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A median test for functional data

Zaineb SMIDA ∗, Lionel CUCALA †, Ali GANNOUN ‡, and Ghislain DURIF §

Institut Montpelliérain Alexander Grothendieck, CNRS, Université de
Montpellier, France.

Abstract

The median test has been proven to be more powerful than the Student t-test and
the Wilcoxon-Mann-Whitney test in heavy-tailed cases for univariate data. The multi-
variate extension of the median test, for multidimensional data, was demonstrated to
be more efficient than the Hotelling T 2 and the Wilcoxon-Mann-Whitney tests for high
dimensions and in very heavy-tailed cases. On the basis of these postulates, in this
paper, we construct a median type test based on spatial ranks for functional data, i.e
in infinite dimensional space, and we obtain asymptotic results. Then, we compare the
proposed functional median test with numerous competing tests using simulated and
real functional data : as in the univariate and multivariate cases, the proposed test is
more adapted to heavy-tailed distributions.

Keywords: Functional Data, Gateaux Derivative, Heavy-Tailed Distributions, Two-
Sample Location Test, Separable Hilbert Space, Smooth Banach Space.

AMS Subject Classifications: 60F17, 62G05, 62G10, 62G20.

1 Introduction
Statistical hypothesis testing plays an essential role in statistics (Lehmann, 1986; Lehmann
and Romano, 2005). In nonparametric statistics, tests of hypotheses are known as nonpara-
metric or distribution-free tests. It is not necessary to assume hypotheses on the shape of
the distribution and estimate its parameters. These tests can be used to verify that two or
more datasets come from identical populations.
Here, we will focus on this type of tests to solve the two-sample location problem which

∗Email adress: zaineb.smida@umontpellier.fr (Corresponding author)
†Email adress: lionel.cucala@umontpellier.fr
‡Email adress: ali.gannoun@umontpellier.fr
§Email adress: ghislain.durif@umontpellier.fr

1



received a considerable attention in the past. More specifically, we consider the known
two-sample problem with independent observations

X1, . . . , Xm ∼ F

Y1, . . . , Yn ∼ G,

where F and G are continuous distributions functions. Then, we only focus on the situation
where the distribution function G is considered as a shifted version of F , i.e. G(·) = F (·−∆).
In this case, the null hypothesis of equality of F and G can be expressed as H0 : ∆ = 0
against the alternative one which can be ∆ ̸= 0.
For univariate data, Wilcoxon (1945) and Mann and Whitney (1947) proposed nonparamet-
ric tests based on ranks. Each of them defined their own test statistic which leads to the same
test named Wilcoxon-Mann-Whitney. This test is more powerful than the Student’s t-test
for various non-Gaussian distributions (Blair and Higgins, 1980) and it is also asymptotically
optimum in case of a logistic type density (Hàjek et al., 1999). Another test of hypothesis of
the location problem is assigned to Mood (1950) and it is called the median test. Another
version of this test based on ranks was presented in Van der Vaart (1998). This version of
test is an asymptotically optimum in the case of a double exponential distribution (Capéraà
and Cutsem, 1988; Hàjek et al., 1999). In fact, it is based on a statistic which counts the
number of individuals from the second sample exceeding the median of the pooled sample
unlike the Wilcoxon-Mann-Whitney test statistic which uses the sum of ranks of the second
sample in the pooled sample. Nowadays, the median test is not often used because it is
less powerful than the Wilcoxon-Mann-Whitney test when applied to Gaussian distributions
(Mood, 1954). However, this test is more efficient, when dealing with symmetrical distribu-
tions with heavy-tails, than the Wilcoxon-Mann-Whitney one (Capéraà and Cutsem, 1988).
For multivariate data, several versions of the Hotelling, Wilcoxon-Mann-Whitney and me-
dian tests have been studied. See, for example, Puri and Sen (1971), Chakraborty and
Chaudhuri (1999), Oja and Randles (2004), Oja (2010). The extension of univariate two-
sample Mood test is called the sign test and it has the best efficiency in very heavy-tailed
cases and for high dimensions : it also outperforms the Hotelling test in heavy-tailed cases
(Oja and Randles , 2004).
Currently, the development of the sensoring and computing tools allows us to work with
huge datasets. So, we have more and more access to data of functional type, for example the
functional chemometric data and the electricity consumption of different regions (Ramsay
and Silverman, 2005; Ferraty and Vieu, 2006; Kokoszka and Reimherr, 2017). These kinds
of data are not real random variables or vectors but they are a collection of random elements
like curves, surfaces, images, etc, and each sample variable is usually considered as a func-
tion. The main particularity of such data is the infinite dimension of the data space such as
Banach and Hilbert spaces. Appropriate statistical tools are necessary to handle these types
of data. Definitions of functional spaces and main convergence results such as central limit
theorem are presented in Araujo and Giné (1980) and Bosq (2000). Definitions of various
parameters as centrality and dispersion ones and their specific estimations are introduced in
several papers such as Cuevas (2014), Chakraborty and Chaudhuri (2014b) and Goia and
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Vieu (2016). Recent advances on various aspects of functional data analysis are presented
in the latest publications of Aneiros et al. (2019) and Aneiros et al. (2022) which can be
considered as reviews of the literature on these topics. Ever since it was popularized by
Ferraty and Vieu (2006), nonparametric functional data analysis has become an active field
of research (Geenens, 2015; Ling and Vieu, 2018; Chowdhury and Chaudhuri, 2020), mainly
for modelling and regressing these specific kind of data.
Two-sample tests of hypotheses for functional data have also been proposed by several au-
thors using either parametric or nonparametric techniques, such as in the univariate and
multivariate settings. In the parametric case, to decide whether two samples of curves are
issued from the same distribution, Horváth et al. (2013) proposed two test statistics for
testing the equality of mean functions. These two test statistics are based on the orthogo-
nal projections on the space generated by the eigenfunctions of an L2-consistent estimator.
This estimator is obtained from the asymptotic covariance operator of the difference between
the two-sample mean functions. Among these two tests, one is the same as the Hotelling
statistic in finite dimensional space. Still using a parametric approach, Cuevas et al. (2004)
introduced an analog of the classical one-way analysis of variance (ANOVA) problem for
functional data.
In a nonparametric setting, Chakraborty and Chaudhuri (2015) (see, also Chakraborty and
Chaudhuri, 2014a) proposed a Wilcoxon-Mann-Whitney test based on spatial ranks. Their
statistic is an extension of the one defined for example in Hàjek et al. (1999) and Van der
Vaart (1998) for real valued random variables.
Our goal here is to construct an extension of the median test for processes valued in infinite
dimensional spaces. The rest of this paper is organised as follows : in Section 2, we propose a
median test statistic based on spatial ranks in Banach space and its extensions in separable
Hilbert space. We also introduce a modified and more simple version of this statistic. Then,
we study the asymptotic behavior of the latter one under the null hypothesis. We implement
the test using its asymptotic distribution on the one hand and using the random permuta-
tion method on the other hand. Then, we derive the asymptotic distribution under some
shrinking location shifts models and we describe how asymptotic power can be evaluated. To
illustrate our theoretical results, we compare in Section 3 the performance of the proposed
test with various other tests, either parametric or nonparametric, using simulated and real
functional datasets. We conclude with a discussion of the methods and results.

2 The construction of the test

2.1 The introduction of the median statistics

First we recall what median tests look like in the univariate case. Let X and Y be two
R-valued random variables. We consider X1, . . . , Xm and Y1, . . . , Yn two independent ran-
dom samples of X and Y with distribution functions F and Fθ respectively, such that
∀x ∈ R;Fθ(x) = F (x− θ). The constant θ is called the translation parameter.
The median test statistic based on ranks (Capéraà and Cutsem, 1988) for testing the hy-
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pothesis
H0 : θ = 0 against H1 : θ ̸= 0

is defined as

TMo =
1

n

n∑
i=1

1{Ri>0},

where Ri = 1 + (
∑m

j=1 1{Yi>Xj} +
∑n

k=1 1{Yi>Yk} − N+1
2

) is the centered rank of Yi when
X1, . . . , Xm and Y1, . . . , Yn are ordered together in the same sample of size N = n+m.
This test is based on the number of observations of Y1, . . . , Yn that is strictly greater than
the global median of the N observations.
We consider also the following test statistic :

T ′
Mo =

1

n

n∑
i=1

sign(Ri), (1)

where the sign function is x 7−→ sign(x) =

{
x
|x| if x ̸= 0

0 if x = 0
.

These two test statistics are equivalent and related to the same test since T ′
Mo = 2TMo − 1.

To make things easier afterwards, we introduce a test statistic which counts the number of
the observations Y1, . . . , Yn that are greater than the median of the observations X1, . . . , Xm

instead of the global median. In other words, in the univariate case it is equal to

TMED =
1

n

n∑
i=1

1{F̂m(Yi)>
1
2
},

where F̂m(x) = 1/m
∑m

j=1 1{Xj≤x} is the empirical distribution function of X1, . . . , Xm. This
statistic is inspired from the work of Koul and Staudte (1972).
Our goal here is to construct an extension of TMED in infinite dimensional space.

2.1.1 TMED in the functional case

We shall now consider X and Y two independant random elements in a Banach space χ.
We denote by χ∗ its dual space, i.e., the space of the linear continuous functions on χ with
values in R, and χ∗∗ its bidual space, i.e., the space of the linear continuous functions on χ∗

with values in R. Now, we suppose that :

- The space χ is smooth, i.e., the norm function ∥.∥χ is Gateaux differentiable at each
x ̸= 0, x ∈ χ. We denote by SGNx ∈ χ∗ its Gateaux derivative. This sign function is
defined, for all h ∈ χ, as

SGNx(h) =

{
limt→0

∥x+th∥χ−∥x∥χ
t

if x ̸= 0

0 if x = 0
.
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- The space χ∗ is smooth, i.e, the norm function ∥.∥χ∗ is Gateaux differentiable at each
y ̸= 0, y ∈ χ∗. We denote by SGN∗

y ∈ χ∗∗ its Gateaux derivative. This sign function
is defined, for all H ∈ χ∗, as

SGN∗
y(H) =

{
limt→0

∥y+tH∥χ∗−∥y∥χ∗

t
if y ̸= 0

0 if y = 0
.

Also, we consider X1, . . . , Xm and Y1, . . . , Yn independent random samples of X and Y from
two probability measures P and Q on χ. We suppose that P and Q differ by a shift ∆ ∈ χ.
Then, for testing

H0 : ∆ = 0 against H1 : ∆ ̸= 0,

the statistic TMED becomes

MED =
1

n

n∑
i=1

SGN∗ 1
m

m∑
j=1

SGN{Yi−Xj}



=
1

n

n∑
i=1

ϕ(Fm(Yi)), (2)

where

∗ ϕ : u 7→ ϕ(u) = SGN∗
u is a map on χ∗\{0} (see, e.g., Corollary 4.2.12 in Borwein and

Vanderwerff, 2010) that is continuous if the norm on χ∗ is twice Gateaux differentiable.
This sign function was used to proof asymptotic properties of the spatial depth in
infinite dimensional spaces. See Theorem 4.1 in Chakraborty and Chaudhuri (2014b)
for more details.

∗ Fm : y 7→ Fm(y) =
1
m

m∑
j=1

SGN{y−Xj} is the empirical spatial distribution associated to

the iid observations X1, . . . , Xm (Chakraborty and Chaudhuri, 2014b). This empirical
spatial distribution has been used to develop the Wilcoxon-Mann-Whitney type test
for two-sample problems in infinite dimensional spaces (Chakraborty and Chaudhuri,
2015). Remark that, in the univariate case, the empirical spatial distribution is equal
to 2F̂m(y)− 1 where F̂m is the empirical distribution function of X1, . . . , Xm.

∗ We will also denote by F (y) the spatial distribution of X at y ∈ χ which is equal
to E

[
SGN{y−X}

]
. For more details, see Chakraborty and Chaudhuri (2014b). Note

that, in the univariate case, the spatial distribution is equal to 2F̃ (y) − 1 where F̃ is
the distribution function of X.

As stated by Chakraborty and Chaudhuri (2014a), when the space χ is assumed to be an
Hilbert one, sign functions become simpler so that SGNx = x

∥x∥χ and SGN∗
y =

y
∥y∥χ∗

. Thus,
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we might rewrite the statistic MED as follows :

MED =
1

n

n∑
i=1

m∑
j=1

Yi −Xj

∥Yi −Xj∥χ∥∥∥∥∥
m∑
j=1

Yi −Xj

∥Yi −Xj∥χ

∥∥∥∥∥
χ

.

2.1.2 T ′
Mo in the functional case

An extension of T ′
Mo defined as (1) in the functional case can be written as

Mo =
1

n

n∑
i=1

SGN∗ n∑
k=1

SGNYi−Yk
+

m∑
j=1

SGNYi−Xj


.

When χ is assumed to be an Hilbert space, the statistic Mo becomes

Mo =
1

n

n∑
i=1

n∑
k=1,k ̸=i

Yi − Yk
∥Yi − Yk∥χ

+
m∑
j=1

Yi −Xj

∥Yi −Xj∥χ∥∥∥∥∥
n∑

k=1,k ̸=i

Yi − Yk
∥Yi − Yk∥χ

+
m∑
j=1

Yi −Xj

∥Yi −Xj∥χ

∥∥∥∥∥
χ

.

2.2 Asymptotic distribution

In this subsection, we study the asymptotic normality of MED.
First, we introduce the following notations which will be used later :

• We denote by G := G(m,C) the distribution of a Gaussian random element (say G) in
a separable Banach space χ with mean m ∈ χ and covariance C, where C : χ∗×χ∗ → R

is a symmetric nonnegative definite continuous bilinear function. For all l ∈ χ∗, l(G)
follows an univariate Gaussian distribution with mean l(m) and variance C(l, l).

• For all x, y ∈ χ, define
FX(y) = E

[
SGN{y−X}

∣∣y] , (3)
FY (x) = E

[
SGN{Y−x}

∣∣x] . (4)
These two functions are used to prove the theorem of the asymptotic normality of
the Wilcoxon-Mann-Whitney test statistic under finite and shrinking locations shifts
(Chakraborty and Chaudhuri, 2015). Moreover, we denote

µ = E
[
SGN∗

{FX(Y )}
]

and
µ̃ = E

[
SGN∗

{FY (X)}
]
.

Remark that, under H0, we have µ = µ̃.
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• Let Γ1,Γ2 : χ∗∗∗ × χ∗∗∗ → R be the symmetric positive definite continuous bilinear
operators defined as :

Γ1(f, g) = E
[
f
(
SGN∗

{FX(Y )}
)
g
(
SGN∗

{FX(Y )}
)]

− f(µ)g(µ) (5)

and
Γ2(f, g) = E

[
f
(
SGN∗

{FY (X)}
)
g
(
SGN∗

{FY (X)}
)]

− f(µ̃)g(µ̃), (6)

where f, g ∈ χ∗∗∗.

For our next theorem, we shall also consider the following assumptions and definition :

Assumption 1. We assume that the norm in χ∗ is twice Gateaux differentiable at every
x ̸= 0.

From Assumption 1 (see also, e.g., Chapter 4, Section 6 in Borwein and Vanderwerff,
2010), let Jx : χ∗ → χ∗∗ denote, when it exists, the Hessian of the function g : x 7→
E
[
∥FX(Y ) + x∥χ∗

∣∣∣X1, . . . , Xm

]
, x ∈ χ∗. In particular, if we assume that χ is an Hilbert

space, then χ∗ is also an Hilbert one. Since the norms in Hilbert spaces are twice Gateaux
differentiable (p. 6 in Chakraborty and Chaudhuri, 2014a), and if Z = FX(Y ), the derivative
of the map g is defined as :

∇xg = E
[
SGN∗

{Z+x}
∣∣X1, . . . , Xm

]
= E

[
Z + x

∥Z + x∥χ∗

∣∣∣∣∣X1, . . . , Xm

]
and its Hessian is:

Jx : χ∗ → χ∗∗

h 7→ Jx(h) : χ∗ → R

v 7→ {Jx(h)} (v) := ⟨Jx(h), v⟩.

Then, we have

Jx = E

[
1

∥Z + x∥χ∗

(
Iχ∗ − (Z + x)⊗ (Z + x)

∥Z + x∥2χ∗

)∣∣∣∣∣X1, . . . , Xm

]
,

where Iχ∗ is the identity operator in χ∗ and u⊗ v(h) = ⟨u, h⟩.v for all h, v ∈ χ∗. Thus,

Jx(h) = E

[
h

∥Z + x∥χ∗
− ⟨Z + x, h⟩ (Z + x)

∥Z + x∥3χ∗

∣∣∣∣∣X1, . . . , Xm

]
,

for all h ∈ χ∗. More explicitly, Jx is given by

{Jx(h)} (v) = ⟨Jx(h), v⟩ = E

[
1

∥Z + x∥χ∗

(
⟨h, v⟩ − ⟨Z + x, h⟩⟨Z + x, v⟩

∥Z + x∥2χ∗

)∣∣∣∣∣X1, . . . , Xm

]
,

for all h, v ∈ χ∗.
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Assumption 2. The Hessian operator Jx defined as above exists for all x ∈ χ∗ and there is
a constant c > 0 such that

∥J0∥ ≤ c.

Definition 1. (Banach space of type 2)
A Banach space χ is said to be of type 2 if there is a constant b > 0 such that for any n ≥ 1
and independent zero mean random elements V1, . . . , Vn in χ satisfying E(∥Vi∥2) < ∞ , for
all i = 1, . . . , n, we have

E(∥
n∑

i=1

Vi∥2) ≤ b

n∑
i=1

E(∥Vi∥2).

We will focus on this particular functional space since, as said in Chakraborty and Chaud-
huri (2014a), type 2 Banach spaces are the only Banach spaces where the central limit the-
orem holds for every sequence of independent and identically distributed random elements,
whose squared norms have finite expectations (see also Theorem 2.8, p. 53, in Bosq, 2000).
Remark that the Hilbert and the Lp spaces with p ∈ [2,∞) are Banach of type 2 spaces (see
for more details p. 51 in Bosq, 2000 or p. 159 in Araujo and Giné, 1980).

Then, using the previous notations and definition, the asymptotic normality of MED is
given by the following theorem.

Theorem 1. (Asymptotic Gaussianity of MED)
Let N = m + n and m/N → λ ∈ (0, 1) as m,n → ∞. Assume that the bidual χ∗∗ space
is a separable and type 2 Banach space. Then, under assumptions (1) and (2), for any two
probability measures P and Q on χ,

(mn/N)1/2(MED − µ) converges weakly to G (0, λΓ1 + (1− λ)Γ2)

as m,n→ ∞.

The proof of Theorem 1 is available in appendix A.1.

Remark. For easier understanding, we develop µ in the univariate case. As defined before,

µ = E
[
SGN∗

{FX(Y )}
]
= E

[
SGN∗

{E[SGN{Y −X}|Y ]}
]
.

Thus,

FX(Y ) = E
[
SGN{Y−X}

∣∣Y ]
= E

[
1{Y >X}

∣∣Y ]− E
[
1{Y <X}

∣∣Y ]
= 2E

[
1{Y >X}

∣∣Y ]− 1

= 2F̃X(Y )− 1,
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where F̃X(·) is the conditional distribution function of X given Y i.e. the projection of 1{X<·}
onto the subspace spanned by Y . Then, we obtain

µ = E

[
sign(2F̃X(Y )− 1)

]
= E

[
1{2F̃X(Y )−1>0}

]
−E

[
1{2F̃X(Y )−1<0}

]
= E

[
1{FX(Y )> 1

2}
]
−E

[
1{FX(Y )< 1

2}
]

= E

[
1{Y >F̃−1

X ( 1
2)}
]
−E

[
1{Y <F̃−1

X ( 1
2)}

]
= 1− 2E

[
1{Y <F̃−1

X ( 1
2)}

]
= 1− 2G

(
F̃−1
X (1/2)

)
,

where G is the distribution function of Y . Under H0, we have µ = 0.

2.3 Computing the significance

In this subsection, we propose two methods to compute the significance of the MED test
statistic: the first one is based on Theorem 1 defined as above and the second one is based
on Monte-Carlo simulations (Dwass, 1957). A comparison between these procedures will be
presented in Section 3.

2.3.1 Using the asymptotic distribution

The significance of the test based on the MED statistic can rely on the asymptotic distribu-
tion of the statistic exhibited by Theorem 1. Since µ = 0 under H0, we shall reject the null
hypothesis if

∥∥(mn/N)1/2MED
∥∥ > qα where qα denotes the (1− α) quantile of the limiting

distribution ∥G (0, λΓ1 + (1− λ)Γ2)∥ and α is the asymptotic size of the test. In order to
compute this quantile, we need to derive the covariance operators Γ1 and Γ2 and the norm
of the asymptotic distribution given by Theorem 1. We describe this estimation step when
χ is a separable Hilbert space with norm ∥ · ∥χ.
Let X1, . . . , Xm and Y1, . . . , Yn be two χ-valued samples. Thus, we proceed as follows.

• Estimating the asymptotic covariance operator of the Gaussian process :

Since, the operator Γ1 given by (5) is equal to

Γ1 = E
(
SGN∗

{FX(Y )} ⊗ SGN∗
{FX(Y )}

)
− µ⊗ µ,

its empirical estimator is

Γ̂1 =
1

n− 1

n∑
i=1

[(
F̂X(Yi)

∥F̂X(Yi)∥χ
− µ̂

)
⊗

(
F̂X(Yi)

∥F̂X(Yi)∥χ
− µ̂

)]
,
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where for all i = 1, . . . , n, F̂X(Yi) =
1
m

m∑
j=1

Yi −Xj

∥Yi −Xj∥χ
and µ̂ = 1

n

n∑
i=1

F̂X(Yi)

∥F̂X(Yi)∥χ
.

In the usual case where the sample functions are observed in k equispaced points on
[0, 1], this covariance operator turns into a k × k covariance matrix. In addition, Γ2

which is given by (6) can be estimated by Γ̂2, whose formulation is derived similarly to
Γ̂1. Consequently, the asymptotic covariance operator of MED, defined as λΓ1 + (1−
λ)Γ2, is estimated by

λ̂Γ̂1 + (1− λ̂)Γ̂2,

where λ̂ = m
N

and N = m+ n.

• Estimating the asymptotic distribution of the test statistic :

As stated in Horváth et al. (2013) and Chakraborty and Chaudhuri (2015), Theorem
1 implies that ∥∥∥∥(mnN )1/2

MED
∥∥∥∥2
χ

=
∞∑
k=1

τkNk,

where for k ≥ 1, the Nk’s are independent chi-squared random variables, each with
one degree of freedom, and the τk’s are the eigenvalues of λΓ1+(1−λ)Γ2. This agrees
with the Karhunen-Loève expansion (for more details, see Theorem 2.1 of Horváth
and Kokoszka, 2012 or Theorem IV.2.4 and Proposition 1.9 of Vakhania et al., 1987).
Replacing the covariance operator λΓ1+(1−λ)Γ2 by the estimator we described earlier,
we obtain a finite number of eigenvalues and, following Chakraborty and Chaudhuri
(2015), we only retain the positive eigenvalues. The asymptotic distribution of the
test statistic is thus approximated by the distribution of a finite sum of independent
chi-squared random variables which can be easily generated.

2.3.2 Using random permutations

The method based on the asymptotic distribution suffers two limitations: the need to es-
timate the covariance operators Γ1 and Γ2 and the distance to the asymptotic distribution
when m and n are quite small, which is often the case when comparing two samples of func-
tions. Consequently, we may consider a test procedure based on Monte-Carlo simulations
allowing to give an approximation of the null distribution (Dwass, 1957). The procedure is
based on the following steps :

1. Let Xobs = (X1, . . . , Xm) and Yobs = (Y1, . . . , Yn). Among the m + n observations of
(Xobs, Yobs), m of them are randomly chosen to create Xperm and the n others to create
Yperm.

2. The simulated median statistic Sperm is then computed using Xperm and Yperm instead
of X and Y .
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3. Based on nperm random permutations, the p-value of the median statistic is given by

pvalue =

1 +

nperm∑
l=1

1{
S
(l)
perm>S

}
nperm + 1

,

where S is the value of the statistic computed using the observed data and S
(l)
perm the

value computed using the lth random permutation.

4. We will reject H0 when the p-value is below the level of the test.

2.4 Asymptotic power under shrinking location shifts

In this section, we give the asymptotic distribution of the test statistic MED under appro-
priate sequences of shrinking location shifts. In order to do that, we suppose that Y is
distributed as X +∆N , where

∆N = δ
(mn
N

)−1/2

(7)

for some nonzero fixed δ ∈ χ and N = m + n ≥ 1 is the total size of the two samples.
As said in Chakraborty and Chaudhuri (2015), these alternative hypotheses choice has been
proved to be contiguous to the null one and it is useful to find nondegenerate asymptotic
distributions of the test statistics under these alternatives (see Oja, 1999).
In order to derive the distribution of the median statistic under these alternative hypotheses,
we need two more assumptions.

Assumption 3. We assume that the norm in χ is twice Gateaux differentiable at every
y ̸= 0. In addition, we suppose that the Hessian of the map y 7−→ E[∥y + Y − Z∥χ|Y ], at
y ∈ χ, denoted by J̃y : χ→ χ∗, exists where Z is an independent copy of Y .

Assumption 4. Since we have assumed that the norm in χ∗ is twice Gateaux differentiable
at every x ̸= 0 (Assumption 1), we suppose here that the Hessian of the function u 7→
E

[∥∥u+ E
[
SGN{Y−Z}

∣∣Y ]∥∥
χ∗

]
, denoted by Hu : χ∗ → χ∗∗, exists where Z is an independent

copy of Y .

Finally, we obtain the following theorem.

Theorem 2. Let N = m + n and m/N → λ ∈ (0, 1) as m,n → ∞. Suppose that χ∗∗ is a
separable and type 2 Banach space. Assume that the distributions of X and Y are nonatomic.
Then, under assumptions (1), (2), (3) and (4) and under the sequence of shrinking location
shifts defined as (7),

(mn/N)1/2MED converges weakly to G
(
H0(J̃0(δ)), λΓ1 + (1− λ)Γ2

)
as m,n→ ∞.

The proof of Theorem 2 is available in appendix A.1.
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2.4.1 Computing the power

For evaluating the asymptotic power of the test based on MED statistic we will use Theorem
2. According to the latter, we shall first estimate the asymptotic mean and then follow
the procedure described in subsection 2.3.1. In order to do that, we shall first estimate
the operators H0 and J̃0 to derive an estimator of the asymptotic mean of MED under the
sequence of shrinking location shifts defined as (7). We describe this estimation step when
χ is a separable Hilbert space with norm ∥ · ∥χ.
Let X1, . . . , Xm and Y1, . . . , Yn be two χ-valued samples. Thus, we have

J̃0 = E
[

1

∥Y −X∥χ
Iχ −

(Y −X)⊗ (Y −X)

∥Y −X∥3χ

∣∣∣∣Y ] ,
where Iχ stands for the identity operator on χ. Thus, an estimator of J̃0 is given by

ˆ̃J0,i =
1

m

m∑
j=1

[
1

∥Yi −Xj∥χ
Iχ −

(Yi −Xj)⊗ (Yi −Xj)

∥Yi −Xj∥3χ

]
,

for all i = 1, . . . , n. Furthermore, since

H0 = E

[
1

∥FX(Y )∥χ
Iχ −

FX(Y )⊗ FX(Y )

∥FX(Y )∥3χ

]
,

it can be estimated by

Ĥ0 =
1

n

n∑
i=1

[
1

∥F̂X(Yi)∥χ
Iχ −

F̂X(Yi)⊗ F̂X(Yi)

∥F̂X(Yi)∥3χ

]
.

Consequently, the asymptotic mean of MED under the sequence of shrinking location shifts
H0(J̃0(δ)) can be estimated by

1

n

n∑
i=1

 ˆ̃J0,i(δ)

∥F̂X(Yi)∥χ
−

〈
F̂X(Yi),

ˆ̃J0,i(δ)
〉
F̂X(Yi)

∥F̂X(Yi)∥3χ

 .
A comparison with the test statistic introduced by Chakraborty and Chaudhuri (2015)

is given in subsection 3.1.2. In addition, we give more details about the estimation of the
covariance operators and the asymptotic mean under the sequence of shrinking location shifts
of the Wilcoxon-Mann-Whitney test statistic introduced by Chakraborty and Chaudhuri
(2015) in appendix A.2 .

3 Applications

3.1 A simulation study

In this subsection, we aim to compare the power of the two median statistics introduced in
the previous section with those of the tests available in Chakraborty and Chaudhuri (2015),
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Cuevas et al. (2004) and Horváth et al. (2013).
We set the separable Hilbert space χ = L2[0, 1]. The test introduced by Chakraborty and
Chaudhuri (2015) is based on the Wilcoxon-Mann-Whitney statistic, which is defined as a
U-statistic (Borovskikh, 1996) like in the univariate case and can be rewrited in χ as follows

WMW =
1

nm

n∑
i=1

m∑
j=1

SGNYi−Xj
=

1

nm

n∑
i=1

m∑
j=1

Yi −Xj

∥Yi −Xj∥χ
.

The test statistic introduced by Cuevas et al. (2004) is defined by

CFF = m∥X̄ − Ȳ ∥2χ,

where X̄ and Ȳ are the empirical means of the Xj’s and Yi’s respectively for all i = 1, . . . , n
and j = 1, . . . ,m and µg is the empirical mean of the pooled sample of the Xj’s and Yi’s.
Horváth et al. (2013) introduced the test statistics defined as follows

HKR1 =
mn

N

p∑
l=1

⟨X̄ − Ȳ , φ̂l⟩
λ̂l

,

and

HKR2 =
mn

N

p∑
l=1

⟨X̄ − Ȳ , φ̂l⟩.

Here, ⟨., .⟩ denotes the inner product in χ, the λ̂l’s are the eigenvalues of the empirical pooled
covariance of the Xj’s and the Yi’s sorted in decreasing order of magnitude and the φ̂l’s are
the corresponding empirical eigenfunctions. In this subsection, we used the usual empirical
pooled covariance for the two tests HKR1 and HKR2 given by Horváth et al. (2013) and the
numbers of projection directions p are chosen using the cumulative variance method that
they provide. Now, let us consider the decomposition

X =
∞∑
k=1

Zkek,

where for all k ⩾ 0, ek =
√
2sin(t/σk) is an orthonormal basis of χ, σk = ((k− 0.5)π)−1 and

the Zk’s are independent random variables which correspond to the projection of X on the
Karhunen-Loève basis (Karhunen, 1947; Lévy and Loève, 1948). We have considered four
scenarios:

(i) A standard Brownian motion (sBm), i.e. Zk/σk follows a N (0, 1) distribution.

(ii) A centered t process on [0, 1] with 5 degrees of freedom, i.e. Zk/σk ∽ t(5).

(iii) A Cauchy distribution with parameters 0 and 1, i.e. Zk/σk ∽ C(0, 1).

(iv) A double exponential distribution with parameters 0 and 1, i.e. Zk/σk ∽ Dexp(0, 1).
The scenarios (i) and (ii) are studied in Chakraborty and Chaudhuri (2015) and we have
chosen the scenarios (iii) and (iv) to study the performance of the differents tests using more
heavy-tailed distributions.
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3.1.1 Finite-size powers

Assume that Y is distributed as X + ∆ and under the alternative hypotheses H1 : ∆ ̸= 0.
Three choices are considered, namely : ∆1(t) = c, ∆2(t) = ct and ∆3(t) = ct(1 − t) where
c > 0 for all t ∈ [0, 1]. Figure 1 shows examples of simulated data.

∆1(t) = c ∆2(t) = ct ∆3(t) = ct(1 − t)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

−2

0

2

4

t

X
(t

) 
a

n
d

 Y
(t

)

variable

X

Y

Figure 1: Examples of generated data using the scenario (i) with c = 0.5 (left panel), c = 3 (middle
panel) and c = 8 (right panel). In black: 10 samples of X. In red: 10 samples of Y .

Before computing the powers of the tests previously introduced, we have derived the size
of each of these tests, i.e. the probability for rejecting the null hypothesis when it is true.
We have chosen nsim = 1000 random simulations of (X, Y ). For each simulated dataset, all
test statistics and their critical values are derived in the same way as described in subsection
2.3 using the asymptotic and the permutation methods:

• To apply the asymptotic method: critical values of the test statistic MED are derived
as described above. Similarly, those of WMW, HKR1 and CFF are calculated using
their associated asymptotic theorems described in Chakraborty and Chaudhuri (2015),
Cuevas et al. (2004) and Horváth et al. (2013) respectively.

• To apply the permutation procedure: we have used nperm = 999 random permutations.
The hypothesis H0 is rejected if pvalue < α, where α is the significance level which is
chosen equal to 0.05.

Then, using different sample sizes, we obtain the results gathered in Figure 2.
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Figure 2: Sizes computed with the permutation method versus corresponding sizes computed with
the asymptotic method for the different test statitics, MED, WMW, HKR1 and CFF, using the
different scenarios (i), (ii), (iii) and (iv).
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We see in Figure 2 that, using the asymptotic method and when the sample sizes are small
(n = m = 10), the sizes of all the tests are different from the 5% nominal level whatever the
distribution. However, the ones obtained using the permutation method are close to 5%: this
seems logical since the asymptotic method is more adapted for large sample sizes. Moreover,
using Cauchy distribution, we remark that the sizes of test statistics HKR1 and CFF are
different from the nominal level whatever the sample size when using the asymptotic method:
this may result from difficulties in estimating the covariance operators of these tests when
the distribution has heavy tails.

Because of these results, we decided to first focus on simulations with limited sample sizes,
using the permutation method to derive the corresponding statistical power of the different
tests. The asymptotic method will be used in the next subsection to derive asymptotic
powers. We set m = n = 10 and each sample curve is observed at 100 equidistant points on
[0, 1]. Figure 3 presents the corresponding power results.
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Figure 3: Values of the statistical power for the tests using MED, Mo, WMW, CFF, HKR1 and
HKR2 statistics depending on the values of c, when ∆1(t) = c, ∆2(t) = ct and ∆3(t) = ct(1 − t)
using the different scenarios (i), (ii), (iii) and (iv), nperm = 999, nsim = 1000 and n = m = 10.

From Figure 3, we can say that :

• With ∆1(t), the tests based on Mo, WMW and MED have similar powers under all
distributions except the Cauchy one where the test based on MED is less powerful for
large values of c. We can also see that the tests using the CFF, HKR1 and HKR2
statistics are less powerful than the ones based on MED, Mo and WMW for large
values of c in all the settings we considered.

• With ∆2(t) and under all the distributions except the Cauchy one, all the tests have
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similar powers for small values of c. With the N (0, 1) distribution and for large values
of c, the parametric test based on CFF outperforms all the other tests. However, using
the Student process, the test based on WMW is more powerful than others. We notice
that, using the heavy-tailed distributions C(0, 1) and Dexp(0, 1), the proposed tests
based on Mo and MED outperform the parametric tests CFF, HKR1 and HKR2.

• With ∆3(t), the test using Mo statistic outperforms the test based on WMW against
heavy-tailed distributions t(5), C(0, 1) and Dexp(0, 1) for large values of c and it has
a similar power against sBm distribution. We remark also that the power of the test
based on MED is very similar to the power of the tests based on WMW and Mo for
small values of the shift c and for all the distributions. However, for large values of c,
it is similar to the tests based on WMW and Mo for all the distributions except the
C(0, 1) one. We can also see that using the four distributions, the nonparametric tests
based on spatial ranks using MED, Mo and WMW statistics performs better than the
parametric mean-based ones using CFF, HKR1 and HKR2 statistics.

3.1.2 Asymptotic powers

In this subsection, we compare the asymptotic powers of the tests based on MED and WMW
since their asymptotic distributions are known under the sequence of shrinking location shifts
(Theorem 2 introduced above and Theorem 2 of Chakraborty and Chaudhuri, 2015).
To do so, recall that Y is distributed asX+∆N , where ∆N is given by (7). We have considered
three choices of δ ∈ χ, namely δ1(t) = c, δ2(t) = ct and δ3(t) = ct(1− t), where t ∈ [0, 1] and
c > 0. The ranges of δ2 and δ3 being smaller than the range of δ1, it is combined with larger
values of c. For evaluating the asymptotic powers of these tests, we have used 1000 sample
functions from different distributions (i), (ii), (iii) and (iv). The asymptotic covariance of
the tests based on MED and WMW are estimated respectively as described in subsection
2.3.1 and in appendix A.2. The estimators of the asymptotic means are respectively derived
as explained in subsection 2.4.1 and in appendix A.2. Consequently, the asymptotic powers
of the tests based on MED and WMW are computed from the Gaussian distributions given
respectively by our Theorem 2 and Theorem 2 of Chakraborty and Chaudhuri (2015) with
the appropriate estimated parameters. Figure 4 shows the corresponding results.
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Figure 4: Values of the statistical power for the tests using MED and WMW statistics depending
on the values of c, when δ1(t) = c, δ2(t) = ct and δ3(t) = ct(1 − t) and n = m = 1000 using the
different scenarios (i), (ii), (iii) and (iv).

From Figure 4, we see that both tests achieve the 5% nominal level asymptotically using
different location shift models and different types of distributions and its asymptotic powers
are equal when c = 0. Moreover,

• Under δ1(t), our test based on MED and the one based on WMW have similar asymp-
totic powers in the case of the Gaussian distribution. However, our test outperforms the
WMW one with t(5) distribution and even more powerful with C(0, 1) and Dexp(0, 1)
which are more heavy-tailed.
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• Under δ2(t), with C(0, 1) and Dexp(0, 1) distributions, our test is more powerful com-
pared to the WMW one. However, with N (0, 1) and t(5) distributions, our test based
on MED is less powerful using large values of c.

• Under δ3(t), the asymptotic powers curves of our test and the WMW one are close
with the N (0, 1) distribution for small values of c. In all the other situations, our test
outperforms the WMW one and especially with C(0, 1) distribution where we can see
a large difference between both curves.

3.2 An application to real data

In this subsection, we compare the two median tests based on MED and Mo with those based
on WMW, CFF, HKR1 and HKR2 which are presented in the previous subsection using
two datasets already analysed by Chakraborty and Chaudhuri (2014a) (for more details, see
Ramsay and Silverman, 2005 and Ferraty and Vieu, 2006). In both datasets, each observation
is an element in the separable Hilbert space χ = L2[a, b].

3.2.1 Coffee data

This dataset can be downloaded from http://www.cs.ucr.edu/~eamonn/time_series_
data/. It contains the spectroscopy values for 14 samples for two different types of cof-
fee beans (Arabica and Robusta) recorded at 286 wavelengths (see Figure 5).
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Figure 5: In red : Spectroscopy curves of Robusta beans. In black : Spectroscopy curves of
Arabica beans.

Based on 999 random permutations, the p-values obtained on this dataset are equal to
0.001 except the one based on HKR2 which equals 0.003. The p-values obtained using the
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asymptotic method are also zero up to two decimal places. This leads us to reject the null
hypothesis whatever the significance method. From Figure 5, the spectroscopy curves of
the two coffee types are clearly different since the maximum values are not observed in the
same wavelengths for Arabica and Robusta. Remark that the results given by Chakraborty
and Chaudhuri (2014a) on the same dataset are completely different since their asymptotic
p-values of the tests based on WMW (0.072), CFF (0.169), HKR1 (0.273) and HKR2 (0.273)
fail to reject H0.

3.2.2 Berkeley growth data

This dataset is available in the R package fda and contains the heights of 39 boys and 54
girls measured at 31 time points from age 1 to 18 (see Figure 6).
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Figure 6: In red : Heights of the 54 girls. In black : Heights of the 39 boys.

All the p-values based on 999 random permutations and the asymptotic method are 0
up to two decimal places and are similar to the ones given by Chakraborty and Chaudhuri
(2014a). These p-values exhibit a strong difference between the two distributions. So,
we decided to evaluate the proportion of rejection of the null hypothesis to compare the
behaviour of the different statistics when the level α is equal to 0.05. Such as done by
Chakraborty and Chaudhuri (2014a), we have chosen randomly 20% subsamples of the 2
classes of the complete dataset and this subsampling was repeated 100 times. Results are
given in Table 1.

As seen in Table 1, for this type of data, our tests based on Mo and MED statistics
have the highest rate of rejection of the null hypothesis, close to the one obtained using

21



Statistic MED Mo WMW CFF HKR1 HKR2
Proportion of rejection 1 1 0.99 0.87 0.28 0.25

Table 1: The proportions of rejection of the null hypothesis of the different test statistics MED,
Mo, WMW, CFF, HKR1 and HKR2.

the statistic WMW of Chakraborty and Chaudhuri (2015) and much larger than the tests
proposed by Cuevas et al. (2004) namely CFF and Horváth et al. (2013) namely HKR1 and
HKR2.

4 Discussion
Nowadays and with the development of modern technology, scientists often observe func-
tional datasets instead of multivariate ones. As a consequence, there is a need for testing
procedures adapted to these infinite dimensional data. In this paper, we have proposed
an extension of an existing nonparametric test based on ranks in the infinite dimensional
spaces to compare two datasets (samples of curves). This is a median test in the functional
case, similar to the rank-based test proposed by Capéraà and Cutsem (1988) and Van der
Vaart (1998) in the univariate case. It can be noted that we introduce the notion of ranking
functional elements through a sign function. The median test is one way to use this sign
function for ranking functional elements but other possibilities have been investigated such
as functional depth (Chakraborty and Chaudhuri, 2014b; Gijbels and Nagy, 2017; Estévez-
Pérez and Vieu, 2021): these could lead to other types of nonparametric tests for comparing
samples of functions that we shall investigate in a future work.
First, we proposed two median statistics in a Banach space then their equivalent in a partic-
ular case which is an Hilbert space. Second, we derived the asymptotic Gaussianity of one of
the proposed median statistics under the null hypothesis and local alternatives proposed in
section 2. Remark that, our median statistic not being a U-statistic (see Borovskikh, 1996)
such as the Wilcoxon-Mann-Whitney one but based on two sign functions instead of one,
this increases the complexity of the proofs. Computing significance and powers is possible
using two different procedures, either based on the asymptotic distribution or on random
permutations.
The application to simulated and real data shows that the median tests have good perfor-
mance compared to the Wilcoxon-Mann-Whitney test proposed by Chakraborty and Chaud-
huri (2015), the ANOVA test based on CFF and the mean-based tests introduced by Horváth
et al. (2013). Moreover, when the distribution of the processes is heavy-tailed, the median
test is as powerful as the WMW test for moderate sample size and asymptotically more
powerful than any other test, either parametric or nonparametric.
We are willing to propose a R package in which these different parametric and nonparametric
tests would be available and we are working on it. A perspective would be to develop the
tests introduced in this paper and the Wilcoxon-Mann-Whitney one to compare more than
two datasets in infinite dimensional space. To do so, we may follow the strategy used by Oja
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(2010) in the multivariate case: this would become a multiple location test.
Recently, Smida et al. (2022) have proposed a nonparametric spatial scan statistic for de-
tecting spatial clusters using functional data. This scan statistic was constructed using the
Wilcoxon-Mann-Whitney two-sample test for functional data of Chakraborty and Chaudhuri
(2015) and it is implemented in a R package named HDSpatialScan (Frévent et al., 2021).
Another perspective would be to develop a new nonparametric scan statistic in the func-
tional case using the median statistics introduced in this paper and to compare it with the
nonparametric one based on the Wilcoxon-Mann-Whitney statistic.

A Appendix

A.1 Proof of theorems

Proof of theorem 1. The median statistic (2) is

MED =
1

n

n∑
i=1

SGN∗ 1
m

m∑
j=1

SGN{Yi−Xj}



=
1

n

n∑
i=1

ϕ(Fm(Yi)).

We remark that the random elements SGN{Yi−Xj} are not independent for all i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}. To ensure the independence, our strategy is to use the conditional
expectations FX(y) and FY (x) defined respectively by (3) and (4) for all x, y ∈ χ.
Thus, we can use the following decomposition :

MED − E[MED|Xj; j = 1, . . . ,m] = L
′

n + L
′′

m +K
′

m,n,

where

L
′

n =
1

n

n∑
i=1

[ϕ(FX(Yi))−E(ϕ(FX(Yi)))] , (8)

L
′′

m =
1

m

m∑
j=1

[ϕ(FY (Xj))−E(ϕ(FY (Xj)))] (9)

and
K

′

m,n = MED − E[MED|Xj; j = 1, . . . ,m]− L
′

n − L
′′

m. (10)

Remark that the same decomposition is used in subsection 14.1.1 of Van der Vaart (1998)
for R-valued random variables. Furthermore, consider

K
′′

m,n = E[MED|Xj; j = 1, . . . ,m]−E[ϕ(FX(Y ))]. (11)

Hence, we can write the following decomposition :

MED − µ = L′
n + L

′′

m +R′
m,n, (12)
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where
R′

m,n = K
′

m,n +K
′′

m,n.

The proof of the asymptotic distribution of MED can be split into four steps :

• Step 1: Show that L′
n converges in law to a Gaussian element.

• Step 2: Show that L′′
m converges in law to a Gaussian element.

• Step 3: Show that R′
m,n converges in probability to 0.

• Step 4: Conclude the asymptotic normality of MED.

Step 1 : Asymptotic behavior of L′
n

Let

L
′

n =
1

n

n∑
i=1

[ϕ(FX(Yi))−E(ϕ(FX(Yi)))] .

We want to prove here the asymptotic Gaussianity of L′
n. For this purpose, for all i =

1, . . . , n, let us write the sequence

ψn(Yi) = n−1/2 [ϕ(FX(Yi))−E(ϕ(FX(Yi)))]

= n−1/2
[
SGN∗

{E[SGN{Yi−X}|Yi]} −E
[
SGN∗

{E[SGN{Yi−X}|Yi]}
]]
.

Note that E [ψn(Yi)] = 0. In order to show the asymptotic Gaussianity of
∑n

i=1 ψn(Yi),
we check that the triangular array {ψn(Y1), . . . , ψn(Yn)}∞n=1 of rowwise independent and
identically distributed random elements satisfies the three conditions of Corollary 7.8 in
Araujo and Giné (1980).

• Condition 1 : Let us show that

∀ϵ > 0, lim
n→+∞

n∑
i=1

P

(
∥ψn(Yi)∥χ∗∗ > ϵ

)
= 0.

Using the Bienaymé-Tchebychev inequality, we obtain : for any ϵ > 0,

n∑
i=1

P

(
∥ψn(Yi)∥χ∗∗ > ϵ

)
≤

n∑
i=1

E

[∥∥SGN∗
{FX(Yi)} −E

[
SGN∗

{FX(Yi)}
]∥∥3

χ∗∗

]
ϵ3n3/2

≤ 8

ϵ3n1/2
−→

n→+∞
0.

For the last inequality, we have used the fact that
∥∥SGN∗

{x}
∥∥
χ∗∗ ≤ 1 for all x ∈ χ∗.

Thus, the first condition of the Corollary 7.8 in Araujo and Giné (1980) holds.
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• Condition 2 : Let us show that

∀f ∈ χ∗∗∗, lim
n→+∞

n∑
i=1

E
[
f 2 (ψn(Yi)−E(ψn(Yi))

]
= Γ1(f, f) <∞.

Let us fix f ∈ χ∗∗∗. Since f is linear, we may write
n∑

i=1

E
[
f 2 [ψn(Yi)−E(ψn(Yi))]

]
=

n∑
i=1

E
[
f 2 [ψn(Yi)]

]
=

1

n

n∑
i=1

E
[
f 2
(
SGN∗

{FX(Yi)} −E
[
SGN∗

{FX(Yi)}
])]

=
1

n

n∑
i=1

E

[(
f
(
SGN∗

{FX(Yi)}
)
− f

(
E
[
SGN∗

{FX(Yi)}
]))2]

=
1

n

n∑
i=1

E

[(
f
(
SGN∗

{FX(Yi)}
)
−E

[
f
(
SGN∗

{FX(Yi)}
)])2]

.

We consider now, for all i = 1, . . . , n,

Wi := f
(
SGN∗

{FX(Yi)}
)
= f

(
SGN∗

{E[SGN{Yi−X}|Yi]}

)
.

Hence, we get
n∑

i=1

E
[
f 2 [ψn(Yi)]

]
=

1

n

n∑
i=1

E
[
[Wi −E (Wi)]

2]
= E

[
[W1 −E (W1)]

2]
= E

[
W 2

1

]
−E2 [W1]

= Γ1(f, f) <∞,

where Γ1 is defined as (5). Thus, the second condition of the Corollary 7.8 in Araujo
and Giné (1980) holds.

• Condition 3 : Let us show that

lim
k→+∞

lim
n→+∞

n∑
i=1

E
[
d2 (ψn(Yi)−E [ψn(Yi)] ,Fk)

]
= 0,

where {Fk}k≥1 is a sequence of finite dimensional subspaces of χ∗∗ such that Fk ⊆ Fk+1

for all k ≥ 1 and the closure of ∪∞
k=1Fk is equal to χ∗∗. This sequence exists because

of the separability of χ∗∗. Also, for any x ∈ χ∗∗ and any k ≥ 1, we define d(x,Fk) =
inf{∥x− y∥χ∗∗ : y ∈ Fk}. It is easy to prove that for all k ≥ 1, the map x 7−→ d(x,Fk)
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is continuous and bounded on any closed ball in χ∗∗.
First, since E [ψn(Yi)] = 0, we have

n∑
i=1

E
[
d2 (ψn(Yi),Fk)

]
=

1

n

n∑
i=1

E
[
d2
(
SGN∗

{FX(Yi)} −E
[
SGN∗

{FX(Yi)}
]
,Fk

)]
= E

[
d2
(
SGN∗

{FX(Y1)} −E
[
SGN∗

{FX(Y1)}
]
,Fk

)]
.

From the choice of the sequence {Fk}k≤1, we obtain d(x,Fk) −→ 0 as k → ∞ for any
x ∈ χ∗∗. Thus,

lim
k→+∞

lim
n→+∞

n∑
i=1

E
[
d2 (ψn(Yi),Fk)

]
= 0

and the third condition of the Corollary 7.8 in Araujo and Giné (1980) holds.

Therefore, using Corollary 7.8 in Araujo and Giné (1980),
∑n

i=1 ψn(Yi) converges weakly
to a centered Gaussian random element in χ∗∗ as m,n → ∞. Moreover, the asymptotic
covariance is Γ1 which was obtained while checking the second condition presented as above.
Finally,

√
nL′

n = n−1/2

n∑
i=1

[ϕ(FX(Yi))−E [ϕ(FX(Yi))]]
L−→ G(0,Γ1) (13)

weakly as m,n→ ∞.

Step 2 : Asymptotic behavior of L′′
m

Let

L
′′

m =
1

m

m∑
j=1

[ϕ(FY (Xj))−E(ϕ(FY (Xj)))] . (14)

Similarly to the previous step, our goal in this part is to prove the asymptotic Gaussianity
of L′′

m. To do that, for all j = 1, . . . ,m, we consider

ψ̃m(Xj) = m−1/2 [ϕ(FY (Xj))−E(ϕ(FY (Xj)))]

= m−1/2

[
SGN∗{

E
[
SGN{Y −Xj}

∣∣∣Xj

]} −E
[
SGN∗{

E
[
SGN{Y −Xj}

∣∣∣Xj

]}]] .
To show the asymptotic Gaussianity of

∑m
j=1 ψ̃m(Xj), we will use the same procedure as

in step 1, replacing the array {ψn(Y1), . . . , ψn(Yn)}∞n=1 by {ψ̃m(X1), . . . , ψ̃m(Xm)}
∞
m=1. Note

thatE
[
ψ̃m(Xj)

]
= 0. Now,we shall check that the triangular array {ψ̃m(X1), . . . , ψ̃m(Xm)}∞m=1

of rowwise independent and identically distributed random elements also satisfies the three
conditions of Corollary 7.8 in Araujo and Giné (1980).
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• Condition 1 : Let us show that

∀ϵ > 0, lim
m→+∞

m∑
j=1

P

(∥∥∥ψ̃m(Xj)
∥∥∥
χ∗∗

> ϵ

)
= 0.

Observe that for any ϵ > 0,

m∑
j=1

P

(∥∥∥ψ̃m(Xj)
∥∥∥
χ∗∗

> ϵ

)
≤

m∑
j=1

E

[∥∥∥SGN∗
{FY (Xj)} −E

[
SGN∗

{FY (Xj)}

]∥∥∥3
χ∗∗

]
ϵ3m3/2

≤ 8

ϵ3m1/2
−→

m→+∞
0.

For the last inequality, we have used the fact that
∥∥SGN∗

{x}
∥∥
χ∗∗ ≤ 1 for all x ∈ χ∗.

Thus, the first condition of the Corollary 7.8 in Araujo and Giné (1980) holds.

• Condition 2 : Let us show that

∀f ∈ χ∗∗∗, lim
m→+∞

m∑
j=1

E

[
f 2
(
ψ̃m(Xj)−E(ψ̃m(Xj)

)]
= Γ2(f, f) <∞.

Le us fix f ∈ χ∗∗∗. Since f is linear and E(ψ̃m(Xj)) = 0, for all j = 1, . . . ,m, we can
write

m∑
j=1

E

[
f 2
[
ψ̃m(Xj)

]]
=

1

m

m∑
j=1

E

[
f 2
(
SGN∗

{FY (Xj)} −E
[
SGN∗

{FY (Xj)}

])]
=

1

m

m∑
j=1

E

[(
f
(
SGN∗

{FY (Xj)}

)
− f

(
E

[
SGN∗

{FY (Xj)}

]))2]

=
1

m

m∑
j=1

E

[(
f
(
SGN∗

{FY (Xj)}

)
−E

[
f
(
SGN∗

{FY (Xj)}

)])2]

=
1

m

m∑
j=1

E
[
[vj −E (vj)]

2]
= E

[
[v1 −E (v1)]

2]
= E

[
v21
]
−E2 [v1]

= Γ2(f, f) <∞,

where vj := SGN∗
{FY (Xj)} = SGN∗

{E
[
SGN{Y −Xj}

∣∣∣Xj

]
}
, for all j = 1, . . . ,m and Γ2 is

defined as (6). Thus, the second condition of the Corollary 7.8 in Araujo and Giné
(1980) holds.
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• Condition 3 : Let us show that

lim
k→+∞

lim
m→+∞

m∑
j=1

E

[
d2
(
ψ̃m(Xj)−E

[
ψ̃m(Xj)

]
,Fk

)]
= 0,

where {Fk}k≥1 is a sequence of finite dimensional subspaces of χ∗∗ such that Fk ⊆ Fk+1

for all k ≥ 1 and the closure of ∪∞
k=1Fk is equal to χ∗∗. This sequence exists be-

cause of the separability of χ∗∗. Also, for any x ∈ χ∗∗ and any k ≥ 1, we define
d(x,Fk) = inf{∥x− y∥χ∗∗ : y ∈ Fk}. It is easy to prove that for all k ≥ 1, the map
x 7−→ d(x,Fk) is continuous and bounded on any closed ball in χ∗∗.

We have E
[
ψ̃m(Xj)

]
= 0, for all j = 1, . . . ,m. Hence,

m∑
j=1

E

[
d2
(
ψ̃m(Xj),Fk

)]
=

1

m

m∑
j=1

E

[
d2
(
SGN∗

{FY (Xj)} −E
[
SGN∗

{FY (Xj)}

]
,Fk

)]
= E

[
d2
(
SGN∗

{FY (X1)} −E
[
SGN∗

{FY (X1)}
]
,Fk

)]
So, we have

lim
k→+∞

lim
m→+∞

m∑
j=1

E

[
d2
(
ψ̃m(Xj),Fk

)]
= 0.

The last equality is derived from the choice of the Fk’s which implies that d(x,Fk) → 0
as k → ∞ for all x ∈ χ∗∗. Thus, the third condition of the Corollary 7.8 in Araujo and
Giné (1980) holds.

Consequently,
∑m

j=1 ψ̃m(Xj) converges weakly to a centered Gaussian element in χ∗∗ as
m,n → ∞. Moreover, its covariance asymptotic covariance is Γ2 which was obtained while
checking the second condition as above. Finally,

√
mL

′′

m = m−1/2

m∑
j=1

[ϕ(FY (Xj))−E [ϕ(FY (Xj))]]
L−→ G(0,Γ2), (15)

weakly as m,n→ ∞.

Step 3 : Asymptotic behavior of R′
m,n

Since
R′

m,n = K
′

m,n +K
′′

m,n,
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the convergence of K ′
m,n and K ′′

m,n to 0 ensures that R′
m,n converges to 0. We have

K
′

m,n = MED − E[MED|Xj; j = 1, . . . ,m]− L
′

n − L
′′

m

=
1

n

n∑
i=1

[ϕ(Fm(Yi))− E[ϕ(Fm(Yi))|X1, . . . , Xm]− ϕ(FX(Yi)) +E(ϕ(FX(Yi)))]

− 1

m

m∑
j=1

[ϕ(FY (Xj))−E(ϕ(FY (Xj)))]

=
1

nm

n∑
i=1

m∑
j=1

h(Xj, Yi),

where h(Xj, Yi) = ϕ(Fm(Yi)) − E[ϕ(Fm(Yi))|X1, . . . , Xm] − ϕ(FX(Yi)) + E(ϕ(FX(Yi))) −
ϕ(FY (Xj)) +E(ϕ(FY (Xj))). Hence,

K
′

m,n =
1

n

n∑
i=1

U(Yi),

where U(Yi) = 1
m

m∑
j=1

h(Xj, Yi) for all i = 1, . . . , n. Since the Xj’s and the Yi’s are indepen-

dent, conditionally to Xj, j = 1, . . . ,m, the U(Yi)’s for i = 1, . . . , n are independent and zero
mean random elements. Using the fact that χ∗∗ is a Banach space of type 2 (see, definition
(1)), there is b > 0 such that

E
[∥∥∥K ′

m,n

∥∥∥2
χ∗∗

∣∣∣∣Xj, j = 1, . . . ,m

]
≤ b

n2m2

n∑
i=1

E
[
∥U(Yi)∥2χ∗∗

∣∣∣Xj, j = 1, . . . ,m
]
. (16)

Computing the expectations of both sides of (16) leads to

E

[∥∥∥K ′

m,n

∥∥∥2
χ∗∗

]
≤ b

nm2
E

∥∥∥∥∥
m∑
j=1

h(Xj, Y1)

∥∥∥∥∥
2

χ∗∗

 .
Now, we are willing to find an upper bound for E

[∥∥∥∑m
j=1 h(Xj, Y1)

∥∥∥2
χ∗∗

]
. Since the Xj’s

and the Yi’s are independent, conditionally to Y1, the h(Xj, Y1)’s for j = 1, . . . ,m, are
independent and zero mean random elements. Consequently, using the definition of Banach
space of type 2 (see, definition (1)), there is b > 0 such that
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E

∥∥∥∥∥
m∑
j=1

h(Xj, Y1)

∥∥∥∥∥
2

χ∗∗

 = E

E
∥∥∥∥∥

m∑
j=1

h(Xj, Y1)

∥∥∥∥∥
2

χ∗∗

∣∣∣∣∣∣Y1


≤ b

m∑
j=1

E

[
E
[
∥h(Xj, Y1)∥2χ∗∗

∣∣∣Y1]]
= bmE

[
∥h(X1, Y1)∥2χ∗∗

]
.

Consequently, using the the fact that
∥∥SGN∗

{x}
∥∥
χ∗∗ ≤ 1 for all x ∈ χ∗, we have

E

[∥∥∥K ′

m,n

∥∥∥2
χ∗∗

]
≤ 36b2

mn
. (17)

Now, we want to find an upper bound for K ′′
m,n.

Using Assumption (1), the map g : x 7→ E
[
∥FX(Y ) + x∥χ∗

∣∣∣X1, . . . , Xm

]
, for all x ∈ χ∗,

is twice Gateaux differentiable and since Jx exists (see Assumption (2)), then, for all h ∈ χ∗,

E
[
SGN∗

{FX(Y )+x+th}
∣∣X1, . . . , Xm

]
= E

[
SGN∗

{FX(Y )+x}
∣∣X1, . . . , Xm

]
+ tJx(h) + R(t),

where ∥R(t)∥χ∗∗ /t→ 0 when t→ 0.

Consequently, when x = 0 , t = 1
m

and h =
m∑
j=1

(
SGN{Yi−Xj} − E

[
SGN{Y−X}

∣∣Y ]), we

obtain th = Fm(Yi)− FX(Y ) and

E
[
SGN∗

{Fm(Yi)}
∣∣X1, . . . , Xm

]
= E

[
SGN∗

{FX(Y )}
∣∣X1, . . . , Xm

]
+

1

m
J0

(
m∑
j=1

(
SGN{Yi−Xj} − E

[
SGN{Y−X}

∣∣Y ]))+ R
(

1

m

)
.

Using the linearity of J0, for all i = 1, . . . , n, we have

E
[
SGN∗

{Fm(Yi)}
∣∣X1, . . . , Xm

]
= E

[
SGN∗

{FX(Y )}
∣∣X1, . . . , Xm

]
+ J0 (Fm(Yi)− FX(Y )) + R

(
1

m

)
.

Hence,

K
′′

m,n =
1

n

n∑
i=1

E[ϕ(Fm(Yi))|X1, . . . , Xm]−E [ϕ(FX(Y ))]

=
1

nm

n∑
i=1

m∑
j=1

[
J0

(
SGN{Yi−Xj}

)
− J0

(
E
[
SGN{Y−X}

∣∣Y ])]+ R
(

1

m

)

=
1

nm

n∑
i=1

m∑
j=1

h̃(Yi, Xj) + R
(

1

m

)
,
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where h̃(Yi, Xj) = J0

(
SGN{Yi−Xj}

)
− J0

(
E
[
SGN{Y−X}

∣∣Y ]) . Thus, we consider

K
′′

m,n =
1

n

n∑
i=1

ϕ̃(Yi) + R
(

1

m

)
,

where ϕ̃(Yi) = 1
m

m∑
j=1

h̃(Yi, Xj). From the definition of the operator J0 and once again from

the definition of type 2 Banach spaces, the independence between the samples of X and Y
and the Yi’s being identically distributed, we get

E

∥∥∥∥∥ 1n
n∑

i=1

ϕ̃(Yi)

∥∥∥∥∥
2

χ∗∗

 = E

E
∥∥∥∥∥ 1n

n∑
i=1

ϕ̃(Yi)

∥∥∥∥∥
2

χ∗∗

∣∣∣∣∣∣Xj, j = 1, . . . ,m


≤ b

n2

n∑
i=1

E

[
E
[∥∥∥ϕ̃(Yi)∥∥∥2

χ∗∗

∣∣∣∣Xj, j = 1, . . . ,m

]]
=

b

n
E

[∥∥∥ϕ̃(Y1)∥∥∥2
χ∗∗

]
.

Conditionally to Y1, using the definition of type 2 Banach spaces and the Xj’s being identi-
cally distributed, we have

E

[∥∥∥ϕ̃(Y1)∥∥∥2
χ∗∗

]
= E

∥∥∥∥∥ 1

m

m∑
j=1

h̃(Y1, Xj)

∥∥∥∥∥
2

χ∗∗


= E

E
∥∥∥∥∥ 1

m

m∑
j=1

h̃(Y1, Xj)

∥∥∥∥∥
2

χ∗∗

∣∣∣∣∣∣Y1


≤ b

m
E

[∥∥∥h̃(Y1, X1)
∥∥∥2
χ∗∗

]
=

b

m
E

[∥∥J0

(
SGN{Y1−X1}

)
− J0

(
E
[
SGN{Y−X}

∣∣Y ])∥∥2
χ∗∗

]
≤ 4bc2

m
. (18)

The inequality (18) comes from J0 being a linear continuous map, the assumption (2) and
the fact that

∥∥SGN{x}
∥∥
χ∗ ≤ 1, for all x ∈ χ. Thus, we obtain

E

[∥∥∥K ′′

m,n

∥∥∥2
χ∗∗

]
≤ 2E

∥∥∥∥∥ 1n
n∑

i=1

ϕ̃(Yi)

∥∥∥∥∥
2

χ∗∗

+ 2E

[∥∥∥∥R( 1

m

)∥∥∥∥2
χ∗∗

]

≤ 8b2c2

mn
+ 2

∥∥∥∥R( 1

m

)∥∥∥∥2
χ∗∗

. (19)
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Therefore, combining (17) and (19), we get

E

[
∥R′

m,n∥2χ∗∗

]
≤ 2E

[
∥K ′

m,n∥2χ∗∗

]
+ 2E

[
∥K ′′

m,n∥2χ∗∗

]
≤ 72b2

mn
+

16b2c2

mn
+ 4

∥∥∥∥R( 1

m

)∥∥∥∥2
χ∗∗

Finally,

E

[∥∥∥∥(mnN )1/2
R

′

m,n

∥∥∥∥2
χ∗∗

]
≤ 72b2

N
+

16b2c2

N
+

4n

mN

(∥∥R ( 1
m

)∥∥
χ∗∗

1
m

)2

.

Since m
N

→ λ ∈ (0, 1) as m,n→ ∞, we obtain

E

[∥∥∥∥(mnN )1/2
R

′

m,n

∥∥∥∥2
χ∗∗

]
−→

m,n→∞
0. (20)

Step 4 : Asymptotic behavior of MED

Let’s take the equation (12) again :

MED −E [ϕ(FX(Y ))] = L′
n + L

′′

m +R′
m,n

⇔ √
mn

N
[MED −E [ϕ(FX(Y ))]] =

√
mn

N
L′
n +

√
mn

N
L

′′

m +

√
mn

N
R′

m,n.

From the convergence results (20), (13) and (15) achieved in steps 1, 2 and 3, we get√
mn

N
L′
n converges weakly to G(0, λΓ1), (21)

√
mn

N
L

′′

m converges weakly to G (0, (1− λ)Γ2) (22)

and √
mn

N
R′

m,n converges in probability to 0 (23)

as m,n→ ∞. Hence, using Slutsky lemma and the independence of L′
n and L′′

m, we obtain√
mn

N
[MED − µ]

L−→ G(0, λΓ1 + (1− λ)Γ2), (24)

weakly as m,n→ ∞. This completes the proof of the theorem 1.
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Proof of theorem 2. Define

ρ(∆N) = E
(
SGN∗

FX(Y )

)
= E

(
SGN∗

E[SGNY −X |Y ]

)
= E

(
SGN∗

E[SGNY −Z+∆N |Y ]
)
,

where ∆N = δ(mn
N
)−1/2 is the shrinking location shift defined by (7), for some fixed nonzero

δ in χ and Z is an independent copy of Y .
As for proving Theorem 1, we consider the following decomposition :

MED − ρ(∆N) = L̃
′

n + L̃
′′

m + S ′
m,n, (25)

where

L̃
′

n =
1

n

n∑
i=1

[ϕ(FX(Yi))− ρ(∆N)] , (26)

L̃
′′

m =
1

m

m∑
j=1

[ϕ(FY (Xj))− ρ̃(∆N)] , (27)

S ′
m,n = MED − ρ(∆N)− L̃

′

n − L̃
′′

m, (28)

and
ρ̃(∆N) = E

(
SGN∗

FY (X)

)
= E

(
SGN∗

E[SGNW−X+∆N |X]
)
, (29)

where W is an independent copy of X.

To find the asymptotic distribution of MED under the sequence of shrinking location
shifts, we should prove the following steps :

• Step 1: Show that L̃′
n converges in law to a Gaussian element.

• Step 2: Show that L̃′′
m converges in law to a Gaussian element.

• Step 3: Show that S ′
m,n converges in probability to 0.

• Step 4: Study the asymptotic behavior of ρ(∆N).

• Step 5: Conclude the asymptotic normality of MED.
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Step 1 : Asymptotic behavior of L̃′
n

We have

L̃
′

n =
1

n

n∑
i=1

[ϕ(FX(Yi))− ρ(∆N)] .

Let us write,

ψ′
n(Yi) = n−1/2 [ϕ(FX(Yi))− ρ(∆N)]

= n−1/2
[
SGN∗

E[SGNYi−X|Yi]
−E

(
SGN∗

FX(Y )

)]
.

Note that E(ψ′
n(Yi)) = 0, for all i ∈ {1, . . . , n}. Then, we aim to verify the three conditions

of Corollary 7.8 in Araujo and Giné (1980).

• Condition 1 : We get for any ϵ > 0,

n∑
i=1

P (∥ψ′
n(Yi)∥ > ϵ) ≤

n∑
i=1

E

(∥∥SGN∗
FX(Yi)

− ρ(∆N)
∥∥3)

ϵ3n3/2

=
8

ϵ3n1/2
−→

n→+∞
0.

• Condition 2 : Show that

∀f ∈ χ∗∗∗, lim
n→+∞

n∑
i=1

E
[
f 2 (ψ′

n(Yi)−E(ψ′
n(Yi))

]
<∞.

Using the linearity of f , we observe that

n∑
i=1

E
[
f 2(ψ′

n(Yi)
]

=
1

n

n∑
i=1

E

[
f 2
(
SGN∗

E[SGNYi−X|Yi]
−E

(
SGN∗

E[SGNY −X |Y ]

))]
=

1

n

n∑
i=1

E

(
(W̃i −E(W̃i))

2
)
,

where W̃i = f(SGN∗
E[SGNYi−X|Yi]

), i = 1, . . . , n. Then, the Yi’s being identically dis-
tributed, we obtain

n∑
i=1

E
[
f 2(ψ′

n(Yi)
]

= E

(
(W̃1 −E(W̃1))

2
)
.

Note that,

W̃1 = f
(
SGN∗

E[SGNY1−X|Y1]

)
= f

(
SGN∗

E[SGNY1−Z+∆N |Y1]

)
,
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where Z is an independent copy of Y1. Moreover, assumption (3) implies that map
x 7−→ SGNx is Fréchet continuous on χ\{0}: this follows from Theorem 4.6.15(a) and
Proposition 4.6.16 of Borwein and Vanderwerff (2010). Then, we have

E[SGNY1−Z+∆N
|Y1] −→ E[SGNY1−Z |Y1] ,

as m,n −→ ∞. Likewise, since the norm in χ∗ is twice Gateaux differentiable (see
assumption (1)), the map x 7−→ SGN∗

x is continuous on χ∗\{0} so that

SGN∗
E[SGNY1−Z+∆N |Y1] −→ SGN∗

E[SGNY1−Z|Y1]

as m,n −→ ∞. Consequently,

E

(
(W̃1 −E(W̃1))

2
)

−→
m,n→+∞

Γ1(f, f).

• Condition 3 : Let us show that

lim
k→+∞

lim
n→+∞

n∑
i=1

E
[
d2 (ψ′

n(Yi)−E [ψ′
n(Yi)] ,Fk)

]
= 0,

where {Fk}k≥1 is a sequence of finite dimensional subspaces of χ∗∗ such that Fk ⊆ Fk+1

for all k ≥ 1 and the closure of ∪∞
k=1Fk is equal to χ∗∗. This sequence exists be-

cause of the separability of χ∗∗. Also, for any x ∈ χ∗∗ and any k ≥ 1, we define
d(x,Fk) = inf{∥x− y∥χ∗∗ : y ∈ Fk}. It is easy to prove that for all k ≥ 1, the map
x 7−→ d(x,Fk) is continuous and bounded on any closed ball in χ∗∗.

For all k ≥ 1, we have

n∑
i=1

E
[
d2(ψ′

n(Yi),Fk)
]
=

1

n

n∑
i=1

E
[
d2
(
SGN∗

{FX(Yi)} −E
[
SGN∗

{FX(Y )}
]
,Fk

)]
= E

[
d2
(
SGN∗

{FX(Y1)} −E
[
SGN∗

{FX(Y )}
]
,Fk

)]
= E

[
d2
(
SGN∗

E[SGNY1−Z+∆N |Y1] −E
[
SGN∗

E[SGNY −Z+∆N |Y ]
]
,Fk

)]
.

Since, for all k ≥ 1, the map x 7−→ d(x,Fk) is continuous, we obtain
n∑

i=1

E
[
d2(ψ′

n(Yi),Fk)
]
−→ E

[
d2
(
SGN∗

E[SGNY1−Z|Y1] −E
[
SGN∗

E[SGNY −Z |Y ]

]
,Fk

)]
as m,n→ ∞. Moreover, from the choice of the Fk’s, we obtain

lim
k→+∞

E

[
d2
(
SGN∗

E[SGNY1−Z|Y1] −E
[
SGN∗

E[SGNY −Z |Y ]

]
,Fk

)]
= 0.

This completes the checking of the third condition of Corollary 7.8 in Araujo and Giné
(1980).
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Thus, since the three conditions are verified, we can say that
n∑

i=1

ψ
′

n converges weakly to a

centered Gaussian random element in χ∗∗ as m,n→ ∞. Consequently, we have

√
nL̃

′

n = n−1/2

n∑
i=1

[ϕ(FX(Yi))− ρ(∆N)]
L−→ G(0,Γ1) (30)

weakly as m,n→ ∞.

Step 2: Asymptotic behavior of L̃′′
m

Using similar arguments as the ones used in the previous step (Asymptotic behavior of L̃′
n),

we obtain

√
mL̃

′′

m = m−1/2

m∑
j=1

[ϕ(FY (Xj))− ρ̃(∆N)]
L−→ G(0,Γ2) (31)

weakly as m,n→ ∞.

Step 3: Asymptotic behavior of S ′
m,n

The asymptotic behavior of S ′
m,n is obtained in the same way as the asymptotic behavior of

R
′
m,n. Arguing as in the step 3 of the proof of Theorem 1, we show that

E

[∥∥∥∥(mnN )1/2
S

′

m,n

∥∥∥∥2
χ∗∗

]
−→

m,n→∞
0. (32)

Thus, (mn)1/2S ′
m,n converges in probability to 0 as m,n→ ∞ under the sequence of shrinking

location shifts.

Step 4: Asymptotic behavior of ρ(∆N)

As defined previously

ρ(∆N) = E
(
SGN∗

FX(Y )

)
= E

(
SGN∗

E[SGNY −Z+∆N |Y ]
)
,

where ∆N = δ(mn/N)−1/2 for nonzero fixed δ ∈ χ and Z is an independent copy of Y . As
mentioned in assumption (3) in section 2.4, the norm in χ is assumed to be twice Gateaux
differentiable at every x ̸= 0, x ∈ χ and using the Hessian operator J̃x : χ → χ∗ of the
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function x 7−→ E[∥x+ Y − Z∥χ|Y ], we obtain

E
[
SGN{Y−Z+∆N}

∣∣Y ] = E
[
SGN{Y−Z+δ(mn

N
)−1/2}

∣∣∣Y ]
= E

[
SGN{Y−Z}

∣∣Y ]+ (mn
N

)−1/2

J̃0(δ) + R̃
(mn
N

)−1/2

= E
[
SGN{Y−Z}

∣∣Y ]+ (mn
N

)−1/2 (
J̃0(δ) + R̃(1)

)
.

Consequently, we get

E

[
SGN∗

E[SGN{Y −Z+∆N}|Y ]
]

= E

[
SGN∗

E[SGN{Y −Z}|Y ]+(mn
N )

−1/2
(J̃0(δ)+R̃(1))

]
= E

[
SGN∗

E[SGN{Y −Z}|Y ]+t′h′

]
,

where t′ =
(
mn
N

)−1/2 and h′ =
(
J̃0(δ) + R̃(1)

)
. Next, since the norm in χ∗ is assumed to be

twice Gateaux differentiable at every y ̸= 0, y ∈ χ∗ (see assumption (4) in subsection 2.4)
and using the Hessian Hu : u : χ∗ → χ∗∗ of the function u 7−→ E [∥u+ E[SGNY−Z |Y ] ∥χ∗ ],
we have

E

[
SGN∗

E[SGN{Y −Z}|Y ]+t′h′

]
= E

[
SGN∗

E[SGN{Y −Z}|Y ]
]
+
(mn
N

)−1/2

H0(h
′) + ˜̃R

(mn
N

)−1/2

=
(mn
N

)−1/2

H0(
(
J̃0(δ) + R̃(1)

)
) + ˜̃R

(mn
N

)−1/2

.

The last equality follows from Y and Z being identically distributed (µ = 0, under H0. For
the univariate case , see Remark 2.2).
Hence, we have (mn

N

)1/2
ρ(∆N) = H0(

(
J̃0(δ) + R̃(1)

)
) + ˜̃R′(1).

Consequently, we get (mn
N

)1/2
ρ(∆N) −→ H0(

(
J̃0(δ)

)
(33)

as m,n→ ∞.

Step 5: Asymptotic behavior of MED

Let’s take again the decomposition (25) :

MED − ρ(∆N) = L̃
′

n + L̃
′′

m + S ′
m,n

⇔ √
mn

N
[MED − ρ(∆N)] =

√
mn

N
L̃

′

n +

√
mn

N
L̃

′′

m +

√
mn

N
S ′
m,n.
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Using the convergence results (32), (30) and (31) shown in steps 1, 2, and 3, we get√
mn

N
L̃′
n converges weakly to G(0, λΓ1), (34)√

mn

N
L̃

′′

m converges weakly to G (0, (1− λ)Γ2) (35)

and √
mn

N
S ′
m,n converges in probability to 0 (36)

as m,n→ ∞ under the sequence of shrinking location shifts.
Moreover, using the convergence result (33) shown in the step 4 and the independence of L̃′

n

and L̃′′
m, we obtain √

mn

N
MED L−→ G

(
H0(J̃0(δ)), λΓ1 + (1− λ)Γ2

)
weakly as m,n → ∞ under the sequence of shrinking location shifts. This completes the
proof of the Theorem 2.

A.2 Estimation of the WMW covariance operator and its asymp-
totic mean under the sequence of shrinking location shifts

Here, we give some supplementary details about Chakraborty and Chaudhuri (2015). Con-
sider χ is a Hilbert separable space. Let X1, . . . , Xm and Y1, . . . , Yn be two samples taking
values in χ.

• Covariance operator of WMW:

The covariance of the WMW test statistic introduced in subsection 3.1 is equal to
(1− λ)Π1 + λΠ2, where

Π1 = E [E[SGNY−X |X]⊗ E[SGNY−X |X]]− υ ⊗ υ

= E [FY (X)⊗ FY (X)]− υ ⊗ υ

and

Π2 = E [E[SGNY−X |Y ]⊗ E[SGNY−X |Y ]]− υ ⊗ υ

= E [FX(Y )⊗ FX(Y )]− υ ⊗ υ,

where υ = E(SGNY−X), FX and FY are defined respectively by (3) and (4) and the
map x⊗ x : χ −→ χ is defined as ⟨x⊗ x(f), g⟩ = ⟨x, f⟩⟨x, g⟩, for all f, g ∈ χ.
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Thus, the operator Π1 is estimated by

Π̂1 =
1

m− 1

m∑
j=1

[
(F̂Y (Xj)− υ̂)⊗ (F̂Y (Xj)− υ̂)

]

where υ̂ = 1
mn

m∑
j=1

n∑
i=1

Yi −Xj

∥Yi −Xj∥χ
and F̂Y (Xj) =

1
n

n∑
i=1

Yi −Xj

∥Yi −Xj∥χ
, for all j = 1, . . . ,m.

Similarly, We estimate Π2 by Π̂2.

• Asymptotic mean of WMW:

According to Chakraborty and Chaudhuri (2015), the asymptotic mean of the WMW
statistic under the sequence of shrinking location shifts is given by

M0(δ) = E

[
δ

∥Y −X∥χ
− ⟨Y −X, δ⟩(Y −X)

∥Y −X∥3χ

]
,

for fixed nonzero δ ∈ χ and where Mx is the Hessian of the function x 7−→ E [∥x+ Y −X∥χ],
x ∈ χ. Consequently, this latter can be estimated by

1

mn

n∑
i=1

m∑
j=1

[
δ

∥Yi −Xj∥χ
− ⟨Yi −Xj, δ⟩(Yi −Xj)

∥Yi −Xj∥3χ

]
.
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