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.1. ABSTRACT  

The demand for fresh and clean water sources increases globally, and there is a need to 

develop novel routes to eliminate micropollutants and other harmful species from water. 

Photocatalysis is a promising alternative green technology that has shown great performance in 

the degradation of persistent pollutants. Titanium dioxide is the most used catalyst owing to his 

attractive physico-chemical properties, but this semiconductor presents limitations in the 

photocatalysis process due to the high band gap and the fast recombination of the 

photogenerated carriers. Herein, a novel photocatalyst has been developed, based on titanium 



dioxide nanofibers (TiO2 NFs) synthesized by electrospinning. The TiO2 NFs were coated by atomic 

layer deposition (ALD) to grow boron nitride (BN) and palladium (Pd) on their surface. The UV-Vis 

spectroscopy measurements confirmed the increase of the band gap and the extension of the 

spectral response to the visible range. The obtained TiO2/BN/Pd nanofibers were then tested for 

photocatalysis, and showed a drastic increase of acetaminophen (ACT) degradation (>90%), 

compared to only 20% degradation obtained with pure TiO2 after 4h of visible light irradiation. 

The high photocatalytic activity was attributed to the good dispersion of Pd NPs on TiO2-BN 

nanofibers, leading to a higher transfer of photoexcited charges carriers and a decrease of 

photogenerated electron-holes recombination. To confirm their reusability, recycling tests on the 

hybrid photocatalyst TiO2/BN/Pd have been performed, showing a good stability over 5 cycles 

under UV and Visible light. Moreover, toxicity tests  as well as quenching tests were carried out 

to check the toxicity in the formation of byproductsand to determine active species responsible 

for the degradation. The results presented in this work demonstrate the potential of TiO2/BN/Pd 

nanomaterials, and open new prospects for the preparation of tunable photocatalysts. 
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Highlights  

 TiO2-BN-Pd materials were successfully prepared by combining electrospinning and 

atomic layer deposition. 

 The synthesized materials were used to study the degradation of acetaminophen 

(ACT) under UV and visible light. 

 The degradation of ACT by TiO2-BN100-Pd100 was 80% faster than pristine TiO2 NFs. 

 The photocatalysts showed high stability and recyclability after 5 successive cycles 

under UV and visible irradiation. 

 The main active species that play a significant role in the degradation of ACT are .O2
- 

and h+. 

 

1. Introduction 



Water scarcity is a worldwide issue since the demand for clean water highly exceeds the 

freshwater sources.1 To respond to this high demand, many sources of water have been 

considered such as wastewater, rainwater and seawater. However, these sources may contain 

harmful contaminants such as dyes, pesticides, pharmaceuticals and personal products, 

considered "emerging pollutants" 2. Additionally, conventional wastewater treatment methods 

are inefficient in removing persistent organic substances such as drugs from the water and the 

presence of such contaminants, even at low concentrations, may be harmful on human health 

and aquatic organisms 3–5. Many new techniques have been developed to overcome these 

limitations, such as ozonation, electrooxidation, phto-Fentonand photocatalysis6,7. Photocatalysis 

has attracted much attention in the last decades as a promising approach for water treatment 8,9. 

It is an advanced oxidation process, based on the excitation of a semiconductor that will engender 

electron-hole pairs responsible of the degradation of pollutant10,11. Therefore, it is considered as 

an effective technique to remove trace contaminants and their intermediates products that could 

be more harmful 12,13. 

In recent years, semiconductor photocatalysts have been considered for environmental and 

energy applications for catalytic and sensing purposes14–16. Among most of the semiconductors 

used in photocatalysis , titanium dioxide (TiO2) has retrieved much attention for the removal of 

organic pollutants from wastewater. TiO2 has several advantages regarding its high photocatalytic 

efficiency, high stability, low toxicity and low cost 17–19. However, the wide band gap (~ 3.0-3.2 

eV) limits the application of this photocatalyst under visible light. Another disadvantage is the fast 

recombination of photogenerated carriers, limiting its usages in large scale20–22.  

During the last years, research has focused on designing hybrid nanocatalysts and 

heterostructures  to conquer TiO2 limitations23–26 . Many studies have been presented, such as 

doping with metal ions ( Pd, Ag, Pt…)10,27–30 , nonmetal ions (B, N, Cu, Ni…)31,32, and creation of 

heterojunctions with other semiconductors (BN, ZnO, CuO)33–35. Coupling TiO2 with other 

semiconductors or metals will allow the formation of heterojunction that can increase the lifetime 

carrier charge, reduce the recombination of electron holes, and improve the photocatalysis 

efficiency of TiO2 under visible light36,37.  



Many studies have reported the efficiency of doping TiO2 with BN for dyes and pollutant 

degradation since BN has a high ability of energy storage to allow higher e--h+ transfers and a high 

chemical stability38,39. Nasr et al. reported that TiO2-BN nanocomposites synthesized by 

electrospinning enhanced the degradation of methyl orange under UV light. They confirmed that 

BN could improve the photocatalytic activity of TiO2 due to the immigration of holes to the 

catalyst surface10. The photocatalytic oxidation of ibuprofen by TiO2-BN nanocomposites were 

also studied by Lin et al.40. The photodegradation of ibuprofen was enhanced due to the 

incorporation of BN, and a complete degradation was obtained after 2h of UV irradiation. Sheng 

et al. prepared hexagonal boron nitride (h-BN)/titania (TiO2) nanocomposites by sol-gel. They 

reported the degradation of rhodamine B (RhB) and methylene blue (MB) under UV light 

irradiation of 98% and 92% within 50 min irradiation,respectively41.  

In addition, loading noble metals such as palladium (Pd), platinum (Pt) and silver (Ag) on the 

surface of the substrate, appears to be effective for the elaboration of potential catalysts42,43. 

These metal nanoparticles (NPs) will allow the improvement of visible light excitation and reduce 

the recombination of e−/h+ pairs due to the surface plasmonic resonance effect and the metals' 

performance as charge acceptors, respectively44. Among these metals, loading Pd on the surface 

of TiO2 has proven to be an effective method to improve visible light photocatalytic degradation. 

Mohapatra et al. prepared TiO2-NTs with well-dispersed Pd NPs by incipient wetness method. The 

catalyst has shown effective degradation of dyes under solar light simulator45. Moreover, 

photocatalytic oxidation of nitrogen oxide (NO) was successful using Pd-modified TiO2 prepared 

by thermal impregnation method46.  

Most of these studies have used several techniques such as electrospinning22, sol-gel 

method47, microwave-assisted synthesis48, etc. Since visible photocatalysts are required for 

efficient catalytic applications, a highly structured material with a large specific area and more 

exposed active sites should be designed49. To our knowledge, no degradation of acetaminophen 

(ACT) was reported with TiO2-BN-Pd nanocomposites. The major challenge is to design a 

semiconductor catalyst with a well-known structure, precise morphology and high selectivity. 



Atomic layer deposition (ALD) combined with electrospinning shows potential advantages in 

fabricating highly effective and selective photocatalysts. 

ALD is a vapor deposition technique that allows the preparation of thin films in the sub-

nanometer scale with precise thickness and high conformality50,51. ALD enables the synthesis of 

nanoparticles and thin films with controllable dimensions at the subnanoscale, a unique 

capability52–57. The use of ALD in catalysis field is getting more attention since it enables the design 

of nanocatalyst with control over size, composition, thickness and distribution of the material58.  

For example, Weber et al. reported the synthesis of carbon paper-boron nitride-palladium 

electrodes using ALD, which electrochemical active surface was maintained stable even after 

applying an accelerated ageing program for 1000 cycles59.   

In their recent review, Vempati et al. reported the importance of the combination of ALD with 

electrospinning in the elaboration of catalytic materials60. Electrospinning is an easy technique to 

fabricate NFs with a controlled diameter in a range between 10-1000 nm, by applying a high 

electric field between the polymeric solution and the collector61,62. Preparation of TiO2 nanofibers 

by electrospinning has been widely used, since electrospinning allows the fabrication of many 

nanostructures with low aggregation, high porosity, and large specific surface area, which can 

promote the charge and mass transfer for enhanced photocatalytic activities63,64.  

Recently nanocomposite materials for photocatalysis degradation of pharmaceuticals 

pollutants have involved many research studies65–67. Herein, we report for the first time the 

degradation of ACT with TiO2-BN-Pd catalyst obtained by combining two major techniques, 

electrospinning and ALD. First, TiO2 was synthesized by electrospinning, followed by a uniform 

deposition of BN by ALD. Pd nanoparticles was then added to obtain hybrid catalysts. Moreover, 

a variation of BN deposition cycles was also performed, and the degradation of ACT used as a 

model pollutant was compared under UV and visible light. TiO2-BN100-Pd100 hybrid 

photocatalyst has shown the best photocatalytic activity among all prepared catalysts. Moreover, 

the catalyst has shown high stability even after 5 cycles. The toxicity was also evaluated during 

the degradation process to ensure that harmful byproductsgenerated during the process were 

degraded as well. Finally, scavengers study was conducted to get an idea about the mechanism 



of degradation of ACT. The main species responsible of the degradation of acetaminophen were 

holes and superoxide radicals. 

2. Experimental 

2.1. Materials and chemicals 

Titanium(IV) isopropoxide (TTIP, 97%, CAS: 546-68-9), polyvinyl pyrollidone (PVP, 

Mw=1300000, CAS: 9003-39-8), acetaminophen (ACT , ≥99% CAS: 103-90-2), formaline solution 

(HCHO, CAS: 50-00-0), boron tribromide(BBr3, 99,9%, CAS :10294-33-4), nafion perfluorinated 

resin solution (CAS: 31175-20-9), sodium sulfate  (Na2SO4, ≥99% ,CAS: 7757-82-6), sodium 

chloride (NaCl, , ≥99% ,CAS: 7647-14-5), 2-propanol (99.9%, CAS: 67-63-0), p-benzoquinone 

(C6H4O2, ≥99.5%, CAS:106-51-4) and ethylenediaminetetraacetic acid (EDTA, 99.995%, CAS: 60-

00-4)  were purchased from Sigma-Aldrich. In addition, Pd palladium(II) 

hexafluoroacetylacetonate (≥95%, CAS: 64916-48-9) was purchased from Strem Chemicals. Acetic 

acid (CAS: 64-19-7) and ethanol (≥99.8% CAS: 64-17-5) were purchased from VWR chemicals and 

used as solvents. All chemicals were used without further purification. Indium tin oxide (ITO) 

deposited on quartz was purchased from Präzisions Glas & Optik. Deionized (DI) water (>18.2 MΩ) 

prepared by Millipore (Milli-Q® Academic) water purification system was used for all dilutions and 

reagent preparation. Argon gas and ammonia were bought from Linde and used as received. 

2.2. Synthesis of TiO2 nanofibers by electrospinning 

The preparation of TTIP/PVP solution was similar to previous studies as shown in Figure 119. 

Acetic acid and ethanol are used as solvents. The suspension was stirred for 2h prior to spinning 

in order to increase the dielectric constant and obtain an electrospinnable solution. The resulting 

solution was then loaded in a 22 mL syringe and electrospun by a homemade electrospinning 

system. During the process, a high voltage of 25 kV and a flow rate of 1mL/h were applied. The 

distance between the 19 gauge needle and the collector was fixed at 10 cm. When the electric 

field is created, the polymer jet between the droplet and the grounded collector leads to fibres 

forming, overcoming the surface forces68–70. This process was followed by calcination of obtained 

fibers at 400°C for 4h to remove the polymer and obtain crystalline TiO2. 



2.3. Modification of TiO2 by Atomic Layer Deposition 

2.3.1. Atomic Layer Deposition of Boron Nitride 

The coating of BN was carried out on electrospun nanofibers at 750◦C in a low-pressure 

homemade ALD reactor. The reactor was directly connected to the precursor and co-reactant 

lines through gate valves and heated at 110°C to avoid condensation. The deposition of BN was 

achieved using sequential exposures of BBr3 and NH3 (considered as co-reactant) separated by 

purge steps of argon with a flow rate of 100 sccm. One ALD cycle consisted of a 0.1 s BBr3 pulse, 

5 s exposure, and 15 s Ar purge, followed by a 5 s NH3 pulse, 5 s exposure, and 20 s Ar purge. 

More details on the ALD reactor and on the process are listed elswhere5. In order to adjust the 

BN loading, the number of ALD cycles was varied. Thicknesses of deposited BN were chacaterized 

by ellipsometry on Si substrates added in the same of NFs using an optical model based on Cauchy 

fitting model (Semilab spectroscopic ellipsometer GES5E, Xe lamp 1.23eV-5eV). 

2.3.2. Atomic Layer Deposition of Palladium 

TiO2-Pd were synthesized by atomic layer deposition in a low-pressure hot-wall (home-built) 

reactor, described earlier71,72. ALD of Pd was carried out with Pd(hfac)2 and formalin. The highly 

dispersed Pd NPs were synthesized by applying 100 ALD cycles. The bubbler containing the 

Pd(hfac)2 precursor was heated at 70 °C and the formalin container was kept at room 

temperature. The deposition chamber was set at a temperature of 220 °C, and the lines in the 

ALD system were heated at 80 °C to avoid any condensation 73. The ALD cycle consisted of 

sequential pulse, exposure, and purge of Pd precursor and formalin, alternatively. The pulse, 

exposure, and purge durations were 5:15:10 s and 1:15:60 s for Pd(hfac)2 and formalin, 

respectively.  

2.4. Characterization of the synthesized nanocomposites 

A Hitachi S4800 emission scanning electron microscope (SEM, JAPAN) was used for 

morphology measurements of synthesized nanofibers. All samples were sputter coated with 

platinum/palladium before SEM measurement using a Polaron SC7620 Mini Sputter Coater. The 



crystal phases of the samples were examined by XRD diffractometer using Cu-Kα radiation 

(λ=1.5406 Å) in 2θ ranging from 10 to 80°. Fourier-transform infrared spectroscopy (FTIR) of TiO2, 

TiO2-BN, TiO2-Pd and TiO2-BN-Pd nanocomposites was recorded with the NEXUS instrument, 

equipped with an attenuated total reflection accessory in the frequency range of 400–4000 cm−1. 

Raman spectra were measured by the dispersive Raman spectroscopy (Horiba XploRA), using a 

659.55 nm laser and an objective lens of 100. Transmission electron microscopy (TEM) was 

performed using JEOL 2200FS (200 kV) and JEOL ARM-200F (200kV). X-ray photoelectron 

spectroscopy (XPS) measurements were conducted via ESCALAB 250 spectrometer from Thermo 

Electron using Al Kα monochromatic source (1486.6 eV) as an excitation source. In order to 

determine the band gaps of synthesized materials, the UV-vis spectra were measured by a UV–

vis spectrophotometer (Jasco model V570) equipped with a diffuse reflectance (DR) attachment 

(Shimadzu IRS-2200) for optical absorbance measurements. Photoluminescence (PL) spectra 

were recorded with an optical fiber spectrometer (Ocean Optics usb2000) with an excitation 

wavelength of 266 nm by a nitrogen Nd:YAG laser, 9mW.  

2.5. Electrochemical impedance spectroscopy measurement 

An electrochemical system was used to carry out the EIS tests by a Solartron SI 1287 

potentiostat/ galvanostat. Three-electrode cell were used to study the photoelectrochemical 

property: photocatalysts used as working electrode, Ag/AgCl as reference electrode and platinum 

wire as counter electrode immersed in Na2SO4 solution (0.1 mol/L) considered as electrolyte. The 

mixtures of 4 mg photocatalyst, 1 mL isopropanol and 40 µL nafion aqueous solution were 

homogeneously mixed by the ultrasonic cleaner for 30 min, then the slurry was dropped on the 

ITO glass (1x1cm), and the working electrode was achieved after the evaporation of isopropanol. 

Moreover, the measurements were done using a 150 W halogen lamp as the light source under 

visible light exposition. 

2.6. Quantum efficiency measurements 

The measurements were performed in the following way: 



3.5 mL plastic cuvette was filled with 2.5 mL of mQ water and installed into a cuvette holder. 

Tungsten light source (Avantes) was used for absorbance measurements. The 1 mg.mL-1 water 

solutions of TiO2-X samples were prepared. 50 mL of solution was added to the cuvette and 

absolute irradiance spectra of the sample were recorded (Figure S1). 

According to Kubelka-Munk following equations are applicable for the calculation of quantum 

efficiency:74  

𝑅∞ =
(1+𝑅0

2−𝑇2)−((1+𝑅0
2−𝑇2)

2
−4𝑅0

2)
0.5

2𝑅0
                                                                                          (1) 

Where K, S, T, R0, d are diffuse absorption coefficient, diffuse scattering coefficient, 

transmittance (%), reflectance (%) and sample thickness (cm).  

Within this theory, absorption and scattering coefficients can be calculated, the detailed 

calculation is represented in supporting information74. 

The quantum efficiency for 1 cm3 volume of 0.5 mg.mL-1 photocatalyst solution was calculated 

as following equation 2: 

     𝑸𝑬 =
𝑵𝟎−𝑵

∑  𝜼(𝝀
𝟕𝟎𝟎 𝒏𝒎

𝟒𝟎𝟎 𝒏𝒎
)∙𝑵𝒑𝒉(𝝀)

           (2) 

Where N0, N, η(λ) and Nph(λ) are the initial concentration of organic molecules (cm-3), 

concentration of organic molecules after 3 hours of exposure to visible light (cm-3), part of 

absorbed light and number of incident photons (cm-2) for wavelength λ. 

2.7. Photocatalytic experiments of acetaminophen  

Photocatalytic activity of the synthesized nanocomposite was evaluated on the degradation 

of acetaminophen under two light sources. A medium pressure metal halide UV lamp (400 W, 

Lampes France) and a visible light source provided by a linear halogen lamp (400W, Avide) were 

used for the comparative study. The irradiation distance between the lamp and the sample was 

fixed to 10 cm for all experiments. 



The photocatalysts (0.5 g.L-1 - TiO2, TiO2-BN, TiO2-Pd and TiO2-BN-Pd) were added into 250 mL 

of ACT solution (1 mg.L-1) in a 300 mL glass reactor. A water bath was used to minimize the 

temperature increase in the solution under the light irradiation and keep it stable at 37 °C. The 

solution was stirred for 30 minutes to ensure equilibrium adsorption in the dark and then exposed 

to irradiation. At certain time intervals, 3 ml aliquots were sampled and filtered with 0.22 µm 

filters. The ACT concentration was analyzed by high-performance liquid chromatography 

equipped with a C-18 column (RP18, Nucleoshell) and a Quattro-Micro mass spectrometer with 

an Electrospray probe (Waters Micromass, Wythenshawe, Manchester, UK) as a detector. An 

isocratic method (A/B=97/3) set at 0.25 mL.min-1 flow rate was used. The phase A of eluents 

consisted of a mixture of acetonitrile/water (95/05), while the phase B was 100 % acetonitrile 

with 0.1 % formic acid for both phases.  

The recyclability of the catalyst that showed the best degradation efficiency was further 

investigated. The nanocomposite was reused under UV and visible light for 5 cycles with the same 

initial conditions.  

The degradation efficiency (D(%)), was calculated according to Eq. (3): 

𝑫(%) = [(𝑪𝟎 − 𝑪)/𝑪𝟎 ] × 𝟏𝟎𝟎              (3) 

where: C0 and C are the initial and final concentrations at mg.L-1. 

2.8. Photocatalytic kinetic model 

Typically, TiO2 kinetics is usually characterized by Langmuir–Hinshelwood (L–H) model40,75. 

When the concentration of the pollutant is low , pseudo-first-order kinetics is applied76, Eq.(4): 

𝒍𝒏 (𝑪𝟎/𝑪)  =   𝒌𝒕                                                                                                      (4) 

where C0 (mg.L-1) is the initial concentration of the pollutant, C is the pollutant concentration 

at time t (min) and k (min-1) is the pseudo-first-order rate constant. 

2.9. Microtoxicity tests for determination of byproducts toxicity 



During the degradation of acetaminophen, many byproducts could be formed 77. In order to 

confirm or not the toxicity of these compounds, a bioluminescence toxicity study was carried out. 

This study is based on the measurements of the luminescence effect of marine bacteria. The 

bacteria used in this method was the strain Vibrio fischeri LCK 487 .All measurements were 

conducted using Microtox® Model 500 Analyzer (Modern Water Inc.; United Kingdom) coupled 

with MicrotoxOmni® software. First, the bacteria reconstitution was performed by adding 5mL of 

the reagent diluents at 5°C. Then 200 µL of the solution was transferred to the cuvettes, and the 

reagent was stabilized at 15°C for 15 min. In order to enhance the activity of Vibrio Fisheri 

bacteria, the samples were diluted at 81.8% of initial concentration by adding 22% NaCl solution. 

Based on luminescence intensity, the screening test 81.8%  allow identifying samples toxicity. 

Bacteria's activity could be reduced by the presence of toxic elements that decrease 

luminescence. Before measuring the bacteria luminescence, all the samples were filtered with 0.2 

mm filters to remove any precipitate or solid matter in the solution. The toxicity values are directly 

relative to the inhibition rate of bacteria's activity, calculated as following in equation (5)77,78: 

𝑰𝒄(𝒕)(%) = (𝟏 −
𝑳𝑼(𝒕)

𝑳𝑼(𝟎)×𝑹(𝒕)
) × 𝟏𝟎𝟎                                   (5) 

                                                        

 where LU(t) is the intensity of luminescence emitted by bacteria after  t=15 min of contact 

with the sample; LU(0): is the initial intensity of luminescence emitted by bacteria before the 

addition of the sample; R(t): is the corrected term. 

Since luminescence of bacteria decreases over time and under the action of environmental 

conditions in the absence of toxicity, it is necessary to compensate for the errors due to these 

factors by taking into account the variability of the luminescence R(t) of the bacteria in a control 

solution (MilliQ water and NaCl) which gives the LU0 values. The corrected term is given by 

equation (6): 

𝑹(𝒕) =
𝑳𝑼𝟎(𝒕)

𝑳𝑼𝟎  
                                                                                                                                (6)                            

where LU0(t)
is the intensity of luminescence emitted by bacteria after a t=5 min or t=15 min 

of contact with the control solution (MilliQ water and NaCl); and LU0: is the initial intensity of 



luminescence emitted by bacteria before the addition of the control solution (MilliQ water and 

NaCl). 

2.10. Quenching tests 

Scavengers test were performed in order to determine the main active species responsible of 

the degradation of ACT. Benzoquinone, isopropanol and EDTA were added to the solution at 10, 

5 and 17 mM, respectively, before switching the light on. The experiments performed was the 

same as the degradation process, an aliquot was withdrawn at different times and LC-MS-MS 

detected the concentration of ACT.  

3. Results and discussion 

3.1. Characterization of synthesized nanocomposites 

TiO2-BN-Pd photocatalysts were prepared in three steps, as illustrated in Figure 1 In the first 

step, TiO2 nanofibers (NFs) were prepared by electrospinning than calcinated at 400°C under air. 

Figure 2 shows the scanning electron microscopy image of TiO2 NFs after calcination. It can be 

clearly seen that we have continuous and randomly oriented nanofibers that preserved their 

morphologies after calcination. In the second step, atomic layer deposition was used to modify 

the surface of the prepared NFs. First, we have coated TiO2 with a second semiconductor, Boron 

Nitride, at 750°C. To compare the effect of BN, we varied the BN number of cycles (5 and 100 

cycles) for a thickness variation with BN having a gpc on Si substrate of 0.8 nm. The as-prepared 

samples will be designated by TiO2-BN5 and TiO2-BN100, respectively. In the last step, a 

deposition of 100 cycles of Pd has been processed on pure TiO2 NFs and TiO2-BN composites 

(donated as TiO2-Pd100, TiO2-BN5-Pd100 and TiO2-BN100-Pd100). The BN coating has been used 

to enhance the separation of charge carriers as for Pd, it was added to allow the shift of band gap 

in the visible. Nanofibers with diameter range between 50 and 400 nm with length of several 

microns were obtained.  



 

Figure 1. Illustration of the steps for the preparation of nanocomposites, in the first step we 
prepared the polymeric solution, than electrospinning was performed. The collected nanofibers 
were then calcined before ALD process. 

 

SEM images of nanocomposites TiO2-BN5, TiO2-BN100, TiO2-Pd100, TiO2-BN5-Pd100 and TiO2-

BN100-Pd100 (Figure 2) show that after ALD deposition, the continuous morphology of TiO2 was 

maintained. Nevertheless, when BN deposition increased from 5 to 100 cycles, the surface of TiO2 

NFs became rougher.  



  

Figure 2. SEM images of TiO2, TiO2-BN5, TiO2-BN100, TiO2-Pd100, TiO2-BN5-Pd100 and TiO2-
BN100-Pd100 nanocomposites. 

 

In order to get a closer idea about the crystallinity of the prepared catalysts, XRD analysis were 

conducted. According to the XRD patterns (Figure 3 a), pure TiO2 obtained by electrospinning and 

calcinated at 400°C shows a major peak at 25.3°, corresponding to anatase (101) plane. 

Furthermore, a small peak at 27.4° is assigned to rutile (110). XRD peaks at 25.3°, 37.9°, 48.2°, 

55.1° and 62.9° 2θ diffraction angles were assigned to anatase (101), (004), (200), (211) and (204) 

crystal planes, whereas XRD peaks at 27.5°, 36.2°, 41.3°, 44.1°, 54,4°, and 69.1° were assigned to 

rutile TiO2 (110), (101), (103), (100), (211) and (220) crystalline planes17. 

The concentration of rutile phase was determined using the spurr equation: 

𝑭ʀ = 𝟏/(𝟏 + 𝟎. 𝟖[𝑰ᴀ(𝟏𝟎𝟏)/𝑰ʀ(𝟏𝟏𝟎) ] )                                                                          (7) 

Where IA and IR are the integrated intensities of the diffraction peaks for anatase (101) and 

rutile (110) phases, respectively79.  

The anatase and rutile fractions were calculated for all the prepared samples. TiO2 NFs  was 

composed from 70.5%  anatase phase while the anatase fraction varied for doped samples, the 

fraction was in a range between  43.6% (TiO2-BN100) and 67.1% (TiO2-Pd). The values of anatase/ 
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rutile phase are represented in Table 1. This decrease in anatase rate in TiO2-BN100 is due to BN 

deposition at high temperatures (750°C) where the anatase is no more stable. Anatase was 

proved to be the most active phase for photocatalytic degradation due to the lower rates of 

recombination and higher surface adsorptive capacity of anatase than that of rutile80. However, 

many studies confirmed that a mixture of crystalline phases 30% rutile and 70% anatase make 

the best photocatalyst for the oxidation of organics when applied to treat wastewater81.  Hence, 

crystallinity is not the only parameter to be considered, many other factors could affect the 

activity and selectivity of photocatalysts, such as surface structure, surface defects, and surface 

charge82.  

 In addition, diffraction peaks of Pd species were not depicted. According to the literature, Pd 

species , (Pd0or PdO) could not be detected by XRD due to low dopants concentration; highly 

dispersed NPs on the support or overlapping of Pd peaks with TiO2
83. For BN, the diffraction peak 

at 2θ = 26° of hexagonal BN related to the (002) direction has not been observed too, it is probably 

overlapped with the diffraction peak of TiO2 at the same position10. Moreover, the grain sizes of 

the TiO2 dominating phase crystals were calculated to be 11.5, 11.6, 23.5, 32.4 nm, 28.2nm and 

35.3 for TiO2, TiO2-Pd, TiO2-BN5, TiO2-BN100, TiO2-BN5-Pd100 and TiO2-BN100-Pd100, 

respectively, based on the Scherrer equation described below: 

𝑫 =
𝑲𝝀

𝜷𝒄𝒐𝒔𝜽 
                                                                                                (8) 

Where D is the crystallite size (nm); K is the Scherrer constant, 0.9; λ, is the X-ray wavelength, 

0.15406 nm; β is the full-width at the half maximum intensity of the peak, in radians; and θ is the 

diffraction angle84. It can be concluded that the crystallite size increased remarkably when adding 

BN. 

The increase in crystallite size when doping with BN could be due to the incorporation of  B/N 

in the lattice of TiO2 or to the higher deposition temperature of BN at 750°C and/or the generation 

of oxygen vacancies inside the TiO2 lattice85,86. To confirm these results TEM and XPS has been 

performed and discussed below. 



Figure 3b shows the Raman spectrum of TiO2, TiO2-BN5, TiO2-BN100, TiO2-Pd, TiO2-BN5-

Pd100 and TiO2-BN100-Pd100. The Raman active mode revealed the characteristic peaks of 

both crystalline phases of TiO2, anatase and rutile, confirming the XRD results. For all samples, 

we observe peaks corresponding to the active mode of anatase phase at 151 and 203 (Eg), 513 

(B1g, A1g) and 638 (Eg) cm-1. In addition, nanocomposites samples shows three peaks 

corresponding to the active modes of rutile phase at 258 cm-1 (B1g), 447 cm-1 (Eg) and 633 cm-

1 (A1g) 12,78. Furthermore, Figure 3 c shows the raman spectra of TiO2-BN100, with a small band 

at 1328 cm-1 that could be attributed to h-BN active mode7.   

    



Figure 3. a) XRD data b) Raman spectra of bare TiO2 and synthesized nanocomposites and c) zoom 

on Raman  spectra of TiO2-BN100. 

In addition to Raman and XRD spectra, Infrared spectroscopy was performed to confirm the 

functional groups of the prepared NFs. Figure S2 shows the characteristic absorption band of as-

prepared samples. The large band at 800–1200 cm−1 is attributed to Ti–O bond. For TiO2-BN100 

and TiO2-BN100-Pd100 in-plane B-N optical mode (1373 cm-1) was observed. No peaks could be 

detected in TiO2-BN5 and TiO2-BN5-Pd100, due to the low amount deposited by ALD (less than 

0.5nm) and/or the incorporation of BN into the lattice of TiO2. 

Since none of the characterization techniques listed above has confirmed the deposition of 

Pd, high-resolution transmission electron microscopy (HRTEM) was employed. The state of 

dispersion of metal Pd particles and BN was examined by TEM for TiO2-Pd100, TiO2-BN5-Pd100 

and TiO2-BN100-Pd100. TEM images of TiO2-Pd100, TiO2-BN5-Pd100 and TiO2-BN100-Pd100 

photocatalysts (Figure 4), shows that Pd NPs are dispersed uniformly on the surface of TiO2 NFs. 

The dispersion of Pd decreases with the increase of BN thickness, this could be explained by the 

nucleation of the precursor on BN surface and/or to the decrease of the nucleation sites. The 

HRTEM image of Figure 4c shows that the Pd NPs are deposited on the surface lattice of TiO2. 

Mackus et al. demonstrated that keeping the sites of TiO2 catalysts available and depositing 

particles on preferential sites would enhance the selectivity of the synthesized catalysts 52. The 

diameter of Pd NPs was in the range of 1 to 5nm. In Figure 5f, the boron nitride layer of TiO2-BN5-

Pd100 sample could not be detected by EDX due to the low deposition rate and since Boron is a 

light element that could not be easily detected by this technique. For TiO2-BN100-Pd100, Figure 

4.i, the HRTEM image indicate that TiO2 is covered by a layer of ~7nm of BN. Additionally, Figure 

4f displays the SAED with a lattice spacing of 0.344 nm, which corresponds to the anatase (101),  

while a 𝑑-spacing of 0.208nm is attributed to the Pd (111).  



 

Figure 4. TEM and HRTEM images of (a-c) TiO2-Pd100; (d-f) Ti02-BN5-Pd100 and (g-i) TiO2-BN100-
Pd100.  

 



 

Figure 5. EDS Elemental mapping of TiO2-Pd100, TiO2-BN5-Pd100 and TiO2-BN100-Pd100 
nanofibers. 

As the obtained TiO2-BN-Pd nanocomposites were designed and prepared for photocatalytic 

purposes, it is important to know the chemical state of each element via composition analysis 

using XPS technique. Figure S2a shows the survey spectra of TiO2-BN100-Pd100, all elements 

were clearly seen. Figure 6a shows the Ti 2p XPS spectra of pure TiO2, TiO2-BN100, TiO2-Pd100, 

TiO2-BN5-Pd100 and TiO2-BN100-Pd100 composites. For Ti 2p in TiO2 sample, two peaks are 

positioned at 458.7 and 464.4 eV, corresponding to Ti 2p3/2 and Ti 2p1/2 states indicating that Ti is 

4+ valence. For the TiO2-BN and TiO2-Pd samples, Ti 2p peaks are slightly shifted toward higher 

binding energy (+0.2 eV and + 0.3 eV) due to the inclusion of BN and Pd, respectively, into the 

TiO2 lattice and the formation of oxygen vacancies exhibiting a high electron-attracting effect88. 

Similar behavior were observed for O 1s spectrum (Figure 6b). Considering TiO2 spectrum as 

reference, O 1s spectra of TiO2 show a peak at 529.9 eV attributed to Ti-O bond, while TiO2-

BN100-Pd100 shows two characteristic peaks at a higher binding energy 530.1 eV attributed to 

Ti−O bonds and at 532.6 corresponding to B-O-Ti groups. Figure S3b shows the deconvolution 

peaks of O 1s element for all samples. Doping TiO2 with BN and Pd reducued the atomic 

percentage of Ti-O-Ti and generated new boron nitide bonds in the case of TiO2-BN100 and more 

OH groups in the case of TiO2-Pd100. For the samples with BN coating (Figure 6 c-d), the B 1s and 
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N1s elements are identified. The peaks position of B 1s and N1s are shifted to higher binding 

energy when incorporating Pd NPs.  

  

 

Figure 6: XPS data of a) Ti 2p b) O 1s c) N 1s and B 1s of all prepared samples. 



As shown in 

 

Figure 7a, the B 1s spectra consist of peaks at the binding energies of 190.5, 191.5 and 192.6 

eV assigned to the edge or interfacial boron bonds connected with –N, –OH and -OTi, respectively. 

The presence of B–O–Ti bonds can also be proved by the O 1s spectra (Figure S5) which is 



consigned to the formation of a chemical B-O-Ti bond between TiO2 and boron at the edge of 

TiO2
4. For the TiO2-BN100-Pd100 sample, the B-OH peak was not noticeable due to the 

incorporation of Pd  NPs on BN surface. In Figure 7 b the N 1s deconvolution peaks of TiO2-BN100 

composite revealed the presence of two peaks with binding energy at 398.2 and 398.6 eV 

ascribed to B–N linkages  with Ti-O and the presence of oxidized nitrogen such as N–O–Ti88. The 

atomic percentage and binding energy  of all the elements obtained by XPS are resumed in Table 

S 1. 



 

Figure 7: Deconvoluted XPS spectra of B 1s (a, c), N 1s (b,d) and Pd 3d (e,f) for modified TiO2 by 
ALD. 

Deconvolution of the XPS spectrum was performed to further understand the incorporation 

of Pd NPs in the prepared samples. From Figure S2c, two peaks at 335.5 and 340.6 eV assigned 



to Pd 3d5/2 and Pd 3d3/2. 

 

Figure 7 e-f shows a deconvoluted spectrum of Pd in sample TiO2-Pd100 and TiO2-BN100-

Pd100 , with the main species being Pd0 for all samples. Composite samples with BN and Pd shows 

an increase of oxidized Pd species, including PdO. This increase could be assigned to a higher Pd 

oxidation state on the sample's surface, even at low concentrations. Furthermore, the slight 



increase of oxidized Pd species in the TiO2-BN-Pd material in comparison with TiO2-Pd might be 

explained by the fact that boron nitride attracts electrons from Pd89. 

The optical properties of pure TiO2 NFs and TiO2 composite nanofibers were obtained by 

UV−Vis absorption spectroscopy measurement. Figure 8a indicates that TiO2 NFs absorbs light at 

378 nm corresponding to a band gap of 3.2±0.01 eV. For TiO2 nanocomposites fibers, the 

absorption edges are red-shifted with the energy of 3.17±0.02, 3.11±0.03, 3.11±0.02, 3.10±0.03 

and 3.09 ±0.02, corresponding to TiO2, TiO2-Pd100, TiO2-BN5, TiO2-BN100, TiO2-BN5-Pd and TiO2-

BN100-Pd, respectively. Moreover, all nanocomposite samples have another absorption edge in 

the visible range. The observed broad absorption peak was observed in the range of 400-580 nm, 

centered at 540-550nm. Decrease of the band gap value in TiO2/BN samples has been reported 

previously10. The explanation of redshift of the band gap and increase of visible absorption in BN 

samples could be explained by forming new defect states at BN/TiO2 interface. Formation of Pd-

TiO2 composite resulted in redshift of the band gap and increase of the visible absorption. It was 

shown that Pd2+ states transfer d-electrons towards TiO2. Depending on electronic configurations 

(work functions, Fermi level position, …) the d-electrons can reach for conductance band of TiO2 

or defect states90. 



Figure 8. a) UV-Vis diffused reflectance of TiO2 NFs and nanocomposites; b) EIS Nyquist plots of 

prepared nanofibers; c) Photoluminescence of all synthesized NFs; d) deconvolution of TiO2 PL 

spectra 

The PL spectra of the samples is shown in Figure 8c. Typically to TiO2-based nanostructures, 

the intensity of the PL was low (quantum efficiency of TiO2 ~0.005-0.01). All samples showed wide 

peak, centered at 480 nm. The wide peak of prepared TiO2 nanostructures could be split into two 

peaks, located at 476 and 573 nm (Figure 8d). These peaks correspond to self-trapped excitons 

and oxygen vacancies, respectively17,91. Modification of TiO2 with Pd and BN nanostructures 

resulted in decreasing the PL. The lowest PL was observed for TiO2-BN100-Pd100 pointing to 

higher charge separation rate. Photoluminescence of BN/TiO2 was studied and explained by Nasr 

et al.10 Small concentrations of BN did not change PL, whereas high BN concentrations (5-10%) 

reduced PL intensity by 2 times. In addition, photoluminescence intensity decreased in samples 

with Pd due to formation of Schottky barrier between Pd and TiO2
92. Thus, Pd and BN act as 



additional quenching factors of PL. Values of quantum efficiency test were presented in Table 1. 

It should be noted that the yields reported by others cannot be directly compared as there are 

differences in reactor systems, source of irradiation, volume and concentration of the catalyst93. 

The apparent quantum yield is a parameter, which is usually defined as the ratio of converted 

reactant molecules over the number of photons entering the reactor. A metal oxide material such 

as TiO2 (anatase and/or rutile) could never absorb all the incident photon flow from a given 

source, which can affect the calculation of QE94. The values of absorption and scattering 

coefficients are represented in Figure S4. As shown in Table 1, higher quantum yield efficiency 

was attributed to TiO2-BN-Pd nanocomposite, which the higher ACT degradation can explain. 

Table 1: Anatase/ rutile faction, crystallite size, band gap and QE values of all catalysts. 

Sample Anatase  
(%) 

Rutile 
(%) 

Crystallite 
size (A) 
 (nm) 

Band gap 
(eV) 

Quantum 
Efficiency 

(%) 

TiO2 70.5 29.5 11.5 3.2±0.01 2.5 

TiO2-Pd100 67.1 32.9 11.6 3.17±0.02 3.6 

TiO2-BN5 53.7 46.2 23.5 3.11±0.03 0.9 

TiO2-BN100 43.6 56.4 32.4 3.11±0.02 1.3 

TiO2-BN5-Pd100 57.2 42.8 28.2 3.10±0.03 12.5 

TiO2-BN100-Pd100 53.4 46.6 35.3 3.09±0.02 21.7 

 

The charge transfer resistance of the photogenerated carriers is investigated through EIS 

experiments. Figure 8b shows the Nyquist diagrams of pristine TiO2 and modified TiO2 samples. It 

was found that the diameters of the semicircle decreased with the doped samples with Pd or BN- 

Pd and the lower value was obtained with TiO2-BN100-Pd100 nanocomposites. The smaller EIS 

radius demonstrates the weaker electronic impedance and higher separation of photogenerated 

electron-hole pairs. This phenomenon benefits from the electronic band structure formed when 

TiO2 is doped with BN and Pd, and through this structure, the ultimate catalytic activities can be 

promoted. Moreover, Table 2 shows that the smallest polarization resistances are obtained on 

TiO2-BN100-Pd100, where R1 represents the bulk resistance of electrodes and electrolyte, R2 



denotes the resistance formed at the nanofibers' and electrolyte and Q2 designates the double 

layer capacitance at the nanofibers and the electrolyte interface. The lowest R2 was attributed to 

TiO2-BN100-Pd100 nanocomposites with a value of 3.74 KΩ, which refers to a lower resistance 

between fibers and electrolyte interface. TiO2-BN100-Pd100 possesses a higher charge transfer 

rate and a better separation of photogenerated electron-hole than the other prepared catalysts, 

which is with good correlation with the degradation results. 

Table 2. Resistance values from EIS of all synthesized nanofibers. 

Sample R1 (Ω) R2 (KΩ) 

TiO2 64.34 10.22 

TiO2-Pd100 65.56 6.44 

TiO2-BN5 76.88 15.86 

TiO2-BN100 83.17 19.82 

TiO2-BN5-Pd100 70.29 6.26 

TiO2-BN100-Pd100 63.66 3.74 

 

 

3.2. PHOTOCATALYTIC DEGRADATION 

In order to evaluate the modification of TiO2 surface by ALD, photocatalytic performance of 

TiO2 nanofibers with different amounts of Pd and BN were evaluated by degrading ACT in 

ultrapure water under UV and visible light. Figure 9a-b shows the degradation of ACT under UV 

light. Herein, the degradation rate was determined by LC-MS-MS every 5 minutes. It can be seen 

that the degradation with TiO2-BN-Pd was faster than TiO2. A total degradation of ACT was 

reached in less than 15 minutes with TiO2-Pd100, TiO2-BN5-Pd00 and TiO2-BN100-Pd100 with a 

degradation rate of ACT corresponding to 0.06 mg.L-1.min-1 under UV irradiation. For TiO2 catalyst, 

the process took 60 min until the degradation was complete. The fabrication of heterojunction 

with both BN and Pd at the same time has shown an efficient degradation under UV and visible 

light due to the enhancement of separation of electron-hole pairs as shown by PL and EIS results.  



 

Figure 9. All prepared catalysts were decomposition of ACT and degradation percentage 

under a-b) UV and c-d) visible light irradiation. Each experiment was conducted for at least three 

times with relative errors of less than 5%. 

After 30 min in the dark, the equilibrium was reached. Figure 9a-c shows that the degradation 

of ACT by TiO2-BN-Pd was faster than pristine TiO2. The degradation of the pollutant reached 87% 

with TiO2-BN100-Pd100 after 2h of visible irradiation comparing to just 20% with TiO2 not 

modified (Figure 9b). Furthermore, it can be clearly seen that when we add the Pd, the 

degradation efficiency increases, and after 4 hours of irradiation, 100% of the pollutant was 

degraded. The degradation speed of ACT using TiO2-BN100-Pd100 under visible irradiation after 

4 hours was 0.004 mg.L-1.min-1. This confirms that the Pd has shifted the band gap of TiO2 to the 

visible range (confirmed by UV reflectance results), thus improving the catalytic activity under 

visible light47. Moreover, Figure 9d showed that when using TiO2-Pd100 as a photocatalyst, the 

degradation has slightly improved compared to TiO2 after 2 hours. A degradation percentage of 



24% versus 21% was obtained. After 6 hours, the nanocomposite has led to a total degradation 

of ACT in comparison with pure TiO2 that had degraded only 50% of the pollutant. Doping with 

noble metals like Pd is an effective method to improve the photocatalytic efficiency of TiO2 as this 

increases its visible-light capacity. When comparing TiO2-BN-Pd nanocomposites and TiO2-Pd, 

degradation of ACT was enhanced with TiO2-BN-Pd. Shing et al. have already confirmed that 

heterojunction engineering promoted charge transfer and enhanced photocatalytic activities of 

photocatalysts95. This could be explained by the formation of Schottky junctions at the interface 

of noble metal nanoparticles and the semiconductor. The addition of Pd nanoparticles onto TiO2-

BN surface improves UV–Visible light degradation of TiO2 and creates Schottky junctions, which 

reduces the recombination of photogenerated carriers in TiO2
96. Moreover, TiO2-BN100-Pd100 

showed a better degradation efficiency than TiO2-BN5-Pd100 and this is due to the lower amount 

of Pd deposited on TiO2-BN100 as confirmed by TEM images. It was found that excessive Pd 

loading could decrease the performance of the catalyst. Moreover, Leong et al. demonstrated 

that the synergistic effects of the –O–Pd–O– surface species are mainly responsible for the 

enhanced photocatalytic activity, which confirms our findings since TiO2-BN100-Pd100 possesses 

a higher % of Pd-O than TiO2-BN5-Pd100 confirmed by deconvoluted XPS data97.  

 The kinetic behavior of the as-prepared catalysts was also investigated under both lights. 

The photodegradation reactions follow a pseudo-first-order reaction33.  

Figure 10a-c shows the linear dependence between ln (C0/C) and time. The degradation rate 

increased as follow: TiO2-BN100 < TiO2-BN5 < TiO2 < TiO2-Pd100 < TiO2-BN5-Pd100 < TiO2-BN100-

Pd100 under visible light as shown in  

Figure 10b. The degradation rate of TiO2-BN100-Pd100 nanocomposite is 9 time higher than 

TiO2 nanofibers under visible light and almost 2 times higher under UV light. These results confirm 

the role of heterojunction between TiO2, BN and Pd in enhancing the degradation of ACT under 

visible light. Palladium decreases the band gap of TiO2, as confirmed by UV reflectance and 

photoluminescence results, leading to a higher degradation in the visible range, while BN 

improves the separation efficiency of electron – holes (confirmed by PL results). The increase of 

photocatalytic degradation of ACT in the presence of BN and Pd could be attributed to the fast 



transfer of photogenerated electrons from the semiconductor (BN) to the metal NPs (Pd), which 

enhances the separation of the electrons and holes. Moreover, the shift in optical absorption of 

the catalyst in the visible region is attributed to the Pd loading and the formation of B-O-Ti bond. 

This leads to an energy rearrangement that will affect the charge balance. Hence, the band gap 

of TiO2-BN-Pd is narrowed and excited wavelength is extended from UV to visible light 

region44,97,98. 

 

Figure 10. Kinetics models and rate constant values of ACT degradation under a-b) UV and c-d) 

visible irradiation, respectively. All experiments were conducted for at least three times and 

relative errors were less than 5%. 



Since TiO2-BN100-Pd100 nanocomposites has shown the best degradation efficiency, a 

stability test was performed to confirm the reusability of the catalyst. After each cycle, the 

catalyst was filtered, washed with deionized water, dried at 100°C then reused with no further 

steps. In  

Figure 11a, the degradation of ACT remained unchanged under visible light after 5 cycles. For 

UV irradiation, the degradation efficiency dropped by less than 5% after the second cycle, but 

kept almost stable until the fifth cycle ( 

Figure 11b). This reveals that using ALD allows maximising the metal-support interaction, 

increasing the active sites, and improving the catalyst's stability. The prepared catalyst remains 

stable and can be reused to degrade water pollutants, thus aiming at the advantage of atomic 

layer deposition in the photocatalytic field.   



 

Figure 11. Recycling test of TiO2-BN100-Pd100 under a) visible and b) UV irradiation; c) 

Scavenger plot for determining reactive species in the degradation of ACT by TiO2-BN100-Pd100; 

Inhibition of luminescence of V. fischeri marine bacteria during ACT photocatalysis after 15min 

exposure between the bacterial strain and the degradation solution d) under UV irradiation and 

e) under visible irradiation. 



 

All further tests were done on TiO2-BN100-Pd100 nanocomposites. It is known that three main 

active species could participate in the catalytic process. In order to understand the mechanism of 

the degradation of ACT by the catalyst, trapping experiments were carried out. 

Ethylenediaminetetracetate (EDTA), p-benzoquinone (p-BQ) and isopropanol (IPA) were used as 

trapping reagents for holes (h+), superoxide radicals (.O2
-) and hydroxyl radicals (.OH), 

respectively.  

Figure 11c shows that the degradation efficiency has clearly decreased from 100% to less than 

20% when adding p-BQ and EDTA, while it remains almost unchanged when adding IPA under 

both lights UV and Visible, showing that .OH do not contribute in the degradation. However, .O2
- 

and h+, both has a major role in the photocatalytic degradation of ACT. 

3.3. Toxicity tests 

Identification of ACT intermediates and their metabolic pathways is essential to evaluate their 

potential impacts on human health, the environment and other aquatic life forms. In this work, 

we found that .O2
- and h+ are the active species in the photocatalytic degradation of ACT, this 

agrees with previously published results 99. Zhang et al. suggested a direct hole (h+) oxidation 

route as the initial step for ACT degradation. Then the formed phenolic radical loses a cation and 

leads to phenoxyl radicals that will react with superoxide radical. During this route, harmful 

metabolites could be formed. Some of these intermediates could be more harmful than the initial 

pollutant, such as 1,4-benzoquinone, benzoic acid and benzaldehyde. In order to understand the 

pathways degradation, the global toxicity of the solution was studied. ACT itself shows a low 

inhibition percentage (8%) as it is not a hazardous pollutant for this strain of bacteria ( 

Figure 11 c-d).  After 15 min time contact between the solution and V. fischeri bacteria, the acute 

toxicity of the treated solution strain increased rapidly at the early stage of the treatment and 

reached 68% at 15 min UV irradiation (Figure 11 c) and 72% after 2h visible irradiation (Figure 11 

d). This result is relevant and consistent with regard to the previously proved formation of toxic 

aromatic by-products such as 1,4-benzoquinone, benzoic acid and benzaldehyde74–76. After 3h UV 



irradiation and 12h degradation under visible light, the toxicity markedly declined to a value near 

0% inhibition and lower than the initial % of inhibition of ACT. At that point, short-chain carboxylic 

acids and aromatic compounds could be formed continuously and then transformed to none toxic 

compounds. Further studies should be done to identify all the byproductsof this degradation 

mechanism. As mentioned before, the photocatalyst used in this work was not reported before, 

but a comparison with other works was summarized in Table 3. The comparison is not easy since 

many factors could vary such as pollutant concentration, catalyst concentration, pH of the 

solution and most importantly the irradiation type. However, it can be clearly seen that the 

prepared catalyst (TiO2-BN-Pd) showed interesting results with a high degradation efficiency, 

recyclability, and most importantly, fast degradation rate.   

Table 3: Comparison of degradation efficiency of differently prepared photocatalysts 

Pollutant 
CPollutant 
(mg.L-1) 

Photocatalyst 
CCatalyst  
(g.L-1) 

Type of 
irradiation 

Energy 
(W.m-2) 

Degradation 
time 
(min) 

pH 
Removal 
efficiency 

(%) 
References 

ACT 1 
TiO2-BN100-

Pd100 
0.5 

Medium 
pressure 

metal 
halide UV  

NA        10 6.8 100 
In this 
work 

ACT 1 
TiO2-BN100-

Pd100 
0.5 

halogen 
linear 
lamp 

NA 180 6.8 98 
In this 
work 

ACT 20 Pt-TiO2 0.4 
Solar 

irradiation 
500 180 6.3 100 103 

ACT 20 Degussa P25 2 
UV 

irradiation 
365nm 

NA 60 NA 98 104 

ACT 0.08 TiO2-Ag5% 1 
UV 

irradiation 
365nm 

NA 180 NA 98 105 

ACT 15 K2S2O8-TiO2 2 
Visible 

irradiation 
LED lamps 

168.5 390 6.9 93 106 

MO 10 
10%BN/TiO2 

NFs 
0.4 

UV 
irradiation  

NA 75 NA 99 10 

MB 10 
BN/TiO2 

composite 
0.33 

Visible 
light 

NA 200 NA 79 4 



RhB 10 
12 wt% 
BN/TiO2 

0.5 
visible-
light Xe 

lamp 
1000 150 NA 99 107 

ACT 10 
MWCNT10%-

TiO2-SiO2 
NA 

Visible 
irradiation 

high 
pressure 
mercury 

lamp  

73.1–75.3  60 7 81.6 108 

ACT 30 Fe2O3-TiO2 0.25 

solar 
simulator 
halogen 

lamp 

140  180 8 94.8 109 

ACT 5 
BaTiO3/TiO2 

(3 :1) 
1 

UV/Vis 
xenon 
lamp   

NA 240 7 95 110 

ACT 50 TiO2@rGO TG3 2 UVA/LED 950 50 5.4 100 111 

RhB 10 12% h-BN/TiO2 0.75 
visible 
light  

NA 120 NA 95 11 

ACT 5 
3% (w/w) 

WO3/TiO2/SiO2 
1.5 

xenon 
lamp  

NA 360 9 95 112 

ACT 18 TiO2-NFs-SSF  NA 
UV light 

Blue 
lamps 

27 200 6-7 40 113 

MB 2 5%Pd/TiO2 NA 
visible 

white light 
4 1500 NA    10 98 

AMX 20 Pd/TiO2 4 
Visible light 

tungsten  
NA 300 NA 97.5 97 

 

4. Conclusion  

To sum up, by combining two different techniques, electrospinning and ALD, six 

photocatalysts based on TiO2 nanofibers coated by BN and Pd by ALD were synthesized: pristine 



TiO2, TiO2-Pd100, TiO2-BN5, TiO2-BN100, TiO2-BN5-Pd100 and TiO2-BN100-Pd100. The influence 

of nanocomposites catalyst on degradation of water pollutants was studied, using ACT as a model 

pollutant. XRD and RAMAN spectroscopy results indicate that the modification mechanism by 

ALD, allowed the combination of crystalline phases of TiO2 with different percentages of anatase-

rutile phase. Moreover, TEM images showed the good dispersion of Pd NPs on the surface of 

nanofibers, the amount of Pd decreased with the increase of BN cycles. TiO2/BN/Pd samples 

showed the best photocatalytic activity regarding ACT visible light irradiation (9 times higher than 

bare TiO2), though their efficiency depends on the Schottky barrier-type separation from the 

deposition of another heterojunction material and noble metals on TiO2. PL and EIS results 

confirmed that TiO2-BN-Pd hybrids own a superior charge separation ability from TiO2, TiO2-BN 

and TiO2-Pd, which was devoted in the higher degradation efficiency. Finally, the use of the ALD 

technique to modify the interface of TiO2 shows a very promising pathway to enhance 

degradation of micropollutant and their intermediates in wastewater, by allowing a conformal 

coating with thickness control and formation of composites materials. Although additional studies 

should be conducted with other pollutants and on wastewater to estimate the real efficiency of 

the prepared nanomaterials, the results presents open prospects for the tuning of photocatalysts 

by ALD.  
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