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Thermal conductivity of amorphous SiO 2 by first-principles molecular dynamics

The approach-to-equilibrium molecular dynamics (AEMD) methodology implemented within a first-principles molecular dynamics (FPMD) scheme is applied to amorphous SiO 2 . Measurements of the thermal conductivity indicate no reduction down to 10 nm in this technologically relevant material. In view of these premises, we calculate the thermal conductivity of amorphous SiO 2 in the size range comprised between 2 and 8 nm via the AEMD/FPMD approach. The thermal conductivity agrees with experiments for the largest sizes we considered, while it is strongly reduced for values not accessible to experimental resolution (up to 50 % for 2 nm). This behavior is close to that found in glasses chalcogenides GeTe 4 and Ge 2 Sb 2 Te 5 within the same AEMD/FPMD approach. Taken together, these results show that the observed decrease of the thermal conductivity is a general feature of disordered networks and in any case cannot be taken as peculiar to a specific class of systems.

I. INTRODUCTION

Amorphous silicon (aSiO 2 ) plays a major role in semiconductor manufacturing i.e. nanoelectronics 1 , photovoltaics 2 and renewable energy 3 . While its performances as an electrical insulator can be affected when the thickness is lower than 10 nm as in thin layers (leading to replacement by high-k oxides in transistor grids), several measurements point out that the thermal conductivity is unaffected by size reduction 4 . In particular, data obtained on layers of thickness 8.5 nm up to 3 µm show no changes in this range 5 . Also, Regner et al. 6 have measured the dependence of thermal conductivity on the phonon free path in the range 50 nm-1µm via frequency domain thermoreflectance, by showing again no variation. In view of the current dimensions targeted by nanotechnology, the question arises on whether or not thermal conductivity remains constant below 8 nm since if this were the case the behavior of the devices would be dramatically affected.

In what follows, we address this issue by exploiting an atomic scale simulation framework that combines first-principles molecular dynamics (FPMD) within density functional theory (DFT) and the approach-to-equilibrium molecular dynamics (AEMD) technique to extract the thermal conductivity from the transient relaxation of the heat flux. The reasons underlying the use of this methodology are briefly recalled in what follows. In principle, by making use of molecular dynamics, one duly accounts for the compelling anharmonic character of thermal conductivity. However, a compromise has to be found between a reliable treatment of the interatomic forces (requiring a first-principle description) and the computational ressources needed to follow in time the heat flux. To take advantage of the predictive power of FPMD and obtain the thermal conductivity at an accessible cost we employ AEMD in conjunction with FPMD [7][8][9] , as we have done successfully for amorphous GeTe 4 [10][11][12] and amorphous Ge 2 Sb 2 Te 5 13 . With this choice, the computational effort is reduced since the transient times inherent in AEMD are much shorter than the time intervals needed to treat the heat flux in alternative MD methods 14,15 . Most importantly, unlike other approaches like the Green-Kubo one 16,17 , AEMD is well suited to observe size effects as shown in various kinds of bulk materials and nanostructures 8,9,18,19 .

The goal of this paper is to ascertain the presence of size effects for the thermal conductivity of aSiO 2 in the range [2 -8] nm. This amounts to highlighting nanoscale dimensions for which no experimental results are available. Therefore, our calculations are intended to confirm or disprove the absence of reduction of thermal conductivity at very small sizes in aSiO 2 . The paper is organized as follows. In Sec. II we describe the models employed and the preparation of the amorphous system via the use of classical and first-principles molecular dynamics in two successive steps. Details on the MD methodology are also provided.

Sec. III presents our calculations on the pair correlation functions and the comparison with analogous results available in the literature, so as to validate our approach. After a brief review of the AEMD basic ideas, Sec. IV reports our results on the thermal conductivity of amorphous SiO 2 as a function of four differents lengths in the direction of the heat flux.

These results are critically analyzed in Sec. V. Conclusive remarks are collected in Sec. VI.

II. MODELS AND CALCULATIONS

The prerequisite to the calculation of the thermal conductivity κ is the setup of atomicscale models for aSiO 2 . We employed five simulation cells differing by their lengths L in the direction of the heat flux, so as to obtain a trend for κ(L) and detect the possible occurrence of size effects. Four values of L have been used (see Table I, where N is the number of atoms in each simulation box). In addition, for one value of L, we considered two distinct cross sections. This allows confirming, as it appeared in several other cases 8,12 that a smaller cross section affects only the statistical uncertainty on the thermal conductivity.

Periodic boundary conditions are applied throughout. We stress that, when using AEMD, the periodicity of the system is fully compatible with the existence of a periodic temperature profile that establishes within the system. A brief review of these ideas is given in Sec. IV.

To speed up the production of a system at room temperature, we have resorted to classical molecular dynamics by relying on the good performances of this approach for amorphous SiO 2 when compared to FPMD models. A two step procedure was used, consisting of a first melt-quenching thermal cycle employing the interatomic potential developed by Pedone et al. 20 (PMMCS) in its revised and improved version (BMP-harm, Ref. 21) followed by a second thermal cycle using the interatomic potential by Carré et al. (CHIK) 22,23 . The initial pairwise interatomic potential PMMCS was chosen because of its reliability and the availability of parameters for many cation-oxygen pairs. Also, its ability to predict the mechanical properties has been well assessed for oxide glasses and oxide nanoparticles. The revised BMP-harm version allows reproducing better the Si-O-Si bond angle distributions (BADs) and the oxygen distances of the network former. For the second thermal cycle, the CHIK potential was preferred since it stems from a fit to FPMD simulations data, reproducing satisfactorily a set of static and dynamical properties of amorphous SiO 2 . Overall, our procedure allowed applying FPMD directly at room temperature on classical MD configurations highly compatible with FPMD ones, thus reducing the computational burden of FPMD-based thermal cycles, especially for the largest system. We stress that our choice is well suited for the case of amorphous SiO 2 since the above classical and first-principles models share the main topological features (predominant tetrahedral coordination, absence of homopolar bonds) unlike in the case of other disordered network-forming systems as chalcogenides. For our classical MD calculations, the leap-frog algorithm encoded in the DL POLY2.14 package 24 was used to integrate the equations of motion with a time step of 1 fs for both cycles. The initial configurations were generated by randomly positioning the atoms in the simulation box at the experimental density (ρ = 2.2 g cm -3 ). Quench to lower temperatures was carried out in the framework of the NVT ensemble. As for the first thermal cycle (with the PMMCS potential), the system was heated at T = 5000 K and kept at that temperature for 500 ps, a time ensuring melting and substantial diffusion. Then, the liquids were cooled to 300 K at a cooling rate of 0.6 K/ps, with annealing steps of 500 ps from T = 5000 K down to T = 1000 K every 500 K and every 100 K in the interval 1000 -300 K. The resulting glass structures were subjected to a final equilibration run of 500 ps at 300 K followed by a further thermal cycle via the CHIK potential, bringing back the system to T = 3500 K. At this temperature, atoms have liquid-like diffusion (diffusion coefficients of 7.4×10 -6 cm 2 s -1 for Si and 9.0×10 -6 cm 2 s -1 for O). In this case, the temperature was reduced in the interval 3500 -300 K via a cooling rate of 0.5 K/ps, by adopting the same quenching schedule of the first thermal cycle (namely, same annealing steps and depths of quench in between two temperatures).

Having completed two thermal cycles within classical molecular dynamics, we switched to FPMD for the five cells under consideration by producing a trajectory at room temperature lasting 10 ps, to be made available for the application of AEMD. To this purpose, we resorted to the Car-Parrinello 25 method as implemented in the CPMD code 26 . For the exchangecorrelation part of the Kohn-Sham total energy expression, we selected the exchange formula proposed by Becke 27 and the correlation one of Lee, Yang and Parr 28 (BLYP). We described the valence-core interaction by norm-conserving pseudopotentials as prescribed by Troullier and Martins 29 . Valence electrons are represented by a plane-wave basis set compatible with periodic boundary conditions, with a cutoff of 80 Ry, and expanded at the Γ point only.

The mass of the fictitious electronic degrees of freedom was set to 1000 a.u. and the time step to 5 a.u. (0.12 fs) to achieve optimal conservation of the constants of motion. The ionic temperature was controlled with a Nosé-Hoover 30-32 thermostat chain 33 . It should be made clear that, within the above definitions, classical molecular dynamics and firstprinciples molecular dynamics differ by the nature (classical or quantum) of the calculated forces, both methods being purely classical with respect to the character of the equations of motions, following Newtonian dynamics.

III. MODELS VALIDATION

A crucial step is to ensure the consistency of our models with available FMPD results.

To this aim, a reliable benchmark is the calculation of the partial pair correlations functions reported in Fig. 1. The agreement found with the calculations by Giacomazzi et al. 34 is excellent, small deviations on the peak positions being due to differences in the selection of the exchange-correlation functions, since the local density approximation (LDA) was employed in Ref. 34. Peak positions and coordination numbers are also in very good agreement with experiments (Table II). This validates our realizations of amorphous SiO 2

as valuable models to study the thermal conductivity in the size range comprised between 2 and 8 nm in the direction of the heat flux.

IV. CALCULATION OF THE THERMAL CONDUCTIVITY

The AEMD methodology creates a periodic thermal profile within the system featuring two blocks kept at different temperatures. This is termed phase 1. Then, the system is left to relax to equilibrium by removing the difference of temperature between the two blocks (phase 2). In practice, during phase 1 two distinct thermostats at temperatures T = 200 K and T = 400 K are applied to the two halves of the computational cell in the direction of the thermal flux (as exemplified in the inset of Fig. 2). Due to the periodic boundary conditions, the signal is periodic as shown by the green curve in Fig. 2 that establishes after a few ps, marking the end of phase 1 (thermostats switched off) and the beginning of phase 2. During phase 2 the temperature profile takes a sinusoidal shape (red curve in Fig. 2)

with amplitude decreasing with time. This is exactly a feature of the Fourier equation for the transitory regime of heat transport [7][8][9][10] .

Another key quantity to be considered is the difference of temperature between the two blocks (averaged over each one of them) converging to zero with an exponential decay (Fig. 3). One can exploit the decay time τ to extract the thermal conductivity κ from the relationship:

κ = L 2 4π 2 C.ρ τ , (1) 
where C is the heat capacity calculated from the variation of the total energy versus temperature and τ is determined for each of the five models. A statistical error can be estimated by extending phase 1 via a corresponding phase 2, leading to a second evaluation for τ and κ (Fig. 4).

Results for the thermal conductivity are summarized in 5. As a first observation the results confirm that an increase of the cross section only reduces the error bar. Most notably, we notice that κ increases in the range between 2 and 6 nm reaching eventually an upper limit.

This behavior has been observed in several other systems studied by AEMD 8,9,12,13,18,19 and has been rationalized in Ref. 9. The dependence κ(L) is due to non-local effects at short lengths. The κ(L) curves obtained by AEMD are well described by the formulation derived by Alvarez and Jou 35 that handles in a single equation both the ballistic and diffusive regime:

κ AJ (L) = κ bulk L 2 2π 2 l 2   1 + 4 πl L 2 -1   , (2) 
where κ bulk is the bulk thermal conductivity and l is the mean free path (note that the above equation 2 is employed to draw Fig. 6). On physical grounds, this means that the thermal conductivity has a double regime depending on whether the simulation box is larger or smaller than the mean free path of the heat carriers in the material. This is the length at which κ(L) takes a stationary value, in very good agreement with a set of experimental data available in the literature ([1.1 -1.5] W K -1 m -1 ) and reported in Ref.

36. This kind of agreement legitimates our approach and the rationale presented herafter.

V. DISCUSSION

The results given in Fig. 5 provide evidence of a decreasing thermal conductivity for very small sizes, in analogy with what obtained previously for amorphous GeTe 4 and amorphous Ge 2 Sb 2 Te 5 . These results are collected and compared in Fig. 6.

Thermal conductivities of these materials extend over one order of magnitude, from GeTe 4

to Ge 2 Sb 2 Te 5 up to SiO 2 . Results obtained for this latter, by far the worst thermal insulator among the three, consolidate previous statements on thermal transport modes in disordered materials reached by using AEMD/FPMD. Fig. 6 shows clearly that Eq. 2 is equally valid for the three materials. Therefore, this allows drawing the general conclusion that the decrease of thermal conductivity with heat propagation length is due to heat carriers taking a mixed ballistic/diffusive character. Upper values of κ as a function of L correspond to mean free paths ranging from 6 nm for SiO 2 to 35 nm for Ge 2 Sb 2 Te 5 and to 50 nm pour GeTe 4 . This trend is inversely proportional to the value of the thermal conductivity.

Our results do not contradict the absence of any experimental evidence for the reduction of the thermal conductivity at small sizes since no measurements on aSiO 2 have been performed

in the 2-8 nm range considered here. Similarly there are no such experimental results available for amorphous GeTe In all disordered systems considered so far (GeTe 4 , Ge 2 Sb 2 Te 5 and SiO 2 ) size effects manifest themselves on dimensions larger that the structural order inherent in these networks, this order extending on intermediate range scales (10-50 Å at most). This demonstrates that structural disorder can limit heat propagation when compared to crystals (lower values of thermal conductivity and size dependence at smaller dimensions) without totally preventing it. Yet, some of the effects we observed are somewhat unexpected, since the mean free paths of heat propagation turn out to be smaller in a system like amorphous SiO 2 , by far more chemically ordered (fewer coordination defects) than GeTe 4 and Ge 2 Sb 2 Te 5 . Also, our results do not substantiate the assumption that the thermal conductivity of a material has a strong linear dependence on its intrinsic structural disorder 39 . This calls for further investigations both on the theoretical and experimental side. In particular experiments exploring the range of sizes below 10 nm will be highly instrumental to further improve our understanding of such nanoscale phenomena.

VI. CONCLUSION

We have calculated the thermal conductivity of amorphous SiO Tables 
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 5 Fig. 5 is indicative of mean free paths taking maximum values around 6 nm in aSiO 2 .

4 and Ge 2

 2 Sb 2 Te 5 . Concerning other pieces of evidence obtained from calculations, Ref. 37 shows no sensitivity of the thermal conductivty to size reduction (with respect to the bulk value) in a GeTe film with a width of 8 nm 38 . The thermal behavior of this material appears to be closer to the one of amorphous SiO 2 since it would feature, whenever existing, size effects showing up at smaller dimensions than in glasses GeTe 4 and Ge 2 Sb 2 Te 5 .
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 34526 FIG.3: Evolution of the temperature difference between hot and cold blocks during phase 2 of AEMD (black line) together with a fit to an exponential decay (red line). We are considering here the case of N = 837, second trajectory (extended phase 1, see text).

  2 by exploiting the approach-to-equilibrium (AEMD) molecular dynamics methodology in conjunction with first-principles molecular dynamics. Our results are based on lengths for heat propagation in between 2 and 8 nm. Beyond 6 nm, thermal conductivity is unchanged, taking an asymptotic value in excellent agreement with experimental results. Below 6 nm, for a range of dimensions unaccessible to experiments, the thermal conductivity of aSiO 2 decreases by a factor of 2 at 2 nm. This reduction confirms analogous trends observed in amorphous GeTe 4 and Ge 2 Sb 2 Te 5 , by establishing a common pattern among these three systems despite their structural differences (different degrees of chemical order). Overall, our results indicate, in a counterintuitive fashion, that structural disorder can be compatible with the propagation of heat carriers.
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TABLE I :

 I Models of amorphous SiO 2 employed in this work. L is the supercell length in the heat transport direction. S is the cross section.

	N	279	558	558	837	1116
	L ( Å)	20.32	20.32	40.64	60.96	81.28
	S ( Å2 ) 10.16×20.32 20.32×20.32 10.16×20.32 10.16×20.32 10.16×20.32

TABLE II :

 II Peak positions and coordination numbers (obtained by integrating up to the first minima of the pair correlation functions) compared to experiments from Ref. 40. This work Expt. This work Expt. This work Expt.

		Si-Si		Si-O		O-O	
	Peak position ( Å)	3.17	3.08	1.64	1.60	2.66	2.62
	Coordination number	4	4.06	4	3.89	6.3	5.99