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Four main challenges can cause numerous difficulties when developing an entity linking system: i) the kind of textual documents to annotate (such as social media posts, video subtitles or news articles); ii) the number of types used to categorise an entity (such as Person, Location, Organization, Date or Role); iii) the knowledge base used to disambiguate the extracted mentions (such as DBpedia, Wikidata or Musicbrainz); iv) the language used in the documents. Among these four challenges, being agnostic to the knowledge base and in particular to its coverage, whether it is encyclopedic like DBpedia or domain-specific like Musicbrainz, is arguably the most challenging one. We propose to tackle those four challenges and in order to be knowledge base agnostic, we propose a method that enables to index the data independently of the schema and vocabulary being used. More precisely, we design our index such that each entity has at least two information: a label and a popularity score such as a prior probability or a Pagerank score. This results in a framework named ADEL, an entity recognition and linking system based on a hybrid linguistic, information retrieval, and semantics-based methods. ADEL is a modular framework that is independent to the kind of text to be processed and to the knowledge base used as referent for disambiguating entities. We thoroughly evaluate the framework on six benchmark datasets: OKE2015, OKE2016, NEEL2014, NEEL2015, NEEL2016 and AIDA. Our evaluation shows that ADEL outperforms state-of-the-art systems in terms of extraction and entity typing. It also shows that our indexing approach allows to generate an accurate set of candidates from any knowledge base that makes use of linked data, respecting the required information for each entity, in a minimum of time and with a minimal size.

Introduction

Textual content represents the biggest part of content available on the Web but it comes in different forms (social media posts such as tweets, reviews, or Facebook status, video subtitles, news articles, etc.) and in different languages providing multiple challenges for researchers in natural language processing and understanding. Making use of textual content requires analysing and interpreting the information they contain. As a real example, entity linking and entity recognition are largely used in two projects, NextGenTV 1 and ASRAEL 2 .

Within the NexGenTV project, we are developing authoring tools that enable to develop second screen applications and facilitate social TV. In particular, there is a need for near real-time automatic analysis to easily identify clips of interest, describe their content, and facilitate their enrichment and sharing [START_REF] Ben | NexGen-TV: Providing Real-Time Insights During Political Debates in a Second Screen Application[END_REF]. In this context, we are analyzing the TV program subtitles in French for extracting and disambiguating named entities and topics of interests. Within the ASRAEL project, we are analyzing large volume of English and French newswire content in order to induce fine grained schema that describe events being reported in the news. More precisely, we extract and disambiguate named entities that are head words to extract attribute values that best describe an event in a completely unsupervised manner [START_REF] Nguyen | Generative Event Schema Induction with Entity Disambiguation[END_REF].

Task Description

At the root of these two projects, there is a need of information extraction that aims to get structured information from unstructured text by attempting to interpret natural language for extracting information about entities, relations among entities and linking entities to external referents. More precisely, entity recognition aims to locate and classify entities in text into defined classes such as Person, Location or Organization. Entity linking (or entity disambiguation) aims to disambiguate entities in text to their corresponding counterpart, referred as resource, contained in a knowledge graph. Each resource represents a real world entity with a specific identifier.

In this paper, we denote a mention as the textual surface form extracted from a text. An entity as an annotation that varies depending of the task: i) when only doing the entity recognition task, an entity is the pair (mention, class); ii) when only doing the entity linking task, an entity is the pair (mention, link); iii) when doing both the entity recognition and linking task, an entity is the triplet (mention, class, link). A candidate entity is one possible entity that we generate in order to disambiguate the extracted mention. Novel entities are entities that have not yet appeared in the knowledge base being used. This phenomenon happens mainly in tweets and sometimes in news: typically, people may just become popular but do not have yet an article in Wikipedia.

Many knowledge bases can be used for doing entity linking: DBpedia3 , Freebase 4 , Wikidata 5 to name a few. Those knowledge bases are known for being broad in terms of coverage, while vertical knowledge bases also exist in specific domains, such as Geonames 6 for geography, Musicbrainz 7 for music, or LinkedMDB 8 for movies.

The two main problems when processing natural language text are ambiguity and synonymy. An entity may have more than one mention (synonymy) and a mention could denote more than one entity (ambiguity). For example, the mentions HP and Hewlett-Packard may refer to the same entity (synonymy), but the mention Potter can refer to many entities 9 (ambiguity) such as places, person, band, movie or even a boar. This problem can be extended to any language. Therefore, entity linking is also meant to solve the problems of synonymy and ambiguity intrinsic in natural language.

We illustrate the problems of ambiguity and synonymy in an example depicted in Figure 1: the mention Noah may correspond to at least two entities Yannick Noah and Joakim Noah. The need to have a knowledge base with Linked Data is crucial in order to properly disambiguate this example: Yannick Noah is a tennis player who has played for the Chicago ATP and US Open (in New York) tournaments, the Chicago tournament happening before the US Open one; Joakim Noah is a basketball player who has played for the Chicago Bulls before being enrolled by the New York Knicks team. Therefore, one key word in this example is the year 2007 since Yannick Noah's tennis activity is well before 2007. Therefore, the proper entities for this example are Joakim Noah, New York Nicks and Chicago Bulls.

Challenges

Focusing on textual content, we can list four main challenges that the NLP community is addressing for performing such an intelligent processing and that entity recognition and entity linking systems are facing. These challenges primarily affect the strategy used to understand the text, for extracting meaningful information units and linking those to external referents.

1. the nature of the text, referring to the fact that there are two different categories of text: i) formal texts, usually well-written and coming from trusted sources such a newspaper, magazine, or encyclopedia; ii) informal texts that are texts coming from social media platforms or search queries. Each category of textual content has its own peculiarities. For example, tweets are often written without following any natural language rules (grammar-free, slangs, etc.) and the text is mixed with Web links and hashtags. A hashtag is a string preceded by the character # and used to give a topic or a context to a message. This is why one does not process a tweet like a Wikipedia article; 2. the language used: textual content on the Web is available in multiple languages and these languages have some particularities that make them more or less difficult to process (for instance, latin languages versus asian languages); 3. the entity types: they may exist multiple classes (types) in which an entity can be classified and where each type has a definition. The definition of a type may vary depending on the people. For example, in the text Meet you at Starbucks on the 42 nd street, one may recognize Starbucks as an Organization while others may want to consider that Starbucks is a Place where the local branch of a coffee shop is making business. The two annotations may sound correct according to the setting but with two different definitions. 4. the knowledge base used: we can easily imagine that the results of an entity linking system highly depend on the knowledge base being used. First, the coverage: if a text is about a movie and one only uses a knowledge base containing descriptions of point of interests and places (such as Geonames), the number of disambiguated entities is likely to be small, contrarily if a general purpose or cinema specific knowledge base is being used. Second, the data model: knowledge bases may use different vocabularies and even models which prevent to query in a uniform way (e.g. Freebase vs DBpedia). They may also use different data modeling technology (e.g. relational database vs linked data). Third, freshness: if we use a release of DBpedia dated five years ago, it will not be possible to find the entity Star Wars: The Force Awakens and this will make the disambiguation of occurrences of this entity much harder.

Contributions

We propose a generic framework named ADEL which addresses, with some requirements, the four different challenges described in the Section 1.2:

1. We propose an entity recognition process that can be independent of the genre of the textual content (i.e. from Twitter or Wikipedia) and language. This process can also be adapted to the different definitions that may exist for extracting a mention and classifying an entity (Section 3.1). 2. We handle the different type of linked data models that may exist to design a knowledge base by providing a generic method to index its content and to improve the recall in terms of entity candidate generations (Section 3.2).

3. We propose a modular architecture that can be used to design an adaptable entity linking system (Figure 2). 4. ADEL is shown to be robust across different evaluation campaigns in terms of entity recognition, entity candidate generation, and entity linking (Section 5).

Paper Structure

The rest of the paper is structured as follows: Section 2 presents related work on entity recognition and entity linking. Sections 3 and 4 introduce our approach. Section 5 describes thoroughly numerous evaluations of our approach on standard benchmarks. Finally, conclusions and future work are proposed in Section 6.

Related Work

In Section 2.1, we list and detail the essential inputs needed for performing entity linking namely input text, knowledge base, and provenance of both input text and knowledge base. Next, in Section 2.2, we describe the different methods for each component used in the state-of-the-art approaches: mention extraction, entity linking, and joint recognition-linking.

External Entries Used for Entity Linking

We identify two external entries for an entity linking system: the text to process and the knowledge base to use for disambiguating the extracted mentions. We extend the definition of what is an external entry for an entity linking system defined in [START_REF] Rizzo | Lessons Learnt from the Named Entity rEcognition and Linking (NEEL) Challenge Series[END_REF] where they define the text, the knowledge base and the entity as the three main external entries of an entity linking system. The authors classify the entity itself as a third component because there is currently no agreed upon definition of what is an entity. We identify two cases: i) named entities as defined in [START_REF] Grishman | Design of the muc-6 evaluation[END_REF] during the MUC-6 evaluation campaign, is the most commonly used definition, and they represent instances of a defined set of categories with ENAMEX (entity name expressions e.g. Person, Location and Organization) and NUMEX (numerical expression). This definition is often extended by including other categories such as Event or Role. ii) named entities are a set of resources defined from a knowledge base. This definition allows to recognize and link only the entities contained in the knowledge base.

We have just seen two different definitions of what can be an entity. The current entity linking systems tends to adopt only one definition, making this as a requirement (an external entry) and not a feature to select. In ADEL, we have decided to integrate the two definitions in order to be able to extract, type and link entities belonging to each definition or the two at the same time.

Textual Content

In [START_REF] Rizzo | Lessons Learnt from the Named Entity rEcognition and Linking (NEEL) Challenge Series[END_REF], the authors classify a textual content in two categories: short and long text. We propose a different orthogonal categorization where textual content is divided between formal text and informal text. Formal texts are well-written texts coming from trusted sources such a newspaper, magazine, or encyclopedia. These texts are often long texts and provide easier ways to detect the context in which the mentions are used. This context facilitates the way the algorithms used in entity linking are working. People who are writing these texts often use a proper and common vocabulary in order to be understood by the largest set of people and contain none (or a low amount) of misspellings. Nevertheless, formal texts can also be short texts, for example, the title of an article or the caption of a picture. It is then harder to detect the content with short texts, even if they have the same characteristics as long texts in terms of writing style. Generally, we argue that the longer is the text to process, the better the algorithms used in entity linking systems work [START_REF] Ferragina | TAGME: on-the-fly annotation of short text fragments (by wikipedia entities)[END_REF].

On the contrary, informal texts are free-written texts mostly coming from social media posts (e.g. tweets) or search query logs. These texts are often short, but they can also be long (e.g. user reviews, forum posts), and generally contain many more misspellings than what formal texts can have. Tweets are the best example since they are often written without following any natural language rules (e.g. grammar-free and slangs) and the text is mixed with short Web links and hashtags. They can also be only composed of emojis. It is easy to imagine that the text I <3 @justdemi is more difficult to process by an entity linking system than I love Demi Moore.

This categorization is far from being exclusive and video subtitles is another kind of textual content that we aim to process. Subtitles are generally well-written and coming from trusted sources, but they can also come from an automatic speech recognition (ASR) system that will introduce errors and non-existing words or generate awkward sentences that will make them informal. Similarly, if the video is a stream coming from Twitch10 , it is likely that the subtitles are informal texts.

Knowledge Bases

Knowledge bases are a fundamental resource for doing entity linking. They often use linked data to provide information about entities, their semantic categories and their mutual relationships. Nevertheless, knowledge bases can be stored in different models ranging from graph to relational databases such as Wikipedia. In [START_REF] Rizzo | Lessons Learnt from the Named Entity rEcognition and Linking (NEEL) Challenge Series[END_REF], the authors define three characteristics of a knowledge base: 1) domain-specific versus encyclopedic knowledge bases; 2) relational database versus linked data; and 3) updated versus outdated knowledge bases in terms of data freshness. We will complement this by i) introducing some existing knowledge bases that have been widely exploited in entity linking, and ii) add a fourth characteristic: the different ontologies (schemas) used to describe the data into a knowledge base. For example, Wikidata is not modeled in the same way than DBpedia [START_REF] Färber | Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata and YAGO[END_REF]. We can reference multiple existing knowledge bases:

-Wikipedia11 is a free online multilingual encyclopedia created through decentralized, collective efforts from a huge number of volunteers around the world. Nowadays, Wikipedia has become the largest and most popular encyclopedia in the world available on the Web that is also a very dynamic and quickly growing resource. Wikipedia is composed of pages (articles) that define and describe entities or a topic and each of these pages is referenced by a unique identifier. Currently, the English version of Wikipedia contains over 5. Besides Wikipedia, all the other cited knowledge bases are available as linked data and are modelled using different ontologies. DBpedia uses the DBpedia Ontology 15 ; Freebase uses its own data model 16 that has been mapped into RDF by keeping the same property names; YAGO uses its own data model [START_REF] Suchanek | YAGO: A Large Ontology from Wikipedia and WordNet[END_REF]; Babelnet implements the lemon vocabulary 17 ; Wikidata has developed its own ontology [START_REF] Erxleben | Introducing Wikidata to the Linked Data Web[END_REF]. Knowing that, it is difficult to switch from one knowledge base to another due to the modelling problem as most of the disambiguation approaches uses specific values modelled with the schema of the referent knowledge base.

Common Entity Linking Components

Regardless of the different entity linking components that intervene in typical workflows [START_REF] Rizzo | Lessons Learnt from the Named Entity rEcognition and Linking (NEEL) Challenge Series[END_REF], there are different ways to use these components. We have identified four different workflows:

1. systems composed of two independent stages: mention extraction and entity linking. For the mention extraction stage, this generally consists in mention detection and entity typing. For the entity linking stage, there is often entity candidate generation, entity candidate selection, and NIL clustering; 2. systems that give a type to the entity at the end of the worflow by using the types of the selected entity from the knowledge base when they exist;

Since a few years, most of the current entity linking research endeavours are only focusing on linking process as they assume that the mention extraction is a solved problem. While the current state-ofthe-art methods in mention extraction work very well for well-defined types on newswire content [START_REF] Tjong | Introduction to the CoNLL-2003 Shared Task: Language-independent Named Entity Recognition[END_REF], it is far to be perfect for tweets and subtitles [START_REF] Gravier | The ETAPE corpus for the evaluation of speech-based TV content processing in the French language[END_REF][START_REF] Rizzo | NEEL 2016: Named Entity rEcognition & Linking challenge report[END_REF] or for fine-grained entity types. Current state-of-the-art, often, does not detail enough the way they generate the entity candidates or the way they index their knowledge base. Most of the time, they indicate the usage of a dictionary implemented as look up candidates over a Lucene index [START_REF] Piccinno | From TagME to WAT: a new entity annotator[END_REF][START_REF] Ferragina | TAGME: on-the-fly annotation of short text fragments (by wikipedia entities)[END_REF][START_REF] Mendes | DBpedia Spotlight: shedding light on the web of documents[END_REF][START_REF] Scaiella | DataTXT at #Microposts2014 Challenge[END_REF][START_REF] Ceccarelli | Dexter: an open source framework for entity linking[END_REF]. We believe that further investigating how this step is made, and how it can be optimized, improves the overall results of any entity linking system.

The tables 1, 2 and 3 provide a large overview of the methods and features used by the current state-of-theart entity linking systems. The column entity recognition indicates if the entities are recognized during the mention extraction process or during the linking process; the column entity candidate generation indicates if the generation is applied during the mention extraction or during the linking process. In Table 1 and Table 2, we list the systems that provide a full entity linking workflow. We made the specific Table 3 for the joint recognition-linking systems as they cannot be split into the conventional workflow cited before.

In Table 1, we observe that most of the systems use what we call a semantic-based approach, because they make use of dictionaries that have been generated from semantic data (knowledge bases). When POS tagging is being used, it is essentially a secondary feature that aims to enforce or to discard what has been extracted with the dictionary. Contrarily to the others, AIDA [START_REF] Hoffart | Robust Disambiguation of Named Entities in Text[END_REF] uses a pure NLP approach based on Stanford NER [START_REF] Finkel | Manning. Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling[END_REF]. TagME [START_REF] Ferragina | TAGME: on-the-fly annotation of short text fragments (by wikipedia entities)[END_REF] claims to make an overlap resolution between the extracted mentions at the end of this process. Overlap resolution is the process of resolving at least two mentions that overlap in order to make just one mention using a defined heuristic. Further explanation about overlap resolution is provided in the next sections. TagME [START_REF] Ferragina | TAGME: on-the-fly annotation of short text fragments (by wikipedia entities)[END_REF] and DataTXT [START_REF] Scaiella | DataTXT at #Microposts2014 Challenge[END_REF] and Dexter Analysis of Named Entity Linking systems

In Table 2, we observe three approaches: graphbased (use the graph structure of the data), arithmetic formula (combining different scores with mathematical operations) and pure machine learning using different features. At the end of the linking process, the TagME [START_REF] Ferragina | TAGME: on-the-fly annotation of short text fragments (by wikipedia entities)[END_REF] and WAT [START_REF] Piccinno | From TagME to WAT: a new entity annotator[END_REF] systems also do a pruning. None of these systems claim to be able to handle novel entities, that is, disambiguate some entities to NIL mainly due to their extraction approach. We also observe how linked data versus relational data is used: most of the listed methods that use a linked data knowledge base tend to have a graph-based linking approach meaning that the structure of the data has a key role into this process. We conclude that linked data promotes graph-based methods and that such knowledge base eases the making of a collective disambiguation. This kind of disambiguation means that we use the relations that the extracted entities have among them in a knowledge base in order to disambiguate them all at the same time.

In Table 3, all methods are CRF-based but with some differences among the features being used. The structure of the knowledge base does not really matter since these methods aims primarily to extract or to compute specific features from it.

Approach

The goal of an entity linking approach is to recognize and to link all mentions occurring in a text to existing linked data knowledge base entries and to identify new entities not yet included in the knowledge base. ADEL comes with a new architecture (Figure 2) compared to the state-of-the art ones. Those architectures are typically static and show little flexibility for extracting and linking entities. They generally cannot be extended without making important changes that would require to spend a lot of time in terms of integration. For example, for the extraction, it is not possible to add a dictionary extraction engine to AIDA [START_REF] Hoffart | Robust Disambiguation of Named Entities in Text[END_REF] or a NER extraction to TagME [START_REF] Ferragina | TAGME: on-the-fly annotation of short text fragments (by wikipedia entities)[END_REF]. Next, the linking process is also fixed as, for example, we cannot add a method based on a linear formula to Babelfy [START_REF] Moro | Entity Linking meets Word Sense Disambiguation: a Unified Approach[END_REF] which uses a graph-based approach. Finally, the knowledge base being used is often fixed as well: it is difficult to change as we cannot ask to Babelfy [START_REF] Moro | Entity Linking meets Word Sense Disambiguation: a Unified Approach[END_REF] to switch from Babelnet [START_REF] Navigli | BabelNet: The Automatic Construction, Evaluation and Application of a Wide-Coverage Multilingual Semantic Network[END_REF] to another knowledge base that belongs to the Linked Open Data cloud.

ADEL has been designed to enable all those changes. The ADEL architecture is modular where modules fall within three main categories. The first part, (Entity Recognition), contains the modules Extractors and Overlap Resolution. The second part, (Index), contains the module Indexing. Finally, the third part, (Entity Linking), contains the modules Candidate Generation, NIL Clustering and Linkers. The architecture works with what we call modules defined as a piece of the architecture configurable through a configuration file and where each component of a module (in red color on the schema) can be activated or deactivated depending on the pipeline one wants to use. Each module is further detailed in Section 3.1, 3.2 and 3.3. A general pipeline can also be automatically configured for some modules.

Entity Recognition

In this section, we describe how we recognize mentions from texts that are likely to be selected as entities with the Extractor Module. After having identified candidate mentions, we resolve their potential overlaps using the Overlap Resolution Module.

Extractors Module. Currently, we make use of six different extractors: 1) Gazetteer Tagger, 2) POS Tagger, 3) NER Tagger, 4) Date Tagger, 5) Number Tagger and 6) Co-reference Tagger. If two or more of these extractors are activated, they run in parallel. The recognition process is based on external NLP systems such as Stanford CoreNLP [START_REF] Christopher | The Stanford CoreNLP Natural Language Processing Toolkit[END_REF], GATE, NLTK or OpenNLP. To be compliant with any external NLP system, we have based our recognition process on a Web API interface that uses NIF as data exchange format [START_REF] Gracia | Language Resources and Linked Data: A Practical Perspective[END_REF]. Therefore, by using this module, it is possible to switch from one NLP system to another one without changing anything in the code or to combine different systems. An example is available with Stanford CoreNLP 18 .

1. The Gazetteer Tagger relies on the integrated handling proposed in NLP systems such as RegexNER 19 of Stanford CoreNLP, Dictionary-NameFinder 20 for OpenNLP or the Dictionary Setup 21 for GATE. We also propose an automated way to generate a dictionary by issuing SPARQL queries to a linked data knowledge base that is inspired from how GATE generates its dictionaries. While using a dictionary as extractor, it gives the possibility to be very flexible in terms of entities to extract and their corresponding type, and allows to handle multiple languages. 2. The POS Tagger extractor is configured to extract singular and plural proper nouns and to attach the generic type THING. In order to handle tweets, we use the model proposed in [START_REF] Derczynski | Twitter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data[END_REF] We have the possibility to combine all these extractors, but also to combine the various NER models into one NER Tagger extractor. More precisely, we use a model combination method that aims to jointly make use of different CRF models in Stanford NER as described in the Algorithm 1. This algorithm shows that the order in which the models are applied is important. In Stanford NER, it is called NER Classifier Combiner. This logic can be extended to any other NER tagger. We explain the logic of this NER model combination using the following example: William Bradley Pitt (born December 18, 1963) is an American actor and producer.. The details for the models being used are 25 This combination of different models can, however, lead to a labelling problem. Let's imagine two models trained on two different datasets, where in one dataset a location is labelled as LOC but in the other dataset, it is labelled as Place. Therefore, if we apply a combination of these two models, the results will contain labelled entities that represents a location but some of them with the label LOC and others with the label Place and some mentions could have one label or the other depending on the order in which the models have been applied. In this case, the classes are not anymore harmonized because we are mixing models 26 https://nlp.stanford.edu/software/CRF-NER. shtml#Models that have been trained with different labels for representing the same type of entities. In order to solve this labelling problem, we propose a two-step solution: i) do not mix models that have been trained with different labels to represent the same entity type but, instead, create two instances of a NER extractor where each one has a combination of compatible models; and ii) use an overlap resolution module that resolves the overlaps among the extracted mentions from each extractor and harmonize the labels coming from models of different instances of a NER extractor into a same labelling definition.

Overlap Resolution Module. This module aims to resolve the overlaps among the outputs of the extractors and to give one output without overlaps. The logic of this module is as follows: given two overlapping mentions, e.g. States of America from the NER Tagger and United States from the POS Tagger, we only take the union of the two phrases. We obtain the mention United States of America and the type provided by the NER Tagger is selected. The overlaps in terms of text are easy to resolve, but it becomes much harder for the types when we have to decide which type to keep when two types come from two different extractors.

A first case is when two labels represent the same category, for example LOCATION from the Stanford 3-class model and dul:Place from a model trained with the OKE2015 dataset 27 . In order to solve this ambiguity, we have developed a mapping represented in SKOS between the types from multiple sources where the sources are: the labels given by the three default models of Stanford NER, the DUL ontology 28 , the Schema.org ontology 29 , the DBpedia ontology 30 , the Music ontology [START_REF] Raimond | The Music Ontology[END_REF], the NERD ontology [START_REF] Rizzo | NERD: A Framework for Unifying Named Entity Recognition and Disambiguation Extraction Tools[END_REF] and the NEEL taxonomy [START_REF] Rizzo | Lessons Learnt from the Named Entity rEcognition and Linking (NEEL) Challenge Series[END_REF]. A sample of this mapping for the type Person is provided at https://gist.github.com/jplu/ 74843d4c09e72845487ae8f9f201c797 and the same logic is applied for the other types. With this mapping, it is then possible to jump from one source to another with a SPARQL query. We are also using the notion of broad and narrow matches from SKOS This recognition process allows us to handle a large set of languages and document types by i) cleverly combining different annotators from multiple external systems, and ii) merging their results by resolving their overlaps and aligning their types. Once we succeed to recognize the entities, we generate entity candidates retrieved from the knowledge base. In the next section, we describe in detail the process of indexing a knowledge base as an essential task for the retrieval.

Indexing Linked Data

In this section, we describe how we index a knowledge base and how we optimize the search over it with the Indexing Module. The module is composed of two steps: i) indexing and ii) search optimization. As detailed in Section 2.1.2, there are multiple differences across the existing knowledge bases that make the indexing process very complex. The following process can be applied to any knowledge base that uses linked data. We will detail what are the minimum linked data requirements that a knowledge base should comply with, but also the extra other linked data that they might contain.

Indexing. The first step consists in extracting all entities that will be indexed using a SPARQL query. This query defines as many constraints as necessary. The minimum requirements for an entity to be indexed is to have an ID, a label, and a score. This score can correspond to the PageRank of the entity, or to any other way to score the entities in a linked data knowledge base. For example, with DBpedia, the corresponding required dumps 31 are: Labels, Page Ids and Page Links. The Page Links dump is only used to compute the PageRank of the DBpedia entities and will not be loaded. We use a dedicated graph library 32 in order to compute the PageRank and generate an RDF file that contains the PageRank score for all entities. In general, one needs to generate a file that contains only the links across the entities from the same source in order to compute their PageRank. For DBpedia, we are also using other dumps: anchor texts, instance types, instance type transitive, disambiguation links, long abstracts, mapping-based literals, and redirects. Once done, we load all the dumps into a triple 31 http://wiki.dbpedia.org/downloads-2016-04 32 http://jung.sourceforge.net/ store and use a SPARQL query (Query 1 for DBpedia or Query 3 for Musicbrainz) that retrieves the wanted entities. In the case of DBpedia, we add an additional constraint such as not be a redirect or a disambiguation page. Next, for each entity we got via this first query, we run a second SPARQL query that has for role to retrieve all the data we want to index. The Query 2 and the Query 4 are respectively used for DBpedia and Musicbrainz. ? s dbo : w i k i P a g e R a n k ? p r . ? s dbo : w i k i P a g e I D ? i d . f i l t e r n o t e x i s t s {? s dbo : w i k i P a g e R e d i r e c t s ? x } . f i l t e r n o t e x i s t s {? s dbo : w i k i P a g e D i s a m b i g u a t e s ? y } . } Listing 1: SPARQL query that filters the entities we would like to index The result of this second query is then used to obtain an index of the knowledge base.

Optimizing. Once we have this index, we can search for a mention and retrieve entity candidates. Searching over all columns negatively impacts the performance of the index in terms of computing time. In order to optimize the index, we have developed a method that maximizes the coverage of the index while querying a minimum number of columns (or entity properties). Therefore, we need to know in advance over which columns to search. We experimented with an optimization logic for the following benchmark datasets: AIDA and NEEL2015. These datasets have to be annotated with the proper targeted knowledge base. For this reason, we take as example how to optimize a DBpedia index but the proposed logic can be extended to any other knowledge base.

The DBpedia index has 4726950 rows (entities) and 281 columns (datatype properties). Given some benchmark datasets such as OKE2015, OKE2016, NEEL2014, NEEL2015 and NEEL2016, we parse their content in order to extract a list of distinct pairs (mention, link). Next, for every pair, we query the index against every single columns (in the case of db-pedia, this represents 281 queries for each pair), and for each query, we check whether the proper link of the pair is among the results or not. If yes, we put the property in a white list, and if not, the property is ignored as not being helpful to retrieve the good candidate link. At the end, we end up with a file that looks like the excerpt depicted in the Listing 5. This file indicates the columns that must be queried to get the proper link for each pair. We notice that most of the pairs share similar columns. Therefore, we make a union of all these columns to obtain a list of unique columns to use to query the index. For the excerpt depicted in Listing 5, the distinct union yields the following list of 9 properties: 1. dbo_abstract 2. dbo_birthName 3. dbo_wikiPageWikiLinkText 4. dbo_wikiPageRedirects 5. rdfs_label 6. foaf_name 7. dbo_wikiPageDisambiguates 8. dbo_longName 9. dbo_slogan In the case of dbpedia, this reduces the number from 281 to 72 columns to query but this list is still too large. If we check closely this excerpt, we notice that the column dbo_wikiPageWikiLinkText belongs to each list which means that with 1 single column (instead of 9) we can retrieve all pairs except the pair AnotherYou--http://dbpedia.org/resource/Another_You. The logic behind is that we have to maximize the number of pairs we retrieve for each column, and the goal is then to minimize the number of columns. At the end, we finish with a minimum list of columns that maximize the coverage of the pairs. This optimization can be done with the Algorithm 2. The source code is also available 33 .

Algorithm 2: Algorithm used in ADEL to optimize a search query for a specific index.

Result: Optimized set of columns Input : two-dimentional array I where a row is an instance of a couple and a column is a proper queried column in the index Output: A a set of columns 1 begin 2 current ← EmptySet(); This optimization reduces the time of the query to generate the entity candidates from around 4 seconds to less than one second. This ratio is an average time computed across all the queries response. The indexing process allows us to index a large set of knowledge bases that uses linked data and optimize the search against them. The latter is possible at the condition to have at least one benchmark dataset using the targeted knowledge base.

Entity Linking

The entity linking component starts with the Candidate Generation Module that queries the index and generates a list of entity candidates for each extracted entity. If the index returns a list of entity candidates, then the Linkers Module is invoked. Alternatively, if an empty list of entity candidates is returned, then the NIL Clustering Module is invoked.

NIL Clustering Module. We propose to group the NIL entities that may identify the same real-world thing. The role of this module is to attach the same NIL value within and across documents. For example, if we take two different documents that share the same emerging entity, this entity will be linked to the same NIL value. We can then imagine different NIL values, such as NIL_1, NIL_2, etc. We perform a string strict matching over each possible NIL entities (or between each token if it is a multiple token mention). For example, two mentions: "Sully" and "Marine Jake Sully" will be linked to the same NIL entity.

Linkers Module. Similarly to the Extractors Module, this module can handle more than one linking method. The one detailed in this paper is an empirically assessed function represented by Equation 1 that ranks all possible candidates given by the Candidate Generation Module.

r(l) = (a • L(m, title) + b • max(L(m, R))+ c • max(L(m, D))) • PR(l) (1)
The function r(l) is using the Levenshtein distance L between the mention m and the title, the maximum distance between the mention m and every element (title) in the set of Wikipedia redirect pages R and the maximum distance between the mention m and every element (title) in the set of Wikipedia disambiguation pages D, weighted by the PageRank PR, for every entity candidate l. The weights a, b and c are a convex combination that must satisfy: a + b + c = 1 and a > b > c > 0. We take the assumption that the string distance measure between a mention and a title is more important than the distance measure with a redirect page which is itself more important than the distance measure with a disambiguation page.

Implementation

The ADEL framework is implemented in Java and is publicly accessible via a REST API 34 . ADEL addresses the aforementioned four challenges being adaptable to the language and the kind of text to process, the types of entity to extract and the knowledge base to use for providing identifiers to entities.

ADEL needs a configuration file expressed in YAML that we call profile (Listing 6) in order to adapt its workflow. In the reminder of this section, we will detail how each component works. Extract. In Listing 6, the object extract configures the entity recognition component. It is composed of one object for each extractor used (NER, POS, COREF, dic, date and number.), the value of these ob- 34 http://adel.eurecom.fr/api jects being a list of instances. For example, in Listing 6, there are two extractors: ner and pos, where each extractor generates one instance. An instance is composed of four mandatory properties: address, name, profile, className, and an optional one: tags. The property address is the Web API HTTP address used to query the extractor. The property name is a unique name given to the instance of the extractor. The property profile is the profile that the extractor has to adopt 35 . The property className is the full name of the Java class (package + class) that has to be used internally to run the extractor. This property allows anyone to manage the extractor behavior via the reflection of Java 36 . The single optional property, tags, represents the list of tags that have to be extracted (all if empty or not present). It is also composed of two other mandatory properties that are mapping and reference. The former is the location of the SKOS mapping file for the types, and the latter is the source that will be used for typing the entities.

Index. In Listing 6, the object index configures the index that is composed of four mandatory properties: type, address, strict and name. The property address is the Web API HTTP or the folder address used to locate the index. The property type defines the index type to be used. Currently, we only handle Elasticsearch and Lucene but our indexing process can be extended to any other indexing system. In case of an Elasticsearch index, the properties query and name are mandatory, the former is the file where to find the Elasticsearch query template and the latter is the name of the index. In case of Lucene, these properties are replaced by two other mandatory properties that are fields and size, the former being the list of fields that will be queried and the latter being the maximum number of candidate to retrieve 7. The property strict can have two values: true if we want a strict search, or false if we want a fuzzy search. 35 The available list of existing profile for the NER extractor starting with the prefix ner_ is described at https://github.com/jplu/stanfordNLPRESTAPI/ tree/develop/properties 36 Reflection allows to examine, introspect, and modify the code structure and behaviour at runtime. Link. In Listing 6, the object link configures the linkers module. This property contains the full name of the Java class (package + class) that has to be used internally to run the corresponding linking method.

Evaluation

In this section, we present a thorough evaluation of ADEL over different benchmark datasets namely OKE2015 [START_REF] Giovanni Nuzzolese | The First Open Knowledge Extraction Challenge[END_REF], OKE2016 [START_REF] Giovanni Nuzzolese | The Second Open Knowledge Extraction Challenge[END_REF], NEEL2014 [START_REF] Elizabeth | Making Sense of Microposts (#Microposts2014) Named Entity Extraction & Linking Challenge[END_REF], NEEL2015 [START_REF] Rizzo | Making Sense of Microposts (#Microposts2015) Named Entity rEcognition and Linking (NEEL) Challenge[END_REF], NEEL2016 [START_REF] Rizzo | NEEL 2016: Named Entity rEcognition & Linking challenge report[END_REF] and AIDA [START_REF] Hoffart | Robust Disambiguation of Named Entities in Text[END_REF]. Each of these datasets have its own characteristics detailed in Table 4. The scores are computed with the official scorers of each challenge: GERBIL [START_REF] Usbeck | GERBIL -General Entity Annotation Benchmark Framework[END_REF] for OKE2015 and OKE2016, neleval [START_REF] Hachey | Cheap and easy entity evaluation[END_REF] for NEEL2015 and NEEL2016, and neeleval 37 for NEEL2014. As there is no official scorer for AIDA we used GERBIL. The neeleval scorer does not allow to compute a score at extraction and linking level, and the neleval scorer does not allow to compute a score at linking level. For these two reasons, we used GERBIL for scoring NEEL2014 at extraction and linking level, and for scoring NEEL2015 and NEEL2016 at linking level. Following the terminology proposed by GERBIL, extraction is defined as Entity Recognition, typing as Entity Typing, recognition as RT2KB, and linking as D2KB. Following the terminology proposed by neleval, extraction is referred as strong_mention_match, recognition as strong_types_mention_match, and extraction + linking as strong_link_match.

The results in Table 14 shows ADEL compared to the best participant at OKE2015 and OKE2016, while the Tables 18 and19 show ADEL compared to the best participant at NEEL2014, NEEL2015 and NEEL2016 for each level evaluated in the respective guidelines. Tables 9,11, 10 and 12 do the same but with the best systems in GERBIL.

Experimental Setup

We evaluate our approach at different level: extraction (Tables 6, 5, 7 and 8), recognition (Tables 15 and16), linking (Table 13) and indexing (Table 17).

Besides, for the two first level we will evaluate different possible configurations:

1. Conf1: Use one NER tagger with a model combination setting where the models are the 3 default CRF models provided by Stanford CoreNLP. Seven other configurations are evaluated by adding a dictionary and coreference extractors but only over the OKE2015 and OKE2016 datasets because we do not have proper dictionaries for the other benchmarks and only those benchmarks recognize co-references:

con f i = con f i-7 + COT + DIC (2) 
with i ∈ [START_REF] Clark | Improving Coreference Resolution by Learning Entity-Level Distributed Representations[END_REF][START_REF] Färber | Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata and YAGO[END_REF], COT stands for the coreference tagger, and DIC stands for the dictionary containing the name of jobs coming from Wikipedia. Three other configurations are evaluated by adding a date and number extractors but only over the NEEL2014 dataset because this benchmark recognizes this kind of entities:

con f i = con f j + NT + DT (3) 
with the couple (i, j) ∈ [(15, 1); [START_REF] Finkel | Manning. Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling[END_REF][START_REF] Bollacker | Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge[END_REF]; [START_REF] Gracia | Language Resources and Linked Data: A Practical Perspective[END_REF][START_REF] Chang | E2E: An End-to-End Entity Linking System for Short and Noisy Text[END_REF]], NT stands for the number tagger, and DR stands for the date tagger. The NEEL2014 and AIDA dataset are not evaluated at recognition level because the guidelines do not require such evaluation. We also remove the ADEL con-figurations that use the POS Tagger because the POS Tagger cannot type an entity. The Table 13 

Results Analysis

OKE2015 and OKE2016. Regarding the OKE datasets, it is interesting to notice that the models trained with the corresponding training sets is less performing in comparison to a general purpose model learned on news, probably due to the amount of data, the datasets being too small, while having a dictionary can significantly improve the results (+13% in average). By analysing the results, we have seen that the coreference Tagger is not that useful for extracting entities if we use the respective OKE models. Basically, these models are able to extract the coreference mentions (e.g. he, she, him, etc.) because these mentions are well represented into the training datasets. While this fact is interesting, the coreference Tagger is important as it links these mentions to their proper reference, what the NER Tagger cannot do because it is not possible for such tagger to make a relation between the extracted entities. For example, in the sentence Barack Obama was the President of the United States.

He was born in Hawaii., a NER Tagger might extract Barack Obama and He and type them as a Person, but will never make the relation that He refers to Barack Obama and then that Barack Obama must be used to disambiguate He. This is why we need a Coreference Tagger that provides this relation.

NEEL2014. This dataset is difficult because it requires to extract (but not type) and link only the entities that belong to DBpedia and not the novel entities. As there is no typing, it is not possible for us to train a NER model with the training set, which makes the POS Tagger becoming an important extractor.

NEEL2015 and NEEL2016. The first configuration mainly fails to identify the hashtags and user mentions while the second configuration works relatively well. We also notice that adding a POS Tagger increases the recall but decreases the precision. The best configuration for doing entity recognition is the same than for the extraction. Contrarily to the NEEL2015 dataset, for NEEL2016, the test set has a lower amount of annotated tweets (1663 against 296). Inside this small amount, most of the entities are hashtags or Twitter user mentions, explaining why the conf1 performs poorly. For NEEL2016, it is interesting to notice that, to only extract entities but not typing them, the conf7 performs the best. For entity recognition, for both datasets, the best configurations are different from the extraction, which shows that it is not necessarily the best extraction process that will have the best recognition. Furthermore, for these two datasets, we can see that the best configuration is not the same, due to a more important training set for NEEL2016, the resulting model is more accurate. For analysing tweets in general, a simple POS tagger can achieve good results in terms of extraction, which is something useful as one can do entity linking on tweets without a NER model. While NER models trained over newswire content seem not to be appropriate for a proper entity recognition on tweets, we can still achieve fair results as long as there are not too many hashtags and Twitter user mentions.

AIDA. We observe that using a specific NER model yields better results than a combination of models. Using the POS Tagger as the only extractor can provide fair results. Unfortunately, the GERBIL scorer does not give the possibility to score a system at recognition level for the AIDA dataset.

As an overall overview of these per level evaluation, we can see that rarely the best configuration implies only one extractor, showing that our extractor combination approach is playing a key role. It is also interesting to notice that the best configuration for the NEEL2015 dataset is not the same than for the NEEL2016 dataset despite the fact that both datasets are made of tweets. Index Optimization. Our index optimization process allows us to get a high score in terms of recall for the entity linking process. The results have been computed with a list of at most 8177 candidates. Providing more candidates does not further increase the recall. We originally observe, though, a significant drop in terms of recall for the NEEL datasets which is mainly due to the presence of hashtags and Twitter user mentions (see the numbers in parenthesis for the 3 NEEL datasets in the Table 17). For example, it is hard to retrieve the proper candidate link db:Donald_Trump_presidential_campaign,_2016 for the mention corresponding to the hashtag #TRUMP2016.

We tackle this problem by developing a novel hashtag segmentation method inspired by [START_REF] Sharmila | Segmentation based representation for tweet hashtag[END_REF][START_REF] Pereira-Martins | Segmenting twitter hashtags[END_REF]. For the previous example, this will result in trump 2016, those two tokens being then enough to retrieve the good disambiguation link in the candidate set. The 3 NEEL datasets, when using the hashtag segmentation method, and the 3 other datasets (OKEs and AIDA) have then a near-perfect recall if one retrieves sufficient candidate links. The few errors encountered correspond to situations where there is no match between the mention and any property values describing the entity in the index.

Comparison with Other Systems. Tables 14,18, 19, 9, 11, 10 and 12 show that ADEL outperforms all other stateof-the art systems in terms of extraction and recognition, except for the NEEL2015 dataset. The reason is because the system that achieves the best score makes use of a full machine learning approach for each subtask: entity linking (mention extraction + disambiguation), type prediction for entities, NIL mention extraction and type prediction for NIL entities. It works very well but needs a large amount of data for being trained, and, therefore, it will not perform efficiently over the OKE datasets (3498 tweets for NEEL2015 and 95 sentences in OKE2015). In Table 14, we did not put another system for OKE2015 because the winner of the challenge was ADEL. The best system at linking level for OKE2016, is the challenge winner [START_REF] Chabchoub | Collective disambiguation and Semantic Annotation for Entity Linking and Typing[END_REF]. In Table 19, the winner [START_REF] Chang | E2E: An End-to-End Entity Linking System for Short and Noisy Text[END_REF] has the best score. In Ta-ble 18, for NEEL2015, the winner has the best scores as well [START_REF] Yamada | An end-to-end entity linking approach for tweets[END_REF]. In Tables 9, 11, 10 and 12, ADEL is not the best system for linking, except for NEEL2016. At the linking level, xLisa-NGRAM [START_REF] Paul | Efficient Graph-based Document Similarity[END_REF] is the best for OKE2015, DoSeR [START_REF] Zwicklbauer | Doser -a knowledge-base-agnostic framework for entity dis-ambiguation using semantic embeddings[END_REF] is the best for OKE2016 and NEE2014, AGDISTIS [START_REF] Usbeck | AGDISTIS -Graph-Based Disambiguation of Named Entities Using Linked Data[END_REF] is the best for NEEL2015, and WAT [START_REF] Piccinno | From TagME to WAT: a new entity annotator[END_REF] is the best for AIDA. At extraction and linking level: AIDA [START_REF] Hoffart | Robust Disambiguation of Named Entities in Text[END_REF] is the best for OKE2015, xLisa-NER [START_REF] Paul | Efficient Graph-based Document Similarity[END_REF] is the best for OKE2016, DBpedia Spotlight [START_REF] Daiber | Improving efficiency and accuracy in multilingual entity extraction[END_REF] is the best for NEEL2014, and AIDA [START_REF] Hoffart | Robust Disambiguation of Named Entities in Text[END_REF] is the best for AIDA.

Although the linking results are encouraging, they are still a bit low compared to the other state-of-the-art methods. This can be explained for two reasons:

1. It is sensitive to the noise brought at the extraction step since this formula does not take into account the entity context but instead relies on a combination of string distances and the PageRank global score. For example, the string distance score over the title, the redirect and the disambiguation pages between the mention Trump and the entity candidate db:Trumpet is higher than with the correct entity candidate db:Donald_Trump, as Trump is closer from Trumpet than from Donald Trump. 2. It is sensitive to the PageRank as if an entity got a very low score in terms of string comparison, if its PageRank is high enough, this entity can become the one with the best final score.

Conclusion and Future Work

The results are encouraging since we demonstrate that our approach enables to be adaptable for at least three challenges:

text: different kind of text (newswire, tweets, blog posts, etc.) can be processed; knowledge base: different knowledge bases (in terms of language, content and model) can be indexed; entity: although focusing on common types (PER-SON, LOCATION and ORGANIZATION), dates, numbers and more fine grained types can also be independently extracted and linked.

The fourth challenge is the language: another language than English can be used by changing the language of the knowledge base, the models used by the NLP system and the surface forms that the dictionary may con-tain. We have a functional pipeline for French but it has not been evaluated yet. Evaluating ADEL over multiple languages is also part of our future work.

Linking. The linking step is currently the main bottleneck in our approach. The performance drops significantly at this stage mainly due to a fully unsupervised method. Two new methods will be investigated in order to improve this step. The first one consists in using the new fastText [START_REF] Bojanowski | Enriching Word Vectors with Subword Information[END_REF] method which is an efficient learning of word representations and sentence classification. In comparison to Word2Vec [START_REF] Mikolov | Distributed Representations of Words and Phrases and their Compositionality[END_REF], fast-Text is robust against out of vocabulary words allowing to create and compute similarities between words that do not belong to its model. The second method is to use the Deep Structured Semantic Models [START_REF] Huang | Learning Deep Structured Semantic Models for Web Search Using Clickthrough Data[END_REF] as a relatedness score. This method can be customized to compute a relatedness score of entities in a knowledge base. Next, with this score, we can build a graph regularization as detailed in [START_REF] Huang | Collective Tweet Wikification based on Semisupervised Graph Regularization[END_REF] in order to properly disambiguate the entities. We are also investigating how to use the French lexical network Rezo [START_REF] Lafourcade | Increasing Long Tail in Weighted Lexical Networks[END_REF] in order to link entities in French texts. Finally, other general knowledge bases such as Freebase and Wikidata will be tested, but also specific ones like Geonames and 3cixty for different kind of text in order to broaden the evaluation domain of our approach.

Recognition. We are currently working on a coreference approach based on [START_REF] Clark | Improving Coreference Resolution by Learning Entity-Level Distributed Representations[END_REF] to improve the accuracy of their approach by adding a semantic layer detailed in [START_REF] Prokofyev | SANAPHOR: Ontology-Based Coreference Resolution[END_REF] to the deep neural network. During the overlap resolution, when we merge the results from multiple extractor, if at least two of them extract the same entity but assign a different type (e.g. one with PERSON and the other one with LOCATION), then it is difficult to select the proper type. Therefore, it can be improved by using an ensemble learning approach over each extractor such as the method proposed in [START_REF] Van Erp | Learning with the Web: Spotting Named Entities on the Intersection of NERD and Machine Learning[END_REF].

Architecture. Although ADEL has a parallel architecture, we are not yet capable of handling live streams of text as the current system is not designed to be distributed. However, multiple instances of ADEL can run at the same time, and a solution could be to plug on top of multiple instances (workers) a load balancing implementation such as the one proposed in Apache Spark 38 .
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 1 Fig. 1. Figure representing an entity linking task

Fig. 2 .

 2 Fig. 2. ADEL architecture. There are two user entries, the text and the index (based on a knowledge base). A configuration file instantiates the launch of the framework. The text from the input goes to each extractor (relying on external NLP systems) and the output of each extractor goes to the overlap resolution. Next, we generate entity candidate, and link them to an entity from a knowledge base or to NIL.

  PREFIX dbo : < h t t p : / / d b p e d i a . o r g / o n t o l o g y / > PREFIX r d f s : < h t t p : / / www. w3 . o r g / 2 0 0 0 / 0 1 / r d f-schema #> SELECT DISTINCT ? s FROM < h t t p : / / d b p e d i a . org > WHERE { ? s r d f s : l a b e l ? l a b e l .
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  PREFIX dbo : < h t t p : / / d b p e d i a . o r g / o n t o l o g y / > PREFIX mo : < h t t p : / / p u r l . o r g / o n t o l o g y / mo/ > PREFIX r d f s : < h t t p : / / www. w3 . o r g / 2 0 0 0 / 0 1 / r d f-schema #> PREFIX f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / > PREFIX dc : < h t t p : / / p u r l . o r g / dc / e l e m e n t s / 1 . 1 / > SELECT DISTINCT ? s FROM < h t t p : / / m u s i c b r a i n z . org > WHERE { ? s mo : m u s i c b r a i n z _ g u i d ? i d . ? s dbo : w i k i P a g e R a n k ? p r . { ? s r d f s : l a b e l ? l a b e l . } UNION { ? s f o a f : name ? l a b e l . } UNION { ? s dc : t i t l e ? l a b e l . } } Listing 3: SPARQL query 1 for Muscbrainz. In Musicbrainz, the labels for an entity might be represented with three different properties rdfs:label, foaf:name, or dc:title PREFIX mo : < h t t p : / / p u r l . o r g / o n t o l o g y / mo/ > PREFIX dbo : < h t t p : / / d b p e d i a . o r g / o n t o l o g y / > PREFIX x s d : < h t t p : / / www. w3 . o r g / 2 0 0 1 / XMLSchema#> SELECT DISTINCT ? p (GROUP_CONCAT( DISTINCT ? o ; s e p a r a t o r="-----") AS ? v a l s ) FROM < h t t p : / / m u s i c b r a i n z . org > WHERE { { < h t t p : / / m u s i c b r a i n z . o r g / a r t i s t / 0 0 0 2 cb05 -044d -46b8-98e2 -8115 b a 9 d 2 4 c b #_> ? p ? o . FILTER (DATATYPE( ? o ) = x s d : s t r i n g | | LANG( ? o ) = " en " ) . } UNION { VALUES ? p { dbo : w i k i P a g e R a n k mo : m u s i c b r a i n z _ g u i d } . < h t t p : / / m u s i c b r a i n z . o r g / a r t i s t / 0 0 0 2 cb05 -044d -46b8-98e2 -8115 b a 9 d 2 4 c b #_> ? p ? o . } } Listing 4: SPARQL query 2 for Musicbrainz to retrieve interesting content for the entity http://musicbrainz.org/artist/0002cb05-044d-46b8-98e2-8115ba9d24cb#_. This query is extended to each entity retrieved from the first Musicbrainz query
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 5 " Abrams----h t t p : / / d b p e d i a . o r g / r e s o u r c e / J . _ J . _Abrams " : [ " d b o _ a b s t r a c t " , " d b o _ b i r t h N a m e " , " d b o _ w i k i P a g e W i k i L i n k T e x t " , " d b o _ w i k i P a g e R e d i r e c t s " , " r d f s _ l a b e l " , " f o a f _ n a m e " ] , " AlArabiya_Eng----h t t p : / / d b p e d i a . o r g / r e s o u r c e / A l _ A r a b i y a " : [ ] , " America----h t t p : / / d b p e d i a . o r g / r e s o u r c e / U n i t e d _ S t a t e s " : [ " d b o _ w i k i P a g e D i s a m b i g u a t e s " , " d b o _ w i k i P a g e W i k i L i n k T e x t " , " d b o _ w i k i P a g e R e d i r e c t s " , " dbo_longName " ] , " AnonyOps----h t t p : / / d b p e d i a . o r g / r e s o u r c e / Anonymous_ ( g r o u p ) " : [ " d b o _ w i k i P a g e W i k i L i n k T e x t " ] , " AnotherYou----h t t p : / / d b p e d i a . o r g / r e s o u r c e / Another_You " : [ ] , "CNN ----h t t p : / / d b p e d i a . o r g / r e s o u r c e /CNN" : [ " d b o _ a b s t r a c t " , " d b o _ w i k i P a g e D i s a m b i g u a t e s " , " d b o _ w i k i P a g e W i k i L i n k T e x t " , " d b o _ w i k i P a g e R e d i r e c t s " , " r d f s _ l a b e l " , " f o a f _ n a m e " , " d b o _ s l o g a n " ] } Excerpt of the result file for the optimization process
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 1013 current) == 1 and size(A ∩ current) == 0 then ← A ∪ current; 11 else if size(A ∩ current) == 0 and size(tmp ∩ current) > 0 then 12 tmp ← tmp∪ firstElement(current ∩ tmp); ← A ∪ tmp;At the end of this optimization, we produce a reduced list of 4 properties that are necessary to max-33 https://gist.github.com/jplu/ a16103f655115728cc9dcff1a3a57682 imize the coverage of the pairs in the benchmark dataset:
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 1210007 Lucene example for an index object

  ManTIME 23 or HeidelTime 24 .

	.
	3. The NER Tagger extractor aims to extract named
	entities that are classified through the taxonomies
	used by Stanford CoreNLP, OpenNLP, GATE or
	others NLP systems. In order to handle tweets,
	we train a model using the data from the NEEL
	Challenge [43].
	4. The Date Tagger aims to recognize all surface
	forms that represents temporal expression such
	as Today, December 18, 1997 or 1997/12/18 and
	relies on current temporal systems such as SU-
	Time 22 ,

22 https://nlp.stanford.edu/software/sutime. shtml 23 https://github.com/filannim/ManTIME/ 24 https://github.com/HeidelTime/heideltime/ releases 5. The Number Tagger aims to recognize the digit numbers (e.g. 15, 1, 35) or their textual representation (e.g. one, thirty), and can be done by either a NER Tagger (with Stanford NER), a POS Tagger (with the CD 25 tag) or regular expressions. 6. The Co-reference Tagger aims to extract coreferences inside a same document but not across documents. The annotators provided by Stanford CoreNLP, OpenNLP, GATE or others NLP systems can be used.

  https://sites.google.com/site/ partofspeechhelp/#TOC-CD-

	Algorithm 1: Algorithm used in ADEL to com-
	bine multiple CRF models
		Result: Annotated tokens
		Input : (T xt, M) with T xt the text to be
		annotated and M a list of CRF models
		Output: A = List({token, label}) a list of tuples
		{token, label}
	1 begin
	2	f inalT uples ← EmptyList();
	3	foreach model in M do
		/ * tmpT uples contains the
		tuples {token, label} got from
		model	* /
	8	end
	9	end
	10	end
	11 end
	available in the Stanford NER documention 26 . If we
	only apply the 4 classes model, we get the following

4 tmpT uples ←apply model over T xt; 5 foreach {token, label} in tmpT uples do 6 if token from {token, label} not in f inalT uples then 7 add {token, label} in f inalT uples; result: William Bradley Pitt as PERSON, and American as MISC. If we only apply the 7 classes model, we get the following result: William Bradley Pitt as PER-SON and December 18, 1963 as DATE. If we apply both models at the same time using the model combination logic, wet get the following result: William Bradley Pitt as PERSON, December 18, 1963 as DATE and American as MISC corresponding here to the sets union.

  in order to introduce a hierarchy among the types allowing the possibility to get a parent or sub-category if an equivalent one does not exist.

	27 https://ckan.project-hobbit.eu/fr/dataset/
	oke2015_task1
	28 http://www.ontologydesignpatterns.org/ont/
	dul/DUL.owl

29 

http://schema.org 30 http://mappings.dbpedia.org/server/ ontology/classes/

Table 12

 12 Results over the NEEL2015 and NEEL2016 datasets at extraction level for different ADEL Entity Recognition module configurations. Scores in bold represent the best ADEL configuration. Compared results between ADEL best configuration and the best system according to GERBIL (BG) over the AIDA dataset. GER-BIL does not propose to do entity recognition for the AIDA dataset. Scores in bold represent the best system. with the respective training data of each benchmark dataset. Use one POS tagger with the proper model, for tweets if the benchmark dataset is based on tweets or for newswire if the benchmark dataset is based on newswire text. 7. Conf7: Use one POS tagger with the proper model, for tweets if the benchmark dataset is based on tweets or for newswire if the benchmark dataset is based on newswire text.

			NEEL2014		
		Precision Recall F1		
	conf1 74.61		29.38 42.16		
	conf4 67.79		52.47 59.15		
	conf7 66.67		49.04 56.51		
	conf15 51.02		35.96 42.19		
	conf16 54.40		59.32 56.75		
	conf17 53.90		57.26 55.53		
		Table 5			
	Results over the NEEL2014 dataset at extraction level for	
	different ADEL Entity Recognition module configurations.	
	Scores in bold represent the best ADEL configuration.	
		OKE2015		OKE2016	
	Precision Recall F1	Precision Recall F1
	conf1 90.69	55.72 69.03 89.35	44.41 59.33
	conf2 77.98	39.46 52.4	88.08	39.12 54.18
	conf3 95.17	62.35 75.34 87.18	50	63.55
	conf4 79.13	57.68 66.72 78.22	51.76 62.3
	conf5 74.8	54.97 63.37 78.22	51.76 62.3
	conf6 75.7	64.76 69.81 79.34	56.47 65.98
	conf7 65.58	51.66 57.79 57.48	42.94 49.16
	conf8 89.54	70.93 79.16 90.76	66.47 76.74
	conf9 80.45	53.31 64.13 89.3	56.47 69.19
	conf10 83.49	67.77 74.81 88.42	67.35 76.46
	conf11 80.67	72.89 76.58 82.3	73.82 77.83
	conf12 77.2	68.83 72.77 82.03	73.82 77.71
	conf13 77.68	78.61 78.14 82.03	73.82 77.71
	conf14 69.22	66.72 67.94 66.17	65	65.58
		Table 6			
	Results over the OKE2015 and OKE2016 datasets at extraction
	level for different ADEL Entity Recognition module configurations.
	Scores in bold represent the best ADEL configuration.	
		NEEL2015		NEEL2016	
	Precision Recall F1	Precision Recall F1
	conf1 83.3	29.5	43.6	77.7	9.9	17.6
	conf2 86.3	63.3	73.3	91.6	69.7	79.2
	conf3 85.2	72.4	78.3	90.6	70.7	79.4
	conf4 67.8	77.4	72.3	75.1	84.8	79.7
	conf5 67.9	80.7	73.7	74.2	86	79.7
	conf6 67.8	81.6	74.1	74.2	85.9	79.6
	conf7 67.6	76.4	71.7	75.4	85.3	80.1
		Table 7			
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  has no specific configuration because, for now, we do have only one linking method to evaluate.

		NEEL2015			NEEL2016	
	Precision Recall F1	Precision Recall F1
	conf1 72.3	25.6	37.8	61.5	7.9	13.9
	conf2 66.1	48.5	56	75.6	57.5	65.3
	conf3 66.7	56.7	61.3	74	57.8	64.9
		Table 15			
	Results over the NEEL2015 and NEEL2016 datasets at recognition
	level for different ADEL Entity Recognition module configurations.
	Scores in bold represent the best ADEL configuration.	
		OKE2015			OKE2016	
	Precision Recall F1	Precision Recall F1
	conf1 76.47	48.21 59.14 82.67	39.01 53
	conf2 64.19	31.93 42.65 84.9	32.87 47.39
	conf3 87.62	53.27 66.26 81.56	43.41 56.66
	conf8 81.34	62.59 70.74 86.43	61.98 72.19
	conf9 73.57	45.72 56.39 84.09	49.25 62.12
	conf10 78.04	62.65 69.5	85.23	59.17 69.85
		Table 16			
	Results over the OKE2015 and OKE2016 datasets at recognition
	level for different ADEL Entity Recognition module configurations.
	Scores in bold represent the best ADEL configuration.	

Table 18

 18 Compared results between ADEL best configuration and the best participant (BP) of the NEEL2015 and NEEL2016 challenges. Scores in bold represent the best system.

			OKE2015	OKE2016	NEEL2014	NEEL2015	NEEL2016	AIDA
		Recall	98.38	97.34	93.35 (61.91)	93 (61.84)	93.55 (60.68)	99.62
					Table 17	
			Indexing optimization evaluation: measure if the correct entity is
			among the list of entity candidates retrieved by the index
				NEEL2015		NEEL2016
				Precision Recall F1	Precision Recall F1
			recognition	66.7	56.7	61.3	75.6	57.5	65.3
			ADEL				
			recognition	85.7	76.1	80.7	45.3	49.4	47.3
			BP				
			extraction	52.9	45	48.7	49.9	58.3	53.8
			+ linking				
			ADEL				
			extraction	81	71.9	76.2	45.4	56	50.1
			+ linking				
			BP				
			NEEL2014				
		Precision Recall F1			
	extraction	37.26	28.84 32.51			
	+ linking						
	ADEL						
	extraction	77.10	64.20 70.06			
	+ linking						
	BP						
		Table 19				
	Compared results between ADEL best configuration and the			
	best participant (BP) of the NEEL2014 challenge.			
	Scores in bold represent the best system.				
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http://lemon-model.net/lemon 3. systems that generate the entity candidates by using a dictionary during the extraction process, and, therefore, that will not be able to deal with NIL entities; 4. systems that is a merge of all these steps into a single one, called joint recognition-linking.
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