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Optimally Bridging the Gap from Delayed to
Perfect CSIT in the K-user MISO BC

Paul de Kerret, David Gesbert, Jingjing Zhang, and Petros Elia
Communication Systems Department, EURECOM

Abstract—This work1 derives the optimal Degrees-of-Freedom
(DoF) of the K-User MISO Broadcast Channel (BC) with delayed
Channel-State Information at the Transmitter (CSIT) and with
additional current noisy CSIT where the channel estimation
error scales in P−α for α ∈ [0, 1]. The optimal sum DoF takes
the simple form (1 − α)K/HK + αK where HK ,

∑K
k=1

1
k

.
This optimal performance is the result of a novel scheme which
deviates from existing efforts as it digitally combines interference,
decodes symbols of any order in the MAT alignment [1], and
utilizes a hierarchical quantizer whose output is distributed
across rounds in a way that minimizes unwanted interference.
These jointly deliver, for the first time, the elusive DoF-optimal
combining of MAT and ZF.

I. INTRODUCTION

In the wireless BC, feedback accuracy and timeliness can
crucially affect performance, but are also notoriously difficult
to obtain. In terms of accuracy, it is well known that increasing
feedback quality, can elevate performance, from that of TDMA
(sum DoF of 1), to the maximum possible interference-free
performance of K sum-DoF. For example, the recent result in
[2] tells us that having imperfect instantaneous CSIT with an
estimation error that scales as P−α (α ∈ [0, 1]), can allow,
using a combination of standard ZF and rate splitting, to
achieve the optimal sum-DoF of 1 + (K − 1)α. Note that this
result can be seen as a particular case of the broader notion
of “signal space partitioning” [3].

On the other hand, when perfect CSIT is obtained in a
delayed manner — in the sense that the CSI is fed back with
a delay that exceeds the channel coherence period — then,
using retrospective MAT space-time alignment [1], one can
surprisingly get substantial sum-DoF gains of the form K

HK
,

which scales with K approximately as K
ln(K) .

This interplay between performance and feedback (time-
liness and quality), has sparked many different works that
considered a variety of feedback mechanisms with delayed
and imperfect CSIT. Such works can be found in [4], and in
[5] which, for the two-user MISO BC setting, studied the case
where the CSIT relative to one user is alternatively perfect,
completely outdated, or non-existent (see extension in [6]).

One of the most interesting approaches came with the
work in [7] which first introduced a feedback mechanism that
offered perfect delayed CSIT, as well as imperfect-quality
current (instantaneous) CSIT, that is in practice typically
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obtained from prediction using the delayed CSIT. In this
setting, the channel estimation error of the current channel
state was assumed to scale as P−α, for some CSIT quality
exponent α ≥ 0.

The above work was then improved to reach the maximal
DoF in a two-user MISO scenario in [8], [9]. This approach
has since been extended to imperfect delayed CSIT in [10],
[11], to the broad setting of any-time any-quality feedback in
[12], and to the two-user MIMO BC and IC in [13], [14]. In
the K-user case, a general outer bound was provided in [15],
and efforts to reach this bound can be found in [16].

Many of the above efforts aimed to optimally combine ZF
and MAT schemes. To date, this has remained an elusive open
problem, and any attempt was either limited to the 2-user case,
or resulted in a DoF that saturated at 2 in the particular case
where the current estimate is of very bad quality, as in [15].
This open problem is resolved here, by resorting to a new
scheme, referred to as the Q-MAT scheme, that combines
different new ingredients that jointly allow for MAT and ZF
components to optimally coincide. Combined with the outer
bound in [15], the achieved DoF establishes the surprisingly
simple optimal sum-DoF, equal to (1− α)K/HK + αK.

II. SYSTEM MODEL

A. K-User MISO Broadcast Channel

This work considers a K-User MISO BC where the TX is
equipped with M antennas and serves K single-antenna users
with M ≥ K. At any time t, the signal received at Receiver
(RX) k, ∀k ∈ K, where K , {1, . . . ,K}, can be written as

yk[t] = hH
k [t]x[t] + nk[t] (1)

where hH
k ∈ C1×M is the channel to user k at time t, x[t] ∈

CM×1 is the transmitted signal, and nk[t] ∈ C is the ad-
ditive noise at RX k, independent of the channel and the
transmitted signal and distributed as NC(0, 1). Furthermore,
the transmitted signal x[t] fulfills the average asymptotic
power constraint E[‖x[t]‖2]

.
= P where we use .

= to denote
exponential equality, i.e., we write f(P )

.
= PB to denote

limP→∞
log f(P )

logP = B.
The channel is assumed to be drawn from a continuous

ergodic distribution such that all the channel matrices and all
their sub-matrices are almost surely full rank.

B. Perfect Delayed CSIT and Imperfect Current CSIT

The considered CSIT model builds on the delayed CSIT
model introduced in [1] and generalized to account for the



availability of an imperfect estimate of the current channel
state in [7], possibly obtained from predicting the current
channel state from the delayed feedback whenever the delay
is within the coherence time of the channel. According to this
model, the TX has access at time t to the delayed CSI of all
previous channel realizations up to time t− 1, where we have
assumed unit coherence time.

In addition, the TX has imperfect knowledge of the current
channel state relative to the channel to user k, ∀k ∈ K, being
defined such that

hH
k [t] = ĥH

k [t] +
√
P−αh̃H

k [t] (2)

where ĥH
k [t] is the channel estimate and h̃H

k [t] is the chan-
nel estimation error. The channel estimate and the channel
estimate error are independent and distributed according to
a generic distribution. α ∈ [0, 1] is called the CSIT quality
exponent and is used to parametrize the accuracy of the
current CSIT. Note that from a DoF perspective, we can
restrict ourselves to α ∈ [0, 1] since an estimation/quantization
error scaling with P as P−1 is essentially perfect while an
estimation error scaling as P 0 is essentially useless in terms
of DoF [2], [15].

C. Degrees-of-Freedom Analysis

Let us denote by C(P ) the (unknown) sum-capacity [17] of
the MISO BC considered. The optimal sum DoF in this MISO
BC with delayed and imperfect current CSIT is denoted by

DoF?(α) , lim
P→∞

C(P )

log2(P )
. (3)

III. MAIN RESULTS

We provide in this section our main results.

Theorem 1. In the K-user MISO BC (M ≥ K) with delayed
CSIT and imperfect current CSIT with quality exponent α, the
optimal sum DoF is given by

DoF?(α) = (1− α)
K∑K
k=1

1
k

+ αK. (4)

The converse is proved in [15] and the main contribution
of this work is to provide a new scheme achieving this DoF
outerbound. We present here the scheme for K = 3 as it
conveys the main intuition more easily than the general case,
while being directly extendeable to an arbitrary number of
users. The description of the general case is thus relegated to
the extended journal version [18].

IV. K = 3 USERS SETTING: ENCODING AND
TRANSMISSION

Our scheme follows the structure of the MAT scheme.
However, it also requires to consider several MAT rounds,
in order to reach the optimal performance. This follows from
the fact that some information needed for the decoding of a
given round is sent during the following MAT round, as a
consequence of the delay in the CSIT acquisition.

We describe in the following the transmission for an arbi-
trary round N . Whenever another round is considered, this
will be explicitly mentioned.

A. Phase 1

Phase 1 spans 3 Time Slots (TS) denoted by t` for ` ∈
{1, 2, 3}. During this phase, 9 order-1 (where an order-j
data symbol is transmitted to j users [1]) so-called Q-MAT
data symbols of rate (1 − α) log2(P ) bits are transmitted,
and 3 order-2 so-called Q-MAT data symbols of rate (1 −
α) log2(P ) bits are generated from the received signals, as we
will show later.

1) Transmission: In TS t`, the transmitted signal is

x[t`]=V[t`]m[t`]+

3∑
k=1,k 6=`

vZF
k [t`]ak[t`]+

3∑
k=1

vZF
k [t`]sk[t`] (5)

where
• m[t`] ∈ C3 is a vector containing 3 Q-MAT data

symbols destined for user `, each having a data rate of
(1 − α) log2(P ) bits and power E

[
|{m[t`]}1|2

] .
= P

and E
[
|{m[t`]}i|2

] .
= P 1−α,∀i ∈ {2, 3}. Furthermore,

V[t`] ∈ CM×3 is defined as

V[t`] ,
[
vZF
` [t`] U1

]
(6)

where vZF
` [t`] ∈ CM is the unitary ZF beamformer in

the direction of user `, and canceling interferences using
the instantaneous imperfect CSIT and U1 ∈ CM×2 is a
random subunitary matrix that is isotropically distributed.

• ak[t`] ∈ C,∀k 6= ` is a so-called auxiliary data
symbol destined for user k and having rate min(1 −
α, α) log2(P ) bits and power E

[
|ak[t`]|2

] .
= P .

• sk[t`],∀k ∈ K is a so-called ZF data symbol destined for
user k, with rate α log2(P ) bits and power E

[
|sk[t`]|2

] .
=

Pα.
Upon omitting the noise realizations, the received symbols
during TS ` ∈ {1, 2, 3} of phase 1 can be written as

y`[t`]=hH
` [t`]V[t`]m[t`]︸ ︷︷ ︸

.
=P

+

3∑
i=1,i6=`

hH
` [t`]v

ZF
i [t`]ai[t`]︸ ︷︷ ︸

.
=P 1−α

+z`[t`]︸ ︷︷ ︸
.
=Pα

yk[t`] = hH
k [t`]v

ZF
k [t`]ak[t`]︸ ︷︷ ︸
.
=P

+ ik[t`]︸ ︷︷ ︸
.
=P 1−α

+ zk[t`]︸ ︷︷ ︸
.
=Pα

,∀k 6= `

(7)
where ∀k 6= `, n , K \ {`, k}, and where we have introduced
the shorthand notation

ik[t`] , hH
k [t`]V[t`]m[t`]︸ ︷︷ ︸

.
=P 1−α

+hH
k [t`]v

ZF
n [t`]an[t`]︸ ︷︷ ︸
.
=P 1−α

(8)

and where zk[t] is defined ∀k ∈ K and ∀t ∈ N as

zk[t],hH
k [t]vZF

k [t]ak[t]︸ ︷︷ ︸
.
=Pα

+

3∑
i=1,i6=k

hH
k [t]vZF

i [t]si[t]︸ ︷︷ ︸
.
=P 0

.
(9)



2) Generation of Order-2 Data Symbols for Phase 2: At the
end of phase 1, the TX can use its delayed CSIT to compute
ik[t`],∀k 6= `,∀` ∈ {1, 2, 3}. We now consider separately the
cases α ≤ 1

2 and α ≥ 1
2 .

For the case of α ≤ 1
2 , to quantize the interference, we

will use a specifically designed quantizer, and the following
lemma.

Lemma 1. Let y be a random variable with density, and
with variance P β1 , β1 ≥ 0, Then, there exists a properly-
scaled integer quantizer of rate (β1 − β2) log2(P ) bits for
any positive β2 ≤ β1, denoted by Qβ1,β2 , such that, for any
random variable n with density and variance that does not
scale above P β2 ,

lim
P→∞

Pr{Qβ1,β2
(y + n) = Qβ1,β2

(y)} = 1 (10)

and
E
[
|Qβ1,β2

(y)− y|2
]
≤̇ P β2 . (11)

For details on the design of quantizer Qβ1,β2 , please see the
extended version [18].

Using this quantizer, each of the interference terms
ik[t`],∀k 6= `,∀` ∈ {1, 2, 3} having a power scaling in P 1−α

is quantized using (1 − 2α) log2(P ) bits into Q1−α,α(ik[t`])
with a quantization noise nk[t`] having a power scaling in Pα.

In a second step, the aforementioned quantization noise
nk[t`] is itself quantized using any standard optimal quan-
tizer with α log2(P ) bits, which is known [17] to guarantee
quantization noise that scales as P 0. For n̂k[t`] denoting the
quantized version of nk[t

(RN )
` ], we get the final combined

estimate carrying (1− α) log2(P ) bits in the form

îk[t`] , Q1−α,α(ik[t`]) + n̂k[t`]. (12)

If α ≥ 1
2 : The interference term ik[t`] is quantized using (1−

α) log2(P ) bits with a standard quantizer, guaranteed (cf. [17])
to have quantization noise that scales in P 0. The quantized
signal obtained is also denoted by îk[t`].

Using the delayed CSIT, the TX then generates the follow-
ing order-2 Q-MAT data symbols

m1,2 , (̂i2[t1]⊕ î1[t2]) (13)

m2,3 , (̂i2[t3]⊕ î3[t2]) (14)

m1,3 , (̂i3[t1]⊕ î1[t3]) (15)

where ⊕ designates the exclusive or (XOR) and we use the
same notation for the quantized signal and its representation
in bits. We will see when studying the decoding that if these
data symbols are transmitted to the destined users, i.e., m1,2

to users 1 and 2, and so forth, it becomes possible for all users
to decode their destined order-1 data symbols.

Remark 1. Note that we slightly abuse the notations because
the order-2 data symbols generated and the ones transmitted
during phase 2 are not written in the same way. This comes
from the need to repeat phase 1 twice to generate the number
of order-2 data symbols transmitted during phase 2.

B. Phase 2 of Round N

Phase 2 spans 3 TS, denoted by tS for S ∈
{{1, 2}, {2, 3}, {3, 1}}. During this phase, 6 order-2 Q-MAT
data symbols of rate (1− α) log2(P ) bits are transmitted and
2 order-3 Q-MAT data symbols of rate (1 − α) log2(P ) bits
are generated from the received signals.

1) Transmission: In TS tS , the transmitted signal is

x[tS ]=V[tS ]m[tS ]+vZF
s̄ [tS ]as̄[tS ]+

3∑
k=1

vZF
k [tS ]sk[tS ] (16)

where we have defined s̄ , K \ S and:

• m[tS ] ∈ C2 is a vector containing 2 order-2 Q-MAT data
symbols destined for the users in S, each having a data
rate of (1−α) log2(P ) bits and power E

[
|{m[tS ]}1|2

] .
=

P and E
[
|{m[tS ]}2|2

] .
= P 1−α. V[tS ] ∈ CM×2 defined

as

V[tS ] ,
[
vZF
S [tS ] u2

]
(17)

where vZF
S [tS ] ∈ CM is a unitary ZF beamformer in the

direction of the users in S and which ZF interferences
towards user s̄ and u2 ∈ CM is a unitary vector
isotropically distributed.

• as̄[tS ] ∈ C is an auxiliary data symbol destined for
user s̄, with rate min(1 − α, α) log2(P ) bits and power
E
[
|as̄[tS ]|2

] .
= P .

• sk[tS ],∀k ∈ K is a ZF data symbol destined for user k,
with rate α log2(P ) bits and power E

[
|sk[tS ]|2

] .
= Pα.

Upon omitting the noise realizations, the received symbols
during TS S ∈ {{1, 2}, {2, 3}, {3, 1}} of phase 2 can be
written for k ∈ S as

yk[tS ]=hH
k [tS ]V[tS ]m[tS ]︸ ︷︷ ︸

.
=P

+hH
k [tS ]vZF

s̄ [tS ]as̄[tS ]︸ ︷︷ ︸
.
=P 1−α

+zk[tS ]︸ ︷︷ ︸
.
=Pα

(18)
and for user s̄ as

ys̄[tS ] = hH
s̄ [tS ]vZF

s̄ [tS ]as̄[tS ]︸ ︷︷ ︸
.
=P

+ is̄[tS ]︸ ︷︷ ︸
.
=P 1−α

+ zs̄[tS ]︸ ︷︷ ︸
.
=Pα

(19)

where is̄[tS ] is defined as

is̄[tS ] , hH
s̄ [tS ]V[tS ]m[tS ]. (20)

2) Generation of Order-3 Data Symbols for Phase 3:
At the end of Phase 2, the TX uses its delayed CSIT to
compute i3[t1,2], i1[t2,3], and i2[t1,3]. These interference terms
are then quantized following the same quantization process as
in phase 1 to obtain î3[t1,2], î1[t2,3], and î2[t1,3].

Using the delayed CSIT, the TX generates the following
order-3 Q-MAT data symbols

m1,2,3, (̂i1[t2,3]⊕ î2[t1,3]), m1,2,3”, (̂i2[t1,3]⊕ î3[t1,2]).
(21)



C. Phase 3

Phase 3 consists of 1 TS denoted by TS t1,2,3, during which
1 order-3 Q-MAT data symbol of rate (1 − α) log2(P ) bits
is transmitted. More specifically, the transmitted signal during
TS t123 is given by

x[t1,2,3]= u1,2,3m[t1,2,3] +

3∑
k=1

vZF
k [t1,2,3]sk[t1,2,3] (22)

where
• m[t1,2,3] ∈ C is an order-3 (i.e., destined for all

users) Q-MAT data symbol with data rate of (1 −
α) log2(P ) bits and with power E

[
|m[t1,2,3]|2

] .
= P .

u1,2,3 ∈ CM is a random unitary vector that is isotropi-
cally distributed.

• sk[t1,2,3],∀k ∈ K is a ZF data symbol destined for user k,
with rate α log2(P ) bits and power E

[
|sk[t1,2,3]|2

] .
=

Pα.
Upon omitting the noise realizations, the received signals are

yk[t1,2,3]=hH
k [t1,2,3]u123m[t1,2,3]︸ ︷︷ ︸

.
=P

+ zk[t1,2,3]︸ ︷︷ ︸
.
=Pα

. (23)

D. Repetition of the Phases
Having presented the 3 phases, it should now be clear

that the successful transmission of the order-1 Q-MAT data
symbols requires to repeat each phase a number of times
such that all higher-order data symbols generated could be
transmitted. In the 3-user case, this means that phase 1 and
phase 3 are repeated twice.

E. Generation of Auxiliary Data Symbols for Round N + 1

We show here how the auxiliary data symbols of round N+
1 are formed as a function of the interference generated during
round N . To denote the TS relative to round N+1, we use the
notation t′ instead of t. It is important to note that the auxiliary
data symbols transmitted during phase i of round N + 1,
are generated solely on the basis of the same phase i during
round N . This ensures that, during each round, the number of
transmitted auxiliary data symbols is equal to the number of
generated auxiliary data symbols.

a) Generation of Auxiliary Data Symbols for Phase 1 of
Round N +1: The auxiliary data symbol ak[t′`] (i.e., at round
N + 1) is defined ∀` ∈ {1, 2, 3},∀k 6= ` as{

ak[t′`] , n̂k[t`] , α ≤ 1
2

ak[t′`] , îk[t`] , α ≥ 1
2 .

(24)

It remains to initialize the auxiliary data symbols for the first
round, which is simply done by setting them to zero.

b) Generation of Auxiliary Data Symbols for Phase 2 of
Round N+1: The auxiliary data symbols for phase 2 of round
N + 1 are defined such that ∀S ∈ {{1, 2}, {2, 3}, {3, 1}}{

as̄[t
′
S ] , n̂s̄[tS ] , α ≤ 1

2

as̄[t
′
S ] , îs̄[tS ] , α ≥ 1

2

(25)

As in phase 1, the auxiliary data symbols of the first round
are set equal to zero, for initialization purpose.

c) Generation of Auxiliary Data Symbols for Phase 3
of Round N + 1: Phase 3 does not transmit, nor generate,
auxiliary data symbols.

V. K = 3 USERS SETTING: DECODING

A. Decoding: Proof by Induction

We now turn to the decoding part and we assume that the
transmissions of all phases and all rounds have ended. We will
show that it is possible for every user to decode all its desired
data symbols during every round. The proof has to be done
by induction due to the fact that the auxiliary data symbols
contain information relative to the previous round.

For the sake of brevity, we present solely the decoding of the
second phase. Indeed, the decoding of the first phase follows
in a very similar way, while the decoding of the third phase
requires no induction, as there is no auxiliary data symbols.
We refer to the extended version [18] for the full proof.

Let us consider without loss of generality the decoding
at user 1. Our induction statement is that if a2[t1,3] and
a3[t1,2] are already decoded, user 1 can decode a2[t′1,3] and
a3[t′1,2] (i.e., user 1 can decode the auxiliary data symbols of
round N + 1). Through this induction, it will be clear that
each user can also decode all its destined data symbols during
every round.

We start by proving that the result is true for an initial case
before showing the inductive step.

1) Base Case: The initialization follows trivially from the
fact that all auxiliary data symbols of the first round are set
to zero, and can therefore be decoded at round zero.

2) Inductive Step: We now consider an arbitrary round N .
Due to our induction statement, a2[t1,3] and a3[t1,2] are
already decoded at user 1.

a) Decoding of Phase 3: Before decoding phase 2,
phase 3 of round N is decoded using successive decoding.
Indeed, it can be seen in (23) that the SINR of the Q-MAT
data symbol scales in P 1−α. Once this data symbol is decoded,
it becomes possible to decode the ZF data symbols.

b) Decoding of the Interference: As a first step, user 1
uses the received signal of phase 2 of round N + 1 to decode
a1[t′2,3]. This is possible as it can be seen in (19) that the
scaling of the SINR matches the scaling of the rate.

Going back to the decoding of round N , we need to
differentiate the two cases α ≥ 1

2 or α ≤ 1
2 .

• If α ≥ 1
2 , user 1 has obtained î1[t2,3] from a1[t′2,3].

• If α ≤ 1
2 , user 1 has obtained n̂1[t2,3] from a1[t′2,3]. To

recover the quantized interference î1[t2,3], it is necessary
for user 1 to obtain Q1−α,α(i1[t23]) (see (12)). This
quantized interference can be obtained by quantization of
the received signal y1[t2,3] using the quantizer Q1−α,α
used for the encoding. Indeed, following Lemma 1, it
holds that

lim
P→∞

Pr {Q1−α,α (y1[t2,3]) = Q1−α,α (i1[t2,3])} = 1.

(26)
Thus, user 1 can decode î1[t2,3] = Q1−α,α (y1[t2,3]) and
use it with n̂1[t2,3] to obtain î1[t2,3].



In both cases, user 1 has obtained î1[t2,3].
c) Decoding of the Q-MAT Data Symbols of Phase 2:

From phase 3, user 1 has decoded

m1,2,3 , (̂i1[t2,3]⊕ î2[t1,3])

m1,2,3” , (̂i2[t1,3]⊕ î3[t1,2])
. (27)

Combining them with î1[t2,3], user 1 obtains î3[t1,2]
and î2[t1,3]. Let us consider first the decoding of m[t1,2].
User 1 has received

hH
1 [t1,2]V[t1,2]m[t1,2] + hH

1 [t1,2]vZF
3 [t1,2]a3[t1,2]︸ ︷︷ ︸

.
=P

+ z1[t1,2]︸ ︷︷ ︸
.
=Pα

hH
3 [t1,2]V[t1,2]m[t1,2]︸ ︷︷ ︸

.
=P 1−α

(28)
where quantization noise at the noise floor has been neglected.

By induction, a3[t1,2] is assumed to be already decoded at
user 1, such that its contribution to the received signal in (28)
can be removed. Consequently, user 1 has obtained two signals
with a SINR scaling in P 1−α and can decode its two destined
data symbols m[t1,2].

The data symbols in m[t1,3] are decoded similarly.
d) Decoding of the ZF Data Symbols at User k: If the

Q-MAT data symbols have been decoded at the user, it is
possible for the user to use successive decoding to decode
the ZF data symbols. However, when the user was not among
the destined user, he cannot decode the Q-MAT data symbols
as he does not have sufficiently many observations. Yet, in
that case, the user has obtained a quantized version of the
interference with a quantization at the noise floor, thanks to the
decoding of the auxiliary data symbols (See Section V-A2b).
Therefore, it can remove the interference created by the
Q-MAT data symbols up to the noise floor, which makes it
possible to decode its desired ZF data symbol.

e) Decoding of the Auxiliary Data Symbols of Round N+
1: In order to conclude the inductive step, it remains to prove
that it is possible for user 1 to decode a2[t′1,3] and a3[t′1,2] (i.e.,
relative to round N + 1). This result follows directly from
the definition of the auxiliary data symbols in (25). Indeed,
the auxiliary data symbol during TS t′1,3 (resp. t′1,2) depends
only on the Q-MAT data symbols in m[t1,3] (resp. m[t1,2]).
These data symbols being already decoded at user 1, user 1 can
decode these auxiliary data symbols relative to round N + 1,
which concludes the inductive step.

B. Calculation of the DoF

Adding the rates of the transmitted data symbols and
dividing by the number of TS of one round, provides the DoF
achieved by one arbitrary round. Letting the number of rounds
become large allows to neglect the loss due to initialization and
termination and provides the DoF expression of the theorem.

VI. CONCLUSION

In the K-user MISO BC with delayed and imperfect current
CSIT, the novel Q-MAT scheme combines MAT alignment
(which uses delayed CSIT) and ZF (which uses current CSIT)

to achieve the optimal sum DoF. By exploiting both versions
of the CSIT, the Q-MAT scheme is more robust with respect
to both the delay and the estimation noise, and could hence
be practically relevant in many settings. Several innovative
solutions have here been introduced in order to achieve the
optimal DoF, such as the digital combination of interference,
the decoding of symbols of any order, and the use of a hi-
erarchical quantizer whose output is distributed across rounds
in a way that minimizes unwanted interference. These new
methods can be useful in other wireless configurations with
limited/delayed/distributed CSIT.
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