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Polyethylene terephthalate (PET) is widely used to elaborate biomaterials and medical devices in particular for long-term implant applications but tuning their surface properties remains challenging. We investigate surface functionalization by grafting poly(sodium 4styrene sulfonate, PNaSS) with the aim of enhancing protein adhesion and cellular activity.

Elucidating the topography and molecular level organization of the modified surfaces is important for understanding and predicting biological activity. In this work, we explore several grafting methods including thermal grafting, thermal grafting in the presence of Mohr's salt, and UV activation. We characterize the different surfaces obtained using atomic force microscopy (AFM), contact angle (CA), and X-ray photoelectron spectroscopy (XPS).

We observe an increase in the percentage of sulfur atoms (XPS) that correlates with changes in (CA), and we identify by AFM characteristic features, which we interpret as patches of polymers on the PET surfaces. This work demonstrates tuning of biomaterials surface by functionalization and illustrates the capability of atomic force microscopy to provide insights into the spatial organization of the grafted polymer.

Introduction

Polyesters, in particular polyethylene terephthalate (PET), are used extensively in medical devices. Surface functionalization is often required to improve biological properties. Poly (sodium 4-styrene sulfonate) (PNaSS) is a strong polyelectrolyte, which has been proposed for the control of biological and biophysical properties including enhancing cell adhesion, spreading, and proliferation, thus improving bone tissue response [START_REF] Felgueiras | Poly(NaSS) functionalization modulates the conformation of fibronectin and collagen type i to enhance osteoblastic cell attachment onto Ti6Al4V[END_REF][START_REF] Vaquette | The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on invitro mineralisation and invivo bone tissue integration[END_REF], fibroblast behavior for reconstructing injured ligament and wound healing [START_REF] Vaquette | The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on invitro mineralisation and invivo bone tissue integration[END_REF][START_REF] Curti | Characterization of PNIPAAm photografted on PET and PS surfaces[END_REF][START_REF] Elbert | Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces[END_REF][START_REF] Girard | Development of a polystyrene sulfonate/silver nanocomposite with[END_REF], antibacterial infection[6] and biocompatible surface [START_REF] Girard | Development of a polystyrene sulfonate/silver nanocomposite with[END_REF]7]. PNaSS enhances the biological properties of PNaSS-grafted surfaces: the mechanism at the origin of this activity involves specific interactions between adsorbed binding proteins (fibronectin, FN) on functionalized surfaces and integrin at the cell membrane [START_REF] Felgueiras | Poly(NaSS) functionalization modulates the conformation of fibronectin and collagen type i to enhance osteoblastic cell attachment onto Ti6Al4V[END_REF][START_REF] Vaquette | The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on invitro mineralisation and invivo bone tissue integration[END_REF]. Briefly, the presence of sulfonate groups allows improving cell adhesion, proliferation, differentiation and/or biointegration in surrounding tissues when implanted in vivo [START_REF] Felgueiras | Poly(NaSS) functionalization modulates the conformation of fibronectin and collagen type i to enhance osteoblastic cell attachment onto Ti6Al4V[END_REF]. This has been shown in vitro with different types of cells (fibroblast, endothelial cell, and osteoblast) and in vivo in the case of PNaSS-grafted titanium, PET and PCL implants. PNaSS immobilized on different materials such as titanium [START_REF] Felgueiras | Poly(NaSS) functionalization modulates the conformation of fibronectin and collagen type i to enhance osteoblastic cell attachment onto Ti6Al4V[END_REF]8], polyethylene terephthalate (PET) [START_REF] Vaquette | The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on invitro mineralisation and invivo bone tissue integration[END_REF][START_REF] Curti | Characterization of PNIPAAm photografted on PET and PS surfaces[END_REF], nanoparticle [START_REF] Girard | Development of a polystyrene sulfonate/silver nanocomposite with[END_REF]9,10] or polycaprolactone (PCL) has been reported.

Several surface functionalization methods with poly(styrene sulfonate) have been proposed, e.g. sulfonation polystyrene brush [10,11] and grafting methods [12][13][START_REF] Nguyen | Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from" ozonized poly (ϵ-caprolactone) surfaces[END_REF]. Among those, "grafting-from" has the advantage of being a scalable approach to the modification of interfacial properties through immobilizing the functional groups on the substrate by covalent bonding. The "grafting from" method starts with activation of the surface via plasma [START_REF] Lego | Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces[END_REF], UV irradiation [7,[START_REF] Mathis | Indenting polymer brushes of varying grafting density in a viscous fluid: A gradient approach to understanding fluid confinement[END_REF], heating [START_REF] Nguyen | Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from" ozonized poly (ϵ-caprolactone) surfaces[END_REF][START_REF] Yamamoto | Surface interaction forces of welldefined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density[END_REF], in the presence of CuBr 2 [START_REF] Yamamoto | Surface interaction forces of welldefined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density[END_REF][START_REF] Yamamoto | Atomic force microscopic study of stretching a single polymer chain in a polymer brush[END_REF][START_REF] Jones | Surface-Initiated Polymerizations in Aqueous Media: Effect of Initiator Density Darren[END_REF], or Mohr's salt [13,[START_REF] Nguyen | Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from" ozonized poly (ϵ-caprolactone) surfaces[END_REF].

In this work, we activate PET surfaces by ozonation, a method convenient for materials with complex geometries such as implants [START_REF] Fujimoto | Ozone-induced graft polymerization onto polymer surface[END_REF]. Ozonation generates peroxide groups which decompose upon heating and UV irradiation [START_REF] Nguyen | Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from" ozonized poly (ϵ-caprolactone) surfaces[END_REF][START_REF] Amokrane | A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation Irbm[END_REF][START_REF] Hermanowicz | AtomicJ: An open source software for analysis of force curves[END_REF] to generate radicals on PET; NaSS polymerizes from these active sites. The mechanism can be described as: the peroxides after decomposition form two types of free radicals, • OH and O•, and then C • (carbonyl) radicals [START_REF] Fujimoto | Ozone-induced graft polymerization onto polymer surface[END_REF] on the polymer chains. Free radicals • OH can be consumed by Fe 2+ in Mohr's salt, thus reducing homopolymerization and promoting grafting [START_REF] Nguyen | Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from" ozonized poly (ϵ-caprolactone) surfaces[END_REF][START_REF] Ishigaki | Graft polymerization of acrylic acid onto polyethylene film by preirradiation method. II. Effects of oxygen at irradiation, storage time after irradiation, mohr's salt, and ethylene dichloride[END_REF][START_REF] Fujimoto | Polyurethane surface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion[END_REF].

Previous studies examined the effect of the graft PNaSS on the interaction of the modified surfaces with biological molecules yet the characterization of the grafted layer is often limited. Here, we investigate the topography of grafted polymers by atomic force microscopy (AFM) complemented by XPS and contact angle measurements.

Materials and Methods

Materials

Sodium 4-styrene sulfonate (NaSS), phosphate buffer saline (PBS), and Mohr's salt were purchased from Sigma Aldrich. Polyethylene terephthalate (PET) (0.25 mm, biaxially oriented plate) was purchased from Goodfellow (Paris, France). Ethanol absolute was from Fisher.

PET preparation:

PET plate was cut into small squared pieces (1 cm × 1 cm). The surface was cleaned in an ultrasonic bath with ultrapure water, acetone, and ethanol for 10 min respectively. The samples were dried under vacuum for 2 h and stored at 4 o C until use.

Monomer purification:

The purification of NaSS was described [START_REF] Nguyen | Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from" ozonized poly (ϵ-caprolactone) surfaces[END_REF][START_REF] Ciobanu | Radical graft polymerization of styrene sulfonate on poly(ethylene terepthalate) films for ACL applications: "Grafting from" and chemical characterization[END_REF][START_REF] Pavon-Djavid | Bioactive poly(ethylene terephthalate) fibers and fabrics: Grafting, chemical characterization, and biological assessment[END_REF] 90 g of NaSS was dissolved in 1.6 L of ethanol: distilled water (9:1, v/v) by stirring 12 h at 70 o C. Thereafter, the solution was filtered by vacuum filtration. The filtered solution was kept at 4 o C during 24 h for recrystallization. Recrystallized monomer was collected by vacuum filtration and was dried in vacuum at 30 o C for 6 h. Finally, the product was kept at 4 o C, away from the light.

Functionalization of polyester surfaces by PNaSS ("grafting from")

Activating the surfaces by ozonation

The functionalization of polyesters by PNaSS includes two main steps: ozonation and grafting (Scheme 1). In the first step, the polymer surfaces were activated by ozonation using ozone generator BMT 802N. 6 PET plates were ozonized into 100 mL distilled water by introducing ozone flow (0.6 bars, 100 mL/min) for 20 min for PET at 30 o C. [START_REF] Nguyen | Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from" ozonized poly (ϵ-caprolactone) surfaces[END_REF] Ozonized samples were quickly transferred from the ozonation reactor to the degassed NaSS solution (0.7 mol/L) for grafting.

Grafting PNaSS from PET substrate

After activation by ozonation, PNaSS was polymerized from the activated sites (Scheme 1).

For determining the influence of ozonation on the surface, non-grafted-ozonized polymer or ozonized PET without grafting was used as a reference. Non-grafted-ozonized PET was prepared by ozonation of a PET plate for 20 min at 30 o C.

Thermal radical polymerization (method 1 and 2):

Method 1 -Thermal grafting (TG)[13,14]. 6 ozonized PET plates were transferred into 60 mL of degassed NaSS (0.7 mol/L) solution and heated for 1 h at 75 o C. Peroxide decomposition generates the radicals on the surface for initiating PNaSS polymerization.

Method 2-Thermal grafting in the presence of Mohr's salt (MSG). 6 ozonized PET plates

were transferred into 60 mL degassed mixture solution of NaSS (9 g, 0.7 mol/L) and Mohr's salt (60 mg, 0.1 %, w/v) and heated to 75 o C for 1 h. Mohr's salt provides Fe(II) ions that increases significantly the grafting efficiency [START_REF] Nguyen | Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from" ozonized poly (ϵ-caprolactone) surfaces[END_REF].

Photoinitiated free radical polymerization (method 3):

Method 3-UV irradiation (UVG) [START_REF] Amokrane | A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation Irbm[END_REF]. Peroxides were decomposed by UV irradiation. 6 PET plates were transferred into 60 mL of degassed NaSS solution (9 g, 0.7 mol/L). The solution was irradiated by UV light for 30 min (lamp UV-Omnicure, 254 nm, 10 W/cm²) at 25 o C under stirring.

After polymerization via either of the three methods above, free homopolymer, oligomer, and monomer were removed from the grafted samples under stirring in double distilled water for at least 48 h. The washing solution was tested by UV-vis at 360 nm to check for the presence of any residue of free PNaSS (homopolymer and oligomer). Samples were finally dried under vacuum and kept at 4 o C, away from the light before use. Scheme 1. Grafting PNaSS from polyester surfaces by ozonation and radical polymerization

Surface characterization X-ray photoelectron spectroscopy analysis (XPS). X-ray photoelectron spectroscopy analysis

(XPS) (from Omicron Argus spectrometer, Germany) was performed using a monochromated AlKα radiation source (hν = 1486.6 eV) working at an electron beam power of 300 W with 90° of takeoff angle of photoelectrons emission, under ultra-high vacuum (≤10 -10 Torr). Spectra were recorded at pass energy of 100 eV for the survey spectrum and pass energy of 20 eV for the high-resolution regions. Binding energies were calibrated against the C1s binding energy of aliphatic carbon atoms at 284.8 eV. Spectral deconvolution was carried out using Casa XPS v.2.3.15 software (Casa Software Ldt, UK). All samples were dry films.

The equivalent thickness probed by XPS is estimated to be close to 3λ = 10 nm representing 95% of the signal, λ being the inelastic mean free path of electrons from the PET substrate in the organic PNaSS film; for electrons having a kinetic energy around 1200 eV (from the C1s atomic level), λ is estimated to be equal to 3.23 nm. 1 The estimated thickness (d) of PNaSS on top of PET can then be calculated using the Nano-Scope Analysis v.1.5, Image-J and AtomicJ software [START_REF] Hermanowicz | AtomicJ: An open source software for analysis of force curves[END_REF] were used for image analysis.

Surface mechanical properties was measured by Peakforce Quantitative Nano-mechanical Properties (PF-QNM) program [START_REF] Pittenger | Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM Bruker[END_REF]. When numbers of samples are indicated, they refer to independent experiments (from sample preparation).

Results

Surface characterization

As a NaSS unit contains one atom of sulfur, the surface density of grafted PNaSS can be estimated based on the percentage of sulfur atoms in the elementary composition using XPS. Sulfur was not detected on the non-grafted-ozonized PET surfaces, but the S2p peak was visible (165 -170 eV) [START_REF] Goh | X-ray Photoelectron Spectroscopic Studies of Interactions between Styrenic Polymers and Poly(2,6-dimethyl-1,4-phenylene oxide)[END_REF] on the 4 grafted surfaces (see high resolution spectra in Figure S1). The quantification of those contributions indicated that the monomer surface density was much lower in the case of the thermal grafting than for the UV and Mohr's salt catalyzed grafting (Figure 1A). Specifically, the S/C ratio for the UV and Mohr's salt samples was more than ten times higher than for thermal grafting (Figure 1A). The PNaSS surface density (SD) by UV irradiation was higher than when using Mohr's salt. The ranking was SD UVG-PET > SD MSG-PET > SD TG-PET . Whilst the XPS confirms the presence of PNaSS, the % S/C values themselves are small indicating that the layers are thin and most probably patchy. Indeed, a rough estimate value for the UVG PNaSS average layer thickness of 0.05 nm can be deduced from a simple homogeneous model based on the depth probed by XPS being equal to 10 nm (Figure S2) and calculations thereafter.

Nevertheless, the surfaces were more hydrophilic after functionalization (Figure S3) and the surface energy showed some correlation with the XPS results. The surface tension ( S ) of functionalized surfaces was measured by the contact angle method (Figure 1B). Non-grafted and TG-PETs were similar: 45-48 mN/m. However, surface tension increased significantly on UV grafting samples. Particularly, S of UVG-PET increased by 54 % (73 mN/m) and 8 % for MSG-PET ( 52 mN/m). These variations correlate with the amount of SO 3 -groups (% Sulfur by XPS) on the surface leading to the increase of surface tension (represented by the S/C ratio in Figure 1A). 

Investigating structure of PNaSS-grafted PET surface by AFM

The surface SEM images showed no obvious changes (Figure S4). Therefore, in this work, we investigated the grafted surface using atomic force microscope (AFM). AFM can be used as a non-destructive method to analyze polymer surfaces [START_REF] Pittenger | Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM Bruker[END_REF][START_REF] Nair | AFM Peakforce QNM mode for measurement of nanosurface mechanical properties of Pt-cured silicones[END_REF][START_REF] Young | The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young's modulus measurement of polymers[END_REF][START_REF] Dokukin | Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes[END_REF][START_REF] Kaemmar | Introduction to Bruker's ScanAsyst and PeakForce Tapping[END_REF]. Numerous parameters can be investigated, e.g. the macromolecule structure [START_REF] Yamamoto | Surface interaction forces of welldefined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density[END_REF], thickness [START_REF] Sui | Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy[END_REF][START_REF] Cordero | 50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future Materials[END_REF][START_REF] Halperin | Atomic force microscopy of polymer brushes: Colloidal versus sharp tips[END_REF][START_REF] Phillips | Atomic force microscopy for thin film analysis Surf[END_REF][START_REF] Lego | Swelling study of responsive polyelectrolyte brushes grafted from mica substrates: Effect of pH, salt, and grafting density[END_REF][START_REF] Variola | Atomic force microscopy in biomaterials surface science[END_REF], and adhesion.

PNaSS-grafted PET surfaces were investigated by AFM peak force Quantitative Nanomechanical properties (PF-QNM) in air at room temperature and compared to non-graftedozonized surface. Adhesion maps measure the interaction between the AFM tip and the material : they can therefore provide clues as to the local chemical nature of the surface [START_REF] Zalakain | Chemical and morphological characterization of sulfonated polystyrene brushes in different environments[END_REF].

The surface topography and adhesion images of non-grafted-ozonized PET were used as a reference. The AFM images of the PET surfaces obtained after PNaSS grafting by the thermal grafting and Mohr's salt grafting methods are shown in Figure 2 and briefly described below.

Thermal radical polymerization:

Thermal grafting. TG-PET surface topography and adhesion were similar to the non-graftedozonized surface (Figure 2A-B). This was in agreement with the XPS and contact angle results which suggested a low degree of grafting. The surface roughness of TG-PET (Ra = 0.76 nm) was similar with that of non-grafted PET (Ra = 0.96 nm), see in Figure 2E.

Thermal grafting in the presence of Mohr's salt. The topography of MSG-PET appeared similar but the surface roughness (Ra = 3.55 nm, see in Figure 2C) increased by a factor 3 (Figure 2E). UV grafting (UVG). Remarkably, in the case of UV grafting, both topography and adhesion images (Figure 3) were drastically different from what had been observed in the other cases.

To evaluate whether the UV treatment itself had an effect on surface topography, a control sample was prepared with non-grafted-ozonized PET under UV irradiation for 30 min without monomer. No major difference between this UV control (Figure 3A) and the nongrafted-ozonized control (Figure 2A) were observed. To the contrary, a smoother surface was observed on UV grafted PET with patches particularly striking in the adhesion image (Figure 3B). The patch shown in Figure 3C is 1.5 nm thick (red line) and with reduced adhesion (Figure 3D). An average thickness of the patches can be deduced from multiple measurements of different patches ( 1.2 nm, n = 5, Figure S5). Taking into account the surface covered by the patches ( 8% of the total area, Figure S5) the thickness averaged overall the whole area is ~0.09 nm (8% x 1.2 nm), consistent with the XPS results (~0.05 nm, see above and Figure S2) suggesting that those patches are indeed composed of PNaSS. 

Discussion

The combination of the XPS, surface tension and AFM images suggest the following picture of the grafted surfaces. The thermal grafting results indicate a low grafting (XPS results, Figure 1A) on PET. This correlates with the surface tension measurements where we do not observe significant changes from the unmodified surfaces (Figure 1B). The AFM images of those surfaces in dry air may not allow visualization of the PNaSS in the case of thermal grafting. The absence of detectable change in the case of thermal grafting is probably due to a combination of low grafting (as indicated by XPS and surface tension) and of the fact that the non-grafted-ozonized PET surface is already rough making it harder to detect small changes.

In the case of thermal grafting in the presence of Mohr's salt, XPS and surface tension measurements correlate and both point to an increased functionalization. The AFM images show an increased roughness (Figure 2 and Figure S6) but this increase cannot be attributed to PNaSS because we know from the XPS results that on average the PNaSS layer is only of the order of ~ 0.02 nm suggesting a low coverage of thin patches (Figure S2). Instead, the increase of the surface roughness is probably caused by surface degradation in the presence of Mohr's salt redox initiator as previously reported [START_REF] Zalakain | Chemical and morphological characterization of sulfonated polystyrene brushes in different environments[END_REF].

In the case of photoinitiated radical polymerization (UV grafting), again XPS and surface tension measurements correlate (Figure 1). Compared to Mohr's salt, they point to an increased PNaSS surface density for PET. In the AFM images we observe ~1 nm thick patches covering 8% of the surface and with markedly reduced adhesion. We interpret those patches as being PNaSS patches since they correspond to the average thickness estimated by XPS. We note that the rest of the surface show a different (smoother) structure compared to the control. We used an ozonized PET under UV irradiation in distilled water to evaluate if changes to surface topology could have been caused by the UV irradiation treatment but that does not seem to be the case. Further investigations will be needed to determine what causes the smoothening of the PET surface during PNaSS grafting by UV irradiation. Another limitation of our interpretation of the results is that those unexplained topography changes could have contributed to the variations of contact angle independently of PNaSS coverage.

Conclusion

PNaSS was successfully immobilized by ozonation activation and thermal grafting or UV 

  photoionization cross-sections σ are equal to 1 for C 1s and 1.44 for S2p.2 λx y is the inelastic mean free paths of electrons x in the matrix y. They were calculated using the Quases program (QUASES-IMFP-TPP2M Ver.3.0) based on the TPP2M formula. ρPNaSS and ρPET are the density of PNaSS and PET, respectively.M NaSS and M ET are the molecular weight of NaSS (sodium styrene sulfonate) and ET (ethylene terephthalate), respectively.
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 1 Figure 1. Surface characterization of non-grafted-ozonized and grafted PET: (a) S/C ratio from XPS and (b) surface tension by contact angle

Figure 2 .

 2 Figure 2. AFM images of non-grafted and thermal grafted PET: (A) non-grafted-ozonized PET without grafting, (B) thermal grafting (TG-PET), (C) thermal grafting in the presence of Mohr's salt (MSG-PET), (D) Height distribution of TG-PET and MSG-PET, (E) Roughness values for each method; Scan in air, scan size 500 nm x 500 nm, 256 points/line, scan rate 1 Hz, PF-QNM
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 3 Figure 3. AFM images of UV grafted PET (A) Control sample (ozonized PET under UV irradiation without monomer), (B) UV grafted PET, (C) Particular Cross-section by red line, and (D) Adhesion force distribution (flat surface, patches); scan size 500 nm x 500 nm, 256 points/line, scan rate 1 Hz, PF-QNM
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