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HYBRID KINETIC/FLUID NUMERICAL METHOD FOR THE

VLASOV-BGK EQUATION IN THE DIFFUSIVE SCALING

TINO LAIDIN

Univ. Lille, CNRS, Inria, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille,
France

Abstract. This work presents a hybrid numerical method for linear colli-

sional kinetic equations with diffusive scaling. The aim of the method is to

reduce the computational cost of kinetic equations by taking advantage of the
lower dimensionality of the asymptotic fluid model while reducing the error

induced by the latter approach. It relies on two criteria motivated by a per-

turbative approach to obtain a dynamic domain adaptation. The first criterion
quantifies distance between a local equilibrium in velocity and the distribution

function of particles. The second one depends only on the macroscopic quan-
tities that are available on the whole computing domain. A key idea is the

use of a micro-macro decomposition to deal with interface conditions. The

method is significantly more efficient than a standard full kinetic approach.
Some properties, such as the conservation of mass, are also investigated and

illustrated through various examples.

1. Introduction

Systems of particles in interactions arise in many fields of science such as gas
theory, plasmas physic or even semiconductors. The mathematical models for such
systems can be classified in three major scales: particles (microscopic), kinetic
(mesoscopic), and fluid (macroscopic). The first type of model is about describing
the system as point particles interacting with each other via collisions or electro-
magnetic forces. Although the resulting system is the most realistic, it is in practice
extremely large. Its study both theoretically and numerically becomes unattain-
able. In this work we consider a kinetic description of the system modelled by
the Vlasov-BGK equation. The unknown is the probability distribution f(t, x, v)
solution to: 

∂

∂t
f + v · ∇xf + E · ∇vf = Q(f),

f(0, x, v) = f0(x, v).

The short-range interactions between particles are taken into account through the
collision operator Q(f), and the function E(x) is a given exterior electrical field.
While attainable, the simulation of this equation remains expensive in computa-
tional ressources. Moreover, using the kinetic description of the system may not
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2 HYBRID KINETIC/FLUID NUMERICAL METHOD

be necessary on the whole computing domain. The fluid one, that is less precise
but much less costly, can be used where it is accurate enough. The aim of the pa-
per is therefore to design a hybrid kinetic/fluid scheme with an automatic domain
adaptation method. It relies on a robust numerical scheme for the kinetic equation,
on relevant criteria to carefully determine fluid and kinetic regions and on a smart
implementation.
Diffusive scaling. In some applications, it is relevant to consider a scaled version
of the Vlasov-BGK equation. Let us introduce the scaling parameter ε > 0. It
is related to the Knudsen number: the ratio between the mean free path of the
particles and the length scale of observation. This work will focus on the diffusive
scaling. Let dx ≥ 1 and dv ∈ N∗ be integers. We denote by Ωx a subset of Rdx . Let
t ≥ 0, x ∈ Ωx and v ∈ Rdv . We look for a particle distribution function fε solution
to the following scaled equation:

∂

∂t
fε +

v

ε
· ∇xfε +

E

ε
· ∇vfε =

1

ε2
Q(fε),

fε(0, x, v) = f0(x, v).
(P ε)

We assume that the initial condition f0 is nonnegative and does not depend on ε.
In practice, the Knudsen number can be of order 1 down to 0 depending on the
physics being modelled. On the one hand, when ε ∼ 1, the system is said to be in
the kinetic regime. It models a system with few collisions between particles. On
the other hand, when ε � 1, the system reaches the fluid regime. This scaling
and its asymptotic limit have first been studied in [5]. The asymptotic expansion
of the distribution function fε in ε is justified in [3] for the neutron transport and
in [36] for the linear Boltzmann equation. In [11] a large class of linear collision
operators is dealt with and in [21], the authors justified an approximation of the
kinetic equation by diffusion using homogenization. In our setting, the limit case
ε = 0 is described by a drift-diffusion equation on the density ρ(t, x):{

∂t ρ− divx (∇xρ− Eρ) = 0,

ρ(0, x) = ρ0(x).
(P )

Asymptotic preserving scheme. In order to design a numerical method that is
efficient, one first needs a numerical scheme that performs well for any value of the
parameter ε. Indeed, as ε tends to 0, the transport velocity in (P ε) formally goes
to infinity. Numerically, it translates to smaller and smaller time steps to guarantee
the stability of a naive scheme and, consequently, a reasonable computation time
cannot be ensured. A solution to this issue is to use schemes that remain stable
in the diffusive limit ε → 0. These schemes fall into the framework of Asymptotic
Preserving (AP) schemes, a notion introduced in [29] and [26]. We also refer to the
recent review articles [27, 15]. This AP property can be summarized by the diagram
in Figure 1. In the diagram, ρ corresponds to a solution to the problem (P ) and
ρh is an approximation of ρ. On the other hand, fε is a solution to the problem
(P ε) and fεh is an approximation of fε. The idea behind AP scheme is threefold.
Firstly, the scheme for (P ε) has to be a consistent discretization of the limit model
as ε → 0. Secondly, a scheme is considered truly AP only if the stability criterion
on the time step is independent on the parameter ε. Thirdly, one can explicitly
take ε = 0 in the scheme. The need of an AP scheme in the kinetic domain of the
hybrid scheme is crucial. One the one hand, for computation time considerations.
One the other hand, the limit scheme is used in the fluid regions of the domain
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adaptation to ensure good transitions between kinetic and fluid states. While AP
schemes are designed to resolve both the mesoscopic and the macroscopic scales
automatically, it often implies more expensive computations even in a fluid regime
because of the resolution of the kinetic scale. By using a hybrid method, one can
effectively take advantage of the properties of an AP scheme while limiting its use
and therefore reduce the computation time.
Hybrid method. A strategy to take advantage of both the kinetic and fluid scales
of description and reduce the computational time is to use a hybrid method. The
notion of multiscale coupling has already been studied and a wide range of tech-
niques has been developed. We will rely on the technique that consists in adapting
the domain in the position variable. Kinetic and fluid regions are created and move
throughout the simulations and the appropriate solver can then be used in each
subdomains. The key idea is the definition of the interfaces between subdomains.
Various criteria have been investigated and we refer to [37, 39, 40, 10, 31] and the
references therein. These criteria vary from being based purely on macroscopic
quantities (macroscopic criteria) to considering the deviation of the distribution
function from a local equilibria in velocity (kinetic criteria). In particular, the idea
to use the asymptotic limit of the kinetic model to achieve a domain adaptation
can be found in [28]. In this work, we shall adapt to the diffusive scaling the cri-
terion introduced in [34] and later used in [38] and [19]. In particular, we will use
a combination of macroscopic and kinetic criteria to achieve the dynamic domain
adaptation. We also refer to [31] where in addition to the coupling between the
kinetic and fluid scales, mesh refinement is also considered. Another technique, first
introduced for the hydrodynamic scaling in [12], also relies on domain adaptation
but consists in adding a buffer zone between kinetic and fluid subdomains using a
transition function in the continuous model. It was extended to a dynamic setting
with moving interfaces in [10] and applied to the diffusive scaling in [13]. Another
approach that do not rely on the adaptation of the domain in position [14, 8] con-
sists in splitting the distribution function into a macroscopic part solved via the
finite volume method and a microscopic one solved using a Monte-Carlo method.
In [24, 25] the splitting of the distribution function is also considered in a stationary
setting. While the microscopic part is again solved via Monte-Carlo methods, the
macroscopic one is solved using a moment method. Another technique introduced
in [43, 42] relies on meshfree methods where the microscopic part is solved using
particles and a lagrangian scheme is used for the macroscopic part. Finally, an al-
ternative approach to reduce the computational cost relies on dynamical low-rank
methods [18] where the idea is to reduce the matrix of the linear system associated
to the discrete problem.
Main contribution. In this work, we develop a hybrid kinetic/fluid numerical
method with an automatic domain adaptation. In particular, no buffer zones are
introduced and we consider a full finite volume approach. The criteria for the
dynamic interfaces are adapted from [19]. The domain adaptation is accomplished
cell-wise and the mesh is fixed throughout the simulation. Domain adaptation
methods are heavily dependent on the treatment of interfaces. One of the main
novelty of this work is the way to deal with interface conditions between kinetic
and fluid. This is achieved by using a micro-macro reformulation of the kinetic
equation. Moreover, the conservation of mass of the hybrid method is thoroughly
investigated for a relevant toy model. The accuracy and long-time behaviour of the
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ε −→ 0ε −→ 0

h −→ 0

h −→ 0

fεfεh

ρh ρ

Figure 1. The AP diagram (h denotes the size of the discretization)

method are observed numerically. Finally, the speedup provided by the method is
significant and illustrated through several test cases.
Plan of the paper. The outline is as follows. Section 2 is dedicated to the deriva-
tion of a hierarchy of macroscopic models based on the Chapman-Enskog expansion
of the distribution function. In Section 3 we recall the micro-macro reformulation of
the Vlasov-BGK equation. This reformulation is then used to develop an Asymp-
totic Preserving scheme with a finite volume approach. Section 4 is dedicated to
the hybrid method. The coupling indicators based on the hierarchy introduced in
Section 2 are presented and the implementation of the hybrid scheme is discussed.
Finally, numerical experiments are performed in Section 5.

2. Chapman-Enskog expansion

The aim of this section is to derive a hierarchy of macroscopic models from which
we will deduce a macroscopic criterion.

2.1. Notations and functional seting. From now on, we consider periodic boun-
dary conditions in position and let v ∈ Rdv , dv ∈ N∗. We also assume that the
electrical field E is periodic on [0, x?]. From now on, the collision operator will be
the linear BGK operator [7]:

Q(f) = ρM− f, where ρ = 〈f〉 and 〈f〉 =

∫
Rdv

f dv. (2.1)

The notation 〈·〉 will be used either for scalars or component-wise for higher order
tensors. Here M(v) denotes the so-called Maxwellian. A standard function that
we consider in this work is the multidimensional centered Gaussian:

M(v) =
e−|v|

2/2

(2π)d/2
.

Let us recall some properties of M:{
M(v) > 0, ∀v ∈ Rdv ,
〈M〉 = 1.

(2.2)

Moreover, sinceM can be expressed as the product of dv 1-dimensional Gaussians,
it is isotropic and even in each direction. As a consequence of the symmetric
domain in velocity and the symmetry of Gaussian, its odd moments vanish. The
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1-dimensional Gaussian also admits finite zeroth, second, and fourth moments in
velocity. We denote by mk its k-th moment:

mk =
1√
2π

∫
R
vkxexp

(
−v2

x

2

)
dvx.

Let us recall the integro-differential problem we are interested in: ∂t f
ε +

1

ε
T (fε) =

1

ε2
(ρεM− fε),

fε(0, x, v) = f0(x, v),
(VBGK)

where

T (f) = v · ∇xf + E · ∇vf.

Let us set γ(v) = 1
M(v) and introduce the measure

dγ = γ(v) dv =
dv

M(v)
.

Let L2( dx dγ) the space of square integrable functions against the measure dxdγ
equipped with the scalar product

(f1, f2)L2( dx dγ) =

∫
Ωx×Rdv

f1f2 dx dγ.

With an initial data in L2( dx dγ), there is a unique solution to (VBGK) (see, e.g.,
[2]) which conserves mass and nonnegativity.
One can define the null space of the linear BGK operator (2.1) as

N =
{
f = ρM where f ∈ L2( dx dγ), ρ = 〈f〉

}
.

The space N is sometimes referred to as the equilibrium manifold. In particular,
one has that

N⊥ =
{
f ∈ L2( dx dγ) such that 〈f〉 = 0

}
.

With these notations, one can decompose f as its equilibrium part in N plus a
perturbative part in N⊥. Note that the perturbative part is not necessarily small.
Let us now introduce the so-called Chapman-Enskog expansion of the distribution
function fε:

fε(t, x, v) = ρε(t, x)M(v) +

∞∑
k=1

εkh(k)(t, x, v). (2.3)

This expansion comes with the following assumptions. First, the functions h(k) do
not depend on the parameter ε. Secondly, we assume that h(k) ∈ N⊥ for all k and
is therefore such that:

〈h(k) 〉 = 0, ∀k ≥ 1.

In particular, we will show that these functions can be expressed using the density
ρε, the electric field E, the velocity variable v and the Maxwellian M.
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2.2. Hierachical truncations. To derive a hierarchy of models, let us consider
truncations of order K ∈ N of the Chapman-Enskog expansion:

fε(t, x, v) ≈ ρε(t, x)M(v) +

K∑
k=1

εkh(k)(t, x, v). (2.4)

Plugging this expansion in (VBGK) leads to

∂t (ρεM) + ∂t

K∑
k=1

εkh(k) = −1

ε
T (ρεM)−

K∑
k=1

εk−1T (h(k))− 1

ε

K∑
k=1

εk−1h(k).

Multiplying by ε and rearranging the terms, one obtains

K−1∑
k=0

εkh(k+1) = −T (ρεM)−
K∑
k=1

εkT (h(k))− ∂t

K+1∑
k=2

εkh(k−1) − ε ∂t (ρεM).

We now identify powers of ε:

k = 0 : h(1) =− T (ρεM), (2.5a)

k = 1 : h(2) =− ∂t (ρεM)− T (h(1)), (2.5b)

2 ≤ k ≤ K − 1 : h(k+1) =− ∂t h
(k−1) − T (h(k)). (2.5c)

2.2.1. Macroscopic model. To derive the fluid model, let us truncate the Chapman-
Enskog expansion at first order K = 1:

fε ≈ ρεM+ εh(1). (2.6)

We start by integrating (VBGK) in velocity to obtain:

∂t ρ
ε +

1

ε
divx〈 vfε 〉 = 0.

Then fε is replaced by its expression (2.6):

∂t ρ
ε +

1

ε
divx

(
ρε〈 vM〉+ ε〈 vh(1) 〉

)
= 0.

The function h(1) is given by the identification (2.5a) and can be simplified using
the identity ∇vM = −vM:

h(1) = −T (ρεM) = −vM · Jε where Jε = ∇xρε − Eρε.

Using the fact that ρε does not depend on the velocity and that odd moments of
the Maxwellian are zero, we obtain by plugging in the expression of h(1):

∂t ρ
ε − 〈 v ⊗ vM〉 : ∇xJε = 0, (2.7)

where ”⊗” denotes the tensor product and ”:” is the tensor contraction of order 2.
The moment tensor is then computed:

〈 v ⊗ vM〉 = m2I

with I the identity matrix. Finally, assuming that ρε → ρ as ε → 0 we formally
obtain the drift-diffusion model:

∂t ρ−m2 divx J = 0, where J = ∇xρ− Eρ. (DD)
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2.2.2. Higher order macroscopic model. To derive the third order fluid model, let
us place ourselves in the 1D-1D setting to lighten the computations and focus on
the various steps involved.

Let us start by truncating the Chapman-Enskog expansion at third order K = 3:

fε ≈ ρεM+ εh(1) + ε2h(2) + ε3h(3). (2.8)

We will see in the derivation process that the second order yields no additional
information.
Again, we start by integrating (VBGK) in velocity and we replace fε by its expan-
sion (2.8):

∂t ρ
ε +

1

ε
∂x 〈vρεM〉+ ∂x

〈
vh(1) + εvh(2) + ε2vh(3)

〉
= 0. (2.9)

At this point, we use the identification (2.5) to compute the perturbations h(1), h(2)

and h(3). One obtains
h(1) = −vMJε,

h(2) = −M ∂t ρ
ε + v2M ∂x J

ε + (1− v2)MEJε.

We replace h(1) and h(2) by their expressions in h(3) = − ∂t h(1)−T (h(2)) to obtain:

h(3) = 2vM ∂t J
ε − v3M ∂xx J

ε − (vM− v3M) ∂x (EJε)

− (2vM− v3M)E ∂x J
ε + (3vM− v3M)E2Jε.

(2.10)

We simplify (2.9) by using the fact that vM and vh(2) are odd in v, obtaining

∂t ρ
ε + ∂x

〈
vh(1) + ε2vh(3)

〉
= 0. (2.11)

Equation (2.11) shows that the truncation K = 2 gives no further information. We
have already shown in (2.7) that

∂x

〈
vh(1)

〉
= −m2 ∂x J

ε.

Therefore, (2.11) gives ∂t ρ
ε = m2 ∂x J

ε +O(ε2). It follows that

∂t J
ε = m2( ∂xx J

ε − E ∂x Jε) +O(ε2).

We use this relation to replace the time derivative of Jε in (2.10) which gives:

h(3) = 2m2vM ∂xx J
ε − 2m2vME ∂x J

ε − v3M ∂xx J
ε − (vM− v3M) ∂x (EJε)

− (2vM− v3M)E ∂x J
ε + (3vM− v3M)E2Jε +O(ε2).

The choice to replace the time derivative is motivated by the discrete setting. In-
deed, we want to avoid the discretization of mixed derivatives to lighten the cost
of the macroscopic criterion. Next, the remaining integral is computed:

∂x

〈
vh(3)

〉
= ∂x

[
2m2

2 ∂xx J
ε − 2m2

2E ∂x J
ε −m4 ∂xx J

ε − (m2 −m4) ∂x (EJε)

− (2m2 −m4)E ∂x J
ε + (3m2 −m4)E2Jε +O(ε2)

]
.

With our choice ofM(v), we can explicitly compute m2 = 1 and m4 = 3. Therefore
one has:

∂x

〈
vh(3)

〉
= ∂x

[
2 ∂x (EJε)− E ∂x Jε − ∂xx J

ε +O(ε2)

]
.

Finally, we obtain a higher order model in the drift-diffusion limit.
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Proposition 1. (formal) Let fε be a solution of (VBGK). Assuming that fε

admits a Chapman-Enskog expansion of order K = 3, the truncated model up to
order 2 in ε is given by a higher order drift-diffusion equation. The macroscopic
density ρε = 〈 fε 〉 is a solution to:

∂t ρ
ε − ∂x J

ε + ε2 ∂x (2 ∂x (EJε)− E ∂x Jε − ∂xx J
ε) = O(ε4), (D̃D)

where Jε = ∂x ρ
ε − Eρε.

Remark 1. (D̃D) is, as expected, a second order correction of (DD).

3. Micro-Macro Model

In this part, we recall the derivation of the micro-macro model for (VBGK).
Then, we introduce a micro-macro finite volume scheme that enjoys the property
of being Asymptotic Preserving which is a crucial point of the hybrid method we
want to construct. The micro-macro approach was first used to derive AP schemes
for the radiative heat transfer in [30]. It was then applied to the Boltzmann equation
in [4, 33] and to the Vlasov-Poisson-BGK equation in [9].

3.1. Continuous setting. Let us decompose the distribution fε as follows:

fε = ρεM+ gε. (3.1)

We introduce the orthogonal projector Π in L2( dxdγ) on N defined for all f ∈
L2( dxdγ) by:

Πf = 〈f〉M.

To help us in the derivation of the micro-macro model, let us first recall the following
lemma

Lemma 1. Let fε = ρεM+ gε be a solution of (VBGK). One has:

Π(gε) = Π( ∂t g
ε) = Π(T (ρεM)) = (I −Π)( ∂t (ρεM)) = 0.

Moreover, one has Π(T gε) = divx〈vgε〉M.

To derive the micro-macro model, we start by injecting (3.1) in (VBGK):

∂t (ρεM) + ∂t g
ε +

1

ε

(
T (ρεM) + T gε

)
=
−1

ε2
gε. (3.2)

We then apply (I − Π) to (3.2), and simplify using Lemma 1 to obtain the micro
part of the model:

∂t g
ε +

1

ε

(
T gε −Π(T gε)

)
+

1

ε
vM · Jε =

−1

ε2
gε. (3.3)

The macro part is obtained by applying Π to (3.2) and using Lemma 1. It leads to:

∂t ρ
εM+

1

ε
Π(T gε) = 0. (3.4)

Finally, the micro-macro model is given by:

∂t g
ε +

1

ε
(T gε − divx〈vgε〉M+ vM · Jε) =

−1

ε2
gε, (Micro)

∂t ρ
ε +

1

ε
divx〈vgε〉 = 0. (Macro)

The following proposition states the equivalence between the (Micro)-(Macro)
model and the original equation (VBGK) [9].
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Figure 2. Discretization of the velocity domain.

Proposition 2. (formal)

(1) If fε is a solution to (VBGK) with an initial data in L2( dxdγ), then
(ρε, gε) = (〈fε〉, fε − 〈fε〉M) is a solution to (Micro)-(Macro) with the
associated initial data

ρ0 = 〈f0〉, g0 = f0 − ρ0M.

(2) Conversely, if (ρε, gε) is a solution to (Micro)-(Macro) with initial data
ρε(t = 0) = ρ0 and gε(t = 0) = g0 with 〈g0〉 = 0 then 〈gε(t)〉 = 0, for
all t > 0 and fε = ρεM + gε is a solution to (VBGK) with initial data
f0 = ρ0M+ g0.

3.2. Discrete setting. Let us now tackle the discretization of the (Micro)-(Macro)
model. We shall adopt a finite volume approach to discretize the phasespace. From
now on, we restrict ourselves to the 1D-3D problem, namely one dimension in
position and three in velocity. In particular, let Ωx = [0, x?] with periodic bound-
ary conditions. In this setting, the (Micro)-(Macro) equations and the transport
operator T reduce to

∂t g
ε +

1

ε2
gε +

1

ε

(
T gε − ∂x 〈vxgε〉M+ vxMJεx

)
= 0

∂t ρ
ε +

1

ε
∂x 〈vxgε〉 = 0,

and

T (g) = vx ∂x g + Ex∂vxg,

where v =

vxvy
vz

, E =

Ex0
0

 and Jεx = ∂x ρ
ε − Exρε. In the following, we shall

omit the subscript x for Ex and Jεx.
The mesh. The velocity domain is restricted to a bounded symmetric cube
[−v?, v?]3 as it is impractical to implement a numerical scheme on an unbounded do-
main. We consider a Cartesian mesh of the cube composed of Nv = 2L velocity cells
in each direction arranged symmetrically around v = 0. Let J = {−L+ 1, . . . , L}
and let us denote by j = (jx, jy, jz) ∈ J 3 a multi-index. The cells of the velocity
mesh are given by

Vj = (vjx− 1
2
, vjx+ 1

2
)× (vjy− 1

2
, vjy+ 1

2
)× (vjz− 1

2
, vjz+ 1

2
), j ∈ J 3.

Each cell Vj has a constant volume ∆v3 and midpoint vj . The velocity mesh is
illustrated in one dimension in Figure 2.
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In position, because of the periodic boundary conditions, we consider a discretiza-
tion of the 1-D torus T into Nx primal cells

Xi = (xi− 1
2
, xi+ 1

2
), i ∈ I = Z/NxZ,

of constant length ∆x and centers xi. We also define the dual cells

Xi+ 1
2

= (xi, xi+1), i ∈ I,

of constant length ∆x and centers xi+ 1
2
. The primal control volumes in the phase

space are defined by

Kij = Xi × Vj , ∀(i, j) ∈ I × J 3,

while the dual control volumes are given by

Ki+ 1
2 ,j

= Xi+ 1
2
× Vj , ∀(i, j) ∈ I × J 3.

Finally, we set a time step ∆t > 0 and we define tn = n∆t, n ∈ N.
The discrete Maxwellian. We assume that we are given cell values of the uni-
dimensional Maxwellian (Ml)l∈J satisfying:

Ml > 0, Ml = M−l+1 ∀l ∈ J ,
ML = ML+1, M−L = M−L+1,∑
l∈J

Ml∆v = 1.
(3.5)

These properties are a discrete version of the continuous ones, namely, the positivity,
the parity, and the unit mass. The third assumption is a zero boundary flux on the
Maxwellian. For a sufficiently large domain in velocity, it is relevant due to the fast
decay of the Gaussian. We now define the discrete multidimensional Maxwellian
as:

Mj = MjxMjyMjz , (3.6)

where (Mjx)jx∈J , (Mjy )jy∈J and (Mjz )jz∈J satisfy (3.5) and j is the multi-index
(jx, jy, jz).
Let us introduce the discrete integration operator in velocity: for f = (fj)j∈J 3

〈f〉∆ =
∑
j∈J 3

fj∆v
3. (3.7)

We also introduce the discrete moments of the discrete 1D Maxwellian (3.5):

m∆v
k =

∑
l∈J

vklMl∆v. (3.8)

Semi-discretization in the phase-space. We start by considering a semi-discre-
tization in the phase-space of the (Micro)-(Macro) model. Let (i, j) ∈ I×J 3. We
choose to approximate the perturbation gε on the dual cells while the density ρε is
approximated on the primal mesh:

gεi+ 1
2 ,j

(t) ≈ 1

∆x∆v3

∫
K

i+ 1
2
,j

gε(t, x, v) dx dv and ρεi (t) ≈
1

∆x

∫
Xi

ρε(t, x) dx. (3.9)

This choice of staggered meshes will result in a more compact stencil for the as-
ymptotic scheme and is quite standard in the literature [33, 35, 9]. We start by
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integrating (Macro) on Xi:∫
Xi

[
∂t ρ

ε +
1

ε
∂x 〈vxgε〉

]
dx = 0.

After integrating the space derivative, one then obtains a continuous in time finite
volume scheme for (Macro):

d

dt
ρεi = − 1

∆x

(
1

ε
〈ξgεi+ 1

2
〉∆ −

1

ε
〈ξgεi− 1

2
〉∆
)
, where ξj = ξ(jx,jy,jz) = vjx ∀j ∈ J 3.

(3.10)
Next, we deal with the (Micro) equation which is integrated on Ki+ 1

2 ,j
:∫

K
i+ 1

2
,j

(
∂t g

ε +
1

ε2
gε
)

dxdv

+
1

ε

∫
K

i+ 1
2
,j

[T gε − ∂x 〈vxgε〉M+ vxMJε] dxdv = 0.

(3.11)

One then obtains

−ε∆x∆v3

(
d

dt
gεi+ 1

2 ,j
+

1

ε2
gεi+ 1

2 ,j

)
=

∫
K

i+ 1
2
,j

T gε dxdv

︸ ︷︷ ︸
A

−
∫
K

i+ 1
2
,j

∂x 〈vxgε〉Mdxdv

︸ ︷︷ ︸
B

+

∫
K

i+ 1
2
,j

vxMJε dxdv

︸ ︷︷ ︸
C

.

(3.12)
Using the definition of the transport operator T , one has:

A =

∫
Vj
vx
(
gε(t, xi+1, v)− gε(t, xi, v)

)
dv

+

∫
X

i+ 1
2
×Vjy×Vjz

E
(
gε(t, x, vjx+ 1

2
, vy, vz)− gε(t, x, vjx− 1

2
, vy, vz)

)
dx dvy dvz,

B =

∫
Vj
M
(
〈vxgε(t, xi+1, v)〉 − 〈vxgε(t, xi, v)〉

)
dv,

C =

∫
Vj
vxMdv

∫
X

i+ 1
2

Jε dx.

We now denote by
(
Fεi,j

)
ij

an approximation of the microscopic flux in position at

interfaces (xi)i, namely

Fεi,j ≈
∫
Vj

[vxg
ε(t, xi, v)−M〈vxgε(t, xi, v)〉] dv. (3.13)

We also denote by
(
Gε
i+ 1

2 ,jx+ 1
2 ,jy,jz

)
ij

an approximation of the microscopic flux in

velocity, namely

Gεi+ 1
2 ,jx+ 1

2 ,jy,jz
≈
∫
X

i+ 1
2
×Vjy×Vjz

Egε(t, x, vx,j+ 1
2
, vy, vz) dxdvx dvy. (3.14)
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In the following, to lighten the notation, we will denote by Gε
i+ 1

2 ,j+
1
2

this flux. Let

us now present our choice of numerical fluxes. In position, we choose a first-order
upwind approximation for both terms of (3.13):

Fεi,j =
(
ξ+
j g

ε,n

i− 1
2 ,j

+ ξ−j g
ε
i+ 1

2 ,j

)
∆v3 −Mj

〈
ξ+gεi− 1

2
+ ξ−gεi+ 1

2

〉
∆

∆v3, (3.15)

where the notation r± = r±|r|
2 is used. At the boundaries in position, the periodic

setting implies

Fε0,j = FεNx,j . (3.16)

In velocity, a first-order upwind approximation is used and since E is given, it is
explicitly discretized on the dual mesh, Ei+ 1

2
= E(xi+ 1

2
). The numerical flux in

velocity then reads:

Gεi+ 1
2 ,j+

1
2

=
(
E+
i+ 1

2

gε,n
i+ 1

2 ,jx,jy,jz
+ E−

i+ 1
2

gεi+ 1
2 ,jx+1,jy,jz

)
∆x∆v2. (3.17)

Zero flux boundary conditions are applied in velocity and therefore we set

Gεi+ 1
2 ,−L+ 1

2
= Gεi+ 1

2 ,L+ 1
2

= 0. (3.18)

Finally, C is treated as a source term and approximated using first-order centered

finite differences:

C ≈ ξjMjJ
ε
i+ 1

2
∆x∆v3,

with Jε
i+ 1

2

=
ρεi+1−ρ

ε
i

∆x − Ei+ 1
2
ρε
i+ 1

2

, and ρε
i+ 1

2

= 1
2 (ρεi + ρεi+1). A continuous in time

finite volume scheme for equation (Micro) finally reads:

d

dt
gεi+ 1

2 ,j
+

1

ε2
gεi+ 1

2 ,j
= −1

ε

(
T ε
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε
i+ 1

2

)
, (3.19)

where T ε
i+ 1

2 ,j
= Fεi+1,j −Fεi,j + Gε

i+ 1
2 ,j+

1
2

− Gε
i+ 1

2 ,j−
1
2

.

Full discretization. In order to obtain an AP scheme, one must carefully choose
the discretization in time. Following [32], we adapt the so-called relaxed micro-
macro scheme to our finite volume setting. This method falls into the framework

of exponential time integrators [23]. Let n ∈ N and (i, j) ∈ I ×J 3. Let
(
gε,n
i+ 1

2 ,j

)
ij

be an approximation of
(
gε
i+ 1

2 ,j
(tn)

)
ij

and (ρε,ni )i an approximation of (ρεi (t
n))i.

The first step is to multiply (3.19) by et/ε
2

which gives:

d

dt

(
gεi+ 1

2 ,j
(t)et/ε

2
)

= −e
t/ε2

ε

(
T ε
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε
i+ 1

2

)
. (3.20)

Let us then integrate between tn and tn+1 and divide by et
n+1/ε2 :

gεi+ 1
2 ,j

(tn+1) = gεi+ 1
2 ,j

(tn)e−∆t/ε2

+

∫ tn+1

tn
−e

(t−tn+1)/ε2

ε

(
T ε
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε
i+ 1

2

)
dt.

(3.21)
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Then, the transport and source terms are approximated at time tn and the integral
can be computed explicitly:∫ tn+1

tn
−e

(t−tn+1)/ε2

ε

(
T ε
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε
i+ 1

2

)
dt

= −ε(1− e−∆t/ε2)

(
T ε,n
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε,n

i+ 1
2

)
.

(3.22)

Finally, the fully discretized microscopic equation reads:

gε,n+1

i+ 1
2 ,j

= gε,n
i+ 1

2 ,j
e−∆t/ε2 − ε(1− e−∆t/ε2)

(
T ε,n
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε,n

i+ 1
2

)
, (3.23)

where
T ε,n
i+ 1

2 ,j
= Fε,ni+1,j −F

ε,n
i,j + Gε,n

i+ 1
2 ,j+

1
2

− Gε,n
i+ 1

2 ,j−
1
2

. (3.24)

The discretization in time of (3.10) is quite standard, with an implicit discretization
of the stiff term:

ρε,n+1
i = ρε,ni −

∆t

ε∆x

(
〈ξgε,n+1

i+ 1
2

〉∆ − 〈ξgε,n+1

i− 1
2

〉∆
)

(3.25)

Note that (3.23) defines an explicit scheme. Moreover, (3.25) does not require the
inversion of a system. Indeed, (3.23) is explicitly computed at time tn+1 and is
then used to update the density in (3.25). In practice, the method is therefore fully
explicit.
Before stating the next proposition, let us introduce the following assumption:

Assumption 1. Let (ρε,ni )i∈I be given by (3.25). Then,

ρε,ni −→ ρni , ∀i ∈ I. (3.26)

This assumption corresponds to the convergence of ρε to ρ as ε→ 0. Such property
is not trivial to obtain in the discrete setting. A rigorous proof of this result
requires, among other things, uniform estimates in ε of the discrete L2-norm of ρε,
gε, and moments of gε. It is outside the scope of this article and may be thoroughly
investigated in upcoming work.
The following proposition states the AP property of our discretization of the (Micro)-
(Macro) model.

Proposition 3. Let n ∈ N. Let
(
gε,n
i+ 1

2 ,j

)
ij

and (ρε,ni )i be given by the following

micro-macro finite volume scheme:

gε,n+1

i+ 1
2 ,j

= gε,n
i+ 1

2 ,j
e−∆t/ε2 − ε(1− e−∆t/ε2)

(
T ε,n
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε,n

i+ 1
2

)
, (SMicro)

ρε,n+1
i = ρε,ni −

∆t

ε∆x

(
〈ξgε,n+1

i+ 1
2

〉∆ − 〈ξgε,n+1

i− 1
2

〉∆
)
, (SMacro)

where T ε,n
i+ 1

2 ,j
is given by (3.24).

Assuming that Assumption 1 holds and for a fixed mesh size ∆x, ∆v > 0, the
scheme enjoys the AP property in the diffusion limit. This property does not depend
on the initial data, and the associated limit scheme reads

ρn+1
i = ρni +m∆v

2

∆t

∆x

(
Jni+ 1

2
− Jni− 1

2

)
, (SLim)
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with the limit flux

Jni+ 1
2

=
ρni+1 − ρni

∆x
− Ei+ 1

2
ρni+ 1

2
, (3.27)

where m∆v
2 is given by (3.8).

Proof. The mesh size ∆x, ∆v > 0 being set, let us emphasize that we consider only
the pointwise convergence of the scheme as ε tends to 0. The first step is to study

the asymptotic behaviour of the perturbation
(
gε,n+1

i+ 1
2 ,j

)
i,j

. By induction on n, let

us show that gε,n+1

i+ 1
2 ,j
−→
ε→0

0 for any initial data (ρ0, g0) and for all (i, j) ∈ I × J 3.

At n = 0, one has

gε,1
i+ 1

2 ,j
= g0

i+ 1
2 ,j
e−∆t/ε2 − ε(1− e−∆t/ε2)

 T ε,0
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε,0

i+ 1
2

 . (3.28)

As e−∆t/ε2 −→
ε→0

0 and since

(
T ε,0

i+ 1
2
,j

∆x∆v3 + ξjMjJ
ε,0

i+ 1
2

)
ij

depends only on the initial

data which itself is independent of ε,

gε,1
i+ 1

2 ,j
−→
ε→0

0 ∀(i, j) ∈ I × J 3.

Let us now assume that

gε,n
i+ 1

2 ,j
−→
ε→0

0 ∀(i, j) ∈ I × J 3. (3.29)

Under the hypothesis (3.29), one obtains that the transport term, that depends
only on the perturbation, vanishes in the limit:

T ε,n
i+ 1

2 ,j
−→
ε→0

0 ∀(i, j) ∈ I × J 3.

From Assumption 1 one obtains the convergence of the source term:

ξjMjJ
ε,n

i+ 1
2

−→
ε→0

ξjMjJ
n
i+ 1

2
. (3.30)

Now, the asymptotic limit of (SMicro) can be computed. Since ε(1−e−∆t/ε2) −→
ε→0

0

and e−∆t/ε2 −→
ε→0

0 we can use (3.30) and our induction hypothesis (3.29) to obtain:

gε,n+1

i+ 1
2 ,j
−→
ε→0

0, ∀n, ∀(i, j) ∈ I × J . (3.31)

As a consequence, one also has that for all n,

T ε,n
i+ 1

2 ,j

∆x∆v3
+ ξjMjJ

ε,n

i+ 1
2

−→
ε→0

ξjMjJ
n
i+ 1

2
, ∀(i, j) ∈ I × J . (3.32)

The next step is to plug (SMicro) into (SMacro):

ρε,n+1
i = ρε,ni −

∆t

ε∆x

〈
ξ

[
e−∆t/ε2(gε,n

i+ 1
2

− gε,n
i− 1

2

)

− ε(1− e−∆t/ε2)

(
T ε,n
i+ 1

2

− T ε,n
i− 1

2

∆x∆v3
+ (ξMJε,n

i+ 1
2

− ξMJε,n
i− 1

2

)

)]〉
∆

.

(3.33)
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We can then take the limit ε −→ 0 in (3.33) using the previous asymptotic limits
(3.31) and (3.32):

ρn+1
i = ρni + 〈ξ2M〉∆

∆t

∆x

(
Jni+ 1

2
− Jni− 1

2

)
. (3.34)

Then, using the definitions of the discrete Maxwellians (3.5), (3.6) one can obtain:

〈ξ2M〉∆ =
∑
j∈J 3

ξ2
jMj∆v

3

=
∑
jx∈J

∑
jy∈J

∑
jz∈J

v2
jxMjxMjyMjz∆v3

=
∑
jx∈J

v2
jxMjx∆v

= m∆v
2 .

(3.35)

Finally, we obtain the asymptotic scheme (SLim):

ρn+1
i = ρni +m∆v

2

∆t

∆x

(
Jni+ 1

2
− Jni− 1

2

)
,

which concludes the proof. �

In order to show that the scheme (SMicro)-(SMacro) is truly AP, one also needs the
stability condition to be independent (or at least does not degenerate) on ε. While
we do not prove the stability of the scheme, in practice, we can indeed use the same
time-step for both large and small values of ε.

4. Hybrid method

The aim of this section is to introduce a hybrid method between kinetic and
fluid schemes. The goal is to obtain a coupled solver that is faster than a full
kinetic one to solve (P ε) while still being accurate. These methods come naturally
when designing accurate numerical codes while guarantying reasonable computation
times.
Following [19] we first construct a hybrid kinetic/fluid solver with a dynamic domain
adaptation method and present its implementation. In the second part, we are
interested in understanding the conservative aspect of the method. More precisely,
we give a result on the mass variation induced by the coupling.

4.1. Coupling criteria. The idea of the dynamic domain adaptation method is
twofold. First, the subdomains must accurately describe the state of the solution.
In particular, the fluid model is only valid where the solution is near the local equi-
librium in velocity. Secondly, we want the method to be dynamic in the sense that
the subdomains are adapted at each time step. For this purpose, let us introduce
ΩnK the kinetic domain and ΩnF the fluid one at time tn. To determine in which
domain each cell lies, we introduce criteria based on the higher order fluid model in-
troduced in Section 2.2.2 and the norm of the perturbation gε = fε−ρεM. Indeed,
when gε is close to 0, it means that the solution is close to the local equilibrium in
velocity.

Let us consider a fluid subdomain. In this subdomain, one only has access to
the macroscopic quantity ρ and the given electrical field E. Therefore, one cannot
consider the perturbation gε. The solution we propose is to use the higher order
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Derivative
Index

-3 -2 -1 0 1 2 3

1 -1/60 3/20 -3/4 0 3/4 -3/20 1/60
2 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90
3 1/8 -1 13/8 0 -13/8 1 -1/8
4 -1/6 2 -13/2 28/3 -13/2 2 -1/6

Table 1. Central finite differences coefficients.

model (D̃D) and derive a macroscopic criterion. We have formally shown that

(D̃D) can be written in the form:

∂t ρ
ε −m2 divx J

ε = Rε,

where Rε is a remainder that depends only on the density ρε and the electrical
field E. During the coupling procedure it will be computed using both the kinetic
density ρε in kinetic cells and using the fluid density ρ in fluid cells. In the 1D-3D
setting, it is given by

Rε = −ε2 ∂x (2 ∂x (EJε)− E ∂x Jε − ∂xx J
ε), where Jε = ∂x ρ

ε − Eρε. (4.1)

Expanding Rε shows that one needs derivatives of the density up to fourth order
and of E up to third order:

Rε = −ε2
(
− ∂xxxx ρ

ε

+ E(2 ∂xxx ρ
ε − E ∂xx ρε)

+ ∂xE(−3ρε ∂xE − 5E ∂x ρ
ε + 6 ∂xx ρ

ε)

+ ∂xxE(−3ρεE + 5 ∂x ρ
ε)

+ ρε ∂xxxE
)
.

(4.2)

Let us denote by Rε,ni a discretization of the remainder Rε at time tn in cell Xi.
High order finite difference schemes are used (See Table 1).
Let η0, δ0 > 0 be the coupling thresholds. In a fluid domain, when Rε,n is large,

the model (D̃D) is far from the limit model (DD) and one must use the kinetic
one instead. More specifically, consider a fluid cell Xi ⊂ ΩnF .

• If |Rε,ni | ≤ η0, then the cell stays fluid at tn+1.
• If |Rε,ni | > η0, then the cell becomes kinetic at tn+1:

Xi 6⊂ Ωn+1
F and Xi ⊂ Ωn+1

K .

In a kinetic subdomain, unlike the previous case, one has access to the perturbation
gε. When this perturbation is small, it means that the solution is near a local
equilibrium in velocity. As a consequence, the behaviour of the system is close
to the fluid one and one can use the limit model instead. Moreover, we also use
the criterion that the remainder Rε must be small. Consider now a kinetic cell
Xi ⊂ ΩnK:

• If ||gε,n
i− 1

2

||2 > δ0 and ||gε,n
i+ 1

2

||2 > δ0 then the cell stays kinetic at tn+1.

• If ||gε,n
i− 1

2

||2 ≤ δ0, ||gε,n
i+ 1

2

||2 ≤ δ0 and |Rε,ni | > η0, then the cell stays kinetic

at tn+1.
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• If ||gε,n
i− 1

2

||2 ≤ δ0, ||gε,n
i+ 1

2

||2 ≤ δ0 and |Rε,ni | ≤ η0, then the cell becomes fluid

at tn+1:

Xi 6⊂ Ωn+1
K and Xi ⊂ Ωn+1

F .

The discrete norm ||gε,n
i+ 1

2

||2 is the classic l2-norm. It is defined for
(
gε,n
i+ 1

2 ,j

)
j∈J 3

by:

||gε,n
i+ 1

2

||2 =
∑
j∈J 3

(
gε,n
i+ 1

2 ,j

)2

∆v3. (4.3)

Remark 2. Note that in a kinetic cell, the criterion on the norm of gε is manda-
tory. Indeed, the remainder Rε,ni could be small because of small gradients, but
the perturbation large. In this situation, one does not want to change from kinetic
to fluid. As an example, one could take a distribution function at equilibrium in
position and far from the Maxwellian in velocity.

4.2. Implementation. We now present in more details the implementation of the
hybrid method. An important part of this approach is the management of boundary
conditions. When solving on the whole space domain, periodic boundary conditions
are applied. However, when solving in the subdomains ΩnK and ΩnF , we need to adapt
our solvers. Our strategy is to use ghost cell values that are chosen appropriately.
The difficulty lies in the fact that the limit scheme only computes the density ρ
and not the pair (ρε, gε). Since the hybrid method is dynamic, one does not know
in advance the state of the cells. As a consequence, one must be able to access
all unknowns on the whole domain at any time. Our solution is to take advantage
of the structure of the micro-macro scheme. Indeed, aside from visualisation and
diagnostics, an explicit discretization of the distribution function isn’t necessary.
We are working only with ρε,n and gε,n. Therefore, we have access to the macro
unknown on the whole domain and there is no information missing in the arrays.

The distribution fε is reconstructed using fε,ni,j = ρε,ni Mj + 1
2

(
gε,n
i− 1

2 ,j
+ gε,n

i+ 1
2 ,j

)
only for posttreatment. However, the kinetic solver may still need values of gε on
the whole space domain. In theory, the array storing gε must be filled with zeros
in the fluid domain. However, to improve the performance, gε is in practice not
updated in fluid regions and it is set to 0 only when needed. In particular, it only
occurs when a fluid cell becomes kinetic and when saving datas.
Another important remark is that since gε is approximated on the dual mesh, one
must be careful at the interfaces between kinetic and fluid subdomains. To avoid
any ambiguity on the state of an interface when updating the perturbation gε, we
impose that a fluid subdomain is at least two cells wide. Under this condition the
state of the ghost interface is well determined. See Figure 3 for an illustration of
such a situation.
The algorithm can be summarized as follows:
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Kinetic F luid

Xs−2 Xs−1 Xs Xs+1

ρε,ns−2 ρε,ns−1 gε,n
s− 1

2

gε,n
s− 3

2

gε,n
s− 5

2

ρns ρns+1

Figure 3. Transition between kinetic and fluid cell for the micro-
macro scheme.

Algorithm 1 Hybrid scheme

(1) Set ε, δ0, η0 and a final time T .
(2) Initialize micro-macro unknowns using the relations ρ0 = 〈f0〉 and g0 =

f0 − ρ0M .
(3) Initialize Ω0

K as the whole space (Ω0
F =Ø).

(4) Compute gε,n+1 and ρε,n+1 in ΩnK using the kinetic scheme (SMicro)-
(SMacro).

(5) Compute ρn+1 in ΩnF using the limit scheme (SLim).
(6) Set gn+1 = 0 in ΩnF .

(7) Update ΩnK and ΩnF to Ωn+1
K and Ωn+1

F using the criteria presented above.
(8) Increment time and repeat until tn+1 = T .

In particular, Algorithm 1 explicitly defines a numerical scheme on the hybrid
density ρ̃:

ρ̃n+1
i = ρ̃ni +

∆t

∆x
JH,ni , (4.4)

where

JH,ni =


−1

ε

(
〈ξgε,n+1

i+ 1
2

〉∆ − 〈ξgε,n+1

i− 1
2

〉∆
)

if Xi ∈ ΩnK,

m∆v
2

(
Jni+ 1

2
− Jni− 1

2

)
if Xi ∈ ΩnF .

(4.5)

Note that we want to start the resolution with the approach containing the full
information on the system. Hence, it makes sense to initialize our domain as fully
kinetic. Moreover, let us emphasize again that the kinetic fluxes are in practice
explicitly computed. Therefore the hybrid setting remains an explicit method.

4.3. Mass conservation. This section is dedicated to investigate the mass conser-
vation of the hybrid method. This property being satisfied in the continuous case,
one expects conservation in the discrete setting. Each of the standard schemes is
conservative on its own by construction. However, the question arises when con-
sidering the hybrid scheme.
In order to understand the variation of mass, we consider a toy model that isn’t rel-
evant in practice but will highlight the key elements to constrain the mass variation.
Let us set the state of cells for every time step into two domains:

ΩK =

s−1⋃
i=1

Xi and ΩF =

Nx⋃
i=s

Xi. (4.6)
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Figure 4. Zoom on the interface of a steady domain adaptation.

Note that in the next result, we neglect what happens at the boundary. Our
primary focus is to understand what happens at the interface xs− 1

2
between the

two domains. Moreover, in that context and with periodic boundary conditions in
position, the same analysis can be done at the interface x 1

2
. Figure 4 illustrates

this framework. We define the mass of the hybrid system as:

mn =
∑
i∈I

ρ̃ni ∆x. (4.7)

Note that this definition suggests that the quantity 〈gn
i+ 1

2

〉∆ is zero. This property

holds in the continuous setting and will be numerically investigated in the next
section. The following lemma quantifies the mass variation between two time steps.

Lemma 2. Let (ρ̃ni )i and
(
gε,n
i+ 1

2 ,j

)
ij

be computed using the hybrid scheme (SMicro)-

(4.4). Let the mass variation between tn and tn+1 be defined as:

∆mn+ 1
2 =

∑
i∈I

∆x
(ρ̃n+1
i − ρ̃ni )

∆t
. (4.8)

In the context of the steady domain adaptation (4.6) and neglecting the boundaries,
one has:

∆mn+ 1
2 =−

〈
ξgε,n
s− 1

2

〉
∆

e−∆t/ε2

ε
+

1− e−∆t/ε2

∆x∆v3

〈
ξT ε,n

s− 1
2

〉
∆

−m∆v
2 e−∆t/ε2Jε,n

s− 1
2

+m∆v
2

(
Jε,n
s− 1

2

− Jns− 1
2

)
.

(4.9)

An important consequence of this lemma is that thanks to (3.31) and Assumption
1, the mass variation converges to 0 as ε tends to 0.
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Proof. Let us consider the hybrid scheme (4.4)-(4.5) on the density. Using the fixed
domain adaptation (4.6) and neglecting the boundary, the mass variation writes:

∆mn+ 1
2 =

∑
i∈I

∆x

∆t
(ρ̃n+1
i − ρ̃ni )

=
∑
i∈I

JH,ni

= −1

ε

s−1∑
i=1

(
〈ξgε,n+1

i+ 1
2

〉∆ − 〈ξgε,n+1

i− 1
2

〉∆
)

+m∆v
2

Nx∑
i=s

(
Jni+ 1

2
− Jni− 1

2

)
= −1

ε

〈
ξgε,n+1

s− 1
2

〉
∆
−m∆v

2 Jns− 1
2
.

(4.10)

Similarly as in the proof of Proposition 3, gε,n+1

s− 1
2 ,j

is replaced by its expression

(SMicro). The quantity 1
ε

〈
ξgε,n+1

s− 1
2

〉
∆

then reads:

1

ε

〈
ξgε,n+1

s− 1
2

〉
∆

=
〈
ξgε,n
s− 1

2

〉
∆

e−∆t/ε2

ε
−
〈
ξT ε,n

s− 1
2

〉
∆

(
1− e−∆t/ε2

) 1

∆x∆v3

−
〈
ξ2Mj

〉
∆
Jε,n
s− 1

2

(
1− e−∆t/ε2

)
.

(4.11)

Finally, plugging (4.11) into (4.10) and using the computation (3.35) for the term
〈ξ2Mj〉∆, one obtains:

∆mn+ 1
2 =−

〈
ξgε,n
s− 1

2

〉
∆

e−∆t/ε2

ε
+

1− e−∆t/ε2

∆x∆v3

〈
ξT ε,n

s− 1
2

〉
∆

−m∆v
2 e−∆t/ε2Jε,n

s− 1
2

+m∆v
2

(
Jε,n
s− 1

2

− Jns− 1
2

)
.

�

Remark 3. The proof only holds in the context of the toy problem (4.6). However,
it can be extended to a more general setting seeing that the mass variation occurs
at all interfaces between kinetic and fluid subdomains. Namely,

∆t∆mn+ 1
2 =

∑
α∈S

β
(
− 〈ξgε,nα 〉∆

e−∆t/ε2

ε
+

1− e−∆t/ε2

∆x∆v3
〈ξT ε,nα 〉∆

−m∆v
2 e−∆t/ε2Jε,nα +m∆v

2 (Jε,nα − Jnα )
)
,

(4.12)

where S is the set of interfaces between kinetic and fluid subdomains and β = ±1
depends on the orientation of the subdomains.

5. Numerical simulations

In the following, unless specified otherwise, the phase-space is discretized as
follows:

Nv = 16, Nx = 50, v? = 10, x? = π, ∆t = 10−4.

The same time step is used for all schemes. Note that since the limit scheme is
explicit, its stability is therefore guaranteed under a parabolic condition: ∆t ≤
C∆x2. Let us assume that the electrical field is the gradient of a potential V : E =
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− ∂x V . To satisfy the periodicity of the domain, we choose V (x) = − sin(2x)
4 ×10−2

so E(x) = 1
2 cos(2x)× 10−2. We also set

f1
0 =

1

(2π)3/2
e−|v|

2/2(1 + cos(2x)), (5.1)

an initial data at local equilibrium in velocity and

f2
0 =

1

(2π)3/2
|v|4e−|v|

2/2(1 + cos(2x)), (5.2)

an initial data far from the local equilibrium in velocity. Finally, we consider four
configurations:

• Case 1: E = 0, with initial data (5.1);
• Case 2: E 6= 0, with initial data (5.1);
• Case 3: E = 0, with initial data (5.2);
• Case 4: E 6= 0, with initial data (5.2).

The properties of the fully kinetic implementation are shown in the 1D1D setting.
The performance and properties of the hybrid method are presented in the full
1D3D one.

5.1. The full kinetic scheme.
Convergence towards the drift-diffusion equation. Let us first numerically
investigate the AP property of the (Micro)-(Macro) scheme. We consider this
analysis for the Cases 1 and 2. The results can be found in Figure 5 for Case 1
and in Figure 6 for Case 2. We can observe a convergence of the kinetic scheme
to the limit one as ε → 0. In particular, the curves for ε = 0.05 and 10−4 overlap
and are close to the limit case. This validates the asymptotic consistency of the
(Micro)-(Macro) scheme. The stability is numerically verified as the same ∆t is
used for every ε.
Long time behaviour. The long time behaviour of solutions to (P ε) have been
extensively studied in the past decades. In a more general setting, the electric field
E is the gradient of a potential V ∈ C2(Ωx), E = −∇V , and (P ε) admits a global
equilibrium given by

F (x, v) =
M0

µ0
e−(V (x)+

|v|2
2 ), (x, v) ∈ Ωx × Rdv (5.3)

where µ0 = (2π)−d/2
∫

Ωx×Rdv
e−(V (x)+

|v|2
2 ) dx dv and M0 =

∫
Ωx×Rdv

f0(x, v) dx dv

is the mass of the initial condition. In particular, F can be written under a separate
variable form:

F (x, v) = M0φ(x)M(v), where φ =
e−V (x)∫

Ωx
e−V (x) dx

. (5.4)

The functions M and φ are called local equilibria in velocity and position respec-
tively. When one considers models such as (P ε), there are various ways to show
that there exists κ(ε) > 0 and C(ε) > 0, such that if fε is solution to (P ε),

||fε(t)− F ||V ≤ C(ε)||f0 − F ||Ve−κ(ε)t, (5.5)

where V is an appropriate functional space. A proof of (5.5) was done in [22]
in a setting without electric field. In recent years, the literature on the subject
expanded a lot. Robust and systematic methods were developed to show the con-
vergence to an equilibrium. Those are called hypocoercivity methods. A general
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Figure 5. Case 1. Comparison of the solution of the limit scheme
(SLim) with the solution obtained with the (Micro)-(Macro)
scheme with different ε, t = 0.0, 0.2, 1.0 and 5.0.
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Figure 7. Case 3. Snapshots of the distribution function f com-
puted with the scheme (SMicro)-(SMacro), ε = 1.0, Nx = 100,
Nv = 128.

abstract framework for the H1 norm has been given in [41]. These methods often
have the drawback of requiring regularity on the initial data. However the tech-
niques have been adapted to consider only weighted L2 initial data. More recently,
an L2-hypocoercivity method has been developed in [16] for linear kinetic equa-
tions. We also refer to [1] where L2-hypocoercivity is shown for a more general
kinetic equation. Both a self-consistent potential given by the Poisson equation
and an exterior potential are considered and such a model is closer to the physics
of semiconductors. From a numerical point of view, recovering such long-time be-
haviour at the discrete level is a significant property to obtain. In recent papers,
hypocoercivity methods were adapted to the discrete setting using finite differences
[17], finite elements [20] and finite volumes [6].
Following these ideas, we want to observe the convergence of the (SMicro)-(SMacro)
scheme to equilibrium in a large time scale. Figure 7 shows the evolution of the
marginal distribution f̄ε =

∫
R2 f

ε dvy dvz as time increases (Case 3, ε = 1.0). In
particular, the numerical solution indeed seems to converge to equilibrium. Let us
introduce the following discrete norm for f = (fij)ij :

||f ||2∆ =
∑

(i,j)∈I×J 3

f2
ijF
−1
ij ∆x∆v3, (5.6)

where (Fij)ij is a discretization of the global equilibrium F , Fij = F (xi, vj). For

(ρi)i∈I , we also denote by ||ρ||2 =
∑
i∈I ρ

2
i∆x the discrete L2-norm in position.

We now investigate the rate of convergence of the following discrete norms:

||f − F ||∆, ||g||2, ||ρε − 〈F 〉∆||2 and ||ρ− 〈F 〉∆||2, (5.7)

where ρε is the density obtained with the kinetic scheme and ρ is obtained with
the limit scheme. We consider Case 1. On Figure 8 we choose ε = 0.5 and 0.1,
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Figure 8. Case 1. Time evolution of the norms (5.7) computed
with the fully kinetic scheme and limit scheme, ε = 0.5 (Left),
ε = 0.1 (Right).
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Figure 9. Case 4. Time evolution of the norm ||fε − F ||∆ com-
puted with the fully kinetic scheme for Nx = 20, 50, 100 and 200,
ε = 0.1.

and show the norms (5.7) as functions of time in semilog scale. The exponential
convergence of the various norms is clear. Moreover, the rates κ(ε) observed are
κ(0.5) = 2.43 and κ(0.1) = 3.72. The rate κ(ε) increases as the Knudsen number
gets smaller. In particular we observe the same rate of convergence between the
fully kinetic scheme and the limit one for small values of ε.

Let us point out that in the case of a nonzero electric field, we do not recover
the same convergence to equilibrium. Indeed, our numerical scheme is not well-
balanced, i.e. designed to preserve steady states. As a consequence, the numerical
solution only converges to an equilibrium that is an approximation of the steady
state. Figure 9 shows the convergence to the equilibrium as the number of cells in
position increases fore Case 4.

5.2. Properties of the hybrid scheme.
Choice of the coupling parameters. Before investigating the properties of the
hybrid scheme, a natural question is the choice of the coupling parameters η0 and
δ0. Indeed, as we have seen earlier, that choice has an impact on the conservation
of mass. The smaller the parameters, the latter the coupling occurs and the more
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Figure 10. Case 3. Snapshots of the difference between the densi-
ties computed with the kinetic and the limit schemes (Top), macro-
scopic indicator (Middle), L2(dγ) norm of the perturbation g (Bot-
tom), ε = 0.5.

one can control this variation. However, the bigger the parameters are, the faster is
the resulting hybrid scheme as one allows more fluid cells to appear. Therefore, one
must find a good balance between accuracy and computation time. To illustrate
how the macroscopic indicator behaves, we compute it without updating the state
of the cells. Figure 10 shows the indicator compared to the difference between the
kinetic and fluid densities. One can observe that this indicator behaves as expected.
When the kinetic and limit densities are close, the indicator is also small. Regarding
the norm of gε, its behaviour is also expected. Indeed, we chose an initial data far
from the local equilibrium in velocity and therefore, the norm can be high even
if the densities are close (See first column, third row in Figure 10). Lastly, both
the macroscopic indicator and the norm of gε tend to 0 as time increases. As a
consequence, the closer to the equilibrium the solution is, the more fluid cells will
appear.
Qualitative comparison. Let us now compare the kinetic and the hybrid schemes.
Figures 11 and 12 show the densities computed by the kinetic, hybrid and limit
schemes for Cases 3 and 4 with ε = 0.1. We can see a good agreement between the
three schemes. The domain adaptation works for E 6= 0 which was not investigated
in previous works on the method. As time increases, the solution relaxes to an
equilibrium and the domain becomes fully fluid. One can also observe that when
both type of cells co-exists the hybrid density slightly deviates from the full kinetic
model.
Conservation of mass. Let us now numerically investigate the conservation of
mass. Indeed, we have shown in Lemma 2 that the hybrid method is not exactly
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Figure 11. Case 3. Snapshots of the densities computed using
the full kinetic, hybrid and limit schemes, ε = 0.1, η0 = δ0 = 10−4.
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Figure 12. Case 4. Snapshots of the densities computed using
the full kinetic, hybrid and limit schemes, ε = 0.1, η0 = δ0 = 10−4.

conservative. However, it becomes conservative asymptotically. In addition, the
hybrid method was constructed so that the cells become fluid when the solution is
close to a local equilibrium in velocity. As a consequence, the perturbation is small
when the coupling occurs and so is the mass variation. In practice, we can observe
a mass variation of the order of the machine accuracy. In addition, the zero-mass
property of the perturbation

µg =
∑

(i,j)∈I×J 3

gi+ 1
2 ,j

∆x∆v3
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Figure 13. Case 3. Time evolution of the state of the cells (Left),
mass variation and mass of gε (Right), ε = 0.5, η0 = δ0 = 10−4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0

1

2

3

4

5

Ti
m

e

Fluid
Kinetic

0 1 2 3 4 5
Time

3

2

1

0

1

2

3
m

as
s

1e 15
gn

fn f0

Figure 14. Case 3. Time evolution of the state of the cells (Left),
mass variation and mass of gε (Right), ε = 0.1, η0 = δ0 = 10−4.

is preserved. We illustrate the state of the cells, the corresponding mass variation
as well as µg on Figures 13 and 14. Case 3 is considered for ε = 0.5 and 0.1.
Error analysis. We are now interested in the error induced by the hybrid method.
In particular, we investigate the error between the full kinetic scheme and the hybrid
method. The goal is to be more efficient than the full kinetic solver. However,
the gain in computation time comes with a slight loss in accuracy. Let fKinetic
be the distribution computed using the full kinetic scheme and fHybrid be the
distribution obtained from the hybrid scheme. On Figure 15 we compute the error
between the two distributions in l2-norm: ||fKinetic − fHybrid||2 at several time
steps with ε = 0.1. The corresponding state of the cells can be found in Figure 14
for η0 = δ0 = 10−4. Quite expectedly, there indeed is a slight loss in accuracy as
soon as the coupling occurs. However, it quickly diminishes as the coupled solution
relaxes to equilibrium. Moreover, one can lessen this error by tuning down the
coupling parameters but at the expense of the computational gain.
Long time behaviour. Similarly as for the full kinetic scheme, we are interested
in the long time behaviour of the hybrid scheme. We shall focus on the case E = 0.
Figure 16 shows the convergence of the norms (5.7) in the hybrid setting. As the
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Figure 15. Case 3. Time evolution of the l2-error between the
kinetic distribution fKinetic and the hybrid one fHybrid, ε = 0.1, ,
η0 = δ0 = 10−4 (Left), η0 = δ0 = 10−3 (Right).

Figure 16. Case 1. Time evolution of the norms (5.7) computed
with the hybrid and limit schemes, ε = 0.5 (Left), ε = 0.1 (Right),
η0 = δ0 = 10−4.

perturbation is set to 0 in fluid subdomains, the norms of g is directly projected
to 0 when all cells are fluid. In addition, one can observe the convergence of the
density towards the global mass. The rates of convergence are not exactly recovered
compared to the full kinetic scheme but remains close: κHybrid(0.5) = 2.65 and
κHybrid(0.1) = 3.36.
Computation time. Let us now consider the efficiency of the hybrid method. We
set the final time T = 5.0 to compare the computation time. Tables 2-3-4-5 show
the computation time of the full kinetic, hybrid and limit scheme for different test
cases with two sets of coupling parameters: η0 = δ0 = 10−4 and η0 = δ0 = 10−3.
We recall that the same time step, ∆t = 10−4, is used for the three schemes.
We can make several observations. First, the fluid solver is as expected, much faster
than the full kinetic one. Moreover it is also always faster than the hybrid method.
This can easily be explained by the additional cost of computing the indicators
and the added cost of dealing with interfaces between kinetic and fluid. Table
6 shows the computational gain for the previous tests. In particular, the hybrid
method offers no significant gain in very low collision regimes. Because of the slow
convergence rate towards the equilibrium, the coupling occurs very late or not at all
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η0 = δ0 = 10−4 η0 = δ0 = 10−3

Case 1 2 3 4 1 2 3 4
MM 298.2 285.8 287.7 281.0 298.2 285.8 287.7 281.0

Hybrid 291.5 282.2 283.5 303.1 278.0 281.2 276.0 280.3
Limit 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 2. Test 1. Comparison of the computation time (sec), ε =
1.0, T = 5.0, Nx = 50, Nv = 16.

η0 = δ0 = 10−4 η0 = δ0 = 10−3

Case 1 2 3 4 1 2 3 4
MM 290.1 295.7 282.0 295.8 290.1 295.7 282.0 295.8

Hybrid 181.4 210.7 152.3 210.1 116.8 131.0 110.4 131.0
Limit 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 3. Test 2. Comparison of the computation time (sec), ε =
0.1, T = 5.0, Nx = 50, Nv = 16.

η0 = δ0 = 10−4 η0 = δ0 = 10−3

Case 1 2 3 4 1 2 3 4
MM 289.0 281.7 299.4 293.6 289.0 281.7 299.4 293.6

Hybrid 110.6 116.6 111.9 130.1 0.09 0.09 79.4 73.0
Limit 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 4. Test 2. Comparison of the computation time (sec), ε =
0.05, T = 5.0, Nx = 50, Nv = 16.

η0 = δ0 = 10−4 η0 = δ0 = 10−3

Case 1 2 3 4 1 2 3 4
MM 278.6 296.5 286.7 290.1 278.6 296.5 286.7 290.1

Hybrid 0.11 0.10 0.10 0.10 0.09 0.10 0.11 0.10
Limit 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 5. Test 4. Comparison of the computation time (sec), ε =
10−4, T = 5.0, Nx = 50, Nv = 16.

depending on the chosen final time. However, we can point out that the coupling
algorithm doesn’t add much cost relatively to the full kinetic scheme. This shows
that the implementation is quasi-optimal. In addition, since the cost of the fluid
model is negligible compared to the kinetic one, if fluid cells are used half the time,
the computation time is essentially also reduced by half.

Another observation is that the speedup is testcase dependent as it can be seen
in Table 6, ε = 0.05 and δ0 = η0 = 10−3. When the parameter is small the
gain becomes extremely significant and the hybrid method becomes competitive
with the fluid solver. A final observation is that the choice of larger coupling
parameters indeed speeds up the method. If we consider Test 3, with ε = 0.1 and
δ0 = η0 = 10−4 the speedup is 1.94 while a choice of δ0 = η0 = 10−3 offers a
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η0 = δ0 = 10−4 η0 = δ0 = 10−3

ε
Case

1 2 3 4 1 2 3 4

1.0 1.02 1.01 1.01 0.92 1.07 1.01 1.04 1.00
0.1 1.59 1.40 1.94 1.41 2.48 2.26 2.68 2.26
0.05 2.6 2.42 2.68 2.26 3211 3130 3.77 4.02
10−4 2533 2965 2867 2901 3096 2965 2606 2901

Table 6. Speedup of the hybrid method compared to the full
kinetic scheme, Nx = 50, Nv = 16.

speedup of 2.68. Figure 15 compares the error made as time increases for these
two sets of parameters. One can observe that the error reaches a maximum at
two different orders of magnitude: 3.10−8 with δ0 = η0 = 10−4 and 3.10−6 with
δ0 = η0 = 10−3. This last point raises the question of optimal parameters relatively
to the error between hybrid and full kinetic. This shall be adressed in the future
but seems, again, problem-dependant.
Non homogeneous Knudsen number. In this last numerical experiment, we
place ourselves in the 1D-1D setting and consider a non homogeneous Knudsen
number in the physical domain. Let us define the function

e(x) =
1

2
(arctan(5 + 10(x− π

2
)) + arctan(5− 10(x− π

2
))). (5.8)

In particular, we choose ε = ε(x) as

ε(x) =
e(x)

max(e(x))
. (5.9)

Such a function admits a maximum of 1 in the center of the domain and decays
to 0 near the boundaries. Physically, it corresponds to few collisions in the center
of the domain and to a fluid behaviour elsewhere. In the following simulations,
∆t = 5.10−5 and the coupling parameters are δ0 = η0 = 10−4. Note that depending
on the choice of ε(x) one may need to decrease the time step to ensure stability.
From an implementation point of view, the constant ε is simply replaced by εi+ 1

2
=

ε(xi+ 1
2
) without any change to the indicators.

Figure 17 shows that the hybrid scheme captures well the behaviour of the distri-
bution. Indeed, we observe a fast relaxation where ε(x) is small and a much slower
one in the center of the domain where ε(x) is around 1. Regarding the state of
the cells, one can see on Figures 18 and 19 that the fluid solver is quickly used
where ε(x) is small. Moreover, the last cells to become fluid are the ones where the
gradient of ε(x) is large. It is explained by the nature of the macroscopic indicator
which uses derivatives up to order 4. One can also observe that the hybrid density
starts deviate from the full kinetic one as more fluid cells appear. However, this
deviation occurs at a small scale: between 10−8 and 1010. In this setting, the vari-
ation of mass was of order 10−11. Finally, we looked at the convergence in time to
the global equilibrium. On Figure 20, one can again observe the exponential con-
vergence to equilibrium and the rate is slightly higher than the one obtained with
an homogeneous value of ε = 1. Up to stability considerations, this experiment
shows the robustness of the hybrid method. Performance-wise, considering Case 3
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Figure 17. Case 3. Snapshots of distribution f obtained with
the hybrid scheme for a non homogeneous Knudsen number.
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Figure 18. Case 3. Snapshots of the densities computed using the
full kinetic and hybrid schemes for a non homogeneous Knudsen
number.

with Nx = 200 and Nv = 256, the full kinetic scheme takes 183.7 seconds to run
while the hybrid one takes 147.6 seconds offering a speedup of 1.24.

6. Conclusion

In this work, a new hybrid numerical method for linear kinetic equations in the
diffusive scaling was presented. The method relies on two criteria motivated by a
perturbative approach. The first one quantifies how far from a local equilibrium
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Figure 19. Case 3. Time evolution of the state of the cells (Top)
and mass variation (Bottom) for a non homogeneous Knudsen
number.

Figure 20. Case 3. Convergence to a global equilibrium, full ki-
netic(Left), hybrid (Right) for a non homogeneous Knudsen num-
ber.

the distribution function is. The second criterion depends on the macroscopic
quantities that are available on the whole computing domain. We have managed
to quantify the mass variation induced by the method and we have shown that it
is in practice very small. The method has proven to be efficient through various
numerical experiments: the computational gain compared to a full kinetic scheme is
significant. Moreover, the method performs well with a non-homogeneous Knudsen
number which is encouraging to tackle more physically motivated problems.

In future works, a more general and physically relevant context will be consid-
ered. In particular, the multi-dimensional setting requires a smart implementation.
Moreover, the load distribution over several cores of computation of the hybrid
method is not straightforward. From a modelization point of view, a more general
collision operator and a coupling with the Poisson equation shall be investigated.
We are confident that the computational gain will be even more worthwhile in a
full 3D − 3D setting in the case of the Boltzmann operator which is known to be
costly numerically.
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