candidates placed after c′ in r, including c. Then the468

ranking rc↔c
′
obtained from r by exchanging the positions of c and c′ verifies δkKT(r

c↔c′ ,P)=469

δkKT(r,P)−wkP(S, c, c′) ≤ δkKT(r,P). The repetition of this argument concludes the proof of470

the first claim. The second claim is proved similarly because, in this case, δkKT(r
c↔c′ ,P) =471

δkKT(r,P)−wkP(S, c, c′)<δkKT(r).472

Example 7. The meta-graph of SCCs of G3
P in Example 5 is represented in Figure 2.473

The above result implies that there exists a consensus ranking among c1 � c2 � c3 �474

c4 � c5 � c6, c1 � c2 � c3 � c4 � c6 � c5, c1 � c2 � c4 � c3 � c5 � c6 and475

c1 � c2 � c4 � c3 � c6 � c5.476

To take advantage of Theorem 3, one could try 1) to index the SCCs of GkP according to a
linear order <GkP∈ O(GkP), and then 2) to work on each SCC separately, before concatenating
the obtained rankings. However, for a consensus ranking consistent with <GkP , the relative

positions of candidates in Bi(GkP) depend on the set of candidates in B>i(GkP) :=Bi+1(GkP)∪
. . .∪Bσ(GkP )(GkP) (but not on their order). The influence of B>i(GkP) can be captured in the
dynamic programming procedure by applying a modified version of Equation 4 separately

1Or, equivalently, maxS∈∆m
cc′

wk
P(S, c′, c)<0.
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for each subset Bσ(GkP )(GkP) downto B1(GkP). Formally, if r∗ is optimal for k-KAP, then:

δkKT(r
∗,P)=

σ(GkP )∑
i=1

dkKT(Bi(GkP))

where, for any subset S ⊆ Bi(GkP), dkKT(S) is defined by dkKT(∅) = 0 and (B>i stands for
B>i(GkP)):

dkKT(S) = min
c∈S

[dkKT(S\{c})

+
∑

r∈PS∪B>i

∑
c′�rc

k−2∑
i=0

(
|S|+ |B>i| − rk(c′, r)− 1

i

)
].

It amounts to replacing S by S∪B>i in the second summand of Equation 4 to take into477

account the existence of a consensus ranking where all the candidates of B>i are ranked478

after those of Bi. Let r∗i be a ranking of Bi(GkP) such that δkKT(r
∗
≥i,PB≥i(GkP ))=dkKT(Bi(GkP))+479

. . .+dkKT(Bσ(Gk)(GkP)), where r∗≥i is the ranking obtained by the concatenation of rankings480

r∗i , . . . , r
∗
σ(Gk)

in this order. The ranking r∗≥1 of C is a consensus ranking w.r.t. the k-wise481

Kemeny rule. Given Theorem 3, the k-wise majority digraph thus seems promising to boost482

the computation of a consensus ranking. Unfortunately, the following negative result holds:483

484

Theorem 4. Given two candidates c and c′ in a profile P, determining if max
S∈∆m

cc′
wkP(S, c, c′) >485

0 is an NP-complete problem for any constant k≥4.486

Proof. For the membership part, note that given a set S, we can check in polynomial time487

if wkP(S, c, c′) > 0. Indeed, we can enumerate all sets in ∆k
cc′(S) and for each ranking r ∈ P488

count how many are in ∆k
r(S, c, c

′) or in ∆k
r(S, c

′, c).489

For the hardness part, we make a reduction from the set cover problem, known to be490

NP-complete [24]:491

Set Cover Problem492

Instance: A set of elements X = {x1, . . . , xp}, a collection T = {T1, . . . , Tq} of sets of493

elements of X , and a positive integer b.494

Question: Does there exist a subcollection K ⊆ T of at most b sets that covers X (i.e., such495

that
⋃
T∈K T =X )?496

We assume that no set in T contains X as otherwise the problem is trivial. Furthermore,497
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we assume that no element in X is contained in all sets of T as otherwise this element could498

be discarded from the instance as any solution would cover this element. We now detail499

the preference profile that we create from an instance of the set cover problem.500

Set of candidates: We will create a profile such that maxS∈∆m
cc′
wkP(S, c, c′) > 0 iff the501

answer to the set cover problem is yes for the instance under consideration. More precisely,502

we will show that if X cannot be covered by a subcollection K ⊆ T with less than b sets,503

then wkP(S, c, c′) < 0 for all S in ∆m
cc′ . Otherwise, if set X can be covered with a subcollection504

K ⊆ T with less than b sets, then there exists a set S in ∆m
cc′ such that wkP(S, c, c′) > 0. In505

addition to candidates c and c′, for each pair (x, T ) ∈ X × T such that x ∈ T we create a506

candidate cx,T . Moreover, for each set T ∈ T we create a candidate cT . In the sequel, we507

may call candidates cx,T element candidates and candidates cT set candidates. This process508

yields at most pq+2 candidates ((p−1)q+q+2). The candidates cx,T and cT will make the509

correspondence with the subcollection K: the candidate cT will be in the set S iff T ∈ K510

and the candidate cx,T will be in the set S if T is added to K in order to cover x.511

Set of voters: For each pair (x, T ) ∈ X × T such that x ∈ T , we create 2b voters vsx,T512

(s ∈ {1, . . . , 2b}) with the same ranking rx,T such that tail4(rx,T ) = c � cx,T � cT � c′. For513

each element x ∈ X , we create 2b voters vsx (s ∈ {1, . . . , 2b}) with the same ranking rx such514

that tailu+2(rx) = c′ � cx,Ti1 � . . . � cx,Tiu � c where Ti1 , Ti2 , . . . , Tiu are the different sets515

in T that contain x. For each set T ∈ T we create 2b|T |+2 voters vsT (s ∈ {1, . . . , 2b|T |+ 2})516

with the same ranking rT such that tail3(rT ) = c′ � cT � c. Lastly, we create 2q + 1 + 2b517

voters vs (s ∈ {1, . . . , 2q+ 1 + 2b}) with the same ranking r such that tail2(r) = c � c′. In518

the end, we obtain O(bpq) voters. Note that P can be build with no unanimity dominance519

relationship between two candidates.520

We now show that, given k ≥ 4, we have maxS∈∆m
cc′
wkP(S, c, c′) > 0 iff the answer to the521

set cover problem is yes.522

First note that when S = {c, c′}, we have the following values for φkP(S, c, c′) and
φkP(S, c′, c):

φkP({c, c′}, c, c′) = 2b
∑
T∈T

|T |+ 2q + 2b+ 1

φkP({c, c′}, c′, c) = 2b
∑
T∈T

|T |+ 2q + 2bp.

Hence,

wkP({c, c′}, c, c′) = φkP({c, c′}, c, c′)− φkP({c, c′}, c′, c)
= 2b(1− p) + 1 < 0,
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as p ≥ 2 and b ≥ 1.523

Now let us look at how adding an element to S starting from S = {c, c′} modifies524

values φkP(S, c, c′) and φkP(S, c′, c). We will assume without loss of generality that we add525

set candidates before element candidates.526

• If we assume S is only composed of c, c′ and set candidates, then adding a candidate527

cT to it results in adding 2b|T | to φkP(S, c, c′) and 2b|T |+ 2 to φkP(S, c′, c).528

• If we add a candidate cx,T to S, then we add 2b to φkP(S, c, c′) if cT 6∈ S and 4b529

otherwise. Additionally, we add 2b to φkP(S, c′, c) if there is no other cx,T ′ ∈ S,530

otherwise we add to it something that is greater than or equal to 4b. Note that we531

have used the fact that k ≥ 4, as we would only add 2b to both values if k was equal532

to 3.533

From these observations, we can derive the following rules:534

1. If {cx,T , cx,T ′} ⊂ S with T 6= T ′, then wkP(S, c, c′) ≤ wkP(S \ {cx,T ′}, c, c′).535

2. If cx,T ∈ S and cT 6∈ S, then wkP(S, c, c′) ≤ wkP(S \ {cx,T}, c, c′).536

3. If cT ∈ S and ∀x ∈ T , cx,T 6∈ S, then wkP(S, c, c′) ≤ wkP(S \ {cT}, c, c′).537

Stated differently, while rule 1 states that, to maximize wkP(S, c, c′), we should keep no more538

than one candidate cx,T per element x, rules 2 and 3 state that there should be a candidate539

cx,T in S iff there should also be candidate cT .540

541

Let us now consider a set S ∈ ∆m
cc′ verifying rules 1, 2 and 3 that includes one candidate

cx,T for s elements {xi1 , . . . , xis} and v set candidates. Then:

wkP(S, c, c′) = 2b(1− p) + 1− 2v + 2bs

= 2b(s− p) + 2(b− v) + 1.

Note that if S 6= {c, c′}, then v ≥ 1 and that by rule 1, s ≤ p. If s < p, then542

wkP(S, c, c′) ≤ −2b + 2(b − v) + 1 = 1 − 2v < 0. Hence, if wkP(S, c, c′) ≥ 0 then s = p,543

which further implies that v ≤ b. In this case, it is easy to see that the v sets corresponding544

to the set candidates in S form a valid set cover of X as {xi1 , . . . , xis} = X , v ≤ b and545

S verifies rule 2. To summarize, making the assumption that wkP(S, c, c′) ≥ 0, (In fact in546

this case wkP(S, c, c′) > 0) we have showed that we could build a valid set cover of X from547

S. Consequently, this implies that if the set cover instance admits no valid set cover, then548

maxS∈∆m
cc′
wkP(S, c, c′) < 0.549

550

Conversely, let us assume that there exists a subcollection K = {Ti1 , . . . , Tiv} with v ≤ b
sets that covers X . We consider a set S such that {cTi1 , . . . , cTiv , c, c

′} ⊂ S and such that
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for each x ∈ X , S contains exactly one candidate cx,T where x ∈ T and T ∈ K. Then,
simple calcula show that:

φkP(S, c, c′) = 2b
∑
T∈T

|T |+ 2b
∑
T∈K

|T |+ 4bp+ 2q + 1 + 2b,

φkP(S, c′, c) = 4bp+ 2b
∑
T∈T

|T |+ 2q + 2b
∑
T∈K

|T |+ 2v.

Hence, wkP(S, c, c′) ≥ 1 and maxS∈∆m
cc′
wkP(S, c, c′) > 0.551

Hence, computing GkP from P is NP-hard for k≥ 4. In contrast, G3
P can be computed552

in polynomial time. Indeed, given a set S ⊂ C such that {c, c′} ⊆ S, adding an element553

x 6∈ S to S increases φ3
P(S, c, c′) by one for each r ∈ P such that c �r c′ and c �r x.554

Let us denote by Pc�c′ the set {r ∈ P s.t. c �r c′}. A set S∗ maximizing w3
P(S, c, c′) is555

S∗ := {c, c′} ∪ {x ∈ C such that | Pc�c′ ∩Pc�x | > | Pc′�c ∩Pc′�x |}. For instance, coming556

back to the weighted digraph G3
P shown on the right of Figure 1, a set S∗ maximizing557

w3
P(S, c4, c3) in Example 5 is {c3, c4, c5}, which yields w3

P(S∗, c4, c3) = 4 as reported previ-558

ously.559

560

Note that one can take advantage of the meta-graph of SCCs to trim the graph GkP if561

one looks for a consensus ranking r∗ consistent with a specific order <GkP∈ O(GkP). It may562

indeed happen that, for an edge (c, c′), the weight wkP(c, c′)=wkP(S, c, c′)>0 corresponds to563

a set S which contains candidates that will never be below c in r∗. Conversely, the set S564

may omit candidates that are necessarily below c in r∗. These constraints can be induced565

by either unanimity dominance relations or by <GkP . The following example illustrates this566

idea.567

Example 8. Let us refine the digraph G3
P previously obtained for the profile P of Example 5.568

The SCCs are B1 = {c1}, B2 = {c2}, B3 = {c3, c4} and B4 = {c5, c6} and O(GkP) = {<GkP},569

where 1 <GkP 2 <GkP 3 <GkP 4. A set maximizing w3
P(S, c3, c4) is S = {c2, c3, c4}. This set570

contains c2 while it is necessarily above c3 in a consistent ranking. Conversely, candidates571

c5 and c6 are omitted while they are necessarily below c3. By taking into account these572

constraints, we obtain that a set maximizing w3
P(S, c3, c4) is S = {c3, c4, c5, c6}, for which573

w3
P(S, c3, c4)=−4. Hence, we can remove the arc (c3, c4) from G3

P . Similarly, it is possible574

to show that the arc (c6, c5) can be removed from G3
P . Thanks to these refinement steps, we575

can conclude that a consensus ranking is r∗ = c1 � c2 � c4 � c3 � c5 � c6.576
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5. A polynomial time 2-approximation algorithm577

In this section, we provide a polynomial time 2-approximation algorithm for problem578

k-KAP, in the same spirit as the 2-approximation algorithm by Dwork et al. [9] for the579

Kemeny aggregation problem. This latter algorithm relies on the Spearman distance.580

Definition 6. The Spearman distance δS(r, r′) between two rankings r and r′ is defined by

δS(r, r′) =
∑
c∈C

| rk(c, r)− rk(c, r′)|.

The Diaconis-Graham inequality [25] states that the Kendall tau and Spearman dis-
tances remain within a constant factor of each other for all pairs of rankings, namely:

δKT(r, r
′) ≤ δS(r, r

′) ≤ 2 δKT(r, r
′).

Note that the right bound is tight, as witnessed by the two rankings c1 �r c2 and c2 �r′ c1,581

for which δKT(r, r
′)=1 and δS(r, r

′)=2.582

Dwork et al. [9] have shown that a ranking rS minimizing the sum of Spearman distances
to the rankings in a preference profile P (i.e.,

∑
r′∈P δS(rS, r

′)=minr
∑

r′∈P δS(r, r
′)) can be

computed in polynomial time via a minimum cost matching algorithm. As a consequence
of the Diaconis-Graham inequality, the sum of Kendall tau distances between rS and the
rankings in P is in the worst case twice that of an optimal ranking for the Kemeny rule.
Denoting by rKT an optimal ranking for the Kemeny rule on P , we have indeed:∑

r′∈P

δKT(rS, r
′) ≤

∑
r′∈P

δS(rS, r
′) ≤

∑
r′∈P

δS(rKT, r
′) ≤ 2

∑
r′∈P

δKT(rKT, r
′).

In order to obtain the same kind of result for the k-wise Kendall tau distance, we583

introduce a k-wise variant of the Spearman distance.584

Definition 7. The k-wise Spearman distance δkS(r, r′) between two rankings r and r′ is
defined by:

δkS(r, r′) =
∑
c∈C

∑max{rk(c,r),rk(c,r′)}−1
i=min{rk(c,r),rk(c,r′)} N

m−i−1
k−2

where Np
k =
∑k

i=0

(
p
i

)
is the number of subsets of size less than or equal to k within a set of585

size p.586

This definition is motivated by the fact that Nm−i−1
k−2 corresponds to the k-wise Kendall

tau distances between a ranking and the ranking obtained by swapping candidates of ranks
i and i+ 1. Note that δ2

S =δS. We have indeed:∑max{rk(c,r),rk(c,r′)}−1
i=min{rk(c,r),rk(c,r′)} N

m−i−1
0 = max{rk(c, r), rk(c, r′)} −min{rk(c, r), rk(c, r′)}

= | rk(c, r)−rk(c, r′)|.
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because Nm−i−1
0 =1 for all i in the summation.587

We now state and prove the extension of the Diaconis-Graham inequality to our k-wise588

variants:589

Lemma 3. For any two rankings r and r′: δkKT(r, r
′)≤δkS(r, r′)≤2δkKT(r, r

′).590

Proof. We first prove that δkKT(r, r
′)≤δkS(r, r′). We recall that:

δkKT(r, r
′) = |{S ∈ ∆k : topr(S) 6= topr′(S)}|

which can be reformulated:

δkKT(r, r
′) =

∑
c∈C

|{S ∈ ∆k : topr(S) = c and topr′(S) 6= c}|.

Let us denote by ∆k
c (r, r

′) the set {S ∈ ∆k : topr(S) = c and topr′(S) 6= c}. For any591

S∈∆k
c (r, r

′), one of the followings holds true:592

• rk(topr(S), r)≤rk(topr′(S), r′)<rk(topr(S), r′),593

• or rk(topr′(S), r)>rk(topr(S), r)≥rk(topr′(S), r′),594

• or both (if rk(topr(S), r)=rk(topr′(S), r′)).595

Consequently: δkKT(r, r
′) ≤

∑
c∈C

|{S∈∆k
c (r, r

′) : rk(c, r)≤rk(topr′(S), r′)<rk(c, r′)}|

+
∑
c∈C

|{S∈∆k
c (r, r

′) : rk(topr′(S), r)>rk(c, r)≥rk(topr′(S), r′)}|

because the union of the two sets is ∆k
c (r, r

′) and |A ∪ B| ≤ |A| + |B| for any two sets A596

and B.597

On the one hand, we have:∑
c∈C

|{S∈∆k
c (r, r

′) : rk(c, r)≤rk(topr′(S), r′)<rk(c, r′)}|

≤
∑
c∈C

rk(c,r)<rk(c,r′)

∑rk(c,r′)−1
i=rk(c,r) N

m−i−1
k−2 .

The upper bound results from the fact that each candidate c′ such that rk(c, r)≤rk(c′, r′)<598

rk(c, r′) belongs to at most N
m−rk(c′,r′)−1
k−2 subsets S∈∆k

c (r, r
′) such that topr′(S)=c′.599
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On the other hand, we have:∑
c∈C

|{S∈∆k
c (r, r

′) : rk(topr′(S), r)>rk(c, r)≥rk(topr′(S), r′)}|

=
∑
c′∈C

|{S∈∆k
c′(r

′, r) : rk(c′, r)>rk(topr(S), r)≥rk(c′, r′)}|

≤
∑
c′∈C

rk(c′,r)>rk(c′,r′)

∑rk(c′,r)−1
i=rk(c′,r′) N

m−i−1
k−2 =

∑
c∈C

rk(c,r)>rk(c,r′)

∑rk(c,r)−1
i=rk(c,r′) N

m−i−1
k−2 .

The first equality results from the fact that varying c and considering subsets S such that600

topr(S)=c and rk(topr′(S), r) > rk(c, r) ≥ rk(topr′(S), r′) is equivalent to varying c′ and601

considering subsets S such that topr′(S)=c′ and rk(c′, r) > rk(topr(S), r) ≥ rk(c′, r′).602

Hence:

δkKT(r, r
′) ≤

∑
c∈C

rk(c,r)<rk(c,r′)

∑rk(c,r′)−1
i=rk(c,r) N

m−i−1
k−2 +

∑
c∈C

rk(c,r)>rk(c,r′)

∑rk(c,r)−1
i=rk(c,r′) N

m−i−1
k−2

=
∑
c∈C

∑max{rk(c,r),rk(c,r′)}−1
i=min{rk(c,r),rk(c,r′)} N

m−i−1
k−2 = δkS(r, r′).

We now prove that δkS(r, r′)≤ 2δkKT(r, r
′). In this purpose, we consider a sequence r0 =603

r, r1, . . . , rδ=r′ of rankings, where rj+1 is obtained from rj by swapping in rj the candidate604

c′j =topr′({c ∈ C : rk(c, rj) 6= rk(c, r′)}) with the previous candidate in rj, denoted by cj.605

This is like doing an in-place selection sort w.r.t. the order defined by r′, moving c′j to its606

place in r′ by successive swaps. Note the following things:607

• at each step rk(c′j, r
′)<rk(c′j, rj) by definition of c′j;608

• δ= δKT(r, r
′) because each swap of consecutive candidates in rj decreases by exactly609

one the number of pairwise disagreements between rj and r′ (c′j �r′ cj by definition610

of c′j).611

The proof is in two steps:612

(i) We show that δkKT(rj, r
′) = δkKT(rj, rj+1) + δkKT(rj+1, r

′). By induction, an immediate
consequence is that:

δkKT(r, r
′) =

δ−1∑
j=0

δkKT(rj, rj+1).

(ii) We define Dj = δkS(rj, r
′). We show that Dj−Dj+1 ≤ 2δkKT(rj, rj+1), which implies:613

δkS(r, r′)=
∑δ−1

j=0(Dj −Dj+1)≤2
∑δ−1

j=0 δ
k
KT(rj, rj+1)=2δkKT(r, r

′).614
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Proof of (i). We have the following sequence of equalities:

δkKT(rj, r
′)− δkKT(rj+1, r

′)

= |{S ∈ ∆k : toprj(S) 6= topr′(S)}| − |{S ∈ ∆k : toprj+1
(S) 6= topr′(S)}|

= |{S ∈ ∆k : toprj(S) = cj and topr′(S) = c′j}|
(because rj and rj+1 only differ in the order of cj and c′j)

= |{S ∈ ∆k : {cj, c′j} ⊆ S and S \ {cj, c′j} ⊆ Belowc′j(rj)}|
(because c′j �r′ c, ∀c ∈ Belowc′j(rj), which implies that Belowcj(rj) ⊆ Belowc′j(r

′))

= |{S ∈ ∆k : toprj(S) 6= toprj+1
(S)}|

(because rj and rj+1 only differ in the order of cj and c′j)

= δkKT(rj, rj+1).

The result follows.615

Proof of (ii). As rj and rj+1 only differ in the ranks of cj and c′j, the difference Dj −Dj+1

is equal to:∑
c∈{cj ,c′j}

(∑max{rk(c,rj),rk(c,r′)}−1

i=min{rk(c,rj),rk(c,r′)} N
m−i−1
k−2 −

∑max{rk(c,rj+1),rk(c,r′)}−1

i=min{rk(c,rj+1),rk(c,r′)} N
m−i−1
k−2

)
.

Note that rk(cj, rj+1) = rk(cj, rj) + 1 and rk(c′j, rj+1) = rk(c′j, rj) − 1 and rk(c′j, r
′) ≤

rk(c′j, rj+1). By swapping cj and c′j in rj, the k-wise Spearman distance to r′ will thus

decrease with respect to c′j by N
m−rk(c′j ,rj)

k−2 . Regarding cj, it may increase by N
m−rk(cj ,rj)−1
k−2

if max{rk(cj, rj), rk(cj, r
′)}=rk(cj, rj), or decrease by N

m−rk(cj ,rj)−1
k−2 otherwise. Hence, the

largest possible decrease in δkS occurs in this latter case. We derive from this short analysis:

Dj −Dj+1 ≤ N
m−rk(c′j ,rj)

k−2 +N
m−rk(cj ,rj)−1
k−2

= 2N
m−rk(c′j ,rj)

k−2 (as rk(c′j, rj) = rk(cj, rj) + 1)

= 2δkKT(rj, rj+1)

The last line results from the fact that, as stated previously, Nm−i−1
k−2 corresponds to the616

k-wise Kendall tau distance between a ranking and the ranking obtained by swapping617

candidates of ranks i and i+ 1.618

The following result states that a consensus ranking for the k-wise Spearman distance619

can be computed in polynomial time in the numbers n of voters and m of candidates:620
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Lemma 4. A consensus ranking for the k-wise Spearman distance can be computed in time621

O(nm3), for a preference profile with n voters and m candidates.622

Proof. Consider the complete bipartite graph with two independent sets V1 and V2, where:623

• each vertex in V1 corresponds to a candidate in C,624

• each vertex in V2 corresponds to a position in {1, . . . ,m}.625

The edge {c, p} between c ∈ V1 and p ∈ V2 is weighted by
∑

r′∈P
∑max{p,rk(c,r′)}−1

i=min{p,rk(c,r′)} N
m−i−1
k−2 .

Each perfect matching corresponds to a ranking r, where rk(c, r)=p if edge {c, p} belongs
to the matching. Determining a minimum weight matching in this graph thus amounts to
solve the following minimization problem:

min
r

∑
c∈C

∑
r′∈P

∑max{rk(c,r),rk(c,r′)}−1
i=min{rk(c,r),rk(c,r′)} N

m−i−1
k−2 .

The two first sum operators can be swapped, which yields:

min
r

∑
r′∈P

∑
c∈C

∑max{rk(c,r),rk(c,r′)}−1
i=min{rk(c,r),rk(c,r′)} N

m−i−1
k−2 = minr

∑
r′∈P δ

k
S(r, r′).

Thus a minimum weight matching corresponds to a consensus ranking for the k-wise Spear-626

man distance. Such a matching can be computed in time O(|V1|3) by the Hungarian algo-627

rithm, thus in O(m3) as |V1|=m. The computation of the complete bipartite graph itself628

is performed in O(nm3) (time required for computing the weights of edges). The overall629

complexity is therefore O(nm3).630

From Lemma 3, which implies that any consensus ranking for the k-wise Spearman631

distance is a 2-approximation of an optimal consensus ranking for the k-wise Kemeny rule,632

and Lemma 4, which establishes that a consensus ranking for the k-wise Spearman distance633

can be computed in O(nm3), we deduce the main result of this section:634

Theorem 5. There exists a 2-approximation algorithm for k-KAP which runs in O(nm3)635

time.636

Note that determining whether the bound 2 is tight remains an open problem (as is the637

case for k=2, to our knowledge).638
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6. Numerical Tests639

The numerical tests2 we carried out had several objectives:640

• to evaluate the computational performance of the dynamic programming approach of641

Section 3,642

• to evaluate the impact of parameter k on the set of consensus rankings,643

• to assess the efficiency of the preprocessing technique of Section 4,644

• to study the practical approximation ratio of the polynomial-time 2-approximation645

algorithm proposed in Section 5.646

Generation of preference profiles. The preference profiles are generated according to the647

Mallows model [26], using the Python package PrefLib-Tools [27] in most tests (the PerMal-648

lows R package [28] was used for the tests of the 2-approximation algorithm). This model649

takes two parameters as input: a reference ranking σ (the mode of the distribution) and a650

dispersion parameter φ ∈ (0, 1). Given these inputs, the probability of generating a ranking651

r is proportional to φδKT(r,σ). The more φ tends towards 0 (resp. 1), the more the preference652

rankings become correlated and resemble σ (resp. become equally probable, i.e., we are653

close to the impartial culture assumption). This model enables us to measure in a simple654

way how the level of correlation in the input rankings impacts our results. In all tests, the655

number n of voters is set to 50 and the ranking σ is set arbitrarily as the k-wise Kemeny rule656

is neutral. For each triple (m, k, φ) considered, the results are averaged over 50 preference657

profiles.658

Practicability of the dynamic programming approach. We first evaluate our dynamic pro-659

gramming approach on instances with different values for m and k. Note that the com-660

putational performance measured here is not impacted by the level of correlation in the661

input rankings as it does not change the number of states in dynamic programming nor the662

computation time to determine the optimal value in each state. Hence, we only consider663

instances generated under the impartial culture assumption, i.e., with φ ≈ 1.664

Table 3 (Rows 3-5) displays the average, max and min running times obtained for some665

representative (m, k) values. As expected, the running times increase exponentially with666

m. Conversely, parameter k seems to have a moderate impact on the running times. The667

dynamic programming approach enables us to solve k-KAP in a time of up to 3 sec. (resp.668

76 sec.) for m≤14 (resp. m≤18).669

2Implementation in C++, except for the polynomial-time 2-approximation algorithm implemented in
Python3. Unless otherwise stated, all times are CPU seconds on an Intel Core I7-8700 3.20 GHz processor
with 16GB of RAM.
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Influence of k on the set of consensus rankings. Second, we study the impact of k on the670

set of optimal solutions to k-KAP. Indeed, one criticism for the Kemeny rule is that there671

exists instances for which the set of consensus rankings is compounded of many solutions672

which are quite different from one another. Thus, we investigate if increasing k helps673

in mitigating this issue. For this purpose, we consider the same instances as before and674

compute the average number of consensus rankings denoted by |R∗|avg. The results are675

displayed in the sixth row of Table 3. Interestingly, this measure decreases quickly with676

k. For instance, when m= 18, |R∗|avg is divided by 5 when k increases from 2 to 9 and is677

below 2 when k=m. The intuition is that δkKT becomes more fine-grained as k increases.678

Table 3: Average, max and min CPU times in seconds of the dynamic programming approach of Section 3
for varying values of m and k (Rows 3 to 5). Average number of consensus rankings for increasing values
of m and k (Row 6).

m 6 10 14 18
k 2 3 6 2 5 10 2 7 14 2 9 18
Average time <0.01 <0.01 <0.01 0.07 0.08 0.08 2.52 2.54 2.61 70.93 72.26 74.95
Max time <0.01 <0.01 <0.01 0.80 0.08 0.09 2.64 2.60 2.64 71.57 73.57 75.38
Min time <0.01 <0.01 <0.01 0.70 0.07 0.08 2.49 2.49 2.57 70.27 71.91 74.33
|R∗|avg 3.00 1.20 1.05 3.84 1.24 1.10 5.36 2.36 1.16 19.70 4.12 1.47

Impact of the 3-wise majority graph. We now study the impact of the preprocessing method679

proposed in Section 4 for k = 3. This preprocessing uses the k-wise majority digraph680

to divide k-KAP into several subproblems which can be solved separately by dynamic681

programming. Hopefully, when voters’ preferences are correlated (i.e., for “small” φ values),682

these subproblems become smaller and more numerous, making the preprocessing more683

efficient. The results are shown in Table 4, where the results obtained without preprocessing684

are also given in the last column. The obtained running times are highly dependent on φ.685

For instance, with m= 18, the average running time for solving 3-KAP is above 1 minute686

if φ = 0.95 while it is below 1 second if φ ≤ 0.85. This gap is necessarily related to the687

preprocessing step, since φ has no impact on the running time of the dynamic programming688

approach. To explain this significant speed-up, we display in Table 5 the average size689

of the largest SCC of the 3-wise majority digraph at the end of the preprocessing step.690

Unsurprisingly, this average size turns out to be correlated with φ: when φ≤0.5, the size of691

the largest SCC is almost always 1. Hence, the preprocessing step is likely to yield directly692

a consensus ranking. In contrast, when φ=0.95, the average size of the largest SCC is close693

to m, thus the impact of the preprocessing is low.694

695
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Table 4: Average, max and min CPU times (in seconds) for the 3-wise Kemeny rule with preprocessing.

m φ 0.5 0.8 0.85 0.9 0.95
w/o
preproc.

Avg time <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
6 Max time <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Min time <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Avg time 0.03 0.03 0.04 0.07 0.10 0.07

10 Max time 0.03 0.03 0.10 0.15 0.17 0.08
Min time 0.03 0.03 0.03 0.03 0.03 0.07
Avg time 0.09 0.09 0.11 0.94 2.21 2.52

14 Max time 0.09 0.13 0.25 3.14 3.26 2.59
Min time 0.08 0.08 0.09 0.10 0.26 2.49
Avg time 0.20 0.20 0.55 14.87 61.72 71.17

18 Max time 0.31 0.21 8.46 79.87 80.11 71.61
Min time 0.19 0.19 0.19 0.22 6.02 71.02

Table 5: Average size of the largest SCC after preprocessing.
m\φ 0.47 0.81 0.85 0.88 0.95

6 <1.10 1.84 1.88 2.72 3.28
10 <1.10 1.64 3.28 5.32 8.20
14 <1.10 2.68 3.84 9.12 12.91
18 <1.10 2.84 4.27 9.80 17.44

Polynomial-time 2-approximation algorithm. Lastly, we study the practical approximation696

ratio of the proposed polynomial-time 2-approximation algorithm. The results are averaged697

over 50 instances randomly generated according to the Mallows model, for 50 voters and698

12 candidates. Preliminary tests not reported here tended to show that this approximation699

ratio does not depend on the number of candidates. Furthermore, the approximation ratio700

becomes better when the number of voters increases which can be explained by the fact701

that the law of large numbers make dominant the reference ranking in the Mallows model,702

regardless of the aggregation rule. We report in Figure 3 the box plots obtained by varying703

the values of k and φ (the closer to 1, the closer to the impartial culture assumption). Note704

that the CPU time to compute a consensus ranking for the k-wise Spearman distance (for705

50 voters and 12 candidates) is below 12 milliseconds whatever the values of k and φ, using706

the linear sum assignment function of the SciPy Python library on an Intel Core i5 2.3707

GHz dual core processor with 8GB of RAM. It is interesting to observe that the practical708

approximation ratio is much better than 2: the worst ratio over all generated instances is709

1.04. For the same reason as for the number of voters, the more correlated the preferences710

in the profile, the better the approximation ratio. Furthermore, the greater the value of k,711

the better the approximation ratio, as is clear from the curves obtained.712
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Figure 3: Practical approximation ratio of the 2-approximation algorithm.
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7. Conclusion713

In this paper, we advocate using the results of setwise contests between candidates to714

design social welfare functions that are less myopic than those only based on pairwise com-715

parisons. One natural such social welfare function is a k-wise generalization of the Kemeny716

rule, which returns a ranking minimizing the number of disagreements on top candidates of717

sets of cardinality lower than or equal to k. We have studied this k-wise Kemeny rule from718

both axiomatic and algorithmic viewpoints. In more detail, we established that determining719

a consensus ranking is NP-hard for any k ≥ 3. Then, after proposing a dynamic program-720

ming procedure, we have investigated a k-wise variant of the majority graph, from which721

we developed a preprocessing step. Computing this graph is a polynomial time problem for722

k = 3 but becomes NP-hard for k ≥ 4. The numerical tests show the practicability of the723

approach for up to 18 candidates. Lastly, we have designed a 2-approximation algorithm for724

the k-wise Kemeny aggregation problem. This approximation algorithm in fact returns a725

ranking minimizing a k-wise variant of the Spearman distance, and the worst case approx-726

imation ratio is then derived from an adaptation of the Diaconis-Graham inequality. The727

numerical tests suggest that, in practice, the k-wise Kemeny score of the returned ranking728

is often much better than a 2-approximation of the optimal score.729

Several research directions could be further investigated. One of them would be to730

investigate the complexity of determining a consensus ranking for δkKT when k = m, because731

our hardness result only holds for fixed values of k. Secondly, note that δkKT focuses on732

“small” sets as we count disagreements on sets of size lower than or equal to k. An opposite733
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viewpoint would be to consider “large” sets by counting disagreements on sets of size greater734

than or equal to m− k. Note that for k = 0 this would lead to a rule similar to plurality.735

Another direction is to study the complexity of recognition problems related to the k-wise736

Kemeny rule [29], i.e., deciding if a given ranking is a consensus ranking for the k-wise737

Kemeny rule. Alternative definitions of k-wise majority graphs that are easier to compute738

for k > 3 are also worth investigating. Finally, other social welfare functions based on the739

results of setwise contests are worth investigating in our opinion, both from the axiomatic740

and the computational points of view.741
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