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Integrated sensor fault estimation and control for

continuous-time switched systems: a new separation

principle

Abstract

In this paper, we address the state/fault estimation and observer-based control

issues for switched systems with sensor faults. The main objective is to estimate

sensor faults and compensate for their effects on the system state estimation, and

then stabilize the switched system by the estimated state feedback. Applying

the mode-dependent average dwell time (MDADT) concept and the Lyapunov

stability theory, a new separation principle is developed, which allows formaliz-

ing the observer-based controller design in the form of linear matrix inequalities

(LMI) instead of bilinear ones. Finally, a highly maneuverable aircraft tech-

nology (HiMAT) example, a DC-DC boost converter example, and a numerical

example are investigated to show the practicability and efficiency of the obtained

results.

Keywords: Fault estimation, Observer-based control, Switched systems,

Separation principle, Linear matrix inequality (LMI)

1. Introduction

Switched systems represent a class of hybrid systems, which consist of a fi-

nite set of modes (subsystems), each mode has its dynamics, and a controlled or

autonomous switching law that orchestrates the switching and indicates the ac-

tive mode. This system class has an important function in various applications5

in the industry because many practical systems in different fields (automotive

industry, robotics, power systems, aircraft and traffic control, etc.) can be rep-

resented by switched system models (see [1, 2, 3]).
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The stability and stabilization problems for switched systems are complex and

interesting because even if all subsystems are stable, the switching signal can10

destabilize the system (see [4, 5]). Various interesting results have been ob-

tained in the literature on switched system stability, among the best ones, the

dwell time (DT) concept [6, 7]. Based on this concept, stability conditions can

be established as a function of switching signals and mode dynamics. In prac-

tice, switching signals are limited in frequency, so it is reasonable to represent15

them by a minimum average dwell time. Thus, the DT has become more flexi-

ble through the development of the average dwell time (ADT) approach [8, 9].

Thereafter, the ADT is extended to the mode-dependent average dwell time

(MDADT) concept [10, 11, 12]. This new concept is less restrictive and allows

to associate to each mode an ADT.20

On the other hand, industrial systems and their equipment are becoming more

and more sophisticated due to technological evolution, which increases the pos-

sibility of the occurrence of faults in the system, sensors, or actuators. These

faults lead the system to undesirable behaviors and can even destabilize it.

Therefore, system reliability and security have become major objectives in the25

control theory. This reality has motivated many researchers to focus more on the

fault detection (FD), fault estimation (FE), and fault-tolerant control (FTC)

issues.

The FD problem has already been addressed for switched systems, and sev-

eral research papers have been published on this topic (see [13, 14, 15, 16]).30

These papers propose several FD techniques that can be used to provide the

occurrence instant of the fault but without precise information about it, such

as amplitude, type, etc. In contrast, FE/FTC techniques can be exploited to

identify the amplitude, type, and temporal evolution of faults; and also to auto-

matically compensate the fault effects on the system and thus maintain stability35

and performance.

In recent decades, the FE and FTC issues have received more attention from

researchers because of their importance and complexity, and several important

results have been achieved (see [17, 18, 19, 20, 21, 22]). However, the FE and
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FTC problems are not yet sufficiently studied for switched systems with sen-40

sor faults, and there is no much research work on this topic. In [23, 24], the

sensor fault estimation issue has been addressed for switched systems. These

papers provide switched observers to estimate system states and sensor faults

simultaneously. In [25, 26, 27], fault estimation approaches have been devel-

oped for switched systems with sensor and actuator faults. These approaches45

allow to estimate simultaneously the system state and the sensor and actuator

faults. Although these results, the fault estimation and compensation issue for

switched systems still deserves more attention, which was the motivation for

this work. The objective of this paper is to design observer-based controllers

able to stabilize switched systems even in the presence of sensor faults.50

In general, observer-based controllers are employed when system states are not

measurable or to reduce the number of sensors that can be too expensive. The

problem is that the coupling between the controller and the observer compli-

cates the design of these two units. The controller/observer coupling leads to

a coupling between the dynamics of the closed-loop state and that of the esti-55

mation error. As a result, the Lyapunov stability conditions are equivalent to

bilinear matrix inequalities (BMI) (see [28]). It should be noted that BMIs are

very difficult to solve numerically, and that BMI optimization-based solvers can

only optimize locally and their convergence cannot be guaranteed (see [28, 29]

and the references therein).60

In [30], a linear matrix inequality (LMI) approach has been developed to formal-

ize the observer-based controller design in the form of LMIs instead of BMIs.

This approach is based on strong additional equalities that reduce the feasi-

bility of the resulting LMIs (see [31, 32]). To overcome this problem, several

separation techniques have been developed in the literature. The main idea65

of these techniques is to determine the controller and the observer separately,

which allows to formalize the observer-based controller design in the form of

LMIs instead of BMIs. In [33], a separation technique has been established for

a class of nonlinear systems. This technique allows to achieve semi-global sta-

bilization by applying a fast high-gain observer and a globally bounded control.70

3



In [20], a separation technique based on the H∞ approach has been developed

for the observer-based controller design. This technique allows determining the

controller and observer gains separately by solving a set of LMIs. The separated

observer and controller design has also been addressed for switched systems in

[34]. In this design, the controller and observer gains are determined sepa-75

rately without taking into account the coupling between the dynamics of the

closed-loop state and that of the estimation error. In [35], a generalized separa-

tion principle has been developed for switched systems, which allows to design

separately the observer, the controller, and the switching law. Also for this

separation principle, the estimation error dynamics are not considered in the80

controller design phase.

In the aforementioned separation techniques, the controller and the observer are

designed separately without taking into account the coupling between the dy-

namics of the closed-loop state and that of the estimation error, which can lead

to poor performance of the resulting observer-based controller (see [28]). To85

overcome this drawback, a new separation principle is proposed in the present

paper, which allows formalizing the observer-based controller design in the form

of LMIs. In this new principle, the controller and observer gains are deter-

mined after considering the coupling between the dynamics of the state and

that of the estimation error. As a result, the designed controller and observer90

are compatible with each other, which ensures the performance of the resulting

observer-based controller.

In this work, we address the state/fault estimation and control design issues

according to the MDADT concept to design controllers and observers that take

into account the switching effect. The main contributions of this paper can be95

summarised as follows:

(1) Address simultaneously the state/fault estimation and observer-based con-

trol issues for switched systems, unlike the papers [23, 24, 25, 26, 27], which only

consider the fault estimation problem without the control design. The results

provided in these papers are not applicable for unstable open-loop systems.100

(2) Design in an integrated way the observer and the controller, thus ensuring
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the performance of the resulting observer-based controller, unlike the aforemen-

tioned separation techniques.

(3) Develop a new separation principle, which allows formalizing the observer-

based controller design in the form of LMIs instead of BMIs, without imposing105

the additional equalities adopted in [30].

The rest of this paper is organized as follows: Section 2 presents the problem

formulation. Section 3 provides preliminary results on the state/fault estima-

tion and observer-based control issues for switched systems. The new separation

principle is developed in Section 4. To prove the validity and effectiveness of110

the obtained results, three examples are studied in Section 5. The conclusion is

set out in Section 6.

2. Problem formulation

Consider the following continuous-time switched system

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) (1)

y(t) = Cσ(t)x(t) + Fσ(t)f(t) (2)

where x(t) ∈ R
n is the state, u(t) ∈ R

m and y(t) ∈ R
p are the system115

input and output, f(t) ∈ R
q is the sensor fault, σ(t) : [0,+∞) → I = 1, . . . , N

is the switching signal with N is the number of subsystems. For a switching

sequence t0 < t1 < · · · < tk < tk+1 < · · · , σ(tk) = i means that the subsystem

(Ai, Bi, Ci, Fi) is activated during t ∈ [tk, tk+1). It is assumed that the pairs

(Ai, Bi) are controllable, pairs (Ai, Ci) are observable, and rank(Fi) = q.120

In this paper, the state/fault estimation and observer-based control issues

are studied according to the mode-dependent average dwell time (MDADT)

concept. Firstly, a definition and a lemma are introduced to define the MDADT

concept, and to present the stability results according to this concept.125

Definition 2.1. [10] For a switching signal σ(t) and any t ∈ [0, T̄ ], let

Nσi(T̄ , t) be the switching numbers that the ith subsystem is activated over the
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interval [t, T̄ ] and T̄i(T̄ , t) denote the total running time of the ith subsystem over

the interval [t, T̄ ], i ∈ I. We say that σ(t) has a mode-dependent average dwell

time τai if there exist positive numbers N0i (we call N0i the mode-dependent

chatter bounds here) and τai such that

Nσi(T̄ , t) ≤ N0i +
T̄i(T̄ , t)

τai
, ∀t ∈ [0, T̄ ].

Lemma 2.1. [10] Consider the continuous-time switched system

ẋ(t) = fσ(t)(x(t)), σ(t) ∈ I (3)

and let λi > 0, µi > 1 (i ∈ I), are some given constants. Suppose that there

exist C1 functions Vi : R
n → R, and class K∞ functions κ1i, κ2i (i ∈ I) such

that, ∀i ∈ I,

κ1i(||x(t)||) ≤ Vi(x(t)) ≤ κ2i(||x(t)||) (4)

V̇i(x(t)) ≤ −λiVi(x(t)) (5)

and ∀(σ(tk) = i, σ(t−k ) = j) ∈ I × I, i 6= j

Vi(x(tk)) ≤ µiVj(x(tk)) (6)

then the system is globally uniformly asymptotically stable (GUAS) for any

switching signal with MDADT

τai ≥ τ∗ai =
lnµi

λi

(7)

The main objectives of this work are as follows:130

• Design a state/fault estimation observer able to simultaneously estimate

system states and sensor faults according to the MDADT concept.

• Design an observer-based controller that allows to stabilize the switched

system according to the MDADT concept, even in the presence of sensor

faults.135

• Formalize the integrated observer and controller design in the form of

LMIs instead of BMIs.
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3. Preliminary results

In this section, we develop a fault/state estimation observer that allows to

estimate system states and sensor faults simultaneously. Then, based on this140

observer, the switched system is stabilised by an estimated state feedback and

the fault effects are compensated.

As indicated in [18], the sensor faults f(t) can be considered as auxiliary states.

Thus, each mode of the switched system (1)-(2) can be rewritten as follows:

L ˙̄x(t) = Āix̄(t) + B̄iu(t) (8)

y(t) = C̄ix̄(t) (9)

where:

x̄(t) =





x(t)

f(t)



 , L =





In 0

0 0



 , Āi =





Ai 0

0 0





B̄i =





Bi

0



 , C̄i =
[

Ci Fi

]

The equation (8) is then developed as follows, adding Niẏ(t) to both sides

with Ni =
[

NT
1i NT

2i

]T

∈ R
(n+p)×p.

L̄i ˙̄x(t) = Āix̄(t) + B̄iu(t) +Niẏ(t) (10)

The matrices Ni must be chosen so that L̄i =





I+N1iCi N1iFi

N2iCi N2iFi



 are of full

column rank, to ensure that L̄i have left inverse matrices L̄−

i =
(

L̄T
i L̄i

)

−1
L̄T
i .

Multiplying both sides of equation (10) by L̄−

i , we get:

˙̄x(t) = Āix̄(t) + B̄iu(t) +Niẏ(t), (11)

where Āi = L̄−

i Āi, B̄i = L̄−

i B̄i and Ni = L̄−

i Ni. Based on this new state145

representation, we design a state/fault estimation observer that allows to si-

multaneously estimate system states and sensor faults. The observer is given
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by:

˙̄̂x(t) = Āσ(t) ˆ̄x(t) + B̄σ(t)u(t) +Nσ(t)ẏ(t) +Kσ(t)(y(t)− ŷ(t)) (12)

ŷ(t) = C̄σ(t) ˆ̄x(t) (13)

where Ki ∈ R
(n+q)×p, i ∈ I are the observer gains. To avoid the derivative

ẏ(t) in the second member of equation (12), we apply, for each subsystem i,

i ∈ I, the following state transformation:

ˆ̄z(t) = ˆ̄x(t)−Niy(t) (14)

Based on this state transformation, the system state x(t) and the sensor faults

f(t) can be estimated as follows:150

˙̄̂z(t) = Āi ˆ̄z(t) + ĀiNiy(t) + B̄iu(t) +Ki(y(t)− ŷ(t)) (15)

ˆ̄x(t) = ˆ̄z(t) +Niy(t) (16)

The dynamics of the observation error e(t) = x̄(t)− ˆ̄x(t) for each subsystem

i, i ∈ I is given by the following equation:

ė(t) = ˙̄x(t) − ˙̄̂x(t)

= Āix̄(t) + B̄iu(t) +Niẏ(t)−
[

Āi ˆ̄x(t) + B̄iu(t) +Niẏ(t) +Ki(y(t)− ŷ(t))
]

=
(

Āi −KiC̄i

)

e(t)

(17)

Let e(t) =
[

eTx (t) eTf (t)
]T

, where ex(t) = x(t) − x̂(t) is the state estimation

error, and ef (t) = f(t)− f̂(t) is the fault estimate error.

Now, we propose a controller based on the state/fault estimation observer (15)-

(16) to stabilize the closed-loop system even in the presence of sensor faults.

The controller is given by:

u(t) = Rσ(t)x̂(t) (18)

where Ri ∈ R
m×n, i ∈ I are the controller gains. The dynamics of each

closed-loop subsystem is given by the following equation:

ẋ(t) = (Ai +BiRi)x(t)−BiRiex(t) (19)
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The objective now is to determine the controller and observer gains Ri and

Ki, (i ∈ I), taking into account the coupling between the dynamics of the

closed-loop state and that of the observation error. For this purpose, we develop

the augmented system composed of the system state x(t) and the observation

error e(t) as follows:155





ẋ(t)

ė(t)



 =





Aσ(t) +Bσ(t)Rσ(t)

[

−Bσ(t)Rσ(t) 0
]

0 Āσ(t) −Kσ(t)C̄σ(t)









x(t)

e(t)



 (20)

According to the MDADT concept, the augmented system (20) is globally

uniformly asymptotically stable if conditions (5) and (6) are satisfied. Consider

the Lyapunov function of the following form:

Vi(X (t)) = X T (t)PiX (t), i ∈ I (21)

where X (t) =
[

xT (t) eT (t)
]T

, Pi = diag{Pi1, Pi2}, with Pi1 ∈ R
n×n and

Pi2 ∈ R
(n+q)×(n+q) are symmetric and positive definite matrices. Due to the

coupling between the dynamics of the closed-loop state x(t) and that of the

observation error e(t), the conditions (5) and (6) are equivalent to a set of

bilinear matrix inequalities (BMI) given as follows:160





Ξ11 Ξ12

∗ Ξ22



 ≤ 0 (22)

Pi1 ≤ µiPj1 (23)

Pi2 ≤ µiPj2 (24)

where:

Ξ11 = Pi1Ai + Pi1BiRi +AT
i Pi1 +RT

i B
T
i Pi1 + λiPi1

Ξ12 =
[

−Pi1BiRi 0
]

Ξ22 = Pi2Āi − Pi2KiC̄i + ĀT
i Pi2 − C̄T

i K
T
i Pi2 + λiPi2

These BMIs are very difficult to solve numerically, and the BMI optimization-

based solvers can only optimize locally and their convergence cannot be guar-

anteed see [28, 29] and the references therein). In [30], an LMI design strategy
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has been developed for linear systems to formalize the integrated observer and165

controller design in the form of LMIs instead of BMIs. This design strategy is

based on strong additional equalities P1B = BP̂1. The problem is that these

equalities can reduce the feasibility of the obtained LMIs (see [31, 32]). By

adapting this strategy to the topic presented in the present paper, the BMIs

(22)-(24) can be linearized under the following constraints: Pi1Bi = BiP̂i1. The170

problem is that for switched systems, as the number of modes increases, these

constraints become more restrictive. The objective of the following section is

to formalize the integrated observer and controller design in the form of LMIs

instead of BMIs, without needing to include additional equalities.

4. Main results175

In this section, a new separation principle is developed, to formalize the

observer-based controller design in the form of LMIs instead of the BMIs (22)-

(24). Using this new principle, the observer and controller gains Ki and Li

are determined, taking into account the coupling between the dynamics of the

closed-loop state (19) and that of the estimation error (17).180

Theorem 4.1. Consider the augmented system equation (20). For given scalars

Υi > 0, λi > 0 and µi > 1, if there exist symmetric and positive definite matri-

ces Xi1 ∈ R
n×n, Pi2 ∈ R

(n+q)×(n+q) and matrices Yi ∈ R
m×n, Zi ∈ R

(n+q)×p,

∀(i, j) ∈ I × I, i 6= j, such that





AiXi1 +Xi1A
T
i +BiYi + Y T

i BT
i + λiXi1 −BiYi

∗ −ΥiXi1



 ≤ 0 (25)

Xj1 ≤ µiXi1 (26)

Pi2Āi + ĀT
i Pi2 − ZiC̄i − C̄T

i Z
T
i + λiPi2 − Λi ≤ 0 (27)

Pi2 ≤ µiPj2 (28)

where:

Λi =





−ΥiPi1 0

0 0





10



then, the augmented system (20) is globally uniformly asymptotically stable185

(GUAS) for any switching signal satisfiying these conditions τai ≥ τ∗ai =
lnµi

λi

,

applying the following controller and observer gains: Ri = YiX
−1
i1 , Ki = P−1

i2 Zi,

with Pi1 = X−1
i1 .

Proof: The results presented in Theorem 4.1 are based on the Lyapunov

function given by (21). This choice of Lyapunov function leads to determine

the observer and controller gains, taking into account the coupling between the

dynamics of x(t) and that of e(t). We have:

V̇i(X (t)) + λiVi(X (t)) =2Ẋ T (t)PiX (t) + λiX
T (t)PiX (t)

=2
[

ẋT (t) ėT (t)
]





Pi1 0

0 Pi2









x(t)

e(t)





+ λi

[

xT (t) eT (t)
]





Pi1 0

0 Pi2









x(t)

e(t)





(29)

We put Aci = Ai + BiRi and Āoi = Āi −KiC̄i. From formulas (17) and (19),

we can develop equation (29) as follows:

V̇i(X (t)) + λiVi(X (t)) =2
(

xT (t)AT
ci
− eTx (t)R

T
i B

T
i

)

Pi1x(t) + λix
T (t)Pi1x(t)

+ 2eT (t)ĀT
oi
Pi2e(t) + λie

T (t)Pi2e(t)

(30)

The condition V̇i(X (t)) + λiVi(X (t)) ≤ 0 is equivalent to the set of BMIs

given by (22). These BMIs are not exploitable numerically. In the following,190

the objective is to formalize this condition in the form of LMIs instead of the

BMIs (22).

The proposed separation technique is based on adding and subtracting the fol-

lowing term ρ(t) = eTx (t)ΥiPi1ex(t). Thus, equation (30) can be expanded as

11



follows:195

V̇i(X (t)) + λiVi(X (t)) =2
(

xT (t)AT
ci
− eTx (t)R

T
i B

T
i

)

Pi1x(t) + λix
T (t)Pi1x(t)

− eTx (t) (ΥiPi1) ex(t) + 2eT ĀT
oi
Pi2e(t) + λie

T (t)Pi2e(t)

+ eT (t)





ΥiPi1 0

0 0



 e(t)

(31)

Therefore, the inequality V̇i(X (t))+λiVi(X (t)) ≤ 0 is satisfied if the following

conditions are met:

2
(

xT (t)AT
ci
− eTx (t)R

T
i B

T
i

)

Pi1x(t) + λix
T (t)Pi1x(t)− eTx (t) (ΥiPi1) ex(t) ≤ 0

(32)

2eT (t)ĀT
oi
Pi2e(t) + λie

T (t)Pi2e(t) ≤ −eT (t)





ΥiPi1 0

0 0



 e(t) (33)

After a series of developments, conditions (32) and (33) can be easily for-

malized as inequalities (25) and (27).

The following part is devoted to formalizing the condition (6) in the form of the200

inequalities (26) and (28). We have:

Vi(X (tk)) − µiVj(X (tk)) = X T (tk)PiX (tk)− µiX
T (tk)PjX (tk)

=
[

xT (t) eT (t)
]





Pi1 − µiPj1 0

0 Pi2 − µiPj2









x(t)

e(t)





(34)

Therefore, condition (6) is satisfied if the following conditions are met:





Pi1 0

0 Pi2



 ≤ µi





Pj1 0

0 Pj2



 , ∀(i, j) ∈ I × I, i 6= j (35)
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These conditions can be developed as follows:

Pi1 ≤ µiPj1 (36)

Pi2 ≤ µiPj2 (37)

Inequality (36) is equivalent to −X−1
j1 + µ−1

i X−1
i1 ≤ 0, where Xj1 = P−1

j1 and

Xi1 = P−1
i1 . We apply Schur complement twice, the inequality becomes:

Xj1 ≤ µiXi1 (38)

�

The numerical resolution process: The inequalities in Theorem 4.1 are

solved via the following process :205

Step 1: We start by solving the LMIs (25) and (26), the controller gains are given

by Ri = YiX
−1
i1 .

Step 2: Once we have the values of Xi1, i ∈ I, we proceed to solve the LMIs

(27) and (28). The observer gains corresponding to the controller gains

obtained in Step 1 are given by Ki = P−1
i2 Zi.210

Remark 4.1. According to the MDADT concept, the switched systems are glob-

ally uniformly asymptotically stable (GUAS) for any switching signal with aver-

age dwell times satisfying the conditions τai ≥ τ∗ai =
lnµi

λi

. Thus, parameters λi

and µi are chosen according to the required minimum average dwell times τ∗ai.

Remark 4.2. • In this work, we simultaneously study the state/fault esti-215

mation and observer-based control issues, unlike the works [23, 24, 25, 26,

27], where the fault estimation problem is addressed without control de-

sign. The results developed in these papers are limited to stable open-loop

systems only. In contrast, the results of the present paper are applicable

to both unstable and stable systems.220

• We adopt in this paper an integrated observer and controller design to

take into account the interactions between these two units. Consequently,

13



the designed controller and observer are compatible with each other, which

ensures the performance of the resulting observer-based controller. In con-

trast, the separation techniques proposed in [33, 20, 34, 35] consider a sep-225

arate observer and controller design to overcome the controller/observer

coupling obstacle. As discussed in [28], the integrated observer and con-

troller design gives better results in terms of estimation and control per-

formance compared to the separated design.

• The new separation principle proposed in the present paper allows to for-230

malize the observer-based controller design in the form of LMIs instead of

BMIs, without adding the equality constraints adopted in [30]. As a result,

the resulting LMIs are less conservative.

5. Example

To show the validity and practicability of the obtained results, we address in235

this section the state/fault estimation and observer-based control issues for two

real systems, a highly maneuverable aircraft technology (HiMAT) vehicle and

a DC-DC boost converter. Then, a switched system composed of two unstable

modes is studied, considering several simultaneous sensor faults. Finally, a

comparison is provided to illustrate the advantages of the developed separation240

principle.

5.1. HiMAT vehicle example

In this part, we study the HiMAT vehicle presented in [2]. This vehicle can

be considered as a switched system composed of two modes, where the states

x1(t) and x2(t) represent respectively the angle of attack and the pitch rate.245

The modes of this system are given as follows:

Mode 1:

A1 =





−1.35 −0.98

17.1 −1.85



 , B1 =





1.7

0.9



 , C1 =





1 0

0 1



 , F1 =





1

0





250
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Mode 2:

A2 =





−1.87 −0.98

12.6 −2.63



 , B2 =





1.9

3.8



 , C2 =





1 0

0 1



 , F2 =





0

1





We apply the results of Theorem 4.1 for the following parameter values:

(µ1 = 3, µ2 = 4), (λ1 = 10, λ2 = 11) and (Υ1 = 20, Υ2 = 30). The controller255

and observer gains and the minimum average dwell time for each mode are given

as follows:

R1 =
[

−9.1577 −3.4644
]

, K1 =











4.3059 2.1671

7.1441 18.4250

1.0762 −15.1268











, τ∗a1 = 0.1099

R2 =
[

−3.0469 −2.5979
]

, K2 =











7.7841 −0.2226

−11.7557 1.2388

11.0393 4.9729











, τ∗a2 = 0.1260

Applying the above controller and observer gains, the system is asymptotically260

stable for any switching signal with MDADT satisfying the following conditions

τai ≥ τ∗ai, ∀i ∈ I. For simulation purposes, we adopt the switching signal

presented in Figure 1.
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Figure 1: The evolution of the switching signal σ(t)
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Considering the sensor fault defined in Figure 4, the system states and their

estimates are presented in Figures 2 and 3.265
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Figure 2: The state x1(t) and its estimate in the presence of the sensor fault f(t) = cos(1.5πt)
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Figure 3: The state x2(t) and its estimate in the presence of the sensor fault f(t) = cos(1.5πt)

From Figures 2 and 3, we can see that the system states are stabilized, and

the effect of the sensor fault f(t) is completely compensated. The sensor fault
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f(t) and its estimate are shown in Figure 4.
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Figure 4: The sensor fault f(t) and its estimate

We have tested several fault shapes and found that the proposed observer

can perfectly estimate these faults.270

5.2. DC-DC boost converter example

Now, we consider the DC-DC boost converter system addressed in [1]. This

system is illustrated in Figure 5, and its dynamics is defined as follows:

x(t) =





iL(t)

UC(t)



 , u(t) =





Vin(t)

iload(t)





275

Aσ(t) =





−R
L

− s1
L

s1
C

0



 , Bσ(t) =





1
L

0

0 − 1
C



 , Cσ(t) =





1 0

0 1



 , Fσ(t) =





0

1





where iL(t) and UC(t) are the system states represent respectively the in-

ductor current and the capacitor voltage. Vin(t) and iload(t) are the system280

inputs represent the voltage source and the current source. sk is the switching

parameter, sk = 0 indicates that the switch Swk is open, and sk = 1 indicates

that the switch Swk is closed, k = 1, 2. The boost converter parameters are

17



given as follows: R = 0.082Ω, L = 5mH, and C = 2.85mF. This system is

composed of two modes as explained in Table I.285

Vin(t)

R L

SW1

SW2

UC(t)

iload(t)

iL(t)

Figure 5: DC-DC Boost converter

Table I: The system modes

σ(t) mode 1 mode 2

s1 0 1

s2 1 0

We apply the results of Theorem 4.1 for the following parameter values:

(µ1 = 3, µ2 = 4), (λ1 = 12, λ2 = 8) and (Υ1 = 20, Υ2 = 20). The controller

and observer gains and the minimum average dwell time for each mode are given

as follows:

R1 =





−0.0980 0.0001

−0.0001 0.0552



, K1 =











−6.1179 −0.1433

0.0389 6.9713

13.1469 0.1164











, τ∗a1 = 0.0916290

R2 =





−0.1070 0.0031

−0.0010 0.0699



, K2 =











−2.5470 −11.9513

13.0887 −5.6578

7.7610 33.5624











, τ∗a2 = 0.1733

Applying the above controller and observer gains, the system is asymptotically

stable for any switching signal with MDADT satisfying the following conditions

τai ≥ τ∗ai, ∀i ∈ I. For simulation purposes, we adopt the switching signal

18



presented in Figure 6.295
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Figure 6: The evolution of the switching signal σ(t)

Considering the sensor fault defined in Figure 9, the system states and their

estimates are presented in Figures 7 and 8.
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Figure 7: The state x1(t) and its estimate in the presence of the sensor fault f(t) = cos(1.5πt)
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Figure 8: The state x2(t) and its estimate in the presence of the sensor fault f(t) = cos(1.5πt)

From Figures 7 and 8, we can see that the system states are stabilized, and

the effect of the sensor fault f(t) is completely compensated. The sensor fault

f(t) and its estimate are shown in Figure 9.300
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Figure 9: The sensor fault f(t) and its estimate

We have tested several fault shapes and found that the proposed observer
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can perfectly estimate these faults.

5.3. Numerical example

In this part, we investigate a switched system composed of two unstable

modes, considering two simultaneous sensor faults. The objective of this exam-305

ple is to evaluate the developed controller/observer performance in the presence

of unstable modes and several simultaneous faults. The modes of this system

are defined as follows:

Mode 1:310

A1 =











−1 2.3 0.5

0.1 3 1.6

0.6 1 −1











, B1 =











1.1 0.3

0.2 3.3

0.8 1.5











, C1 =











1 0.3 0.2

2 1.2 −1

2 0.3 −0.4











F1 =











1 0

0 1

0 0











Mode 2:

A2 =











−0.5 −1.3 2.5

−1.1 −0.9 2.1

3 −0.9 2.7











, B2 =











3.2 1.6

−1.6 −0.8

0.4 0.2











, C2 =











0.7 1.5 1.2

−0.6 2.7 1.4

0.7 −1 3











,

F2 =











1 0

0 1

0 0











315

We apply the results of Theorem 4.1 for the following parameter values:

(µ1 = 8, µ2 = 10), (λ1 = 3.5, λ2 = 6.5) and (Υ1 = 60, Υ2 = 60). The con-

troller and observer gains and the minimum average dwell time for each mode

are given as follows:320

R1 =





−5.6624 1.4270 −8.9317

−0.9140 −5.0546 −0.2267



,K1 =























2.5048 3.2911 −5.9597

−10.8980 −16.0685 54.2852

−3.4320 −5.1695 19.7797

23.3026 30.1079 −95.0684

36.5666 56.2215 −168.7093























,

τ∗a1 = 0.5941
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R2 =





−5.0320 −2.4722 −13.5951

−2.6418 −1.1161 −6.4103



,K2 =























−1.8214 −0.4565 5.6085

13.6983 1.2308 −24.8217

5.2011 0.3654 −5.9834

−18.8500 −1.0805 39.9843

−45.4191 2.9416 80.0806























,

τ∗a2 = 0.3542

Applying the above controller and observer gains, the system is asymptotically325

stable for any switching signal with MDADT satisfying the following conditions

τai ≥ τ∗ai, ∀i ∈ I. For simulation purposes, we adopt the switching signal

presented in Figure 10.
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Figure 10: The evolution of the switching signal σ(t)

Considering the sensor faults defined in Figures 14 and 15, the system states

and their estimates are presented in Figures 11-13.330
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Figure 11: The state x1(t) and its estimate in the presence of the sensor faults f1(t) = cos(πt)

and f2(t) = 1
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Figure 12: The state x2(t) and its estimate in the presence of the sensor faults f1(t) = cos(πt)

and f2(t) = 1
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Figure 13: The state x3(t) and its estimate in the presence of the sensor faults f1(t) = cos(πt)

and f2(t) = 1

From Figures 11-13, we can see that the system states are stabilized, and the

effect of the sensor faults is completely compensated. The sensor faults f1(t)

and f2(t) and their estimates are shown in Figures 14 and 15.
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Figure 14: The sensor fault f1(t) and its estimate
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Figure 15: The sensor fault f2(t) and its estimate

We can observe that the developed state/fault estimation observer and observer-

based controller perform very well even in the presence of unstable modes and335

several simultaneous sensor faults.

Comparison results: The separation principle developed in the present

paper allows formalizing the observer-based controller design in the form of

LMIs instead of BMIs, without needing to add the equality constraints adopted340

in [30]. To prove the efficiency of this new principle, we compare it with the LMI

design approach developed in [30], by comparing the minimum average dwell

times τ∗ai, i ∈ I (see Tables II-IV).

Table II: The minimum average dwell times for the HiMAT vehicle example

Reference τ∗a1 τ∗a2

This paper 0.0304 0.0644

[30] 0.0957 0.1206
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Table III: The minimum average dwell times for the DC-DC boost converter example

Reference τ∗a1 τ∗a2

This paper 0.0702 0.0023

[30] 0.0702 0.0023

Table IV: The minimum average dwell times for the numerical example

Reference τ∗a1 τ∗a2

This paper 0.0917 0.2298

[30] infeasible

Note that more the values of τ∗ai =
lnµi

λi

are low, more the conditions τai ≥

τ∗ai, i ∈ I become less restrictive. Consequently, the switched system can be345

stabilized for a broader switching signal class. The comparisons presented in

Tables II-IV prove that the proposed separation principle gives less conservative

results.

6. Conclusion

In this work, the state/fault estimation and stabilization problems have350

been studied for switched systems with mode-dependent average dwell time

(MDADT), in order to design observer-based controllers that can stabilize switched

systems even in the presence of sensor faults.

The proposed separation principle allows to formalize the observer-based con-

troller design in the form of LMIs instead of BMIs. In this new principle, the355

observer and controller gains are determined after considering the coupling be-

tween the dynamics of the closed-loop state and that of the estimation error. As

a result, the designed controller and observer are compatible with each other,

which ensures the performance of the resulting observer-based controller.

The comparison made in the previous section proves that the separation prin-360

ciple developed gives less conservative results, thus leading to a broader appli-
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cation of the obtained methods.

The studied examples show that the obtained results are applicable and effec-

tive, even in the presence of unstable modes and several simultaneous sensor

faults.365
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