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Minimisation du Risque Empirique avec
Régularisation par l’Entropie Relative

Résumé : Le problème de minimisation du risque empirique (ERM) avec
régularisation d’entropie relative (ERM-RER) est étudié sous l’hypothèse que
la mesure de référence est une mesure σ-finie, et pas nécessairement une mesure
de probabilité. Sous cette hypothèse, qui conduit à une généralisation du prob-
lème ERM-RER permettant une plus grande flexibilité pour l’incorporation des
connaissances antérieures, de nombreuses propriétés pertinentes sont énoncées.
Parmi ces propriétés, la solution à ce problème, si elle existe, se révèle être une
mesure de probabilité unique, souvent mutuellement absolument continue avec
la mesure de référence. Une telle solution présente une garantie probablement-
approximativement-correcte pour le problème ERM indépendamment du fait
que ce dernier possède ou non une solution. Pour un ensemble de données fixe,
le risque empirique s’avère être une variable aléatoire sous-gaussienne lorsque les
modèles sont échantillonnés à partir de la solution au problème ERM-RER. Les
capacités de généralisation de la solution au problème ERM-RER (l’algorithme
de Gibbs) sont étudiées via la sensibilité de la valeur espérée du risque em-
pirique aux déviations d’une telle solution vers des mesures de probabilité alter-
natives. Enfin, un lien intéressant entre la sensibilité, l’erreur de généralisation
et l’information lautum est établi.

Mots-clés : Apprentissage Supervisé, Apprentissage PAC, Régularisation,
Entropie Relative, Minimisation du Risque Empirique, Mesure de Gibbs, Algo-
rithme de Gibbs, Généralisation, et Sensitivité.
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1 Introduction

In statistical machine learning, the problem of empirical risk minimization
(ERM) with relative entropy regularization (ERM-RER) has been the workhorse
for building probability measures on the set of models, without any additional
assumption on the statistical description of the datasets. See for instance [2–4]
and [5]. Instead of additional statistical assumptions on the datasets, which are
typical in Bayesian methods [6], relative entropy regularization requires a ref-
erence probability measure on the set of models, which is external to the ERM
problem. Often, such a reference measure represents prior knowledge or side
information and is chosen for guiding the search of models towards those in-
ducing low empirical risks with high probability over seen and unseen datasets.
From this perspective, the reference measure can be seen as an additional de-
gree of freedom to improve the generalization capabilities of machine learning
algorithms based on ERM-RER, e.g, Gibbs algorithms [4, 7–14] and [15]. This
new degree of freedom is one of the main motivations for regularizing the ERM
problem using relative entropy, or more generally, any f -divergence regulariza-
tion, as discussed in [16, 17] and [18]. Beyond probability measures, as shown
in this paper, the reference measure can be any σ-finite measure with arbitrary
support. The flexibility introduced by this generalization becomes particularly
relevant for the case in which priors are available in the form of probability
distributions that can be evaluated up to some normalizing factor, cf. [19], or
cannot be represented by probability distributions, e.g., equal preferences among
elements of infinite countable sets. For some specific choices of σ-finite reference
measures, the ERM-RER boils down to particular cases of special interest: (i)
the information-risk minimization problem presented in [20]; (ii) the ERM with
differential entropy regularization (ERM-DiffER); and (iii) the ERM with dis-
crete entropy regularization (ERM-DisER). See for instance [21] and references
therein. From this perspective, the proposed ERM-RER formulation yields a
unified mathematical framework that comprises a large class of problems.

When the reference measure is a probability measure, the solution to the ERM-
RER problem is known to be unique and correspond to a Gibbs probability
measure. Such a Gibbs probability measure has been studied using measure
theoretic and information theoretic notions in [8, 20, 22–29]; statistical physics
in [2]; PAC (Probably Approximatively Correct)-Bayesian learning theory in
[30–33]; and proved to be of particular interest in classification problems in
[4, 11, 17, 34–36] and [37]. In the general case in which the reference is a σ-
finite measure, a solution to the ERM-RER problem does not always exist.
Nonetheless, if it exists, it is shown to be a unique Gibbs probability despite
the fact that its partition function is defined with respect to a σ-finite measure.
The condition for the existence is mild and is always satisfied when the reference
measure is a probability measure, as highlighted above. Interestingly, such a
solution is mutually absolutely continuous with the reference measure in most
practical cases. Interestingly, most of the properties known for the classical
ERM-RER problem are shown to hold in the most general case. For instance,

RR n° 9454



6 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

the empirical risk observed when models are sampled from the ERM-RER-
optimal probability measure is a sub-Gaussian random variable that exhibits a
PAC guarantee for the ERM problem without regularization.

When the solution to the ERM-RER problem is used to sample models to la-
bel unseen patterns, the process is known as the Gibbs algorithm. One of the
traditional performance metrics to evaluate the generalization capabilities of
the Gibbs algorithm is the generalization error. When the reference measure is
a probability measure, a closed-form expression for the generalization error of
the Gibbs algorithm is presented in [8], while upper bounds have been derived
in [15, 20, 27–33, 38–51], and references therein. In this work, a new perfor-
mance metric coined sensitivity, which quantifies the variations of the expected
empirical risk due to deviations from the solution of the ERM-RER problem
is introduced. The sensitivity is defined as the difference between two quanti-
ties: (a) The expectation of the empirical risk with respect to the solution to the
ERM-RER problem; and (b) the expectation of the empirical risk with respect
to an alternative measure. The absolute value of the sensitivity is shown to be
upper bounded by a term that is proportional to the squared-root of the rela-
tive entropy of the alternative measure with respect to the ERM-RER-optimal
measure. Such bound allows providing lower and upper bounds on the expected
empirical risk after a deviation from the ERM-RER-optimal measure towards
an alternative probability measure. More interestingly, the expectation (with
respect to the probability distribution of the datasets) of the sensitivity to de-
viations to a specific measure is shown to be equal to the generalization error
of the Gibbs algorithm. Using this result, the closed-form expression for the
generalization error of the Gibbs algorithm presented in [8] is shown to hold
even in the case in which the reference measure is a σ-finite measure. Moreover,
the generalization error is shown to be upper bounded by a term that is propor-
tional to the squared-root of the lautum information between the models and
the datasets, cf. [52]. This bound is reminiscent of the result in [29, Theorem 1]
in which a similar bound is presented using the mutual information instead of
the lautum information. While [29, Theorem 1] follows immediately from the
variational representation of relative entropy, c.f., [53, Lemma 4.18 (Transporta-
tion Lemma)], the new result follows from the fact that the empirical risk when
models are sampled from the ERM-RER-optimal probability measure is a sub-
Gaussian random variable. Interestingly, the new upper-bound does not require
any of the conditions in [29, Theorem 1].

The remainder of this work is organized as follows. Section 2 introduces two
optimization problems: the ERM and the ERM-RER. The asymmetry of the
relative entropy is analyzed in the context of the ERM-RER and two variants,
coined Type-I and Type-II, are distinguished. The former considers the case in
which the regularization is the relative entropy of the optimization measure with
respect to the reference measure. The latter considers a regularization by the
relative entropy of the reference measure with respect to the optimization mea-
sure. Section 3 presents the solution to the ERM-RER problem in the general
case and introduces its main properties. Section 4 introduces two new classes

Inria
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of reference measures and the solution of the ERM-RER problem is shown to
exhibit different properties for each class. This section ends by studying the
ERM-RER problem in the special case in which the reference measure is a Gibbs
probability measure. This special case exhibits a solution that is identical to the
solution to an ERM-RER problem whose reference measure is the same used to
build the above mentioned Gibbs measure. Section 5 studies the properties of
the log-partition function of the ERM-RER-optimal probability measure. The
first, second, and third cumulants of the empirical risk when the models are
sampled from the ERM-RER-optimal measure and the reference measure are
respectively characterized. Section 6 and Section 7 study the properties of the
expectation and variance of the empirical risk when the models are sampled
from the ERM-RER-optimal probability measure. These mean and variance
are compared with the mean and variance of the empirical risk when models
are sampled from the reference measure. Section 8 introduces several explicit
expressions for the cumulant generating function of the empirical risk when the
models are sampled from the ERM-RER-optimal measure. Using these equiva-
lent expressions, it is shown that empirical risk is a sub-Gaussian random vari-
able when models are sampled from the ERM-RER-optimal measure. Section 9
describes the monotonic concentration of the ERM-RER-optimal probability
measure when the regularization factor tends to zero. Section 10 show that
the empirical risk when the models are sampled from the ERM-RER-optimal
probability measure exhibits a PAC-type guarantee with respect to the ERM
problem without regularization. Finally, Section 11 studies the sensitivity of the
expected empirical risk with respect to deviations from the ERM-RER-optimal
measure to alternative measures and shows connections with the generalization
error and the lautum information. Section 12 ends this work with conclusions
and a discussion on the results.

2 Empirical Risk Minimization (ERM)

Let M, X and Y, with M ⊆ Rd and d ∈ N, be sets of models, patterns, and
labels, respectively. A pair (x, y) ∈ X × Y is referred to as a labeled pattern or
as a data point. Given n data points, with n ∈ N, denoted by (x1, y1), (x2, y2),
. . ., (xn, yn), the corresponding dataset is represented by the tuple

z =
(

(x1, y1) , (x2, y2) , . . . , (xn, yn)
)
∈ (X × Y)

n
. (1)

Let the function f :M×X → Y be such that the label assigned to the pattern
x according to the model θ ∈M is f(θ, x). Let also the function

` : Y × Y → [0,+∞] (2)

be such that given a data point (x, y) ∈ X ×Y, the risk induced by a model θ ∈
M is ` (f(θ, x), y). In the following, the risk function ` is assumed to be
nonnegative and for all y ∈ Y, ` (y, y) = 0.

RR n° 9454



8 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

The empirical risk induced by the model θ, with respect to the dataset z in (1)
is determined by the function Lz :M→ [0,+∞], which satisfies

Lz (θ) =
1

n

n∑
i=1

` (f(θ, xi), yi) . (3)

Using this notation, the ERM consists of the following optimization prob-
lem:

min
θ∈M

Lz (θ) . (4)

Let the set of solutions to the ERM problem in (4) be denoted by

T (z) , arg min
θ∈M

Lz (θ) . (5)

Note that if the set M is finite, the ERM problem in (4) always possesses a
solution, and thus, |T (z)| > 0. Nonetheless, in general, the ERM problem
might not necessarily possess a solution, i.e., |T (z)| = 0.

2.1 Notation and Main Assumptions
In the following, given a measurable space (Ω,F ), the notation4 (Ω,F ) is used
to represent the set of σ-finite measures that can be defined over (Ω,F ). Given
a measure Q ∈ 4 (Ω,F ), the subset4Q (Ω,F ) of4 (Ω,F ) contains all σ-finite
measures that are absolutely continuous with respect to the measure Q. Alter-
natively, the subset 5Q (Ω,F ) of 4 (Ω,F ) contains all probability measures P
such that Q is absolutely continuous with respect to P . Given a set A ⊂ Rd,
the Borel σ-field over A is denoted by B (A).

The main assumption adopted in this work is that the function Lz in (3)
is measurable with respect to the Borel measurable spaces (M,B (M)) and
([0,+∞],B ([0,+∞])).

2.2 Relative Entropy Extended to σ-Finite Measures
In this work, the relative entropy, which is usually defined for probability mea-
sures, is extended to σ-finite measures.

Definition 2.1 (Generalized Relative Entropy). Given two σ-finite measures P
and Q on the same measurable space, such that P is absolutely continuous with
respect to Q, the relative entropy of P with respect to Q is

D (P‖Q) =

∫
dP

dQ
(x) log

Å
dP

dQ
(x)

ã
dQ(x), (6)

where the function dP
dQ is the Radon-Nikodym derivative of P with respect to Q.

The relative entropy exhibits a property often referred to as the information
inequality [54, Theorem 2.6.3] in the case of probability measures on (Ω,F ),
with Ω a countable set. The following theorem explores this property in a more
general scenario.

Inria
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Theorem 2.1. If P and Q are both probability measures on a general measurable
space (Ω,F ), then,

D (P‖Q)>0, (7)

with equality if and only if P and Q are identical.

Proof: Consider the function f : [0,∞) → R such that for all x ∈ (0,+∞),
f(x) = x log(x) and f(0) = 0. Note that f is strictly convex. If P and Q
are both probability measures on the measurable space (Ω,F ), the following
holds:

D (P‖Q)=

∫
dP

dQ
(x) log

Å
dP

dQ
(x)

ã
dQ(x) (8)

=

∫
f

Å
dP

dQ
(x)

ã
dQ(x) (9)

>f
Å∫

dP

dQ
(x)dQ(x)

ã
(10)

=f (1) (11)
=0, (12)

where the inequality (11) follows from Jensen’s inequality [55, Section 6.3.5].
Equality in (11) holds if and only if for all x ∈ suppQ, dP

dQ (x) = 1, which
implies that both P and Q are identical. This completes proof.

If Q is not a probability measure, then it might be observed that D (P‖Q) < 0.
Consider for instance the case in which P is a zero-mean Gaussian probability
measure with variance σ2 and Q is the Lebesgue measure on (R,B (R)). Hence,
the Radon-Nikodym derivative dP

dQ is the Gaussian probability density function
such that for all x ∈ R,

dP

dQ
(x)=

1√
2πσ2

exp

Å
− x2

2σ2

ã
. (13)

Under this assumption, the relative entropy of P with respect to Q is the neg-
ative of the differential entropy of P . That is,

D (P‖Q)=−1

2
log
(
2πεσ2

)
, (14)

with ε being Néper’s constant. See for instance [54, Example 8.1.2]. Hence,
D (P‖Q) is negative for all σ2 ∈

(
1

2πε ,+∞
)
and nonnegative for all σ2 ∈

(
0, 1

2πε

]
.

Finally, note also that

lim
σ2→0

D (P‖Q)=+∞, and (15)

lim
σ2→+∞

D (P‖Q)=−∞. (16)

A central observation from (14) is that the equality D (P‖Q) = 0 does not
necessarily imply that P and Q are identical measures. For instance, when
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10 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

σ2 = 1
2πε in (15), it holds that D (P‖Q) = 0, while P is a Gaussian probability

measure and Q is the Lebesgue measure.

The following property, known for the case of probability measures as the joint-
convexity of the relative entropy, is extended by the following theorem.

Theorem 2.2. Let P1 and P2 be two probability measures and Q1 and Q2 be
two σ-finite measures, all on the same measurable space. For all i ∈ {1, 2}, let
Pi be absolutely continuous with respect to Qi. Then, for all λ ∈ [0, 1],

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

6λD (P1‖Q1) + (1− λ)D (P2‖Q2) . (17)

Equality in (17) holds if and only if P1 = P2 and Q1 = Q2.

Proof: The proof is presented in Appendix A.

2.3 ERM with Relative Entropy Regularization
Given a dataset, the expected empirical risk induced by a probability measure
P ∈ ∆ (M,B (M)) is defined as follows.

Definition 2.2 (Expected Empirical Risk). Let P be a probability measure in
∆ (M,B (M)). The expected empirical risk with respect to the dataset z in (1)
induced by the measure P is

Rz (P ) =

∫
Lz (θ) dP (θ), (18)

where the function Lz is in (3).

The ERM-RER problem is parametrized by a σ-finite measure in4 (M,B (M))
and a positive real, which are referred to as the reference measure and the
regularization factor, respectively. Let Q ∈ 4 (M,B (M)) be a σ-finite measure
and let λ be a positive real. The ERM-RER problem, with parameters Q and λ,
consists of the following optimization problem:

min
P∈4Q(M,B(M))

Rz (P ) + λD (P‖Q) , (19a)

s. t.

∫
dP (θ) = 1, (19b)

where the dataset z is in (1), and the functional Rz is defined in (18).

2.4 Type-I and Type-II Relative Entropy Regularization
The optimization problem in (19) is coined Type-I ERM-RER in [56] in the aim
of distinguishing it from the optimization problem

min
P∈5Q(M,B(M))

Rz (P ) + λD (Q‖P ) , (20a)

s. t.

∫
dP (θ) = 1, (20b)

Inria



Empirical Risk Minimization with Relative Entropy Regularization 11

which is coined Type-II ERM-RER.

The Type-II ERM-RER problem in (20), when Q is a probability measure,
exhibits a solution that is identical to the solution to the following Type-I ERM-
RER problem [56, Theorem 1]:

min
P∈4Q(M,B(M))

∫
log(β+Lz(ν))dP (ν)+D(P‖Q), (21a)

s. t.

∫
dP (θ) = 1, (21b)

where β is a constant chosen to satisfy∫
λ

β + Lz (ν)
dQ(ν)=1. (21c)

Essentially, by appropriately transforming the objective function, an equivalence
can be established between Type-I and Type-II ERM-RER problems. Hence,
without loss of generality, the remainder of this work focuses exclusively on
Type-I ERM-RER, which is simply referred to as ERM-RER.

3 The Solution to the ERM-RER Problem
The solution to the ERM-RER problem in (19) is presented in terms of two
objects. First, the functionKQ,z : R→ R∪{+∞} such that for all t ∈ R,

KQ,z (t)=log

Å∫
exp (t Lz (θ)) dQ(θ)

ã
, (22)

with Lz in (3). Second, the set KQ,z ⊂ (0,+∞), which is defined by

KQ,z,
ß
s ∈ (0,+∞) : KQ,z

Å
−1

s

ã
< +∞

™
. (23)

The notation for the function KQ,z and the set KQ,z are chosen such that their
parametrization by (or dependence on) the dataset z in (1) and the σ-finite
measure Q in (19) are highlighted.

The following lemma describes the set KQ,z.

Lemma 3.1. The set KQ,z in (23) is a convex subset of R. If the measure Q
in (19) is a probability measure, then, the set KQ,z in (23) satisfies

KQ,z = (0,+∞). (24)

Proof: The proof is presented in Appendix B.

Using this notation, the solution to the ERM-RER problem in (19) is presented
by the following theorem.

RR n° 9454



12 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

Theorem 3.1. If λ ∈ KQ,z, with KQ,z in (23), the solution to the optimization
problem in (19) is a unique probability measure, denoted by P

(Q,λ)
Θ|Z=z, which

satisfies for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
, (25)

where the function Lz is defined in (3) and the function KQ,z is defined in (22).

Proof: The proof is presented in Appendix C.

Contrary to the ERM problem in (4), which does not necessarily possess a
solution, the ERM-RER problem in (19) always possess a solution when Q is
a probability measure. This is essentially because the set KQ,z is the set of
all positive reals (Lemma 3.1), and thus, the condition λ ∈ KQ,z is always
verified. On the contrary, when Q is a σ-finite measure, the solution to the
ERM-RER problem in (19) depends on whether λ ∈ KQ,z. If the solution exists,
it is P (Q,λ)

Θ|Z=z in (25), which is a unique probability measure referred to as the
Gibbs measure [57]. The function KQ,z is often referred to as the log-partition
function, see for instance, [58, Section 7.3.1].

The following lemma shows that the Radon-Nikodym derivative in (25) is both
nonnegative and finite.

Lemma 3.2. The Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies for all θ ∈
suppQ that

0 6
dP

(Q,λ)
Θ|Z=z

dQ
(θ) < +∞, (26)

where the equality
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0 holds if and only if Lz (θ) = +∞.

Proof: The proof is presented in Appendix D.

An immediate consequence of Lemma 3.2 is the equality

P
(Q,λ)
Θ|Z=z ({θ ∈M : Lz (θ) = +∞}) = 0.

Theorem 3.1 shows that the probability measure P (Q,λ)
Θ|Z=z is absolutely continu-

ous with respect to the measureQ. The following lemma shows that the converse
is also true if and only if the set of models that lead to an infinite empirical risk
exhibit zero measure with respect to the reference measure Q.

Lemma 3.3. The σ-finite measure Q and the probability measure P
(Q,λ)
Θ|Z=z

in (25) are mutually absolutely continuous if and only if

Q ({θ ∈M : Lz (θ) = +∞}) = 0. (27)
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Proof: The proof is presented in Appendix E.

The relevance of Lemma 3.3 is that it shows that if λ ∈ KQ,z, the collection of
negligible sets with respect to the measure P (Q,λ)

Θ|Z=z in (25) is identical to the
collection of negligible sets with respect to the measure Q in (19), under the
assumption in (27). Such an assumption is trivially true when the function `
in (2) is bounded.

The following lemma shows that the negligible sets with respect to the mea-
sure P (Q,λ)

Θ|Z=z in (25) are invariant with respect to λ.

Lemma 3.4. For all (α, β) ∈ KQ,z ×KQ,z, with KQ,z in (23), assume that the
probability measures P (Q,α)

Θ|Z=z and P (Q,β)
Θ|Z=z satisfy (25) with λ = α and λ = β,

respectively. Then, P (Q,α)
Θ|Z=z and P (Q,β)

Θ|Z=z are mutually absolutely continuous.

Proof: The proof is presented in Appendix F.

Particular assumptions on the set M and the reference measure Q lead to
well-known instances of the ERM-RER problem in (19), as discussed hereun-
der.

3.1 Examples

Three examples are of particular interest: (a) The set M ⊂ Rd is countable
and the measure Q is the counting measure in (M,B (M)), which leads to the
ERM-DisER problem; (b) The setM is an uncountable subset of Rd, and Q is
the Lebesgue measure on (M,B (M)), which leads to the ERM-DiffER prob-
lem; and (c) The set M and the measure Q form a Borel probability measure
space (M,B (M) , Q), which leads to the information-risk minimization prob-
lem.

3.1.1 ERM with Discrete Entropy Regularization

When the set M ⊂ Rd is countable and the σ-finite measure Q in (19) is
the counting measure in (M,B (M)), given a probability measure P on the
same measurable space, the Radon-Nikodym derivative dP

dQ is a probability mass
function, denoted by p. Thus, the relative entropy D (P‖Q) is equivalent to the
negative of the discrete entropy induced by p [54, Chapter 2], denoted by H(p).
In this case, the ERM-RER in (19) can be re-written as the following ERM-
DisER problem:

min
p

∑
θ∈M

Lz (θ) p (θ)− λH (p) , (28)

where the optimization domain in (28) is the set of probability mass functions
that can be defined over the measure space 4 (M,B (M)). In this special case,
the probability measure P (Q,λ)

Θ|Z=z in (25) whose probability mass function is the
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14 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

solution to the ERM-DisER problem in (28) satisfies

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

exp
Ä
−Lz(θ)

λ

ä
∑
ν∈M

exp

Å
−Lz (ν)

λ

ã , (29)

which describes the discrete Gibbs probability measure on 4 (M,B (M)), with
temperature parameter λ, and energy function Lz in (3).

3.1.2 ERM with Differential Entropy Regularization

WhenM⊆ Rd is uncountable and the σ-finite measureQ in (19) is the Lebesgue
measure in (M,B (M)), for all probability measures P ∈ ∆Q (M,B (M)), the
Radon-Nikodym derivative dP

dQ is a probability density function, denoted by
g. Thus, the relative entropy D (P‖Q) is equivalent to the negative of the
differential entropy induced by g [54, Chapter 8], denoted by h(g). In this
special case, the ERM-RER in (19) can be re-written as the following ERM-
DiffER problem:

min
g

∫
M

Lz (θ) g (θ) dθ − λh (g) , (30)

where the optimization domain in (30) is the set of probability density func-
tions that can be defined over the measure space (M,B (M)). The probability
measure P (Q,λ)

Θ|Z=z in (25) whose probability density function is the solution to
the ERM-RER problem in (30) satisfies

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

exp
Ä
−Lz(θ)

λ

ä∫
M

exp

Å
−Lz (ν)

λ

ã
dν

, (31)

which describes the absolutely continuous Gibbs probability measure with tem-
perature parameter λ and energy function Lz in (3).

Both, the ERM-DiffER and ERM-DisER problems are closely related to those
typically arising while using Jayne’s maximum entropy principle [59, 60] for
classification problems such as those in [34–36], and [61].

3.1.3 Information-Risk Minimization

When Q is a probability measure, the ERM-RER in (19) is equivalent to the
information-risk minimization (IRM) problem in [20]. The IRM problem in (19)
is known to possess a unique solution equal to the Gibbs probability measure
in (25), as independently shown in [20,29,57,62,63] and [64].

3.2 Bounds on the Radon-Nikodym Derivative

The Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) is bigger for models inducing
smaller empirical risks, as shown by the following corollary of Theorem 3.1.
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Corollary 3.1. The Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies for
all (θ1,θ2) ∈ suppQ× suppQ, with Lz (θ2) 6 Lz (θ1), that

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) 6

dP
(Q,λ)
Θ|Z=z

dQ
(θ2) , (32)

with equality if and only if Lz (θ1) = Lz (θ2).

The intuition that follows from corollary 3.1 is that under the assumption that
the ERM problem in (4) possesses a solution in the support of the reference
measure, i.e., T (z) ∩ suppQ is not empty, with T (z) in (5), the maximum of

the function
dP

(Q,λ)

Θ|Z=z

dQ in (25) is achieved by the models in T (z)∩ suppQ. When

the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) is either the probability mass
function in (29) or the probability density function in (31), Corollary 3.1 shows
that the elements of the set T (z) ∩ suppQ are the modes of the corresponding
probability density function or probability mass function.

3.3 Asymptotes of the Radon-Nikodym Derivative
The following lemma describes the asymptotic behavior of the Radon-Nikodym

derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) when the regulariation factor increases, i.e., λ→ +∞
and the reference measure Q is a probability measure.

Lemma 3.5. Let the measure Q in (19) be a probability measure. Then, for

all θ ∈ suppQ, the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies

lim
λ→+∞

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=1. (33)

Proof: From Theorem 3.1, it follows that for all θ ∈ suppQ,

lim
λ→+∞

dP
(Q,λ)
Θ|Z=z

dQ
(θ)= lim

λ→+∞

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

(34)

=
1∫

dQ (ν)

(35)

=1, (36)

where the function Lz is defined in (3). This completes the proof.

Lemma 3.5 unveils the fact that, when Q is a probability measure, in the limit
when λ→ +∞, both probability measures P (Q,λ)

Θ|Z=z and Q are identical. This is
consistent with the fact that when λ tends to infinity, the optimization problem
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16 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

in (19) boils down to exclusively minimizing the relative entropy. Such minimum
is zero and is observed when both probability measures P (Q,λ)

Θ|Z=z and Q are
identical (Theorem 2.1). Such intuition breaks when the reference measure is
a σ-finite measure, but not a probability measure. In such a case, the relative
entropy term in (19) might be negative and a minimum might not exist. See
for instance, the case of the relative entropy between a Gaussian measure and
the Lebesgue measure in (14), which satisfies (16).

The limit of the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25), when λ tends to
zero from the right, can be studied using the following set

Lz (δ),{θ ∈M : Lz (θ) 6 δ} , (37)

where the function Lz is defined in (3) and δ ∈ [0,+∞). In particular consider
the nonnegative real

δ?Q,z , inf {δ ∈ [0,+∞) : Q (Lz (δ)) > 0} . (38)

Let also L?Q,z be the following level set of the empirical risk function Lz in (3):

L?Q,z,
{
θ ∈ suppQ : Lz (θ) = δ?Q,z

}
. (39)

Using this notation, the limit of the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25),
when λ tends to zero from the right, is described by the following lemma.

Lemma 3.6. If Q
Ä
L?Q,z

ä
> 0, with the set L?Q,z in (39) and Q the σ-finite

measure in (19), then for all θ ∈ suppQ, the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ

in (25) satisfies

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

1

Q
Ä
L?Q,z

ä1{θ∈L?Q,z}. (40)

Alternatively, if Q
Ä
L?Q,z

ä
= 0. Then, for all θ ∈ suppQ,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

ß
+∞ if θ ∈ L?Q,z

0 otherwise. (41)

Proof: The proof is presented in Appendix G.

Consider that Q
Ä
L?Q,z

ä
> 0, with L?Q,z in (39). Under this assumption, from

Lemma 3.6, it holds that the probability measure P (Q,λ)
Θ|Z=z asymptotically con-

centrates on the set L?Q,z when λ tends to zero from the right. More specifically,
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note that for all measurable sets A ⊆ L?Q,z ∩ suppQ, it holds that

lim
λ→0+

P
(Q,λ)
Θ|Z=z (A)= lim

λ→0+

∫
A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) (42)

=

∫
lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)1{θ∈A}dQ(θ) (43)

=

∫
1

Q
Ä
L?Q,z

ä1{θ∈L?Q,z}1{θ∈A}dQ(θ) (44)

=
1

Q
Ä
L?Q,z

ä ∫ 1{θ∈A}dQ (θ) (45)

=
Q (A)

Q
Ä
L?Q,z

ä , (46)

where the equality in (43) follows from Lemma 3.2 and the dominated conver-
gence theorem [55, Theorem 2.6.9]. The equality in (44) follows from Lemma 3.6.
In the particular case in whichA = L?Q,z in (46), it holds that lim

λ→0+
P

(Q,λ)
Θ|Z=z

(
L?Q,z

)
= 1, which verifies the asymptotic concentration of the probability measure
P

(Q,λ)
Θ|Z=z on the set L?Q,z.

Another interesting observation is that the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ

in (25) is a constant among the elements of the set L?Q,z. This can be assimilated
to a uniform distribution of the probability among the elements of the set L?Q,z in
the limit when λ tends to zero from the right, as previously highlighted in [22–24]
and [25]. This becomes more evident in the case in which the set M is finite
and Q is the counting measure. In such a case, the asymptotic probability of
each of the elements in L?Q,z when λ tends to zero from the right is 1

|L?Q,z|
.

Consider now that Q
Ä
L?Q,z

ä
= 0, with L?Q,z in (39). Under this assumption, in

the asymptotic regime when λ → 0, the measure P (Q,λ)
Θ|Z=z is not a probability

measure but either the trivial measure or the infinite measure. This is typically
the case in whichM = Rd, the measure Q is absolutely continuous with respect
to the Lebesgue measure, and the solution to the ERM problem in (4) has a
unique solution on the support of Q, i.e., L?Q,z = T (z) and |T (z)| = 1, which
implies Q(L?Q,z) = 0.

An interesting question, which is left out of the scope of this paper, is the rate
at which P (Q,λ)

Θ|Z=z converges to such limiting measure. The interested reader is
referred to [22,25], and references therein.

The following lemma shows that independently of whether the set L?Q,z is neg-
ligible with respect to the measure Q, the limit when λ tends to zero from the
right of P (Q,λ)

Θ|Z=z

Ä
L?Q,z

ä
is equal to one.
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Lemma 3.7. The measure P (Q,λ)
Θ|Z=z in (25) and the set L?Q,z in (39) satisfy,

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
=1. (47)

Proof: The proof is presented in Appendix H.

Note that if the ERM problem in (4) possesses at least one solution and such
solution is within the support of the measure Q, i.e., T (z) ∩ suppQ 6= ∅, then,
when λ tends to zero from the right, the probability measure P (Q,λ)

Θ|Z=z asymptot-
ically concentrates on the solution (or the set of solutions within the support of
Q) to the ERM problem in (4). Alternatively, in the case in which L?Q,z∩T (z) =

∅, when λ tends to zero from the right, the probability measure P (Q,λ)
Θ|Z=z asymp-

totically concentrates on a set that does not contain the set of solutions to the
ERM problem in (4). This observation leads to the introduction to two new
classes of reference measures, namely, coherent and consistent measures, in the
following section.

4 Reference Measures

This section introduces two classes of reference measures, namely coherent and
consistent measures, and discusses the special case of Gibbs reference mea-
sures.

4.1 Coherent and Consistent Reference Measures

A class of reference measures of particular importance to establish connections
between the set of solutions to the ERM problem in (4) and the solution to the
ERM-RER problem in (19) is that of coherent measures. Let ρ? > 0 be the
infimum of the empirical risk Lz in (3). That is,

ρ? , inf{Lz (θ) : θ ∈M}. (48)

Using this notation, coherent measures are defined as follows.

Definition 4.1 (Coherent Measures). The σ-finite measure Q in (19) is said
to be coherent if, for all δ ∈ (ρ?,+∞), with ρ? in (48), it holds that

Q (Lz (δ)) > 0, (49)

where the set Lz (δ) is defined in (37).

When the reference measure Q in the EMR-RER problem in (19) is a coherent
measure, it holds that for all δ > ρ?, the set Lz (δ) in (37) exhibits positive prob-
ability with respect to the probability measure P (Q,λ)

Θ|Z=z in (25). The following
lemma highlights this observation.
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Lemma 4.1. The probability measure P
(Q,λ)
Θ|Z=z in (25) satisfies for all δ ∈

(ρ?,+∞), with ρ? in (48), that

P
(Q,λ)
Θ|Z=z (Lz (δ))>0, (50)

with Lz (δ) in (37), if and only if the σ-finite measure Q in (19) is coherent.

Proof: The proof is presented in Appendix I.

Under the assumption that the ERM problem in (4) possesses a solution, it
holds that

min
θ∈M

Lz (θ)=inf{Lz (θ) : θ ∈M}. (51)

Hence, when the σ-finite measure Q in (19) is coherent, then

δ?Q,z = ρ?, (52)

with δ?Q,z in (38) and ρ? in (48), which implies that

L?Q,z ⊆ T (z) , (53)

with T (z) in (5) and L?Q,z in (39). This observation, together with Lemma 3.7,
leads to the following result.

Lemma 4.2. Assume that the ERM problem in (4) possesses a solution. Then,
the probability measure P

(Q,λ)
Θ|Z=z in (25) and the sets T (z) in (5) and L?Q,z

in (39) satisfy

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z ∩ T (z)

)
=1, (54)

if and only if the σ-finite measure Q in (19) is coherent.

Proof: The proof follows by observing that if Q is a coherent measure and the
ERM problem in (4) possesses a solution, the inclusion in (53) holds. Thus,
from Lemma 3.7, the equality in (54) holds. Alternatively, when the measure Q
in (19) is noncoherent, then δ?Q,z > ρ?, which implies that L?Q,z ∩ T (z) = ∅.
Hence, from Lemma 3.7, it follows that

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z ∩ T (z)

)
=0, (55)

and completes the proof.

The relevance of coherent measures in ERM-RER problems is well highlighted
by Lemma 4.2. Essentially, when the ERM problem in (4) possesses at least one
solution, the concentration of the probability measure P (Q,λ)

Θ|Z=z in (25) on the
set (or a subset) of solutions to the ERM problem in (4) occurs asymptotically
when λ tends to zero from the right, if only if the reference measure Q in (19)
is coherent. Nonetheless, such asymptotic concentration is not a guarantee that
for strictly positive values of λ in (19), the set T (z) in (5) and the measure
P

(Q,λ)
Θ|Z=z in (25) satisfy P

(Q,λ)
Θ|Z=z (T (z)) > 0. In order to ensure this, another

class of reference measures, known as consistent measures, is introduced.
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Definition 4.2 (Consistent Measure). The σ-finite measure Q in (19) is said
to be consistent if Q

Ä
L?Q,z

ä
> 0, with L?Q,z in (39).

Note that every consistent measure is not necessarily coherent. For instance,
if Q is consistent but δ?Q,z > ρ?, with ρ? in (48) and δ?Q,z in (38), then, for all
δ ∈ (ρ?, δ?Q,z), it follows that Q (Lz (δ)) = 0, and thus, Q is not coherent. Al-
ternatively, every coherent measure is not necessarily consistent. For instance,
if
∣∣∣L?Q,z∣∣∣ = 1 and Q is coherent and absolutely continuous with respect to the

Lebesgue measure, it follows that Q
Ä
L?Q,z

ä
= 0, and thus, Q is not consis-

tent.

The relevance of consistent measures is highlighted by the following lemma.

Lemma 4.3. The probability measure P (Q,λ)
Θ|Z=z in (25) and the set L?Q,z in (39)

satisfy

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
>0, (56)

if and only if the σ-finite measure Q in (19) is consistent.

Proof: When Q is nonconsistent, it holds that Q
Ä
L?Q,z

ä
= 0 and thus, from

the fact that the measure P (Q,λ)
Θ|Z=z in (25) is absolutely continuous with re-

spect to Q, it holds that P (Q,λ)
Θ|Z=z

Ä
L?Q,z

ä
= 0. When Q is consistent, it holds

that Q
Ä
L?Q,z

ä
> 0. Moreover, for all θ ∈ L?Q,z, it holds that Lz (θ) < +∞ and

thus, from Lemma 3.2, it follows that
dP

(Q,λ)

Θ|Z=z

dQ (θ) > 0. Hence,

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
=

∫
L?Q,z

dP
(Q,λ)
Θ|Z=z (θ) (57)

=

∫
L?Q,z

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0, (58)

which completes the proof.

The following lemma highlights a central property of consistent measures when
the ERM problem in (4) possesses a solution.

Lemma 4.4. Assume that the ERM problem in (4) possesses a solution in the
support of Q. The probability measure P (Q,λ)

Θ|Z=z in (25) and the sets T (z) in (5)
and L?Q,z in (39) satisfy

P
(Q,λ)
Θ|Z=z

(
L?Q,z ∩ T (z)

)
>0, (59)

if and only if the σ-finite measure Q in (19) is consistent.

Proof: The proof follows from Lemma 4.3 by noticing that when the ERM
problem in (4) possesses a solution in the support of Q, the inclusion in (53)
holds.
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The distinction between coherent and consistent measures becomes more evi-
dent under certain conditions. Consider the case in which M is finite. In this
case, if the solution to the ERM problem in (4) is in the support of the σ-finite
measure Q, then Q is both coherent and consistent. This is essentially because
all measurable singletons (models) in suppQ exhibit positive measure with re-
spect to Q. Alternatively, if the solution to the ERM problem in (4) is not in the
support of Q, then Q is consistent but not coherent. Consider the case in which
M is the set Rd; the loss function ` in (2) is continuous; and the ERM problem
in (4) admits a unique solution. In this case, any probability measure Q abso-
lutely continuous with respect to the Lebesgue measure is a coherent measure,
but it is not a consistent measure. Alternatively, if the set of solutions to the
ERM problem in (4) exhibits positive Lebesgue measure, then, the measure Q
is both coherent and consistent.

4.2 Gibbs Reference Measures
In model selection, a natural idea is to proceed by successive approximations
in the seek of lower computation complexity. From this perspective, one might
wonder whether the solution to a current instance of an ERM-RER problem
might serve as reference measure for the next instance. In this section, it
is shown that this yields no benefit. Composing two successive ERM-REM
problems boils down to a unique ERM-RER problem with the initial reference
measure and a particular regularization factor. Under the assumption that
λ ∈ KQ,z, with KQ,z in (23), the problem of interest is:

min
P∈4Q(M,B(M))

Rz (P ) + αD
Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (60a)

s. t.

∫
dP (θ) = 1, (60b)

where α > 0; the reference measure P (Q,λ)
Θ|Z=z, which satisfies (25), is the solution

of the ERM-RER problem in (19); and the functional Rz is defined in (18).
From Theorem 3.1, the solution to the ERM-RER problem in (60), which is

denoted by P
Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z , satisfies for all θ ∈ suppQ that

dP

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ)=exp

Å
−K

P
(Q,λ)

Θ|Z=z
,z

Å
− 1

α

ã
− 1

α
Lz (θ)

ã
. (61)

The log-partition functions KQ,z in (22) and K
P

(Q,λ)

Θ|Z=z
,z

in (61) are strongly

related, as shown by the following lemma.

Lemma 4.5. The functions KQ,z in (22) and K
P

(Q,λ)

Θ|Z=z
,z

in (61) satisfy for all
t ∈ R,

K
P

(Q,λ)

Θ|Z=z
,z

(t)=KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
. (62)

RR n° 9454



22 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

Moreover, for all t 6 0,

K
P

(Q,λ)

Θ|Z=z
,z

(t)60. (63)

Proof: The proof of (62) relies on the fact that for all

t ∈
ß
ν ∈ R : K

P
(Q,λ)

Θ|Z=z
,z

(ν) <∞
™
,

the function K
P

(Q,λ)

Θ|Z=z
,z

in (61) satisfies

K
P

(Q,λ)

Θ|Z=z
,z

(t)=log

Å∫
exp (t Lz (θ)) dP

(Q,λ)
Θ|Z=z(θ)

ã
(64)

=log

Ñ∫
exp (t Lz (θ))

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ)

é
(65)

=log

Å∫
exp

ÅÅ
t−1

λ

ã
Lz(θ)−KQ,z

Å
−1

λ

ãã
dQ(θ)

ã
(66)

=log

Å∫
exp

ÅÅ
t−1

λ

ã
Lz(θ)

ã
dQ(θ)

ã
−KQ,z

Å
−1

λ

ã
(67)

=KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
, (68)

where the equality in (66) follows from (25). Moreover, from Lemma 5.2, it
follows that the function K

P
(Q,λ)

Θ|Z=z
,z

is continuous and nondecresing. Let s? ∈
R ∪ {+∞} be defined by

s?,sup

ß
ν ∈ R : K

P
(Q,λ)

Θ|Z=z
,z

(ν) <∞
™
. (69)

If s? = +∞, then for all t ∈ R, K
P

(Q,λ)

Θ|Z=z
,z

(t) < +∞, and the proof of (62) is

completed.

Alternatively, if s? < +∞, it follows that for all t > s?, K
P

(Q,λ)

Θ|Z=z
,z

(t) = +∞,

which implies that KQ,z

(
t− 1

λ

)
= +∞, as the function KQ,z is also continuous

(Lemma 5.2) and KQ,z

(
− 1
λ

)
< ∞ (due to the choice of λ). Hence, in this

case, the equality in (62) is of the form +∞ = +∞. This completes the proof
of (62).

The proof of (63) follows by noticing that for all t 6 0 and for all θ ∈ suppQ,
it holds that exp (t Lz (θ)) 6 1. Hence,

K
P

(Q,λ)

Θ|Z=z
,z

(t)=log

Å∫
exp (t Lz (θ)) dP

(Q,λ)
Θ|Z=z(θ)

ã
(70)

6log

Å∫
dP

(Q,λ)
Θ|Z=z(θ)

ã
(71)

=0, (72)
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which completes the proof.

The following lemma establishes that the solution to the ERM-RER problem
in (60) is identical to the solution to another ERM-RER problem of the form

min
P∈4Q(M,B(M))

Rz (P ) +

Ç
1

1
α + 1

λ

å
D (P‖Q) , (73a)

s. t.

∫
dP (θ) = 1, (73b)

with λ ∈ KQ,z, with KQ,z in (23), and whose solution, denoted by P

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z ,

satisfies for all θ ∈ suppQ,

dP

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ
− 1

α

ã
−
Å

1

λ
+

1

α

ã
Lz (θ)

ã
. (74)

The formal statement is as follows.

Lemma 4.6. Let α ∈ (0,+∞) and λ ∈ KQ,z, with KQ,z in (23). Then, the

probability measures P
Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z in (61) and P

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z in (74) are identical.

Proof: For all θ ∈ suppQ,

dP

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dQ
(θ)=

dP

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ)
dP

(Q,λ)
Θ|Z=z

dQ
(θ) (75)

=exp

(
−K

P
(Q,λ)

Θ|Z=z
,z

Å
− 1

α

ã
−KQ,z

Å
− 1

λ

ã
−
Å

1

α
+

1

λ

ã
Lz(θ)

)
(76)

=exp

Å
−KQ,z

Å
− 1

α
− 1

λ

ã
−
Å

1

α
+

1

λ

ã
Lz (θ)

ã
(77)

=
dP

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z

dQ
(θ), (78)

where the equality in (75) follows from the fact that the measure P
Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z is

absolutely continuous with respect to P (Q,λ)
Θ|Z=z and P

(Q,λ)
Θ|Z=z is absolutely continu-

ous with respect to the measure Q; the equality in (76) follows from Lemma 4.5;
and the equality in (78) follows from Theorem 3.1.
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For all measurable subsets A ofM, the following holds:

P

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z (A)=

∫
A

dP

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dQ
(θ)dQ(θ) (79)

=

∫
A

dP

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z

dQ
dQ(θ) (80)

=

∫
A

dP

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z (θ) (81)

=P

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z (A), (82)

where the equality in (80) follows from (78). This completes the proof.

The following theorem establishes a relation between the solutions to the fol-
lowing optimization problems

min
P∈4Q(M,B(M))

Rz (P ) , (83a)

s. t. D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
6 c, and (83b)∫

dP (θ) = 1, (83c)

and

min
P∈4Q(M,B(M))

Rz (P ) + ωD (P‖Q) , (84a)

s. t.

∫
dP (θ) = 1, (84b)

with c > 0 and ω ∈ KQ,z, with KQ,z in (23), two constants; P (Q,λ)
Θ|Z=z the

probability measure in (25); and Rz the functional in (18).

From Theorem 3.1, the solution to the ERM-RER problem in (84), which is
denoted by P (Q,ω)

Θ|Z=z, satisfies for all θ ∈ suppQ that

dP
(Q,ω)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

ω

ã
− 1

ω
Lz (θ)

ã
, (85)

where the function KQ,z is in (22).

The following theorem formalizes the relation between both optimization prob-
lems.

Theorem 4.1. Assume that c and ω in (83) and (84) satisfy

D
Ä
P

(Q,ω)
Θ|Z=z‖P

(Q,λ)
Θ|Z=z

ä
= c, (86)
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with P
(Q,λ)
Θ|Z=z and P

(Q,ω)
Θ|Z=z being the probability measures in (25) and (85),

respectively. Then, the solution to the optimization problem in (83) is the prob-
ability measure P (Q,ω)

Θ|Z=z.

Proof: The proof is presented in Appendix J.

5 The Log-Partition Function

This section introduces some properties of the log-partition functionKQ,z in (22)
using the notion of separable empirical risk functions.

5.1 Separable Empirical Risk Functions

Separable empirical risk functions are defined with respect to a measure P ∈
4 (M).

Definition 5.1 (Separable Empirical Risk Function). The empirical risk func-
tion Lz in (3) is said to be separable with respect to a σ-finite measure P ∈
4 (M), if there exist a positive real c > 0 and two subsets A and B of M that
are nonnegligible with respect to P , and for all (θ1,θ2) ∈ A× B,

Lz (θ1)< c <Lz (θ2) < +∞. (87)

In a nutshell, a nonseparable empirical risk function with respect to the mea-
sure Q is a constant almost surely. More specifically, there exists a real a > 0,
such that

Q ({θ ∈M : Lz (θ) = a}) = 1. (88)

From this perspective, nonseparable empirical risk functions exhibit little prac-
tical interest for model selection.

The definition of separability in Definition 5.1 and Lemma 3.3 lead to the fol-
lowing lemma.

Lemma 5.1. The empirical risk function Lz in (3) is separable with respect to
the σ-finite measure Q in (19) if and only if it is separable with respect to the
probability measure P (Q,λ)

Θ|Z=z in (25).

Proof: Consider first that the function Lz is separable with respect to the σ-
finite measure Q. Hence, there exist a positive real c > 0 and two subsets A
and B ofM that are nonnegligible with respect to Q, such that for all (θ1,θ2) ∈
A × B the inequality in (87) holds. Hence, from (87) the following inequalities
hold:

− 1

λ
Lz (θ1)>− c

λ
> − 1

λ
Lz (θ2) > −∞, and (89)

exp

Å
− 1

λ
Lz (θ1)

ã
>exp

(
− c
λ

)
> exp

Å
− 1

λ
Lz (θ2)

ã
> 0. (90)
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This implies that

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) > exp

Å
−KQ,z

Å
− 1

λ

ã
− c

λ

ã
(91)

>
dP

(Q,λ)
Θ|Z=z

dQ
(θ2) (92)

> 0. (93)

Using the inequality in (91) and the facts that Q (A) > 0 and Q (B) > 0, the
following holds

P
(Q,λ)
Θ|Z=z (A)=

∫
A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0, (94)

and

P
(Q,λ)
Θ|Z=z (B)=

∫
B

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0. (95)

which implies that the function Lz is separable with respect to the probability
measure P (Q,λ)

Θ|Z=z.

Consider now that the function Lz is separable with respect to the probabil-
ity measure P (Q,λ)

Θ|Z=z. Hence, there exist a positive real c > 0 and two sub-

sets A and B ofM that are nonnegligible with respect to P (Q,λ)
Θ|Z=z, such that for

all (θ1,θ2) ∈ A×B the inequality in (87) holds. More specifically, P (Q,λ)
Θ|Z=z (A) >

0 and P (Q,λ)
Θ|Z=z (B) > 0. From Lemma 3.2 and the inequality in (87), it follows

that for all pairs (θ1,θ2) ∈ A × B,
dP

(Q,λ)

Θ|Z=z

dQ (θ1) > 0 and
dP

(Q,λ)

Θ|Z=z

dQ (θ2) > 0.

Hence, from the fact that P (Q,λ)
Θ|Z=z (A) > 0 and P

(Q,λ)
Θ|Z=z (B) > 0, it follows

that Q (A) > 0 and Q (B) > 0, which implies that the function Lz is separable
with respect to the σ-finite measure Q. This completes the proof.

Lemma 5.1 shows that separable empirical risk functions, and only these func-
tions, lead to ERM-RER-optimal probability measures from which models are
sampled with different probabilities. For the case of nonseparable empirical
risk functions, all models are sampled from the ERM-RER-optimal probability
measure with the same probability.

5.2 Properties of the Log-Partition Function
The log-partition function KQ,z in (22) is a nondecreasing continuous convex
function as shown by the following lemmas.

Lemma 5.2. The function KQ,z in (22) is nondecreasing and differentiable
infinitely many times in the interior of {t ∈ R : KQ,z(t) < +∞}.
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Proof: The proof is presented in Appendix K.

Lemma 5.3. The function KQ,z in (22) is convex in {t ∈ R : KQ,z(t) < +∞}.
Moreover, it is strictly convex if and only if the empirical risk function Lz in (3)
is separable with respect to the σ-finite measure Q in (19).

Proof: The proof is presented in Appendix L.

In Lemma 5.2, it has been established that the log-partition function KQ,z

in (22) is differentiable infinitely many times in the interval

{t ∈ R : KQ,z(t) < +∞} .

Let the m-th derivative of the function KQ,z in (22) be denoted by K(m)
Q,z : R→

R, with m ∈ N. Hence, for all s ∈ KQ,z,

K
(m)
Q,z

Å
−1

s

ã
,

dm

dtm
KQ,z (t)

∣∣∣
t=− 1

s

. (96)

The following lemma provides explicit expressions for the first, second and third
derivatives of the function KQ,z in (22).

Lemma 5.4. The first, second and third derivatives of the function KQ,z in (22),
denoted respectively by K

(1)
Q,z, K

(2)
Q,z, and K

(3)
Q,z, satisfy for all λ ∈ intKQ,z,

with KQ,z in (23),

K
(1)
Q,z

Å
− 1

λ

ã
=

∫
Lz (θ) dP

(Q,λ)
Θ|Z=z(θ), (97)

K
(2)
Q,z

Å
− 1

λ

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

λ

ãã2
dP

(Q,λ)
Θ|Z=z(θ), (98)

K
(3)
Q,z

Å
− 1

λ

ã
=

∫ Å
Lz(θ)−K(1)

Q,z

Å
−1

λ

ãã3
dP

(Q,λ)
Θ|Z=z(θ), (99)

where the function Lz is defined in (3) and the measure P (Q,λ)
Θ|Z=z satisfies (25).

Proof: The proof is presented in Appendix M.

From Lemma 5.4, it follows that if Θ ∼ P
(Q,λ)
Θ|Z=z, with P

(Q,λ)
Θ|Z=z in (25), the

random variable
W , Lz (Θ) , (100)

with the function Lz in (3), possesses a mean, variance, and third cumulant
that are equivalent to K(1)

Q,z

(
− 1
λ

)
in (97), K(2)

Q,z

(
− 1
λ

)
in (98), and K(3)

Q,z

(
− 1
λ

)
in (99), respectively.

Note that if there exists a δ > 0 such that the log-partition function KQ,z is
differentiable within the open interval (−δ, δ) and Q in (19) is a probability
measure, the function KQ,z is the cumulant generating function of the random
variable

V , Lz (Θ) , with Θ ∼ Q. (101)
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The following lemma leverages this observation.

Lemma 5.5. Assume that Q in (19) is a probability measure and that there
exists real δ > 0 such that the log-partition function KQ,z in (22) is differentiable
within (−δ, δ). Then, the first, second and third derivatives of KQ,z, denoted
respectively by K(1)

Q,z, K
(2)
Q,z, and K

(3)
Q,z, satisfy

K
(1)
Q,z (0)=

∫
Lz (θ) dQ(θ), (102)

K
(2)
Q,z (0)=

∫ Å
Lz(θ)−K(1)

Q,z

Å
−1

λ

ãã2
dQ(θ), (103)

K
(3)
Q,z (0)=

∫ Å
Lz(θ)−K(1)

Q,z

Å
−1

λ

ãã3
dQ(θ), (104)

where the function Lz is defined in (3).

Proof: The proof follows along the same arguments of the proof of Lemma 5.4.

The mean, variance, and third cumulant of the random variable V in (101)
areK(1)

Q,z (0) in (102),K(2)
Q,z (0) in (103), andK(3)

Q,z (0) in (104), respectively.

6 Expectation of the Empirical Risk
The mean of the random variable W in (100) is equivalent to the expectation of
the empirical risk function Lz with respect to the probability measure P (Q,λ)

Θ|Z=z

in (25), which is equal to Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
, with the functional Rz in (18). Of-

ten, Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is referred to as the ERM-RER-optimal expected empirical

risk to emphasize that this is the expected value of the empirical risk when
models are sampled from the solution of the ERM-RER problem in (19). The
following corollary of Lemma 5.4 formalizes this observation.

Corollary 6.1. The probability measure P (Q,λ)
Θ|Z=z in (25) verifies that

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
= K

(1)
Q,z

Å
− 1

λ

ã
, (105)

where the functional Rz and the function K
(1)
Q,z are defined in (18) and (97),

respectively.

The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (105) exhibits the following prop-

erty.

Theorem 6.1. The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (105) is nonde-

creasing with λ ∈ KQ,z, with KQ,z in (23). Moreover, Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is strictly

increasing with λ ∈ KQ,z if and only if the function Lz in (3) is separable with
respect to the measure Q.
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Proof: The proof is presented in Appendix N.

The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (105) has been shown to be non-

decreasing with λ in [8, Appendix E.4] for the special case in which Q is a
probability measure.

A question that arises from Theorem 6.1 is whether the value Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (105) can be made arbitrarily close to δ?Q,z, with δ

?
Q,z in (38), by making λ

arbitrarily small. The following lemma shows that the value Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is

often bounded away from δ?Q,z, even for arbitrarily small values of λ.

Lemma 6.1. The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (105) satisfies,

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
> δ?Q,z, (106)

where δ?Q,z is defined in (38). Moreover, the inequality in (106) is strict if and
only if the function Lz in (3) is separable with respect to the measure Q in (19).

Proof: The proof is presented in Appendix O.

In the asymptotic regime when λ tends to zero, the expected empirical risk
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (105) is equal to δ?Q,z, as shown by the following lemma.

Theorem 6.2. The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (105) satisfies,

lim
λ→0+

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=δ?Q,z, (107)

where δ?Q,z is defined in (38).

Proof: The proof is presented in Appendix P.

The following lemma determines the value of the objective function of the ERM-
RER problem in (19) when it is evaluated at its solution. This result appeared
first in [10, Lemma 3].

Lemma 6.2 (Lemma 3 in [10]). The probability measure P (Q,λ)
Θ|Z=z in (25) and

the σ-finite measure Q in (19) satisfy

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+λD

Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
=−λKQ,z

Å
− 1

λ

ã
. (108)

Moreover, if the condition in (27) holds, then,

Rz (Q)− λD
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
=−λKQ,z

Å
− 1

λ

ã
, (109)

where the functional Rz is defined in (18); and the function KQ,z is defined
in (22).
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Proof: From Theorem 3.1, it follows that for all θ ∈ suppQ,

log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
=−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ) , (110)

where the function Lz is defined in (3). Thus,

D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
=

∫
log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=z (θ) (111)

=−KQ,z

Å
− 1

λ

ã
−1

λ

∫
Lz (θ)dP

(Q,λ)
Θ|Z=z (θ) (112)

=−KQ,z

Å
− 1

λ

ã
− 1

λ
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
, (113)

where the functional Rz is defined in (18). This completes the proof of (108).

From Lemma 3.3 and (110), it follows that

D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
=−

∫
log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
dQ (θ) (114)

=KQ,z

Å
− 1

λ

ã
+

1

λ

∫
Lz (θ) dQ (θ) (115)

=KQ,z

Å
− 1

λ

ã
+

1

λ
Rz (Q) , (116)

which completes the proof of (109).

The following corollary of Lemma 6.2 characterizes the difference between the
expected values of the random variables W and V in (100) and (101), respec-
tively.

Corollary 6.2. If measures Q and P (Q,λ)
Θ|Z=z in (25) are both probability mea-

sures, then,

Rz (Q)− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=λ
Ä
D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
+D

Ä
P

(Q,λ)
Θ|Z=z‖Q

ää
. (117)

The right-hand side of (117) is a symmetrized Kullback-Liebler divergence, also
known as Jeffrey’s divergence [65], between the measures Q and P (Q,λ)

Θ|Z=z. More

importantly, when Q is a probability measure, it follows that D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
>

0 andD
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
> 0, which leads to the following corollary from Lemma 6.2.

Corollary 6.3. If the σ-finite measure Q in (19) is a probability measure, then,
the probability measure P (Q,λ)

Θ|Z=z in (25) satisfies

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 Rz (Q) , (118)

where, the functional Rz is defined in (18).
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7 Variance of the Empirical Risk
In Lemma 5.2, it has be established that if there exists a δ > 0 such that
the log-partition function KQ,z in (22) is finite within the open interval (−δ, δ)
the log-partition function KQ,z is differentiable infinitely many times within the
interval (−∞, δ). This together with the mean value theorem [66, Theorem 5.10]
lead to the following characterization of the differences of the values K(2)

Q,z

(
− 1
t

)
and K(2)

Q,z (0), with t > 0.

Lemma 7.1. If the measure Q in (19) is a probability measure and there exists
a δ > 0 such that the function KQ,z in (22) is differentiable within the open
interval (−δ, δ), then for all t > 0,

K
(2)
Q,z

Å
−1

t

ã
−K(2)

Q,z (0)=−1

t
K

(3)
Q,z

Å
− 1

β

ã
< +∞, (119)

for some β ∈ (t,+∞), where the functions K(2)
Q,z, and K

(3)
Q,z are defined in (96).

Proof: The proof is an immediate consequence of Lemma 5.2 and the mean
value theorem [66, Theorem 5.10].

The relevance of Lemma 7.1 lies on the fact thatK(2)
Q,z

(
− 1
λ

)
andK(2)

Q,z (0) are the
variances of the random variablesW in (100) and V in (101). See Lemma 5.4 and
Lemma 5.5. Under the assumptions of Lemma 7.1, it follows that the function
K

(3)
Q,z is continuous in (−∞, δ), where δ > 0. Hence, for all t > 0, the function

K
(3)
Q,z achieves a maximum and a minimum within the interval

[
− 1
t , 0
]
. Such

extrema allow providing lower and upper bounds on the variance K(2)
Q,z

(
− 1
λ

)
of

the random variableW in terms of the variance K(2)
Q,z (0) of the random variable

V , as shown hereunder.

Corollary 7.1. If the measure Q in (19) is a probability measure and there
exists a δ > 0 such that the function KQ,z in (22) is differentiable within the
open interval (−δ, δ), then for all t > 0,

K
(2)
Q,z (0)− 1

t
c26 K

(2)
Q,z

Å
−1

t

ã
6K(2)

Q,z (0)− 1

t
c1, (120)

where,

c1= min
s∈[− 1

t ,0]
K

(3)
Q,z (s) and (121)

c2= max
s∈[− 1

t ,0]
K

(3)
Q,z (s) , (122)

and the functions K(2)
Q,z, and K

(3)
Q,z are defined in (96).

The inequality in (120) reveals that under the assumptions of Corollary 7.1, in
the asymptotic regime when t→ +∞, the variances of the random variables W
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in (100) and V in (101) are identical. Additionally, unlike the means K(1)
Q,z

(
− 1
λ

)
and K

(1)
Q,z (0) of the random variables W and V , which satisfy K

(1)
Q,z

(
− 1
λ

)
6

K
(1)
Q,z (0) (Corollary 6.3), their variances K(2)

Q,z

(
− 1
λ

)
and K(2)

Q,z (0) might satisfy

K
(2)
Q,z

(
− 1
λ

)
< K

(2)
Q,z (0) or K(2)

Q,z

(
− 1
λ

)
> K

(2)
Q,z (0) depending on whether the

function K
(3)
Q,z is positive or negative within the interval [− 1

λ , 0]. Using this

observation the values K(2)
Q,z

(
− 1
t

)
, with t > 0, and K(2)

Q,z (0) can be compared
as follows.

Lemma 7.2. Assume that the measure Q in (19) is a probability measure and
there exists a δ > 0 such that the function KQ,z in (22) is differentiable within
the open interval (−δ, δ). Hence, the following holds for all t > 0:

• If for all s > t, K(3)
Q,z

(
− 1
s

)
< 0, then

K
(2)
Q,z (0) < K

(2)
Q,z

Å
−1

t

ã
< +∞; (123)

• If for all s > t, K(3)
Q,z

(
− 1
s

)
> 0, then

K
(2)
Q,z

Å
−1

t

ã
<K

(2)
Q,z (0) < +∞; (124)

• If for some s > t, K(3)
Q,z

(
− 1
s

)
= 0, then there exists two positive reals c1

and c2 such that

c16min{K(2)
Q,z

Å
−1

t

ã
,K

(2)
Q,z (0)} (125)

6max{K(2)
Q,z

Å
−1

t

ã
,K

(2)
Q,z (0)} (126)

6c2. (127)

Proof: The proofs of the inequalities in (123) and (124) are immediate con-
sequences of Lemma 7.1. The inequalities in (125) and (127) follow from the
fact that the function K(2)

Q,z, which is continuous, exhibits critical points at − 1
s ,

with s satisfying K(3)
Q,z

(
− 1
s

)
= 0. Some of such critical points might be local

extrema of the function K(2)
Q,z, either local minima or local maxima. Hence, the

inequalities (125) and (127) follow by choosing c1 as the smallest minimum of
the function K(2)

Q,z within the interval
[
− 1
t , 0
]
; and c2 as the biggest maximum

of the function K(2)
Q,z within the interval

[
− 1
t , 0
]
. If none of such critical points

is a local extremum, then, (125) and (127) hold with equality.

Lemma 7.1 and Lemma 7.2 show that the monotonicity of the expectation of the
random variable W in (100), stated by Theorem 6.1, is not a property exhibited
by the variance nor the third cumulant. The following example highlights this
observation.
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Example 7.1. Consider the ERM-RER problem in (19), under the assumption
that Q is a probability measure and the empirical risk function Lz in (3) is such
that for all θ ∈M,

Lz (θ) =

ß
0 if θ ∈ A
1 if θ ∈M \A, (128)

where the sets A ⊂M andM\A are nonnegligible with respect to the reference
probability measure Q. In this case, the function KQ,z in (22) satisfies for
all λ > 0,

KQ,z

Å
− 1

λ

ã
=log

Å
Q(A)+exp

Å
− 1

λ

ã
(1−Q(A))

ã
. (129)

The derivatives K(1)
Q,z, K

(2)
Q,z, and K

(3)
Q,z in (96) of the function KQ,z in (129)

satisfy for all λ > 0,

K
(1)
Q,z

Å
− 1

λ

ã
=

exp
(
− 1
λ

)
(1−Q (A))

Q (A) + exp
(
− 1
λ

)
(1−Q (A))

; (130)

K
(2)
Q,z

Å
− 1

λ

ã
=

Q (A) (1−Q (A)) exp
(
− 1
λ

)(
Q (A) + exp

(
− 1
λ

)
(1−Q (A))

)2 ; and (131)

K
(3)
Q,z

Å
− 1

λ

ã
=K

(2)
Q,z

Å
− 1

λ

ãÇ
Q (A)− (1−Q (A)) exp

(
− 1
λ

)
Q (A) + exp

(
− 1
λ

)
(1−Q (A))

å
. (132)

Note that K(3)
Q,z

(
− 1
λ

)
> 0 if and only if

Q (A)− (1−Q (A)) exp

Å
− 1

λ

ã
> 0. (133)

Assume that Q (A) > 1
2 . Thus, it holds that for all λ > 0, the inequality in (133)

is always satisfied. This follows from observing that for all λ > 0,

exp

Å
− 1

λ

ã
< 1 6

Q (A)

1−Q (A)
. (134)

Hence, if Q (A) > 1
2 , for all decreasing sequences of positive reals λ1 > λ2 >

. . . > 0, it holds that

1

4
> K

(2)
Q,z

Å
− 1

λ1

ã
> K

(2)
Q,z

Å
− 1

λ2

ã
> . . . > 0. (135)

Alternatively, assume that Q (A) < 1
2 . In this case, the inequality in (133) is

satisfied if and only if

λ <

Å
log

Å
1−Q (A)

Q (A)

ãã−1
. (136)
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Hence, if Q (A) < 1
2 , then for all decreasing sequences of positive realsÅ
log

Å
1−Q (A)

Q (A)

ãã−1
> λ1 > λ2 > . . . > 0,

it holds that

1

4
> K

(2)
Q,z

Å
− 1

λ1

ã
> K

(2)
Q,z

Å
− 1

λ2

ã
> . . . > 0. (137)

Moreover, for all decreasing sequences of positive reals

λ1 > λ2 > . . . >

Å
log

Å
1−Q (A)

Q (A)

ãã−1
,

it holds that

K
(2)
Q,z

Å
− 1

λ1

ã
< K

(2)
Q,z

Å
− 1

λ2

ã
< . . . <

1

4
. (138)

The upperbound by 1
4 in (135), (137) and (138) follows by noticing that the value

K
(2)
Q,z

(
− 1
λ

)
is maximized when λ =

Ä
log
Ä
1−Q(A)
Q(A)

ää−1
and K(2)

Q,z

(
− 1
λ

)
= 1

4 .

Example 7.1 provides important insights on the choice of the reference mea-
sure Q. Note for instance that when the reference measure assigns a probability
to the set of models T (z) in (5) that is greater than or equal to the probability
of suboptimal models M \ T (z), i.e., Q (T (z)) > 1

2 , the variance is strictly
decreasing to zero when λ decreases. See for instance, Figure 1 and Figure 2.
That is, when the reference measure assigns higher probability to the set of
solutions to the ERM problem in (4), the variance is monotone with respect to
the parameter λ.

Alternatively, when the reference measure assigns a probability to the set T (z)
that is smaller than the probability of the set M \ T (z), i.e., Q (T (z)) <
1
2 , there exists a critical point for λ at

Ä
log
Ä
1−Q(A)
Q(A)

ää−1
. See for instance,

Figure 3. More importantly, such a critical point can be arbitrarily close to
zero depending on the value Q (A). The variance strictly decreases when λ

decreases beyond the value
Ä
log
Ä
1−Q(A)
Q(A)

ää−1
. Otherwise, reducing λ above the

value
Ä
log
Ä
1−Q(A)
Q(A)

ää−1
increases the variance.

In general, these observations suggest that reference measures Q that allocate
small measures to the sets containing the set T (z) might require reducing the
value λ beyond a small threshold in order to observe small values of K(2)

Q,z

(
− 1
λ

)
,

which is the variance of the random variable W , in (100). These observations
are central to understanding the concentration of probability that occurs when λ
decreases to zero, as discussed in Section 9.
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Figure 1: Mean K
(1)
Q,z

(
− 1
λ

)
, variance K(2)

Q,z

(
− 1
λ

)
, and third central moment

K
(3)
Q,z

(
− 1
λ

)
of the empirical risk in Example 7.1, with Q (A) = 3

4

8 Cumulant Generating Function of the Empiri-
cal Risk

Consider the transport of the measure P (Q,λ)
Θ|Z=z in (25) from (M,B (M)) to

([0,+∞],B ([0,+∞])) through the function Lz in (3). Denote the resulting
probability measure in ([0,+∞],B ([0,+∞])) by P (Q,λ)

W |Z=z. That is, for all A ∈
B ([0,+∞]),

P
(Q,λ)
W |Z=z (A) = P

(Q,λ)
Θ|Z=z

(
L−1z (A)

)
, (139)

where the term L−1z (A) represents the set

L−1z (A),{ν ∈M : Lz(ν) ∈ A} . (140)

Note that the random variable W in (100) induces the probability measure
P

(Q,λ)
W |Z=z in ([0,+∞],B ([0,+∞])). The objective of this section is to study

the properties of the cumulant generating function of the probability mea-
sure P (Q,λ)

W |Z=z, denoted by Jz,Q,λ : R → R ∪ {+∞}, which satisfies for all t ∈
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Figure 2: Mean K
(1)
Q,z

(
− 1
λ

)
, variance K(2)

Q,z

(
− 1
λ

)
, and third central moment

K
(3)
Q,z

(
− 1
λ

)
of the empirical risk in Example 7.1, with Q (A) = 1

2

R,

Jz,Q,λ(t) = log

Å∫
exp (tw) dP

(Q,λ)
W |Z=z(w)

ã
(141)

= log

Å∫
exp (t Lz (θ)) dP

(Q,λ)
Θ|Z=z(θ)

ã
, (142)

where the equality in (142) follows from [55, Theorem 1.6.12].

The following lemma provides an expression for Jz,Q,λ in terms of the log-
partition function KQ,z in (22).

Lemma 8.1. If λ ∈ KQ,z, with KQ,z in (23), then, the function Jz,Q,λ in (141),
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Figure 3: Mean K
(1)
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(
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, variance K(2)
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(
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)
, and third central moment

K
(3)
Q,z

(
− 1
λ

)
of the empirical risk in Example 7.1, with Q (A) = 1

4

verifies for all t ∈ R,

Jz,Q,λ(t) = K
P

(Q,λ)

Θ|Z=z
,z

(t) (143)

= KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
(144)

=

+∞∑
m=1

tm

m!
K

(m)
Q,z

Å
− 1

λ

ã
, (145)

with the function KQ,z in (22) and the function K(m)
Q,z in (96).

Proof: The proof of (143) follows immediately from (22) and (142). The proof of
(144) follows from Lemma 4.5. Finally, the proof of (145) follows by observing
that a Taylor expansion of the function KQ,z in (22) at the point − 1

λ , yields for
all t ∈ {ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=KQ,z

Å
− 1

λ

ã
+

+∞∑
s=1

K
(s)
Q,z

(
− 1
λ

)
s!

Å
t+

1

λ

ãs
. (146)
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Choosing α ∈
{
ν ∈ R : KQ,z(ν − 1

λ ) < +∞
}

such that t = α − 1
λ in (146)

yields

KQ,z

Å
α− 1

λ

ã
=KQ,z

Å
− 1

λ

ã
+

+∞∑
s=1

αs

s!
K

(s)
Q,z

Å
− 1

λ

ã
, (147)

which implies that for all t ∈
{
ν ∈ R : KQ,z(ν − 1

λ ) < +∞
}
,

KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
=

+∞∑
s=1

ts

s!
K

(s)
Q,z

Å
− 1

λ

ã
. (148)

Let s? ∈ R ∪ {+∞} be defined by

s?,sup

ß
ν ∈ R : KQ,z

Å
ν − 1

λ

ã
<∞

™
. (149)

If s? = +∞, then for all t ∈ R, KQ,z

(
t− 1

λ

)
− KQ,z

(
− 1
λ

)
< +∞, and

thus,

+∞>Jz,Q,λ(t) = K
P

(Q,λ)

Θ|Z=z
,z

(t) (150)

= KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
(151)

=

+∞∑
m=1

tm

m!
K

(m)
Q,z

Å
− 1

λ

ã
. (152)

Alternatively, if s? < +∞, it follows that for all t > s?, KQ,z

(
t− 1

λ

)
=

+∞. From the fact that the function KQ,z is continuous (Lemma 5.2) and
KQ,z

(
− 1
λ

)
<∞ (due to the fact that λ ∈ KQ,z in (23)), it follows that

+∞= Jz,Q,λ(t) = KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
(153)

=

+∞∑
m=1

tm

m!
K

(m)
Q,z

Å
− 1

λ

ã
, (154)

which implies that
∑+∞
m=1

tm

m!K
(m)
Q,z

(
− 1
λ

)
= +∞. Hence, in this case, the equality

in (145) is of the form +∞ = +∞. This completes the proof.

Alternative expressions for Jz,Q,λ in (141) are provided hereunder.

Lemma 8.2. If λ ∈ KQ,z, with KQ,z in (23), then, the function Jz,Q,λ in (141),
verifies for all t ∈ (0,+∞),

Jz,Q,λ

Å
−1

t

ã
= −1

t
Rz

Ñ
P

Å
Q, 1

1
λ

+1
t

ã
Θ|Z=z

é
−D

Ñ
P

Å
Q, 1

1
λ

+1
t

ã
Θ|Z=z ‖P (Q,λ)

Θ|Z=z

é
(155)

= −1

t
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+D

Ñ
P

(Q,λ)
Θ|Z=z‖P

Å
Q, 1

1
λ

+1
t

ã
Θ|Z=z

é
(156)

6 0, (157)
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where the functional Rz is in (18); the function K
P

(Q,λ)

Θ|Z=z
,z

is in (61); and the

probability measures P (Q,λ)
Θ|Z=z and P

Å
Q, 1

1
λ

+1
t

ã
Θ|Z=z are respectively in (25) and (74).

Proof: The proof of (155) follows from (108) in Lemma 6.2 by observing that
for all t ∈ (0,+∞),

−tK
P

(Q,λ)

Θ|Z=z
,z

Å
−1

t

ã
=Rz

Å
P

Ä
P

(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z

ã
+tD

Å
P

Ä
P

(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z ‖P (Q,λ)
Θ|Z=z

ã
(158)

=Rz

Ñ
P

Å
Q, 1

1
λ
+1
t

ã
Θ|Z=z

é
+tD

Ñ
P

Å
Q, 1

1
λ
+1
t

ã
Θ|Z=z ‖P

(Q,λ)
Θ|Z=z

é
, (159)

where the equality in (159) follows from Lemma 4.6. The proof of (156) follows
from (109) in Lemma 6.2 by observing that for all t ∈ (0,+∞),

−tK
P

(Q,λ)

Θ|Z=z
,z

Å
−1

t

ã
=Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
−tD

Å
P

(Q,λ)
Θ|Z=z‖P

Ä
P

(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z

ã
(160)

=Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
−tD

Ñ
P

(Q,λ)
Θ|Z=z‖P

Å
Q, 1

1
λ
+1
t

ã
Θ|Z=z

é
, (161)

where the equality in (161) follows from Lemma 4.6, which completes the proof.

From Lemma 5.2 and Lemma 8.1, it follows that the function Jz,Q,λ in (141) is
increasing and differentiable infinitely many times in the interior ofß

t ∈ R : KQ,z

Å
t− 1

λ

ã
< +∞

™
.

Moreover, note that
(
−∞, 1

λ

]
⊂
{
t ∈ R : KQ,z

(
t− 1

λ

)
< +∞

}
. Denote by J (m)

z,Q,λ :
R→ R∪{+∞}, withm ∈ N, them-th derivative of the function Jz,Q,λ in (141).
That is, for all s ∈ R,

J
(m)
z,Q,λ(s) =

dm

dtm
Jz,Q,λ(t)

∣∣∣
t=s

. (162)

From Lemma 8.1, it follows that for all m ∈ N, and for all α ∈ R, the following
holds,

J
(m)
z,Q,λ(α) = K

(m)
Q,z

Å
α− 1

λ

ã
, (163)

where the function K
(m)
Q,z denotes the m-th derivative of the function KQ,z

in (22). See for instance, Lemma 5.4. The equality in (163) establishes a rela-
tion between the cumulant generating function Jz,Q,λ and the function KQ,z.
This observation becomes an alternative proof to Lemma 5.4.

The following theorem presents the relation between the cumulant generating
function Jz,Q,λ and the functions K(1)

Q,z and K
(2)
Q,z in (97) and (98).
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Theorem 8.1. For all α ∈ R, the function Jz,Q,λ in (141) verifies the following
equality

Jz,Q,λ(α) = αK
(1)
Q,z

Å
− 1

λ

ã
+

1

2
α2K

(2)
Q,z (ξ) (164)

with

ξ ∈
Å

min

ß
− 1

λ
, α− 1

λ

™
,max

ß
− 1

λ
, α− 1

λ

™ã
, (165)

where the functions K(1)
Q,z and K

(2)
Q,z are defined in (97) and (98), respectively.

Proof: From Lemma 5.2, it follows that the function KQ,z is differentiable
infinitely many times in the interior of {t ∈ R : KQ,z(t) < +∞}. Then, a Tay-
lor expansion of the function KQ,z in (22) at the point − 1

λ yields for all t ∈
{ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=KQ,z

Å
− 1

λ

ã
+

+∞∑
s=1

1

s!

Å
t+

1

λ

ãs
K

(s)
Q,z

Å
− 1

λ

ã
. (166)

Choosing t = α − 1
λ , with α ∈

{
ν ∈ R : KQ,z(ν − 1

λ ) < +∞
}
in (166), it holds

from the Taylor-Lagrange theorem [67, Theorem 2.5.4] that

KQ,z

Å
α− 1

λ

ã
=KQ,z

Å
− 1

λ

ã
+ αK

(1)
Q,z

Å
− 1

λ

ã
+

1

2
α2K

(2)
Q,z (ξ) , (167)

where ξ ∈
(
min{− 1

λ , α−
1
λ},max{− 1

λ , α−
1
λ},
)
.

Let s? ∈ R ∪ {+∞} be defined by

s?,sup

ß
ν ∈ R : KQ,z

Å
ν − 1

λ

ã
<∞

™
. (168)

If s? = +∞, then for all α ∈ R, KQ,z

(
α− 1

λ

)
− KQ,z

(
− 1
λ

)
< +∞, and

thus, the proof is completed by noticing that from Lemma 8.1, it holds that
Jz,Q,λ(α) = KQ,z

(
α− 1

λ

)
−KQ,z

(
− 1
λ

)
.

Alternatively, if s? < +∞, it follows that for all α > s?, KQ,z

(
α− 1

λ

)
= +∞.

From from Lemma 8.1, it holds that Jz,Q,λ(α) = +∞, which implies that +∞ =

αK
(1)
Q,z

(
− 1
λ

)
+ α2

2 K
(2)
Q,z (ξ), and thus, K(2)

Q,z (ξ) is infinite. Hence, in this case, the
equality in (164) is of the form +∞ 6 +∞. This completes the proof.

In (164), the parameter ξ depends on α, as shown in (165). To highlight this
dependence, in the following, the parameter ξ is denoted by ξα. Using this nota-
tion, the focus is now on the termK

(2)
Q,z (ξα), when α ∈ {t ∈ R : Jz,Q,λ(t) < +∞}.

Theorem 8.2. The function Jz,Q,λ in (141) verifies the following inequality,
for all α ∈ {t ∈ R : Jz,Q,λ(t) < +∞},

Jz,Q,λ(α) 6 αK
(1)
Q,z

Å
− 1

λ

ã
+

1

2
α2β2

Q,z (169)
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where βQ,z is finite, and satisfies

βQ,z=sup

ß√
K

(2)
Q,z (α) :α∈

Å
−∞,b− 1

λ

ã™
, (170)

with

b , sup {t ∈ R : Jz,Q,λ(t) < +∞} , (171)

and the functions K(1)
Q,z and K

(2)
Q,z defined in (97) and (98), respectively.

Proof: The proof of the inequality in (169) is trivial from Theorem 8.1 and the
choice of βQ,z in (170). Hence, the remainder of the proof focuses on proving
that βQ,z < +∞. From Lemma 5.2 and Lemma 8.1, it holds that

{t ∈ R : Jz,Q,λ(t) < +∞}=
ß
t∈R :KQ,z

Å
t− 1

λ

ã
<+∞

™
,

which implies that the set {t ∈ R : Jz,Q,λ(t) < +∞} is an interval of the form
(−∞, b), with b in (171). This follows from the fact that the function KQ,z is
continuous and nondecreasing (Lemma 5.2) and the fact that

lim
t→b

Jz,Q,λ(t)=+∞. (172)

For all α ∈ (−∞, b), the functionK(2)
Q,z is continuous (Lemma 5.2). Hence, for all

t ∈
(
min

{
− 1
λ , α−

1
λ

}
,max

{
− 1
λ , α−

1
λ

})
⊂ (−∞, b), the value K(2)

Q,z (t) is fi-

nite. Moreover, the valuesK(2)
Q,z

(
min

{
− 1
λ , α−

1
λ

})
andK(2)

Q,z

(
max

{
− 1
λ , α−

1
λ

})
are both finite. This implies that the function K

(2)
Q,z achieves a minimum

and maximum within the closed interval
[
min

{
− 1
λ , α−

1
λ

}
,max

{
− 1
λ , α−

1
λ

}]
.

Thus, the corresponding term K
(2)
Q,z (ξα) is finite.

In the asymptotic regime, when α→ −∞, the following holds:

lim
α→−∞

ξα∈
Å
−∞,− 1

λ

ã
. (173)

The function K(2)
Q,z is continuous in

(
−∞,− 1

λ

)
, as a consequence of the inclu-

sion
(
−∞,− 1

λ

)
⊂ (−∞, b), and thus, for all t ∈

(
−∞,− 1

λ

)
, K(2)

Q,z(t) < +∞.
Moreover, from the assumption that λ ∈ KQ,z, with KQ,z in (23), it holds
that

lim
t→− 1

λ

K
(2)
Q,z (t)=K

(2)
Q,z

Å
− 1

λ

ã
< +∞. (174)
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Alternatively,

lim
t→−∞

K
(2)
Q,z(t)= lim

t→0+
K

(2)
Q,z

Å
−1

t

ã
(175)

= lim
t→0+

∫ Å
Lz (θ)−K(1)

Q,z

Å
−1

t

ãã2
dP

(Q,t)
Θ|Z=z(θ), (176)

= lim
t→0+

∫
(Lz (θ))

2
dP

(Q,t)
Θ|Z=z(θ)

− lim
t→0+

Å
K

(1)
Q,z

Å
−1

t

ãã2
, (177)

= lim
t→0+

∫
(Lz(θ))

2
dP

(Q,t)
Θ|Z=z(θ)−

(
δ?Q,z

)2 (178)

= lim
t→0+

∫
(Lz(θ))

2
dP

(Q,t)
Θ|Z=z

dQ
(θ)dQ(θ)−

(
δ?Q,z

)2 (179)

=

∫
(Lz(θ))

2

Ñ
lim
t→0+

dP
(Q,t)
Θ|Z=z

dQ
(θ)

é
dQ(θ)−

(
δ?Q,z

)2 (180)

=

∫
(Lz(θ))

2

Ñ
1

Q
Ä
L?Q,z

ä1{θ∈L?Q,z}édQ(θ)−
(
δ?Q,z

)2 (181)

=
1

Q
Ä
L?Q,z

ä∫
L?Q,z

(Lz(θ))
2
dQ(θ)−

(
δ?Q,z

)2 (182)

=
(
δ?Q,z

)2 − (δ?Q,z)2 = 0, (183)

where the equality in (176) follows from Lemma 5.4; the equality in (178) fol-
lows from Theorem 6.2, with δ?Q,z in (38); the equality in (180) follows from
the dominated convergence theorem [55, Theorem 1.6.9]; the equality in (181)
follows from Lemma 3.6; and the equality in (183) follows from the definition
of the set L?Q,z in (39).

Hence, from (173), (174), and (183), it follows that

lim
α→−∞

K
(2)
Q,z (ξα) ∈

[
0, max
c∈(−∞,− 1

λ ]
K

(2)
Q,z (c)

]
, (184)

where the maximum exists and is finite.

On the other hand, in the asymptotic regime, when α → b−, two cases are
considered: (i) b > 0; and (ii) b < 0. In the first case, the following holds from
(165):

lim
α→b−

ξα∈
ï
− 1

λ
, b− 1

λ

ã
. (185)

The function K(2)
Q,z is continuous in

(
− 1
λ , b−

1
λ

)
, as a consequence of the inclu-

sion
(
− 1
λ , b−

1
λ

)
⊂ (−∞, b), and thus, for all t ∈

(
− 1
λ , b−

1
λ

)
, K(2)

Q,z(t) < +∞.
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Moreover,

K
(2)
Q,z

Å
− 1

λ

ã
<+∞, and (186)

K
(2)
Q,z

Å
b− 1

λ

ã
<+∞. (187)

This implies that when b > 0,

lim
α→b−

K
(2)
Q,z (ξα) ∈

[
0, max
c∈[− 1

λ ,b−
1
λ ]
K

(2)
Q,z (c)

]
, (188)

where the maximum exists and is finite. Finally, In the second case, the following
holds from (165):

lim
α→b−

ξα∈
Å
b− 1

λ
,− 1

λ

ã
. (189)

The function K(2)
Q,z is continuous in

(
b− 1

λ ,−
1
λ

)
, as a consequence of the inclu-

sion
(
b− 1

λ ,−
1
λ

)
⊂ (−∞, b), and thus, for all t ∈

(
b− 1

λ ,−
1
λ

)
, K(2)

Q,z(t) < +∞.
Moreover,

K
(2)
Q,z

Å
b− 1

λ

ã
<+∞, and (190)

K
(2)
Q,z

Å
− 1

λ

ã
<+∞. (191)

This implies that when b < 0,

lim
α→b−

K
(2)
Q,z (ξα) ∈

[
0, max
c∈(b− 1

λ ,−
1
λ ]
K

(2)
Q,z (c)

]
, (192)

where the maximum exists and is finite. From all the above, it holds that
for all α ∈ {t ∈ R : Jz,Q,λ(t) < +∞}, the value K(2)

Q,z (ξα) is finite, and this
completes the proof.

The main implication of Theorem 8.2 is that the random variable W in (100) is
a sub-Gaussian random variable with sub-Gaussianity parameter βQ,z in (170)
[53, Section 2.3]. This follows by noticing that the function Jz,Q,λ in (142) is the
cumulant generating function of the random variable W . Hence, whenever it is
finite, it is upper bounded as shown in Theorem 8.2. The following corollary of
Theorem 8.2 highlights this observation.

Corollary 8.1. The random variable W in (100) is a sub-Gaussian random
variable with sub-Gaussianity parameter βQ,z in (170).

The relevance of Corollary 8.1 is that it highlights the fact that when the models
are sampled from the ERM-RER optimal measure P (Q,λ)

Θ|Z=z in (25), the empirical
risk with respect to the dataset z is a sub-Gaussian random variable with sub-
Gaussianity parameter βQ,z in (170).
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9 Concentration of Probability
Consider the following set,

NQ,z(λ),
¶
θ ∈M : Lz (θ) 6 Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (193)

where the function Lz is defined by (3); the functional Rz is defined by (18); and
the probability measure P (Q,λ)

Θ|Z=z is in (25). This section introduces two results.
First, in Theorem 9.1, it is shown that when λ tends to zero, the set NQ,z(λ)
forms an indexed family of sets that is monotonic and decreases to the set

N ?
Q,z , Lz

(
δ?Q,z

)
, (194)

where δ?Q,z is defined in (38); and the set Lz(δ?Q,z) is defined in (37). Second, in
Theorem 9.2, it is shown that the probability P (Q,λ)

Θ|Z=z(NQ,z(λ)) strictly increases
when λ tends to zero. More importantly, in Theorem 9.3, it is shown that the
limit of the probability P (Q,λ)

Θ|Z=z(NQ,z(λ)), when λ → 0, is equal to one. These
observations justify referring to the set N ?

Q,z as the limit set. These observations
are complementary to those stated in Section 3.2 and Section 3.3. This section
ends by showing that the probability measure P (Q,λ)

Θ|Z=z concentrates on a specific
subset L?Q,z in (39) of the set N ?

Q,z. At the light of this observation, the set L?Q,z
is referred to as the nonnegligible limit set. Finally, it is shown that when the σ-
finite measure Q in (19) is coherent, the sets N ?

Q,z and L?Q,z are identical.

9.1 The Limit Set
The set NQ,z(λ) in (193), with λ ∈ KQ,z and KQ,z in (23), contains all the mod-
els that induce an empirical risk that is smaller than or equal to Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
,

i.e., the ERM-RER-optimal expected empirical risk in (105). This observation
unveils the existence of a relation between the setN ?

Q,z in (194) and the set T (z)
in (5), as shown by the following lemma.

Lemma 9.1. The set N ?
Q,z in (194) satisfies

T (z) ⊆ N ?
Q,z, (195)

where the set T (z) is in (5). Moreover,

T (z) = N ?
Q,z, (196)

if and only if (a) the ERM problem in (4) possesses a solution; and (b) the
reference measure Q in (19) is coherent.

Proof: If the set T (z) in (5) is empty, the inclusion in (195) is trivially true.
Assume that |T (z)| > 0. Hence, the proof of the inclusion in (195) follows from
observing that for all θ ∈ T (z), it holds that Lz (θ) = ρ? 6 δ?Q,z, with δ?Q,z
in (38) and ρ? in (48). Hence, θ ∈ N ?

Q,z. This completes the proof of the
inclusion in (195).
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The proof of the equality in (196) is presented in two parts. In the first part, it
is proved that if (196) holds, then the ERM problem in (4) possesses a solution
and the measure Q is coherent. The second part proves the converse. The
proof of the first part is as follows. Under the assumption that T (z) = N ?

Q,z

holds, it follows that δ?Q,z = ρ?, with ρ? in (48), which implies that the ERM
problem in (4) possesses a solution. Moreover, for all δ ∈ (ρ?,+∞), it holds
that Q (Lz (δ)) > 0, which verifies that the measure Q is coherent and completes
the proof of the first part. The proof of the second part is as follows. Under the
assumption that the ERM problem in (4) possesses a solution and the measureQ
is coherent, it follows that δ?Q,z = ρ?. Hence, T (z) = N ?

Q,z, which completes
the proof of the second part.

The following theorem highlights that the setNQ,z (λ) is decreasing with λ.

Theorem 9.1. For all (λ1, λ2) ∈ KQ,z ×KQ,z, with KQ,z in (23) and λ1 > λ2,
the sets NQ,z (λ1) and NQ,z (λ2) in (193) satisfy

M⊇ NQ,z(λ1) ⊇ NQ,z(λ2) ⊇ N ?
Q,z, (197)

with N ?
Q,z being the set defined in (194). Moreover, if the empirical risk func-

tion Lz in (3) is continuous onM and separable with respect to the measure Q
in (19), then,

M⊃ NQ,z(λ1) ⊃ NQ,z(λ2) ⊃ N ?
Q,z. (198)

Proof: The proof is presented in Appendix Q.

An interesting observation is that for all λ ∈ KQ,z, with KQ,z in (23), only
a subset of NQ,z (λ) might exhibit nonzero probability with respect to the
measure P (Q,λ)

Θ|Z=z in (25). Consider for instance that the measure Q in (19)
is noncoherent (Definition 4.1). That is, δ?Q,z > ρ?, with δ?Q,z in (38) and ρ?

in (48). Thus, for all γ ∈
Ä
ρ?, δ?Q,z

ä
, it holds that Q (Lz (γ)) = 0, with the

set Lz(·) in (37). From Lemma 3.3, this implies that for all γ ∈
Ä
ρ?, δ?Q,z

ä
,

the measure P (Q,λ)
Θ|Z=z in (25) satisfies P (Q,λ)

Θ|Z=z (Lz (γ)) = 0, while verifying that
Lz (γ) ⊆ NQ,z (λ). These observations lead to the analysis of the asymptotic
concentration of probability in the following section.

9.2 The Nonnegligible Limit Set
The first step in the analysis of the asymptotic concentration of the probabil-
ity measure P (Q,λ)

Θ|Z=z in (25) is to show that the probability P (Q,λ)
Θ|Z=z (NQ,z(λ))

increases when λ tends to zero, as shown by the following theorem.

Theorem 9.2. For all (λ1, λ2) ∈ KQ,z ×KQ,z, with KQ,z in (23) and λ1 > λ2,
assume that the measures P (Q,λ1)

Θ|Z=z and P (Q,λ2)
Θ|Z=z satisfy (25) with λ = λ1 and λ =

λ2, respectively. Then, the set NQ,z (λ2) in (193) satisfies

0 < P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) 6 P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (199)
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where strict inequality holds if and only if the function Lz is separable with
respect to the σ-finite measure Q.

Proof: The proof is presented in Appendix R.

The following lemma highlights a case in which a stronger concentration of
probability is observed.

Lemma 9.2. Let the function Lz in (3) be separable with respect to the σ-finite
measure Q in (19). Let also (λ1, λ2) ∈ KQ,z ×KQ,z, with KQ,z in (23), be two
positive reals such that λ1 > λ2 and

Q

Å
NQ,z (λ1) ∩ (NQ,z (λ2))

c
ã

= 0, (200)

with the complement with respect to the set of models M. Then, two mea-
sures P (Q,λ1)

Θ|Z=z and P (Q,λ2)
Θ|Z=z that respectively satisfy (25) with λ = λ1 and λ = λ2

verify that

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (201)

where, the set NQ,z (·) is defined in (193).

Proof: The proof is presented in Appendix S.

The following example shows the relevance of Lemma 9.2 in the case in which
the empirical risk function Lz in (3) is a simple function and separable with
respect to the σ-finite measure Q in (19).

Example 9.1. Consider Example 7.1. Note that, for all λ > 0,

0 < Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
< 1, (202)

where Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is the ERM-RER-optimal expected empirical risk in (105).

The equality in (202) implies that given two reals λ1 and λ2 such that λ1 > λ2 >
0, it holds that,

NQ,z (λ1) ∩ (NQ,z (λ2))
c
=
¶
ν ∈M :Rz

Ä
P

(Q,λ2)
Θ|Z=z

ä
< Lz (ν)6Rz

Ä
P

(Q,λ1)
Θ|Z=z

ä©
(203)

=∅, (204)

and moreover, NQ,z(λ1) = NQ,z(λ2). Finally, from Lemma 9.2,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)). (205)

The main result of this section is presented by the following theorem.

Theorem 9.3. The probability measure P (Q,λ)
Θ|Z=z in (25) satisfies

lim
λ→0+

P
(Q,λ)
Θ|Z=z (NQ,z (λ)) = 1, (206)

where, the set NQ,z (λ) is defined in (193).
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Proof: The proof follows immediately from Lemma 3.7 and by noticing that for
all λ ∈ KQ,z, with KQ,z in (23), the sets L?Q,z in (39) and NQ,z (λ) in (193)
satisfies L?Q,z ⊆ NQ,z (λ).

Note that Theorem 9.3 and Lemma 3.7 lead to the following conclusion

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
NQ,z (λ) \ L?Q,z

)
= 0, (207)

which follows from the fact that L?Q,z ⊂ NQ,z (λ), with L?Q,z in (39). This
justifies referring to the set L?Q,z as the nonnegligible limit set.

10 (δ, ε)-Optimality

This section introduces a PAC guarantee of optimality for the models that are
sampled from the probability measure P (Q,λ)

Θ|Z=z in (25) with respect to the ERM
problem in (4). Such guarantee is defined as follows.

Definition 10.1 ((δ, ε)-Optimality). Given a pair of positive reals (δ, ε), with ε <
1, the probability measure P (Q,λ)

Θ|Z=z in (25) is said to be (δ, ε)-optimal, if the
set Lz (δ) in (37) satisfies

P
(Q,λ)
Θ|Z=z (Lz (δ)) > 1− ε. (208)

If the probability measure P (Q,λ)
Θ|Z=z in (25) is (δ, ε)-optimal, then it assigns a

probability that is always greater than 1− ε to a set that contains models that
induce an empirical risk that is smaller than δ. From this perspective, particular
interest is given to the smallest δ and ε for which P (Q,λ)

Θ|Z=z is (δ, ε)-optimal.

The main result of this section is presented by the following theorem.

Theorem 10.1. For all (δ, ε) ∈ (δ?Q,z,+∞)× (0, 1), with δ?Q,z in (38), there ex-
ists a real λ ∈ KQ,z, with KQ,z in (23), such that the probability measure P (Q,λ)

Θ|Z=z

is (δ, ε)-optimal.

Proof: Let δ be a real in
Ä
δ?Q,z,+∞

ä
, with δ?Q,z in (38). Let also λ ∈ KQ,z

satisfy the following equality:

K
(1)
Q,z

Å
− 1

λ

ã
6 δ. (209)

Note that from Lemma 5.2, it follows that the function K
(1)
Q,z is continuous.

Moreover, from Theorem 6.2, it follows that such a λ in (209) always exists.
From (37) and (193), it holds that

NQ,z(λ) ⊆ Lz (δ) , (210)
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and thus,
P

(Q,λ)
Θ|Z=z (Lz (δ)) > P

(Q,λ)
Θ|Z=z (NQ,z(λ)) . (211)

Let γ be a positive real such that γ 6 λ and

P
(Q,γ)
Θ|Z=z(NQ,z(γ)) > 1− ε. (212)

The existence of such a positive real γ follows from Theorem 9.3. Hence,
from (212), it holds that,

1− ε<P (Q,γ)
Θ|Z=z(NQ,z(γ)) (213)

6P (Q,γ)
Θ|Z=z (Lz (δ)) , (214)

where the inequality in (214) follows from the fact that NQ,z(γ) ⊆ NQ,z(λ) ⊆
Lz (δ). Finally, the inequality in (214) implies that the probability measure
P

(Q,λ)
Θ|Z=z is (δ, ε)-optimal (Definition 10.1). This completes the proof.

A stronger optimality claim can be stated when the reference measure is coher-
ent.

Theorem 10.2. For all (δ, ε) ∈ (ρ?,+∞)× (0, 1), with ρ? in (48), there always
exists a λ ∈ KQ,z, with KQ,z in (23), such that the probability measure P (Q,λ)

Θ|Z=z

is (δ, ε)-optimal if and only if the reference measure Q is coherent.

Proof: The proof is divided into two parts. The first part shows that if for
all (δ, ε) ∈ (ρ?,+∞)× (0, 1), there always exists a λ ∈ KQ,z, with KQ,z in (23),
such that the probability measure P (Q,λ)

Θ|Z=z in (25) is (δ, ε)-optimal, then, the
measure Q is coherent. The second part deals with the converse.

The first part is as follows. Let γ ∈ KQ,z be such that

P
(Q,γ)
Θ|Z=z (Lz (δ))>1− ε, (215)

then, for all measurable subsets A of Lz (δ), it holds that

1−ε < P
(Q,γ)
Θ|Z=z (Lz (δ)) (216)

=

∫
A

dP
(Q,γ)
Θ|Z=z

dQ
(ν)dQ(ν)+

∫
Lz(δ)\A

dP
(Q,γ)
Θ|Z=z

dQ
(ν)dQ(ν),

which, together with Lemma 3.2, implies that there exists at least one measur-
able subset A for which Q (A) > 0, and thus,

Q (Lz (δ))>Q (A) > 0, (217)

which implies that the measure Q is coherent. This completes the first part of
the proof.

The second part of the proof is as follows. Under the assumption that the
measure Q is coherent, it follows that δ?Q,z = ρ?. Then, from Theorem 10.1, it
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follows that for all (δ, ε) ∈ (δ?Q,z,+∞) × (0, 1), there always exists a λ ∈ KQ,z,
with KQ,z in (23), such that the probability measure P (Q,λ)

Θ|Z=z is (δ, ε)-optimal.
This completes the second part of the proof.

11 Sensitivity and Generalization

This section introduces the notion of sensitivity and establishes its connections
with the notion of generalization error of the Gibbs algorithm, cf. [8].

11.1 Sensitivity

The sensitivity of the expected empirical risk Rz in (18) to deviations from the
probability measure P (Q,λ)

Θ|Z=z in (25) towards an alternative probability mea-
sure P ∈ 4 (M,B (M)) is introduced as a novel metric to evaluate the gen-
eralization capabilities of the ERM-RER-optimal measure P (Q,λ)

Θ|Z=z. Deviations

from the probability measure P (Q,λ)
Θ|Z=z towards an alternative probability mea-

sure P would allow comparing the ERM-RER-optimal measure with alterna-
tive measures (or algorithms). For instance, if new datasets become available,
a new ERM-RER problem can be formulated using a larger dataset obtained
by aggregating the old and the new datasets, cf. [10] and [68]. Intuitively, the
ERM-RER-optimal measure obtained after the aggregation of datasets might
exhibit better generalization capabilities, see for instance [10]. This analysis is
the motivation of the sensitivity, which is defined as follows.

Definition 11.1 (Sensitivity). Given the σ-finite measure Q and the positive
real λ > 0 in (19), let SQ,λ : (X × Y)

n × 4Q (M,B (M)) → (−∞,+∞] be a
functional such that

SQ,λ(z,P ) =

®
Rz (P )−Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
if λ∈KQ,z

+∞ otherwise,
(218)

where the functional Rz is defined in (18) and the probability measure P (Q,λ)
Θ|Z=z

is in (25). The sensitivity of the expected empirical risk Rz due to a deviation
from P

(Q,λ)
Θ|Z=z to P is SQ,λ (z, P ).

Recently, the following exact expression for the sensitivity SQ,λ (z, P ) in (218)
was introduced in [10].

Theorem 11.1 (Theorem 1 in [10]). The sensitivity SQ,λ (z, P ) in (218) satis-
fies

SQ,λ(z,P )=λ
(
D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
+D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
−D(P‖Q)

)
, (219)

where the probability measure P (Q,λ)
Θ|Z=z is in (25).
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The following theorem introduces an upper bound on the absolute value of the
sensitivity SQ,λ (z, P ) in (218), which requires the calculation of only one of the
relative entropies in Theorem 11.1.

Theorem 11.2. For all P ∈ 4Q (M,B (M)), the sensitivity SQ,λ (z, P ) in (218)
satisfies

|SQ,λ (z, P )|6
√

2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (220)

where the constant βQ,z is defined in (170).

Proof: The proof is presented in Appendix T.

Note that equality holds in (220) in the trivial case in which the empirical risk
function is not separable with respect to Q (Definition 5.1). In such case, for
all P ∈ 4Q (M,B (M)), it holds that SQ,λ (z, P ) = 0 and βQ,z = 0.

Theorem 11.2 establishes an upper and a lower bound on the increase and
decrease of the expected empirical risk that can be obtained by deviating from
the optimal solution of the ERM-RER problem in (19). More specifically, note
that for all probability measures P ∈ 4Q (M,B (M)), it holds that,

Rz (P )>Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
−
√

2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
and (221)

Rz (P )6Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+
√

2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (222)

11.2 Generalization Error
This section unveils the interesting connection between the notion of sensitivity
and the notion of generalization error of the Gibbs algorithm, cf. [8]. The
Generalization error is defined under the assumption that datasets are sampled
from a probability measure

PZ ∈ 4 ((X × Y)
n
,F ) , (223)

where F denotes a given σ-field on the set (X × Y)
n. For such a probability

measure PZ in (223), let the set KQ,PZ
⊂ R be

KQ,PZ
=

⋂
z∈suppPZ

KQ,z, (224)

where the σ-finite measure Q is in (19). The set KQ,PZ
in (224) can be empty

for some choices of the σ-finite measure Q. Nonetheless, from Lemma 3.1, it
follows that if Q is a probability measure, then,

KQ,PZ
= (0,+∞) . (225)

Under the assumption that datasets are sampled from PZ in (223), the general-
ization error of the Gibbs algorithm with parameters Q and λ, is defined as the
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expectation with respect to the product measure P (Q,λ)
Θ|Z ·PZ , with P

(Q,λ)
Θ|Z in (25),

of difference between: (a) the population risk due to a model θ ∈M,∫
Lz (θ) dPZ (z) (226)

with the function Lz defined in (3); and (b) The empirical risk induced by the
model θ with respect to a training dataset z, that is, Lz (θ). More specifi-
cally, the generalization error of the Gibbs algorithm with parameters Q and λ
is ∫ ∫ Å∫

Lz (θ) dPZ (z)− Lν (θ)

ã
dP

(Q,λ)
Θ|Z=ν (θ) dPZ(ν)

=

∫ Å∫
Lz (θ) dPZ (z)

ã
dP

(Q,λ)
Θ (θ)

−
∫

Lν (θ) dP
(Q,λ)
Θ|Z=ν (θ) dPZ(ν) (227)

=

∫ Å∫
Lz (θ) dP

(Q,λ)
Θ (θ)

ã
dPZ (z)

−
∫

Lν (θ) dP
(Q,λ)
Θ|Z=ν (θ) dPZ(ν) (228)

=

∫ Ä
Rν
Ä
P

(Q,λ)
Θ

ä
−Rν
Ä
P

(Q,λ)
Θ|Z=ν

ää
dPZ(ν), (229)

where the probability measure P (Q,λ)
Θ satisfies for all sets A ∈ B (M),

P
(Q,λ)
Θ (A) =

∫
P

(Q,λ)
Θ|Z=ν (A) dPZ (ν) , (230)

and the functional Rν is defined in (18).

The following theorem establishes a connection between sensitivity and gener-
alization error in the particular case in which Q in (19) is a probability mea-
sure.

Theorem 11.3. Under the assumption that datasets are sampled from PZ
in (223), the generalization error of the Gibbs algorithm with parameters Q
(a probability measure) and λ > 0, is∫

SQ,λ
Ä
ν, P

(Q,λ)
Θ

ä
dPZ(ν), (231)

where the functional SQ,λ is in (218); and the probability measure P (Q,λ)
Θ is in

(230).

Proof: The proof uses the fact that under the assumption that Q is a probability
measure, for all ν ∈ suppPZ , it follows from Lemma 3.1 that KQ,ν = (0,+∞).
This implies that for all z ∈ suppPZ and for all λ > 0, the ERM-RER prob-
lem in (19), always possesses as solution the measure P (Q,λ)

Θ|Z=z in (25). Thus,
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the measure P
(Q,λ)
Θ in (230) is well defined. Moreover, SQ,λ

Ä
z, P

(Q,λ)
Θ

ä
=

Rz
Ä
P

(Q,λ)
Θ

ä
−Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
and the integral in (229) is also well defined, which

completes the proof.

Theorem 11.3 provides an interesting viewpoint of the generalization error. For
instance, the probability measure P (Q,λ)

Θ in (223) can be understood as the
barycenter of a subset of 4 (M,B (M)) containing the solutions to ERM-RER
problems of the form in (19), with z ∈ suppPZ in (223). Hence, the general-
ization error of the Gibbs algorithm is the expectation (with respect to PZ) of
the sensitivity of the expected empirical risks Rz in (18) to variations from the
ERM-RER-optimal measure P (Q,λ)

Θ|Z=z towards the barycenter, i.e., the measure

P
(Q,λ)
Θ .

The following definition extends the notion of generalization error to Gibbs
algorithms obtained by assuming that the reference measure Q in (19) is a σ-
finite measure. This definition also exploits the relation between the notions of
sensitivity and generalization error introduced by Theorem 11.3.

Definition 11.2 (Generalization Error of the Gibbs Algorithm). Given a σ-
finite measure Q ∈ 4 (M,B (M)) and a real λ > 0, let the functional GQ,λ :
4 ((X × Y)

n
,F )→ (−∞,+∞] be such that

GQ,λ(PZ)=


∫

SQ,λ
Ä
ν,P

(Q,λ)
Θ

ä
dPZ(ν) if λ∈KQ,PZ

+∞ otherwise,
(232)

where the functional SQ,λ is in (218); the set KQ,PZ
is in (224); and the prob-

ability measure P
(Q,λ)
Θ is in (230). The generalization error induced by the

Gibbs algorithm with parameters Q and λ under the assumption that datasets
are sampled from the probability measure PZ , is GQ,λ (PZ).

The main difficulty for extending the notion of generalization error to Gibbs
algorithms obtained under the assumption that the reference measure is not
a probability measure, but a σ-finite measure, is that the integrals in (229)
and (230) might not be well defined. This is essentially due to the fact that,
while the ERM-RER problem in (19) always possesses a solution when Q is a
probability measure, the existence of a solution when Q is not a probability
measure is subject to the condition that for all z ∈ suppPZ , λ ∈ KQ,z, with
KQ,z in (23). This leads to the condition that λ ∈ KQ,PZ

, with the set KQ,PZ

in (224). When such a condition is not met, the definition of sensitivity is
void.

The following theorem provides a closed-form expression for the generalization
error of the Gibbs algorithm in the general case in which the reference measure
Q in (19) is a σ-finite measure.

Theorem 11.4. If λ ∈ KQ,PZ
, with KQ,PZ

in (224), the generalization error
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GQ,λ (PZ) in (232) satisfies

GQ,λ (PZ)

= λ

(∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
dPZ(ν)+

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν)

)
, (233)

where for all z ∈ suppPZ , the probability measure P (Q,λ)
Θ|Z=z is in (25); and the

probability measure P (Q,λ)
Θ is defined in (230).

Proof: The proof is presented in Appendix U.

The terms
∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
dPZ(ν) and

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν) in

the right-hand side of (233) are respectively the mutual and the lautum infor-
mation [52] induced by a joint probability measure PΘ,Z whose marginals are
PZ in (223) and P

(Q,λ)
Θ in (230). When the reference measure Q in (19) is a

probability measure, Theorem 11.4 reduces to [8, Theorem 1]. Interestingly, in-
dependently of whether the reference measure Q in (19) is a probability measure,
or whether the n data points in the datasets are independent and identically
distributed, the generalization error GQ,λ (PZ) in (232) is always a factor of
the sum of the mutual and lautum information induced by the joint probability
measure PΘ,Z mentioned above.

Theorem 11.4 also provides an alternative interpretation of the generalization
error GQ,λ (PZ) in (232). Note that by writing one of the factors in the right-
hand side of (233) as∫ Ä

D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
+D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ää
dPZ(ν),

it becomes clear that GQ,λ (PZ) is the expectation with respect to PZ of the sym-
metrized Kullback-Leibler divergence, also known as Jeffrey’s divergence [65],
of the probability measures P (Q,λ)

Θ|Z=z and P
(Q,λ)
Θ . That is, the solution to the

ERM-RER problem in (19) and the barycenter induced by PZ .

The following theorem provides an upper-bound on the generalization error of
the Gibbs algorithm only in terms of the lautum information induced by such
a joint probability measure PΘ,Z .

Theorem 11.5. The generalization error GQ,λ (PZ) in (232) satisfies for all
λ ∈ KQ,PZ

,

0 6GQ,λ(PZ)6

 
2σ2

Q

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν), (234)

where for all z ∈ suppPZ , the probability measure P (Q,λ)
Θ|Z=z is in (25); the prob-

ability measure P (Q,λ)
Θ is defined in (230); and

σQ=sup {βQ,z : z ∈ (X × Y)
n} , (235)

with βQ,z in (165).
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Proof: The proof of the inequality GQ,λ (PZ) > 0 follows from observing that
for all ν ∈ (X × Y)

n, the terms D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
and D

Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
in (233) are nonnegative (Theorem 2.1). The proof of the remaining inequality
follows from (232) and the following inequalities:

GQ,λ (PZ)=

∣∣∣∣∫ SQ,λ
Ä
ν, P

(Q,λ)
Θ

ä
dPZ(ν)

∣∣∣∣ (236)

6
∫ ∣∣∣SQ,λ Äν, P (Q,λ)

Θ

ä∣∣∣ dPZ(ν) (237)

6
∫ √

2βQ,νD
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν), (238)

6
∫√

2σ2
QD
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν) (239)

6

 
2σ2

Q

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν), (240)

where the equality in (236) follows from (232); the inequality in (237) follows
from [55, Theorem 1.5.9(c)]; the inequality in (238) follows from Theorem 11.2;
the inequality in (239) follows from (235); and the inequality in (240) follows
from Jensen’s inequality [55, Section 6.3.5]. This completes the proof.

In a nutshell, the generalization error GQ,λ (PZ) in (232) is upper bounded up to
a constant factor by the square root of the lautum information induced by the
joint probability measure PΘ,Z mentioned above. Theorem 11.5 is reminiscent
of [29, Theorem 1], which provides a similar upper-bound on GQ,λ (PZ) using
the mutual information instead of the lautum information induced by the joint
probability measure PΘ,Z . The interest in Theorem 11.5 for the specific case
of the Gibbs algorithm, lies on the fact that it holds under milder conditions
than those in [29, Theorem 1]. For instance, no additional conditions on the
loss function ` in (2) concerning sub-Gaussianity are assumed. Moreover, the
probability measure PZ from which datasets are sampled is not necessarily a
product measure.

12 Conclusions and Final Remarks

The classical ERM-RER problem in (19) has been studied under the assumption
that the reference measure Q is a σ-finite measure, instead of a probability
measure, which leads to a more general problem that includes the ERM problem
with (discrete or differential) entropy regularization and the information-risk
minimization problem. While in the case in which the reference measure is a
probability measure the solution to the ERM-RER problem always exists, in this
general case, the existence of a solution is subject to a condition that depends
on the loss function, the reference measure, the regularization factor, and the
training dataset. When a solution exists, it has been proved that it is unique.
Additionally, if it exists, such a solution and the reference measure are mutually
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absolutely continuous in most of the practical cases of interest. Interestingly,
the empirical risk observed when models are sampled from the ERM-RER-
optimal probability measure is a sub-Gaussian random variable that exhibits a
PAC guarantee for the ERM problem. That is, for some positive δ and ε, it
is shown that there always exist some parameters for the ERM-RER problem
such that the set of models that induce an empirical risk smaller than δ exhibits
a probability that is not smaller that 1− ε. Interestingly, none of these results
relies on statistical assumptions on the datasets.

The sensitivity of the expected empirical risk to deviations from the ERM-RER-
optimal measure to alternative measures is introduced as a new performance
metric to evaluate the generalization capabilities of the Gibbs algorithm. In
particular, an upper bound on the absolute value of the sensitivity, which de-
pends on the training dataset, is presented. This bound is formed by a constant
factor and the square root of the relative entropy of the alternative measure
(the deviation) with respect to the ERM-RER solution. Finally, it is shown
that the expectation of the sensitivity (with respect to the datasets) to devia-
tions towards a particular measure is equivalent to the generalization error of
the Gibbs algorithm. Equipped with this observation, the generalization error
is shown to be in the most general case, up to a constant factor, the sum of the
mutual and lautum information between the models and the datasets, which was
a result known exclusively for the case in which the reference is a probability
measure, cf. [8]. From this perspective, it is argued that the study of the gener-
alization capabilities of the Gibbs algorithm based on generalization error is a
significantly narrow view. This is essentially because it is looking at an expecta-
tion of the sensitivity to deviations to a particular measure, i.e., the barycenter
of the set of ERM-RER solutions induced by a prior on the datasets. A broader
view is offered by the study of the sensitivity to deviations towards other mea-
sures, i.e., ERM-RER-optimal measures obtained with different training data
sets. This approach has lead already to a few initial results in [10] that highlight
the connections to sensitivity, training error, and test error. Nonetheless, the
study of the sensitivity in the aim of describing the generalization capabilities
of learning algorithms remains by now as an open problem.

Appendices

A Proof of Theorem 2.2

Consider the function f : [0,+∞)→ R such that

f(x) =

ß
x log(x) if x > 0

0 if x = 0,
(241)
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and note that it is strictly convex. From the assumption that for all i ∈ {1, 2},
Pi and Qi are both measures on the same measurable space (Ω,F ), with Pi ab-
solutely continuous with respect to Qi, let g : Ω→ [0,∞) be the function

g(x)=
d (λP1 + (1− λ)P2)

d (λQ1 + (1− λ)Q2)
(x) , (242)

where d(λP1+(1−λ)P2)
d(λQ1+(1−λ)Q2)

is the Radon-Nikodym derivative of the measure λP1 +

(1 − λ)P2 with respect to λQ1 + (1 − λ)Q2. Using this notation, for all λ ∈
(0, 1),

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

−λD (P1‖Q1) + (1− λ)D (P2‖Q2) (243)

=

∫
log(g(x))d(λP1+(1−λ)P2)(x)

−λ
∫

log

Å
dP1

dQ1
(x)

ã
dP1(x)−(1−λ)

∫
log

Å
dP2

dQ2
(x)

ã
dP2(x)

=λ

∫
log (g (x)) dP1(x) + (1− λ)

∫
log (g (x)) dP2(x)

−λ
∫

log

Å
dP1

dQ1
(x)

ã
dP1(x)−(1−λ)

∫
log

Å
dP2

dQ2
(x)

ã
dP2(x)

=λ

∫
log

ÇÅ
dP1

dQ1
(x)

ã−1
g(x)

å
dP1(x)

+(1−λ)

∫
log

ÇÅ
dP2

dQ2
(x)

ã−1
g(x)

å
dP2(x)

=λ

∫
dP1

dQ1
(x)log

ÇÅ
dP1

dQ1
(x)

ã−1
g(x)

å
dQ1(x)

+(1−λ)

∫
dP2

dQ2
(x)log

ÇÅ
dP2

dQ2
(x)

ã−1
g(x)

å
dQ2(x)

=λ

∫ g(x) dP1

dQ1
(x)

g(x)
log

ÇÅ
dP1

dQ1
(x)

ã−1
g(x)

å
dQ1(x)

+(1−λ)

∫ g(x) dP2

dQ2
(x)

g(x)
log

ÇÅ
dP2

dQ2
(x)

ã−1
g(x)

å
dQ2(x)

=−λ
∫
g(x)f

Å
dP1

dQ1
(x)(g(x))

−1
ã

dQ1(x)−(1−λ)

∫
g(x)f

Å
dP2

dQ2
(x)(g(x))

−1
ã

dQ2(x),

(244)

where the function f is defined in (241). Let β1 and β2 be the following con-
stants:

β1 ,
∫
g(ν)dQ1(ν) and β2 ,

∫
g(ν)dQ2(ν). (245)
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From (244) and (245), it follows that for all λ ∈ (0, 1),

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)− λD (P1‖Q1) + (1− λ)D (P2‖Q2)

=−λβ1
∫
g(x)

β1
f

Å
dP1

dQ1
(x)(g(x))

−1
ã

dQ1(x)

−(1−λ)β2

∫
g(x)

β2
f

Å
dP2

dQ2
(x)(g(x))

−1
ã

dQ2(x) (246)

6−λβ1f
Å∫

g(x)

β1

dP1

dQ1
(x)(g(x))

−1
dQ1(x)

ã
(247)

−(1−λ)β2f

Å∫
g(x)

β2

dP2

dQ2
(x)(g(x))

−1
dQ2(x)

ã
=−λβ1f

Å
1

β1

∫
dP1(x)

ã
−(1−λ)β2f

Å
1

β2

∫
dP2(x)

ã
(248)

=−λβ1f
Å

1

β1

ã
−(1−λ)β2f

Å
1

β2

ã
(249)

6−f
Å
λβ1

1

β1
+ (1− λ)β2

1

β2

ã
(250)

=−f (1) (251)
=0, (252)

where the inequalities in (247) and (250) follow from Jensen’s inequality [55,
Section 6.3.5] and the fact that the function f in (244) is strictly concave.
Note that from (245), in (247), for all i ∈ {1, 2},

∫ g(x)
βi

dQi(x) = 1; while in
(250),

λβ1 + (1− λ)β2=

∫
g(ν)d(λQ1 +(1−λ)Q2)(ν) (253)

=

∫
d (λP1 + (1− λ)P2) (ν) (254)

=λ

∫
dP1(ν)+(1−λ)

∫
dP2(ν) (255)

=1. (256)

Given the strict convexity of the function f in (241), equality in (247) and (250)
hold if and only if P1 = P2 and Q1 = Q2. This completes the proof.

B Proof of Lemma 3.1
The proof is divided into two parts. The first part is as follows. Under the as-
sumption that the set KQ,z in (23) is empty, there is nothing to prove. Alterna-
tively, under the assumption that the set KQ,z is not empty, there always exists
a real b ∈ KQ,z, such that KQ,z

(
− 1
b

)
< +∞. Note that for all θ ∈M,

d

dt
exp

Å
−1

t
Lz (θ)

ã
=

1

t2
Lz (θ)exp

Å
−1

t
Lz (θ)

ã
> 0, (257)
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with Lz in (3). Thus, from (22), it follows that KQ,z

(
− 1
b

)
is nondecreasing

with b. This implies that (0, b] ⊆ KQ,z.

Let b? ∈ (0,+∞] be
b? = supKQ,z. (258)

Hence, if b? = +∞, it follows from (23) that

KQ,z = (0,+∞). (259)

Alternatively, if b? < +∞, it holds that

(0, b?) ⊆ KQ,z ⊆ (0, b?]. (260)

In either case, it follows that KQ,z is a convex set. This completes the first part
of the proof.

The second part of the proof is under the assumption that Q is a probability
measure. Under this assumption, for all θ ∈ M and for all for all t > 0, it
follows that

exp

Å
−1

t
Lz (θ)

ã
6 1, (261)

with Lz in (3). Thus,

KQ,z

Å
−1

t

ã
=log

Å∫
exp

Å
−1

t
Lz (θ)

ã
dQ(θ)

ã
(262)

6log

Å∫
dQ(θ)

ã
(263)

=0, (264)

which implies that (0,+∞) ⊆ KQ,z. Thus, if Q is a probability measure,
from (23), it holds that KQ,z = (0,+∞), which completes the proof.

C Proof of Theorem 3.1
The optimization problem in (19) can be re-written in terms of the Radon-
Nikodym derivative of the optimization measure P with respect to the measure
Q, denoted by dP

dQ :M→ [0,∞), which yields:

min
P∈4Q(M,B(M))

∫
Lz(θ)

dP

dQ
(θ)dQ(θ)+λ

∫
dP

dQ
(θ)log

Å
dP

dQ
(θ)

ã
dQ(θ) (265a)

s. t.

∫
dP

dQ
(θ)dQ (θ) = 1. (265b)

The remainder of the proof focuses on the problem in which the optimization
is over the function dP

dQ instead of the measure P . This is due to the fact that
for all P ∈ 4Q (M), the Radon-Nikodym derivate dP

dQ is unique up to sets of
zero measure with respect to the measure Q. Let M be the set of measurable
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functions M → R with respect to the measurable spaces (M,B (M)) and
(R,B (R)) that are absolutely integrable with respect to Q. That is, for all
ĝ ∈M , it holds that ∫

|ĝ(θ)|dQ(θ)<∞. (266)

Hence, the optimization problem of interest is:

min
g∈M

∫
Lz(θ)g(θ)dQ(θ)+λ

∫
g(θ)log(g(θ))dQ(θ) (267a)

s. t.

∫
g(θ)dQ (θ) = 1. (267b)

Let the Lagrangian of the optimization problem in (267) be the functional L :
M ×R→ R such that

L (g, β)=

∫
Lz (ν)g(ν)dQ(ν)+λ

∫
g(ν)log(g(ν))dQ(ν)

+β

Å∫
g (ν) dQ (ν)− 1

ã
, (268)

where β is a real that acts as a Lagrangian multiplier due to the constraint (267b).
Let ĝ :M→ R be a function in M . The Gateaux differential of the functional
L in (268) at (g, β) ∈M ×R in the direction of ĝ, if it exists, is

∂L(g, β; ĝ),
d

dγ
L(g + γĝ, β)

∣∣∣∣
γ=0

. (269)

The proof continues under the assumption that the functions g and ĝ are such
that the Gateaux differential in (269) exists. Under such an assumption, let
the function r : R → R satisfy for all α ∈ (−ε, ε), with ε arbitrarily small,
that

r(α)=

∫
Lz (ν) (g (ν) + αĝ (ν)) dQ (ν)

+β

Å∫
(g (ν) + αĝ (ν)) dQ (ν)− 1

ã
+λ

∫
(ĝ(ν)+αĝ(ν))log(g(ν)+αĝ(ν))dQ(ν) (270)

=

∫
g (ν) (Lz (ν) + β) dQ (ν)− β

+α

Å∫
ĝ (ν) (Lz (ν) + β) dQ (ν)

ã
+λ

∫
(g(ν)+αĝ(ν))log(g(ν)+αĝ(ν))dQ(ν), (271)

where the last equality is simply an algebraic re-arrangement of terms. From
the assumption that the functions g and ĝ are such that the Gateaux differential
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in (269) exists, it follows that the function r in (271) is differentiable at zero.
Note that the first two terms in (271) are independent of α; the third term is
linear with α; and the fourth term can be written using the function r̂ : R→ R

such that for all α ∈ (−ε, ε), with ε arbitrarily small, satisfies

r̂(α)=λ

∫
(g(ν)+αĝ(ν))log(g(ν)+αĝ(ν))dQ(ν) (272)

=λ

∫
f (g (ν) + αĝ (ν)) dQ (ν) , (273)

where f : (0,+∞)→ R is such that f(t) = t log(t). Under the same assumption,
it follows that the function r̂ in (272) is differentiable at zero. That is, the
limit

lim
δ→0

1

δ
(r̂(γ + δ)− r̂(γ)) (274)

exists for all γ ∈ (−ε, ε), with ε arbitrarily small. Note that the function f in
(273) is continuous and differentiable (with finite derivate) in (0,+∞). Thus,
the function f is also Lipschitz continuous. This implies that for all θ ∈ suppQ,
and for all γ ∈ (−ε, ε), with ε > 0 arbitrarily small, it holds that

|f(g(θ) + (γ + δ)ĝ(θ))− f(g(θ) + γĝ(θ))|6c|ĝ(θ)||δ|, (275)

with δ > 0, for some constant c positive and finite. This implies that∣∣∣∣f(g(θ) + (γ + δ)ĝ(θ))− f(g(θ) + γĝ(θ))

δ

∣∣∣∣6c|ĝ(θ)|. (276)

Using these arguments, the limit in (274) satisfies for all γ ∈ (−ε, ε), with ε > 0
arbitrarily small, that

lim
δ→0

1

δ
(r̂(γ + δ)− r̂(γ))

=λ lim
δ→0

∫
f(g(θ) + (γ + δ)ĝ(θ))− f(g(θ) + γĝ(θ))

δ
dQ(θ)

=λ

∫
ḟ(g(θ) + γĝ(θ))ĝ(θ) dQ(θ) (277)

<∞, (278)

where the function ḟ : (0,+∞)→ R is the derivative of f . That is, ḟ(t) = 1 +
log(t). The equality in (277) and the inequality in (278) follow from noticing that
the conditions for the dominated convergence theorem hold [55, Theorem 1.6.9],
namely:

• For all γ ∈ (−ε, ε), with ε > 0, the inequality in (276) holds;

• The function ĝ in (276) satisfies the inequality in (266); and
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• For all θ ∈ suppQ and for all γ ∈ (−ε, ε), with ε > 0 arbitrarily small, it
holds that

lim
δ→0

f(g(θ) + (γ + δ)ĝ(θ))− f(g(θ) + γĝ(θ))

δ
=

d

dγ
f(g(θ) + γĝ(θ)) (279)

=ḟ(g(θ) + γĝ(θ))ĝ(θ). (280)

Hence, the derivative of the real function r in (271) is
d

dα
r(α)=

∫
Lz(ν)ĝ(ν)dQ(ν)+β

∫
ĝ(ν)dQ(ν)

+λ

∫
ĝ(ν)(1+log(g(ν)+αĝ(ν)))dQ(ν). (281)

From (269) and (281), it follows that

∂L (g, β; ĝ)=

∫
ĝ(ν)(Lz(ν)+λ(1+log(g(ν)))+β)dQ(ν). (282)

The relevance of the Gateaux differential in (282) stems from [69, Theorem 1,
page 178], which unveils the fact that a necessary condition for the functional L

in (268) to have a minimum at
Å

dP
(Q,λ)

Θ|Z=z

dQ , β

ã
∈ M × R is that for all func-

tions ĝ ∈M ,

∂L

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
, β; ĝ

é
= 0. (283)

From (283), it follows that
dP

(Q,λ)

Θ|Z=z

dQ must satisfy for all functions ĝ in M
that

0=

∫
ĝ(ν)

Ñ
Lz(ν)+λ

Ñ
1+log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(ν)

éé
+β

é
dQ(ν),

which implies that for all ν ∈ suppQ,

Lz (ν) + λ

Ñ
1 + log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(ν)

éé
+ β = 0, (284)

and thus,
dP

(Q,λ)
Θ|Z=z

dQ
(ν) = exp

Å
−β + λ

λ

ã
exp

Å
−Lz (ν)

λ

ã
, (285)

with β chosen to satisfy (265b). That is,

dP
(Q,λ)
Θ|Z=z

dQ
(ν)=

exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

(286)

=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (ν)

ã
. (287)
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The proof continues by verifying that the measure P (Q,λ)
Θ|Z=z that satisfies (286)

is the unique solution to the ERM-RER problem in (19). Such verification is
done by showing that the objective function in (19) is strictly convex with the
optimization variable. Let P1 and P2 be two different probability measures in
(M,B (M)) and let α be in (0, 1). Hence,

Rz (αP1 + (1− α)P2) + λD (αP1 + (1− α)P2‖Q)

=αRz (P1)+(1−α)Rz (P2)+λD(αP1 +(1−α)P2‖Q)

>α(Rz (P1)+λD(P1‖Q))+(1−α)(Rz (P2)+λD(P2‖Q))

where the functional Rz is defined in (18). The equality above follows from
the properties of the Lebesgue integral, while the inequality follows from The-
orem 2.2. This proves that the solution is unique due to the strict concavity of
the objective function, which completes the proof.

D Proof of Lemma 3.2

From Theorem 3.1, it follows that for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
(288)

6exp

Å
−KQ,z

Å
− 1

λ

ãã
(289)

<+∞, (290)

where the inequality in (289) follows from the fact that the function Lz is non-
negative; and the equality in (290) follows from the fact that λ ∈ KQ,z. This
completes the proof of finiteness.

The proof of positivity follows from observing that λ ∈ KQ,z and thus,KQ,z

(
− 1
λ

)
<

+∞, and thus, exp
(
−KQ,z

(
− 1
λ

))
> 0. Moreover, for all θ ∈ suppQ, it holds

that Lz (θ) 6 +∞, which implies that− 1
λLz (θ) > −∞, and thus, exp

(
− 1
λLz (θ)

)
>

0, with equality if and only if Lz (θ) = +∞. These two observations put together
yield

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
(291)

=exp

Å
−KQ,z

Å
− 1

λ

ãã
exp

Å
− 1

λ
Lz (θ)

ã
(292)

>0, (293)

with equality if and only if Lz (θ) = +∞. This completes the proof.
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E Proof of Lemma 3.3
The probability measure P (Q,λ)

Θ|Z=z in (25) satisfies for all C ∈ B (M),

P
(Q,λ)
Θ|Z=z (C)=

∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) , (294)

and thus, if Q (C) = 0, then

P
(Q,λ)
Θ|Z=z (C)=0, (295)

which implies the absolute continuity of P (Q,λ)
Θ|Z=z with respect to Q.

Alternatively, given a set C ∈ B (M), assume now that P (Q,λ)
Θ|Z=z (C) = 0. Hence,

it follows that

0=P
(Q,λ)
Θ|Z=z (C) (296)

=

∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) . (297)

From Lemma 3.2, and the assumption Q ({θ ∈M : Lz (θ) = +∞}) = 0, it holds
that for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ) > 0, (298)

which implies that ∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ)=0, (299)

if and only if Q (C) = 0. This verifies the absolute continuity of Q with respect
to P (Q,λ)

Θ|Z=z, and completes the proof.

F Proof of Lemma 3.4
Consider the function g :M→ [0,+∞),

g(θ) =
dP

(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
, (300)

and note that for all θ ∈ suppQ \
{
ν ∈M: Lz (ν) = +∞

}
, g (θ) > 0. Alterna-

tively, for all θ ∈ {ν ∈M : Lz (ν) = +∞} , g (θ) = 0, which follows from the
assumption 0 · 10 = 0.
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Consider a measure P on (M,B (M)), such that for all sets A ∈ B (M),

P (A) =

∫
A
g(θ)dP

(Q,β)
Θ|Z=z(θ), (301)

and note that if P (Q,β)
Θ|Z=z(A) = 0, then P (A) = 0. This implies that P is

absolutely continuous with respect to P
(Q,β)
Θ|Z=z(A). Moreover, from (301), it

follows that

P (A) =

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
dP

(Q,β)
Θ|Z=z(θ) (302)

=

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
dP

(Q,β)
Θ|Z=z

dQ
(θ)dQ(θ) (303)

=

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ) dQ(θ) (304)

=

∫
A

dP
(Q,α)
Θ|Z=z(θ) (305)

= P
(Q,α)
Θ|Z=z(A), (306)

which implies that the probability measures P in (301) and P (Q,α)
Θ|Z=z are identical.

Thus, P (Q,α)
Θ|Z=z is absolutely continuous with respect to P

(Q,β)
Θ|Z=z. The proof

that P (Q,β)
Θ|Z=z is absolutely continuous with respect to P (Q,α)

Θ|Z=z follows the same
argument. This completes the proof.

G Proof of Lemma 3.6
From Theorem 3.1, the probability measure P (Q,λ)

Θ|Z=z in (25) satisfies for all θ ∈
suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

(307)

=

Å
exp

Å
Lz(θ)

λ

ã∫
exp

Å
−Lz(ν)

λ

ã
dQ(ν)

ã−1
(308)

=

Å∫
exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

ã−1
. (309)

Given θ ∈ suppQ, consider the partition of suppQ formed by the sets A0 (θ),
A1 (θ), and A2 (θ), which satisfy the following:

A0 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) = 0} , (310a)
A1 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) < 0} , and (310b)
A2 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) > 0} . (310c)
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Using the sets A0 (θ), A1 (θ), and A2 (θ) in (309), the following holds for all θ ∈
suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

(∫
A0(θ)

exp

Å
1

λ
(Lz (θ)−Lz (ν))

ã
dQ(ν)

+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)−Lz (ν))

ã
dQ(ν)

+

∫
A2(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

)−1
(311)

=

(
Q(A0(θ))+

∫
A1(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

+

∫
A2(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

)−1
. (312)

Note that the sets {
ν ∈ suppQ : Lz (ν) = δ?Q,z

}
, (313){

ν ∈ suppQ : Lz (ν) > δ?Q,z
}
, and (314){

ν ∈ suppQ : Lz (ν) < δ?Q,z
}
, (315)

with δ?Q,z in (38), form a partition of the set suppQ. Following this obser-
vation, the rest of the proof is divided into three parts. The first part evalu-

ates limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ), with θ ∈
¶
ν ∈M : Lz (ν) = δ?Q,z

©
. The second part

considers the case in which θ ∈
¶
ν ∈M : Lz (ν) > δ?Q,z

©
. The third part con-

siders the remaining case.

The first part is as follows. Consider that θ ∈
¶
ν ∈M : Lz (ν) = δ?Q,z

©
and

note that
¶
ν ∈M : Lz (ν) = δ?Q,z

©
= L?Q,z. Hence, the sets A0 (θ), A1 (θ),

and A2 (θ) in (310) satisfy the following:

A0 (θ) = L?Q,z, (316a)
A1 (θ) =

{
µ ∈ suppQ : Lz (µ) > δ?Q,z

}
, and (316b)

A2 (θ) =
{
µ ∈ suppQ : Lz (µ) < δ?Q,z

}
. (316c)

From the definition of δ?Q,z in (38), it follows that Q (A2 (θ)) = 0. Plugging the
equalities in (316) in (312) yields for all θ ∈

¶
ν ∈M : Lz (ν) = δ?Q,z

©
,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

Å
Q
(
L?Q,z

)
+

∫
A1(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

ã−1
. (317)
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The equality in (317) implies that for all θ ∈
¶
ν ∈M : Lz (ν) = δ?Q,z

©
,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

Å
lim
λ→0+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)−Lz (ν))

ã
dQ(ν)+ (318)

+ Q
(
L?Q,z

)ã−1
(319)

=

{
+∞ if Q

Ä
L?Q,z

ä
= 0

1

Q(L?Q,z)
otherwise. (320)

where the equality in (320) follows from verifying that the dominated conver-
gence theorem [55, Theorem 2.6.9] holds. That is,
(a) For all ν ∈ A1 (θ), it holds that exp

(
1
λ (Lz (θ)− Lz (ν))

)
< 1; and

(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
= 0. (321)

This completes the first part of the proof.

The second part is as follows. For all δ > δ?Q,z and for all θ ∈
{
ν ∈ suppQ :

Lz (ν) = δ
}
, the sets A0 (θ), A1 (θ), and A2 (θ) in (310) satisfy the following:

A0 (θ)={µ ∈ suppQ : Lz (µ) = δ} , (322a)
A1 (θ)={µ ∈ suppQ : Lz (µ) > δ} , and (322b)
A2 (θ)={µ ∈ suppQ : Lz (µ) < δ} . (322c)

Consider the sets

A2,1 (θ),
{
µ ∈ A2 (θ) : Lz (µ) < δ?Q,z

}
, and (323)

A2,2 (θ),
{
µ ∈ A2 (θ) : δ?Q,z 6 Lz (µ) < δ

}
, (324)

and note that A2,1 (θ) and A2,2 (θ) form a partition of A2 (θ). Moreover, from
the definition of δ?Q,z in (38), it holds that

Q (A2,1 (θ)) = 0. (325)

Hence, plugging the equalities in (322) and (325) in (312) yields, for all δ > δ?Q,z
and for all θ ∈ {ν ∈M : Lz (ν) = δ},

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

Å
Q(A0(θ))+

∫
A1(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν) (326)

+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

ã−1
. (327)
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The equality in (327) implies that for all δ > δ?Q,z and for all θ ∈
{
ν ∈

M: Lz (ν) = δ
}
,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

(
lim
λ→0+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν) (328)

+ lim
λ→0+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν) (329)

+Q (A0 (θ))

)−1
(330)

=

(
lim
λ→0+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

+Q (A0 (θ))

)−1
(331)

=
(
Q (A0 (θ)) +∞

)−1 (332)
=0, (333)

where the equality in (331) follows by verifying that the dominated convergence
theorem [55, Theorem 2.6.9] holds. That is,
(a) For all ν ∈ A1 (θ), it holds that exp

(
1
λ (Lz (θ)− Lz (ν))

)
< 1; and

(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
= 0. (334)

This completes the second part.

The third part of the proof follows by noticing that the set
{
ν ∈ suppQ: Lz (ν) <

δ?Q,z
}
is a negligible set with respect to Q and thus, for all θ ∈

{
ν ∈ suppQ :

Lz (ν) < δ?Q,z
}
, the value

dP
(Q,λ)

Θ|Z=z

dQ (θ) is immaterial. Hence, it is arbitrarily

assumed that for all θ ∈
¶
ν ∈ suppQ : Lz (ν) < δ?Q,z

©
, it holds that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) = 0. (335)

This completes the third part and completes the proof.

H Proof of Lemma 3.7
Consider the following partition of the setM formed by the sets

A0,
{
θ ∈M : Lz (θ) = δ?Q,z

}
, (336a)

A1,
{
θ ∈M : Lz (θ) < δ?Q,z

}
, and (336b)

A2,
{
θ ∈M : Lz (θ) > δ?Q,z

}
, (336c)
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with δ?Q,z in (38) and the function Lz in (3). Note that A0 = L?Q,z, with L?Q,z
in (39) and

1=P
(Q,λ)
Θ|Z=z (A0) + P

(Q,λ)
Θ|Z=z (A1) + P

(Q,λ)
Θ|Z=z (A2) (337)

=P
(Q,λ)
Θ|Z=z (A0) + P

(Q,λ)
Θ|Z=z (A2) (338)

=P
(Q,λ)
Θ|Z=z (A0) +

∫
A2

dP
(Q,λ)
Θ|Z=z(θ), (339)

where, the equality in (338) follows from noticing that P
(Q,λ)
Θ|Z=z(A1) = 0, which

follows from the definition of δ?Q,z in (38) and the fact that the probability
measure P (Q,λ)

Θ|Z=z is absolutely continuous with respect to the measure Q.

The above implies that

1= lim
λ→0+

P
(Q,λ)
Θ|Z=z(A0)+ lim

λ→0+

∫
A2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)dQ(θ) (340)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z(A0)+

∫
A2

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)dQ(θ) (341)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z (A0) , (342)

where, the equality in (341) follows from the dominated convergence theo-

rem [55, Theorem 1.6.9], given that the Randon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ

is positive and finite (Lemma 3.2); and the inequality in (342) holds from the

fact that for all θ ∈ A2, it holds that limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0 (Lemma 3.6).
Hence, it finally holds that

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
= 1, (343)

which completes the proof.

I Proof of Lemma 4.1
The proof is presented in two parts. The first part shows that if for all δ ∈
(ρ?,+∞), the inequality in (50) holds, then, Q is coherent. The second part
shows that if Q is not coherent, then there exists a δ ∈ (ρ?,+∞) such that

P
(Q,λ)
Θ|Z=z (Lz (δ))=0. (344)

The first part is as follows. Note that for all δ ∈ (ρ?,+∞) and for all θ ∈
Lz (δ) ∩ suppQ, it holds from Lemma 3.2 that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) > 0. (345)
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Hence, if for all δ ∈ (ρ?,+∞), the inequality in (50) holds, then

0 < P
(Q,λ)
Θ|Z=z (Lz (δ)) (346)

=

∫
Lz(δ)

dP
(Q,λ)
Θ|Z=z (θ) (347)

=

∫
Lz(δ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) , (348)

which, together with (345), implies that for all δ ∈ (ρ?,+∞), Q (Lz (δ)) > 0.
Hence, Q is coherent.

The second part is as follows. Assume that Q is not coherent. Then, there exists
a δ ∈ (ρ?,+∞) such that Q (Lz (δ)) = 0. Hence, from the fact that P (Q,λ)

Θ|Z=z is

absolutely continuous with respect to Q, it follows that P (Q,λ)
Θ|Z=z (Lz (δ)) = 0.

This completes the proof.

J Proof of Theorem 4.1

The optimization problem in (83) can be re-written in terms of the Radon-
Nikodym derivative of the optimization measure P with respect to the measure
P

(Q,λ)
Θ|Z=z, denoted by dP

dP
(Q,λ)

Θ|Z=z

:M→ [0,+∞), which yields:

min
P∈4Q(M,B(M))

∫
Lz (ν)

dP

dP
(Q,λ)
Θ|Z=z

(ν)dP
(Q,λ)
Θ|Z=z (ν), (349a)

subject to:∫
dP

dP
(Q,λ)
Θ|Z=z

(ν)log

Ñ
dP

dP
(Q,λ)
Θ|Z=z

(ν)

é
dP

(Q,λ)
Θ|Z=z(ν)6c, and (349b)∫

dP

dP
(Q,λ)
Θ|Z=z

(θ) dP
(Q,λ)
Θ|Z=z(θ) = 1. (349c)

The remainder of the proof focuses on the problem in which the optimization is
over the function dP

dP
(Q,λ)

Θ|Z=z

instead of the measure P . This is due to the fact that

for all P ∈ 4Q (M), the Radon-Nikodym derivate dP

dP
(Q,λ)

Θ|Z=z

is unique up to sets

of zero measure with respect to the measure P (Q,λ)
Θ|Z=z. Let M be the set of mea-

surable functions M → R with respect to the measurable spaces (M,B (M))

and (R,B (R)) that are absolutely integrable with respect to P (Q,λ)
Θ|Z=z. That is,

for all ĝ ∈M , it holds that∫
|ĝ(θ)|dP (Q,λ)

Θ|Z=z(θ)<∞. (350)
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Hence, the optimization problem of interest is:

min
g∈M

∫
Lz (ν) g (ν) dP

(Q,λ)
Θ|Z=z (ν) (351a)

s.t:
∫
g (ν) log (g (ν)) dP

(Q,λ)
Θ|Z=z (ν) 6 c, and (351b)∫

g (θ) dP
(Q,λ)
Θ|Z=z(θ) = 1. (351c)

The Lagrangian of the optimization problem in (351) is a functional L : M ×
[0,+∞)2 → R of the form

L (g, α, β)=

∫
Lz (ν) g (ν) dP

(Q,λ)
Θ|Z=z (ν)

+α

Å∫
g (ν) log (g (ν)) dP

(Q,λ)
Θ|Z=z (ν)− c

ã
+β

Å∫
g (ν) dP

(Q,λ)
Θ|Z=z (ν)− 1

ã
, (352)

where the reals α and β are both nonnegative and act as Lagrangian multipliers
due to the constraints (351b) and (351c), respectively.

Let h :M→ R be a function in M . The Gateaux differential of the functional L
in (352) at (g, α, β) ∈M × [0,+∞)2 in the direction of h, if it exists, is

∂L (g, α, β;h) ,
d

dγ
r(γ)

∣∣∣∣
γ=0

, (353)

where the real function r : R → R is such that for all γ ∈ (−ε, ε), with some
ε > 0, satisfies

r(γ)=

∫
Lz (ν) (g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)

+α

Å∫
(g(ν)+γh(ν))log(g(ν)+γh(ν))dP

(Q,λ)
Θ|Z=z(ν)−c

ã
+β

Å∫
(g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)− 1

ã
. (354)

The proof continues under the assumption that the functions g and h are such
that the Gateaux differential in (353) exists. That is, the function r in (354)
is differentiable in (−ε, ε), with some ε > 0. Using the same arguments as in
the proof of Theorem 3.1, it follows that the derivative of the real function r
in (354) is

d

dγ
r(γ)=

∫
Lzh (ν) dP

(Q,λ)
Θ|Z=z (ν) + α

∫
h (ν) dP

(Q,λ)
Θ|Z=z (ν)

+α

∫
h (ν) log (g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)

+β

∫
h (ν) dP

(Q,λ)
Θ|Z=z (ν) . (355)
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From (353) and (355), it follows that

∂L (g, α, β;h)=

∫
h (ν) (Lz (ν) + α (1 + log g (ν)) + β) dP

(Q,λ)
Θ|Z=z (ν) . (356)

From [69, Theorem 1, page 217], it holds that a necessary condition for the
functional L in (352) to have a minimum at (g, α, β) ∈ M × [0,+∞)2 is that
for all functions h ∈ M ,

∂L (g, α, β;h) = 0, (357)

which implies that for all ν ∈M,

Lz (ν) + α (1 + log g (ν)) + β = 0. (358)

Thus,

g (ν) = exp

Å
−Lz (ν)

α

ã
exp

Å
−β + α

α

ã
, (359)

where α and β are chosen to satisfy their corresponding constraints with equal-
ity. Denote by P ? the solution of the optimization problem in (83). Hence,
from (359), it follows that

dP ?

dP
(Q,λ)
Θ|Z=z

(ν) =
exp
Ä
−Lz(ν)

α

ä∫
exp

Å
−Lz (θ)

α

ã
dP

(Q,λ)
Θ|Z=z (θ)

, (360)

where α is chosen to satisfy

D
Ä
P ?‖P (Q,λ)

Θ|Z=z

ä
= c. (361)

From Lemma 3.3, it follows that the probability measure P ? and the σ-finite
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measure Q satisfy,

dP ?

dQ
(ν)=

dP ?

dP
(Q,λ)
Θ|Z=z

(ν)
dP

(Q,λ)
Θ|Z=z

dQ
(ν) (362)

=

Ü
exp
Ä
−Lz(ν)

α

ä∫
exp

Å
−Lz (θ)

α

ã
dP

(Q,λ)
Θ|Z=z (θ)

ê
Ü

exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

ê
(363)

=


exp
Ä
−Lz(ν)

α

ä
∫ exp

Ä
−Lz(θ)

α

ä
exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dQ (α)

dQ (θ)

Ü
exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

ê
(364)

=
exp

(
−
(
1
α + 1

λ

)
Lz (ν)

)∫
exp

Å
−
Å

1

α
+

1

λ

ã
Lz (ν)

ã
dQ (θ)

, (365)

which implies that P ? is a Gibbs probability measure on (M,B (M)), with
energy function Lz, reference measure Q, and regularization parameter 1

1
α+ 1

λ

,

where α is chosen to satisfy (361). Let the positive real ω be ω , αλ
α+λ and note

that ω ∈ (0, λ] and satisfies D
Ä
P

(Q,ω)
Θ|Z=z (ν) ‖P (Q,λ)

Θ|Z=z

ä
= c. The proof ends by

verifying that the objective function in (352) is strictly convex, and thus, the
measure P (Q,ω)

Θ|Z=z is the unique minimizer. This completes the proof.

K Proof of Lemma 5.2

Note that for all (λ1, λ2) ∈ {x ∈ R : KQ,z(x) < +∞}2, such that λ1 > λ2, it
follows that for all θ ∈ suppQ, the inequality exp (λ2 Lz (θ)) 6 exp (λ1 Lz (θ))
holds. This implies that KQ,z (λ2) 6 KQ,z (λ1) < +∞, which proves that the
function is nondecreasing.

The proof of continuity of the function KQ,z follows from observing that for all
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α ∈ {x ∈ R : KQ,z(x) < +∞}, it holds that

lim
t→α

KQ,z(t)=lim
t→α

log

Å∫
exp (t Lz (θ)) dQ(θ)

ã
(366)

=log

Å
lim
t→α

∫
exp (t Lz (θ)) dQ(θ)

ã
(367)

=log

Å∫
lim
t→α

exp (t Lz (θ)) dQ(θ)

ã
(368)

=log

Å∫
exp (α Lz (θ)) dQ(θ)

ã
(369)

=KQ,z(α), (370)

where (367) and (369) follow from the fact that both the logarithmic and ex-
ponential functions are continuous; and the equality in (368) follows from the
monotone convergence theorem [55, Theorem 1.6.2]. This shows that the func-
tion KQ,z is continuous in {x ∈ R : KQ,z(x) < +∞}.

The proof of differentiability follows by considering the transport of the σ-
finite measure Q in (22) from the measure space (M,B (M)) to the mea-
sure space ([0,+∞) ,B ([0,+∞))) through the function Lz in (3). Denote
the resulting measure in ([0,+∞) ,B ([0,+∞))) by P . More specifically, for
all A ∈ B ([0,+∞)), it holds that P (A) = Q ({θ ∈M : Lz (θ) ∈ A}). Hence,
the function KQ,z satisfies for all t ∈ {ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=log

Å∫
exp (t Lz (θ)) dQ(θ)

ã
(371)

=log

Å∫
exp (t w) dP (w)

ã
, (372)

where the equality (372) follows from [55, Theorem 1.6.12]. Denote by φ the
Laplace transform of the measure P . That is, for all t ∈ {x ∈ R : KQ,z(x) < +∞},

φ(t) =

∫
exp (t v) dP (v). (373)

Hence, φ(t) = exp (KQ,z (t)). From [70, Theorem 1a (page 439)], it follows
that the function φ has derivatives of all orders in {x ∈ R : KQ,z(x) < +∞},
and thus, so does the function KQ,z in the interior of {x ∈ R : KQ,z(x) < +∞}.
This completes the proof.
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L Proof of Lemma 5.3
Let (γ1, γ2) ∈ R2, with γ1 6= γ2 and α ∈ [0, 1] be fixed. Assume thatKQ,z (γ1) <
+∞ and KQ,z (γ2) < +∞. Then, for all α ∈ (0, 1), the following holds

αKQ,z (γ1) + (1− α)KQ,z (γ2)

=α log

Å∫
exp (γ1 Lz (θ)) dQ(θ)

ã
+(1− α) log

Å∫
exp (γ2 Lz (θ)) dQ(θ)

ã
(374)

=log

ÅÅ∫
exp (γ1 Lz (θ)) dQ(θ)

ãαã
+ log

ÇÅ∫
exp (γ2 Lz (θ)) dQ(θ)

ã(1−α)å
(375)

=log

ÅÅ∫
exp (γ1 Lz (θ)) dQ(θ)

ãαÅ∫
exp(γ2 Lz(θ))dQ(θ)

ã(1−α)ã
(376)

=log

(Å∫
exp (γ1αLz (θ))

p
dQ(θ)

ã 1
pÅ∫

exp (γ2(1− α)Lz (θ))
q

dQ(θ)

ã 1
q

)
(377)

>log

Å∫
exp(γ1αLz(θ))exp(γ2(1−α)Lz(θ))dQ(θ)

ã
(378)

=log

Å∫
exp

Å
(γ1α+ γ2(1− α)) Lz (θ)

ã
dQ(θ)

ã
(379)

=KQ,z (γ1α+ γ2(1− α)) , (380)

where the inequality in (377) follows with α , 1
p and 1− α , 1

q ; the inequality
in (378) follows from Hölder’s inequality. Hence, equality in (378) holds if and
only if there exist two constants β1 and β2, not simultaneously equal to zero,
such that the set

A , {θ ∈M : β1 exp (γ1Lz (θ)) = β2 exp (γ2Lz (θ))}

=

ß
θ ∈M : exp ((γ1 − γ2) Lz (θ)) =

β2
β1

™
(381)

=

{
θ ∈M : Lz (θ) =

log β2

β1

(γ1 − γ2)

}
, (382)

satisfies Q (A) = 1. That is, strict inequality in (378) holds if and only if the
function Lz is separable with respect to the σ-finite measure Q. When α = 0
or α = 1, the proof is trivial. This completes the proof.
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M Proof of Lemma 5.4

For all s ∈ KQ,z, with KQ,z in (23), the equality in (96) implies the follow-
ing,

K
(1)
Q,z

Å
−1

s

ã
=

d

dt
log

Å∫
exp (t Lz (θ)) dQ(θ)

ã∣∣∣∣∣
t=− 1

s

(383)

=

∫
Lz (θ) exp (t Lz (θ))∫
exp (t Lz (v)) dQ(v)

dQ(θ)

∣∣∣∣∣
t=− 1

s

(384)

=

∫
Lz (θ) exp

(
− 1
s Lz (θ)

)∫
exp

(
− 1
s Lz (v)

)
dQ(v)

dQ(θ) (385)

=exp

Å
−KQ,z

Å
−1

s

ãã∫
Lz(θ)exp

Å
−1

s
Lz(θ)

ã
dQ(θ) (386)

=

∫
Lz (θ) exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ(θ) (387)

=

∫
Lz (θ) dP

(Q,s)
Θ|Z=z(θ), (388)

where the equality in (384) holds from the dominated convergence theorem [55,
Theorem 1.6.9]; the equality in (386) follows from (22); and the equality in (388)
follows from (25).

For all s ∈ KQ,z, with KQ,z in (23), the equalities in (96) and (387) imply
that

K
(2)
Q,z

Å
−1

s

ã
=

d

dt

∫
Lz (θ) exp (−KQ,z (t) + t Lz (θ)) dQ(θ)

∣∣∣∣∣
t=− 1

s

(389)

=

∫
Lz (θ)

Ä
−K(1)

Q,z (t) + Lz (θ)
ä

exp (−KQ,z (t) + tLz (θ)) dQ(θ)

∣∣∣∣∣
t=− 1

s

(390)

=

∫
Lz (θ)

Å
−K(1)

Q,z

Å
−1

s

ã
+ Lz (θ)

ã
exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ(θ) (391)

=

∫
Lz (θ)

Å
−K(1)

Q,z

Å
−1

s

ã
+ Lz (θ)

ã
dP

(Q,s)
Θ|Z=z (θ) (392)

=−K(1)
Q,z

Å
−1

s

ã∫
Lz(θ)dP

(Q,s)
Θ|Z=z(θ)+

∫
(Lz(θ))

2
dP

(Q,s)
Θ|Z=z(θ) (393)
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=−
Å
K

(1)
Q,z

Å
−1

s

ãã2
+

∫
(Lz (θ))

2
dP

(Q,s)
Θ|Z=z (θ) (394)

=

∫ Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã2
dP

(Q,s)
Θ|Z=z (θ) , (395)

where the equality in (390) follows from the dominated convergence theorem [55,
Theorem 1.6.9]; the equality in (392) is due to a change of measure through the
Radon-Nikodym derivative in (25); and the equality in (394) follows from (388).

For all s ∈ KQ,z, with KQ,z in (23), the equalities in (96) and (394) imply
that

K
(3)
Q,z

Å
−1

s

ã
=

d

dt

Å∫
(Lz (θ))

2
dP

(Q,− 1
t )

Θ|Z=z (θ)−
Ä
K

(1)
Q,z (t)

ä2ã∣∣∣∣∣
t=− 1

s

(396)

=
d

dt

(∫ Å
(Lz (θ))

2
exp (−KQ,z (t) + tLz (θ))

ã
dQ (θ)

−
Ä
K

(1)
Q,z (t)

ä2)∣∣∣∣∣
t=− 1

s

(397)

=

∫
(Lz (θ))

2

Ñ
d

dt
exp(−KQ,z (t)+ tLz (θ))

∣∣∣∣∣
t=− 1

s

é
dQ(θ)

−2K
(1)
Q,z (t)K

(2)
Q,z (t)

∣∣∣∣∣
t=− 1

s

(398)

=

∫
(Lz(θ))

2
Ä
Lz(θ)−K(1)

Q,z(t)
ä
exp(−KQ,z(t)+tLz(θ))

∣∣∣∣∣
t=−1

s

dQ(θ)

−2K
(1)
Q,z (t)K

(2)
Q,z (t)

∣∣∣∣∣
t=− 1

s

(399)

=

∫
(Lz (θ))

2
Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã
exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ (θ)

−2K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(400)

=

∫
(Lz (θ))

2
Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã
dP

(Q,s)
Θ|Z=z (θ)

−2K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(401)
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=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)

−K(1)
Q,z

Å
−1

s

ã∫
(Lz (θ))

2
dP

(Q,s)
Θ|Z=z (θ)

−2K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(402)

=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)

−K(1)
Q,z

Å
−1

s

ãÇ
K

(2)
Q,z

Å
−1

s

ã
+

Å
K

(1)
Q,z

Å
−1

s

ãã2å
−2K

(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(403)

=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)−K(1)

Q,z

Å
−1

s

ã3
(404)

−3K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(405)

=

∫ Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã3
dP

(Q,s)
Θ|Z=z (θ) , (406)

where the equality in (397) follows from (25); and the equality in (398) fol-
lows from the dominated convergence theorem [55, Theorem 1.6.9]; the equality
in (401) follows from (25); and the equality in (403) follows from (394).

This completes the proof.

N Proof of Theorem 6.1

The proof is based on the analysis of the derivative of K(1)
Q,z

(
− 1
λ

)
with respect

to λ in intKQ,z. This is due to Corollary 6.1. For instance, note that

d

dλ
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=

d

dλ
K

(1)
Q,z

Å
− 1

λ

ã
(407)

=
1

λ2
K

(2)
Q,z

Å
− 1

λ

ã
(408)

>0, (409)

where the equality in (408) follows from Lemma 5.4. The inequality in (409)
implies that the expected empirical risk Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
= K

(1)
Q,z

(
− 1
λ

)
in (105) is

nondecreasing with respect to λ. The rest of the proof consists in showing that
for all α ∈ KQ,z, the function K(2)

Q,z in (96) satisfies K(2)
Q,z

(
− 1
α

)
> 0 if and only if

the function Lz in (3) is separable. For doing so, a handful of preliminary results
are described in the following subsection. The proof of Theorem 6.1 resumes in
Subsection N.2
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N.1 Preliminaries

Given a positive real λ ∈ KQ,z, with KQ,z in (23), consider a partition of M
formed by the sets R0(λ), R1(λ) and R2(λ), such that

R0(λ),
¶
ν ∈M : Lz (ν) = Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (410a)

R1(λ),
¶
ν ∈M : Lz (ν) < Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, and (410b)

R2(λ),
¶
ν ∈M : Lz (ν) > Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (410c)

where the functional Rz is in (18) and the probability measure P (Q,λ)
Θ|Z=z is in (25).

The sets in (410) exhibit several properties that are central for proving the main
results of this section.

Lemma N.1. The probability measure P (Q,λ)
Θ|Z=z in (25), satisfies

P
(Q,λ)
Θ|Z=z (R1(λ)) > 0, (411)

if and only if

P
(Q,λ)
Θ|Z=z (R2(λ)) > 0, (412)

where the sets R1(·) and R2(·) are in (410b) and (410c), respectively.

Proof: The proof is divided into two parts. In the first part, given a real α ∈
KQ,z, it is proven that if the set R1 (α) is nonnegligible with respect to P (Q,α)

Θ|Z=z ,

then the set R2 (α) is nonnegligible with respect to P (Q,α)
Θ|Z=z . The second part

proves the converse.

The first part is proved by contradiction. Assume that set R2 (α) is negligible
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with respect to P (Q,α)
Θ|Z=z . Hence, from Lemma 5.4, it holds that

K
(1)
Q,z

Å
− 1

α

ã
=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν)(413)

+

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (414)

=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (415)

=K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α)) (416)

+

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (417)

<K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α))

+K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R1(α)) (418)

=K
(1)
Q,z

Å
− 1

α

ã (
P

(Q,α)
Θ|Z=z (R0(α)) + P

(Q,α)
Θ|Z=z (R1(α))

)
(419)

=K
(1)
Q,z

Å
− 1

α

ã
, (420)

which is a contradiction.

The second part of the proof follows the same arguments as in the first part.
Assume that the set R1 (α) is negligible with respect to P (Q,α)

Θ|Z=z . Hence, from
Lemma 5.4, it holds that

K
(1)
Q,z

Å
− 1

α

ã
=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (421)

+

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (422)

=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (423)

=K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α))

+

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (424)

>K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α)) +K

(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R2(α)) (425)

=K
(1)
Q,z

Å
− 1

α

ãÄ
P

(Q,α)
Θ|Z=z (R0(α)) + P

(Q,α)
Θ|Z=z (R2(α))

ä
(426)

=K
(1)
Q,z

Å
− 1

α

ã
, (427)

which is also a contradiction. This completes the proof.
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A more general result can be immediately obtained by combining Lemma 3.4
and Lemma N.1.

Lemma N.2. For all α ∈ KQ,z, with KQ,z in (23), the measure P (Q,λ)
Θ|Z=z in (25),

satisfies
P

(Q,λ)
Θ|Z=z (R1(α)) > 0, (428)

if and only if
P

(Q,λ)
Θ|Z=z (R2(α)) > 0, (429)

where the sets R1(α) and R2(α) are in (410b) and (410c), respectively.

N.2 The proof
The rest of the proof of Theorem 6.1 is divided into two parts. In the first
part, it is shown that if for all α ∈ KQ,z, K(2)

Q,z

(
− 1
α

)
> 0, then the function Lz

in (3) is separable. The second part of the proof, consists in showing that if the
function Lz is separable, then, for all α ∈ KQ,z, K(2)

Q,z

(
− 1
α

)
> 0.

The first part is as follows. From Lemma 5.4, it holds that for all α ∈ KQ,z,

K
(2)
Q,z

Å
− 1

α

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (430)

=

∫
R0(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (431)

+

∫
R1(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (432)

+

∫
R2(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) , (433)

where the sets R0(α), R1(α), and R2(α) are respectively defined in (410).
Hence,

K
(2)
Q,z

Å
− 1

α

ã
=

∫
R1(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (434)

+

∫
R2(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) . (435)

Under the assumption that for all α ∈ KQ,z the function K
(2)
Q,z in (96) satis-

fies K(2)
Q,z

(
− 1
α

)
> 0, it follows that at least one of the following claims is true:

(a) P (Q,α)
Θ|Z=z (R1(α)) > 0; and

(b) P (Q,α)
Θ|Z=z (R2(α)) > 0.

Nonetheless, from Lemma N.1, it follows that both claims (a) and (b) hold
simultaneously. Hence, the sets R1(α) and R2(α) are both nonnegligible with
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respect to P
(Q,α)
Θ|Z=z and moreover, it holds that for all (ν1,ν2) ∈ R1(α) ×

R2(α),

+∞ > Lz (ν1)> K
(1)
Q,z

Å
− 1

α

ã
>Lz (ν2) , (436)

where Lz (ν1) < +∞ follows from the fact that P (Q,λ)
Θ|Z=z ({θ ∈M : Lz (θ) = +∞}) =

0 (Lemma 3.2). This proves that under the assumption that for all α ∈
KQ,z,K(2)

Q,z

(
− 1
α

)
> 0, the function Lz in (3) is separable with respect to P (Q,α)

Θ|Z=z.
From Lemma 5.1, it holds that the function Lz is separable with respect to Q.
This completes the first part of the proof.

The second part of the proof is simpler. Assume that the empirical risk func-
tion Lz in (3) is separable with respect to P (Q,α)

Θ|Z=z. That is, for all γ ∈ KQ,z,
there exist a positive real cγ > 0; and two subsets A(γ) and B(γ) ofM that are
nonnegligible with respect to P (Q,γ)

Θ|Z=z in (25) and verify that for all (ν1,ν2) ∈
A(γ)× B(γ),

+∞ > Lz (ν1)> cγ >Lz (ν2) . (437)

From Lemma 5.4, it holds that

K
(2)
Q,z

Å
− 1

γ

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (438)

=

∫
A(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (439)

+

∫
B(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (440)

+

∫
M\(A(γ)∪B(γ))

Å
Lz(θ)−K(1)

Q,z

Å
−1

γ

ãã2
dP

(Q,γ)
Θ|Z=z(θ) (441)

>0, (442)

where the inequality (442) follows from the following facts. First, if cγ <

K
(1)
Q,z

Ä
− 1
γ

ä
, with cγ in (437), then for all ν ∈ B(γ), it holds that K(1)

Q,z

Ä
− 1
γ

ä
>

cγ > Lz (ν), and thus,Å
Lz (ν)−K(1)

Q,z

Å
− 1

γ

ãã2
>

Å
cγ −K(1)

Q,z

Å
− 1

γ

ãã2
, (443)

which implies,∫
B(γ)

Å
Lz(θ)−K(1)

Q,z

Å
−1

γ

ãã2
dP

(Q,γ)
Θ|Z=z(θ)>

Å
cγ−K(1)

Q,z

Å
−1

γ

ãã2
P

(Q,γ)
Θ|Z=z(B(γ))(444)

>0. (445)
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Second, if cγ > K
(1)
Q,z

Ä
− 1
γ

ä
then for all ν ∈ A(γ), it holds that Lz (ν) > cγ >

K
(1)
Q,z

Ä
− 1
γ

ä
, and thus,Å

Lz (ν)−K(1)
Q,z

Å
− 1

γ

ãã2
>

Å
cγ −K(1)

Q,z

Å
− 1

γ

ãã2
, (446)

which implies,

∫
A(γ)

Å
Lz(θ)−K(1)

Q,z

Å
−1

γ

ãã2
dP

(Q,γ)
Θ|Z=z(θ)>

Å
cγ−K(1)

Q,z

Å
−1

γ

ãã2
P

(Q,γ)
Θ|Z=z(A(γ))(447)

>0. (448)

Hence, under the assumption that the empirical risk function Lz in (3) is sep-
arable, it holds that for all γ ∈ KQ,z, K(2)

Q,z

Ä
− 1
γ

ä
> 0. This completes the

proof.

O Proof of Lemma 6.1

Consider the partition of the setM formed by the sets A0, A1, and A2 in (336).
From (97), for all λ ∈ KQ,z, with KQ,z in (23), it holds that,

K
(1)
Q,z

Å
− 1

λ

ã
=

∫
A0

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) +

∫
A1

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (449)

+

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (450)

=

∫
A0

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) +

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (451)

=δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z) +

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (452)

>δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z) + δ?Q,zP

(Q,λ)
Θ|Z=z(A2) (453)

=δ?Q,z, (454)

where the equality in (451) follows by noticing that Q (A1) = 0, which implies
that P (Q,λ)

Θ|Z=z(A1) = 0 (Lemma 3.3); the equality in (452) follows from noticing
that A0 = L?Q,z, with L?Q,z in (39); and the equality in (453) follows from (336c).
This completes the proof.
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P Proof of Theorem 6.2
From (452) in the proof of Lemma 6.1, it holds that

lim
λ→0+

K
(1)
Q,z

Å
− 1

λ

ã
= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L

?
Q,z)+ lim

λ→0+

∫
A2

Lz(θ)dP
(Q,λ)
Θ|Z=z(θ) (455)

= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z)

+ lim
λ→0+

∫
A2

Lz (θ)
dP

(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (456)

= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z)

+

∫
A2

Lz (θ) lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (457)

=δ?Q,z lim
λ→0+

P
(Q,λ)
Θ|Z=z(L?Q,z) (458)

=δ?Q,z, (459)

where, the equality in (457) follows from noticing two facts: (a) For all λ ∈

KQ,z, the Randon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ is positive and finite (Lemma 3.2);

and (b) For all θ ∈ A2, it holds that limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0 (Lemma 3.6).
Hence, the dominated convergence theorem [55, Theorem 1.6.9] holds. The
inequality in (458) follows from Lemma 3.7. This completes the proof.

Q Proof of Theorem 9.1
From Theorem 6.1, it follows that for all (λ1, λ2) ∈ KQ,z × KQ,z with λ1 >
λ2, ∫

Lz(α)
dP

(Q,λ1)
Θ|Z=z

dQ
(α)dQ(α)>

∫
Lz(α)

dP
(Q,λ2)
Θ|Z=z

dQ
(α)dQ(α),

which implies the following inclusions:

R1(λ2)⊆R1(λ1), and (460a)
R2(λ1)⊆R2(λ2), (460b)

with the sets R1(·) and R2(·) in (410). From (193), it holds that for all i ∈
{1, 2},

NQ,z(λi) = R2(λi)
c, (461)

where the complement is with respect toM. Thus, the inclusion in (460b) and
the equality in (461) yields,

NQ,z(λ1) ⊇ NQ,z(λ2). (462)
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The inclusion M ⊇ NQ,z(λ1) follows from (193). Alternatively, the inclu-
sion NQ,z(λ2) ⊇ N ?

Q,z, follows from Lemma 6.1 and from observing that for
all ν ∈ N ?

Q,z,

Rz
Ä
P

(Q,λ2)
Θ|Z=z

ä
>δ?Q,z = Lz (ν) , (463)

which implies that ν ∈ NQ,z(λ2). This completes the proof of (197).

The proof of (198) is as follows. From the intermediate value theorem [66,
Theorem 4.23] and the assumption that the empirical risk function Lz in (3)
is continuous on M, it follows that for all λ ∈ KQ,z, there always exists a
model θ ∈M, such that

Lz (θ) =

∫
Lz (α) dP

(Q,λ)
Θ|Z=z (α) , (464)

which implies that R0 (λ) is not empty, and as a consequence, NQ,z (λ) =
R0 (λ) ∪ R1 (λ) is not empty. Hence, for all θ ∈ R0 (λ1) it holds that θ /∈
NQ,z (λ2). This proves that the elements of R0 (λ1) are in NQ,z (λ1) but not
in NQ,z (λ2). This, together with (462), verifies that

NQ,z (λ1)⊃NQ,z (λ2) . (465)

The strict inclusion M ⊃ NQ,z(λ1) is proved by contradiction. Assume that
there exists a λ ∈ KQ,z such that M = NQ,z(λ). Then, R2 (λ) = ∅ and
thus, P (Q,λ)

Θ|Z=z (R2 (λ)) = 0, which together with Lemma N.1, implies that

P
(Q,λ)
Θ|Z=z (R1 (λ)) = 0 and consequently,

P
(Q,λ)
Θ|Z=z (R0 (λ)) = 1. (466)

This contradicts the assumption that the function Lz is separable (Definition 5.1).
Hence,M⊃ NQ,z(λ1).

Finally, the strict inclusion NQ,z(λ2) ⊃ N ?
Q,z is proved by contradiction. As-

sume that there exists a λ ∈ KQ,z such that N ?
Q,z = NQ,z(λ). That is,{

θ ∈M : Lz (θ) 6 δ?Q,z
}

= N ?
Q,z (467)

= NQ,z(λ) (468)

=

ß
θ ∈M : Lz (θ) 6 K

(1)
Q,z

Å
− 1

λ

ã™
. (469)

Hence, three cases might arise:
(a) there exists a λ ∈ KQ,z, such that δ?Q,z < K

(1)
Q,z

(
− 1
λ

)
and it holds thatß

ν ∈M : δ?Q,z < Lz (ν) 6 K
(1)
Q,z

Å
− 1

λ

ã™
= ∅;
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(b) there exists a λ ∈ KQ,z, such that δ?Q,z > K
(1)
Q,z

(
− 1
λ

)
and it holds thatß

ν ∈M : K
(1)
Q,z

Å
− 1

λ

ã
< Lz (ν) 6 δ?Q,z

™
= ∅;

or (c) there exists a λ ∈ KQ,z, such that δ?Q,z = K
(1)
Q,z

(
− 1
λ

)
.

The cases (a) and (b) are absurd. Hence, the proof is complete only by consid-
ering the case (c). In the case (c), it holds that,

R1 (λ)=
{
ν ∈M : Lz (ν) < δ?Q,z

}
, (470)

and from the definition of δ?Q,z in (38), it holds that

P
(Q,λ)
Θ|Z=z (R1 (λ)) = 0. (471)

From Lemma N.1 and (471), it follows that,

P
(Q,λ)
Θ|Z=z (R2 (λ)) = 0. (472)

Finally, by noticing that

1=P
(Q,λ)
Θ|Z=z (R0 (λ)) + P

(Q,λ)
Θ|Z=z (R1 (λ)) + P

(Q,λ)
Θ|Z=z (R2 (λ)) (473)

=P
(Q,λ)
Θ|Z=z (R0 (λ)) , (474)

reveals a contradiction to the assumption that the function Lz is separable with
respect to P (Q,λ)

Θ|Z=z (and thus, separable with respect to Q by Lemma 5.1). This
completes the proof of (198).

R Proof of Theorem 9.2
The proof of (199) is based on the analysis of the derivative of P (Q,λ)

Θ|Z=z (A) with
respect to λ, for some fixed set A ⊆ B (M). More specifically, given a γ ∈ KQ,z,
it holds that

P
(Q,γ)
Θ|Z=z (A)=

∫
A

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) , (475)

and from the fundamental theorem of calculus [66, Theorem 6.21], it follows
that for all (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z (A)− P (Q,λ2)

Θ|Z=z (A)=

∫ λ1

λ2

d

dγ
P

(Q,γ)
Θ|Z=z (A) dγ (476)

=

∫ λ1

λ2

d

dγ

∫
A

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) dγ (477)

=

∫ λ1

λ2

∫
A

d

dγ

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) dγ, (478)
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where the equality in (477) follows from (475); and the equality in (478) holds
from Lemma 3.2 and the dominated convergence theorem [55, Theorem 1.6.9].

For all θ ∈ suppQ, the following holds,

d

dλ

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

d

dλ

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

(479)

=

1
λ2 Lz (θ) exp

Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

−
1
λ2 exp

Ä
−Lz(θ)

λ

ä ∫
Lz (α) exp

Å
−Lz (α)

λ

ã
dQ (α)Å∫

exp

Å
−Lz (ν)

λ

ã
dQ (ν)

ã2 (480)

=
1

λ2
Lz (θ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

− 1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

∫
Lz (ν)

dP
(Q,λ)
Θ|Z=z

dQ
(ν) dQ (ν) (481)

=
1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

Å
Lz (θ)−

∫
Lz (ν)dP

(Q,λ)
Θ|Z=z (ν)

ã
. (482)

Plugging (482) into (478) yields,

P
(Q,λ1)
Θ|Z=z (A)− P (Q,λ2)

Θ|Z=z (A)

=

∫ λ1

λ2

∫
A

1

γ2

dP
(Q,γ)
Θ|Z=z

dQ
(α)

Å
Lz (α)−

∫
Lz (ν) dP

(Q,γ)
Θ|Z=z (ν)

ã
dQ (α) dγ (483)

=

∫ λ1

λ2

∫
A

1

γ2

Å
Lz(α)−

∫
Lz(ν)dP

(Q,γ)
Θ|Z=z(ν)

ã
dP

(Q,γ)
Θ|Z=z(α)dγ.

(484)

Note that for all α ∈ NQ,z (λ2), it holds that for all γ ∈ (λ2, λ1),

Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z (ν) 6 0, (485)

and thus, ∫
NQ,z(λ2)

1

γ2

Å
Lz(α)−

∫
Lz(ν)dP

(Q,γ)
Θ|Z=z(ν)

ã
dP

(Q,γ)
Θ|Z=z(α)60.

(486)

The equalities in (484) and (486), with A = NQ,z (λ), imply that

P
(Q,λ1)
Θ|Z=z (NQ,z (λ2))− P (Q,λ2)

Θ|Z=z (NQ,z (λ2))60. (487)
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The inequality 0 < P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) in (199) is proved by contradiction. As-

sume that for some λ ∈ KQ,z it holds that 0 = P
(Q,λ)
Θ|Z=z(NQ,z(λ2)). Then,

P
(Q,λ)
Θ|Z=z(R0(λ2)) + P

(Q,λ)
Θ|Z=z(R1(λ2)) = 0, which implies that P (Q,λ)

Θ|Z=z(R2(λ2)) =

1, which is a contradiction. See for instance, Lemma N.2. This completes the
proof of (199).

The proof of strict inequality in (199) is divided into two parts. The first part
shows that if for all pairs (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (488)

then the function Lz is separable with respect to Q. The second part of the
proof shows that if the function Lz is separable with respect to Q, then, for all
pairs (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2, the inequality in (488) holds.

The first part is as follows. In the proof of Theorem 9.1 it is shown (see (484))
that for all pairs (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z (NQ,z (λ2))− P (Q,λ2)

Θ|Z=z (NQ,z (λ2))

=

∫ λ1

λ2

∫
NQ,z(λ2)

1

γ2

Å
Lz(α)−K(1)

Q,z

Å
−1

γ

ãã
dP

(Q,γ)
Θ|Z=z(α)dγ.

(489)

Assume that for a given pair (λ1, λ2) ∈ KQ,z×KQ,z, with λ1 > λ2, the inequality
in (488) holds. Then, from (489),

0>

∫ λ1

λ2

∫
NQ,z(λ2)

1

γ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

γ

ãã
dP

(Q,γ)
Θ|Z=z (α)dγ (490)

=

∫ λ1

λ2

∫
R1(λ2)

1

γ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

γ

ãã
dP

(Q,γ)
Θ|Z=z (α)dγ, (491)

where the equality in (491) follows from noticing that R0 (λ2) and R1 (λ2) form
a partition of NQ,z (λ2), with the sets R0 (λ2), R1 (λ2) and NQ,z (λ2) defined
in (410a), (410b), and (193), respectively.

The inequality in (491) implies that the set R1 (λ2) is nonnegligible with respect
to P

(Q,γ)
Θ|Z=z, for some γ ∈ (λ2, λ1). Hence, from Lemma N.2, it follows that both

sets R1 (λ2) and R2 (λ2) are nonnegligible with respect to P (Q,γ)
Θ|Z=z.

From the arguments above, it has been proved that given a pair (λ1, λ2) ∈
KQ,z ×KQ,z with λ1 > λ2, if

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (492)

then there always exists a positive γ ∈ (λ1, λ2) such that the sets R1 (λ2)

andR2 (λ2) are not negligible with respect to P (Q,γ)
Θ|Z=z. Moreover, such setsR1 (λ2)
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and R2 (λ2) satisfy for all (ν1,ν2) ∈ R2 (λ)×R1 (λ),

+∞ > Lz (ν1)> K
(1)
Q,z

Å
− 1

λ

ã
>Lz (ν2) , (493)

which together with Definition 5.1 verify that the function Lz is separable with
respect to P (Q,γ)

Θ|Z=z (and thus, with respect to Q by Lemma 5.1). This ends the
first part of the proof.

The second part of the proof is under the assumption that the empirical risk
function Lz in (3) is separable with respect to Q (and thus, with respect to P (Q,γ)

Θ|Z=z

by Lemma 5.1). That is, from Definition 5.1, for all γ ∈ KQ,z, there exist a
positive real cγ > 0 and two subsets A(γ) and B(γ) of M nonnegligible with
respect to P (Q,γ)

Θ|Z=z in (25) that verify that for all (ν1,ν2) ∈ A(γ)×B(γ),

Lz (ν1)> cγ >Lz (ν2) . (494)

In the proof of Theorem 9.1, cf. (484), it has been proved that given a pair
(α1, α2) ∈ KQ,z × KQ,z, with α1 > γ > α2, it holds that for all subsets A
ofM,

P
(Q,α1)
Θ|Z=z (A)− P (Q,α2)

Θ|Z=z (A)

=

∫ α1

α2

∫
A

1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(α)

Å
Lz (α)−K(1)

Q,z

Å
− 1

λ

ãã
dP (α)dλ

=

∫ α1

α2

∫
A

1

λ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

λ

ãã
dP

(Q,λ)
Θ|Z=z (α)dλ. (495)

Hence, two cases are studied. The first case considers that

cγ < K
(1)
Q,z

Å
− 1

γ

ã
, (496)

with cγ in (494). The second case considers that

cγ > K
(1)
Q,z

Å
− 1

γ

ã
. (497)

In the first case, it follows from (193) that

B (γ) ⊂ NQ,z (γ) , (498)

which implies that

P
(Q,γ)
Θ|Z=z (NQ,z (γ))>P (Q,γ)

Θ|Z=z (B (γ)) (499)
>0, (500)

where, the inequality in (500) follows from the fact that B (γ) is nonnegligible
with respect to P (Q,γ)

Θ|Z=z. This implies that the set NQ,z (γ) is not negligible with
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respect P (Q,γ)
Θ|Z=z. Moreover, from (193) and (498), it follows that for all α ∈

NQ,z (γ) and for all λ ∈ (γ, α1),

Lz (α)−
∫

Lz (ν) dP
(Q,λ)
Θ|Z=z (ν)<Lz (α)− cγ (501)

<0, (502)

where the inequality in (501) follows from (496); and the inequality in (502)
follows from (494). Thus,∫ α1

γ

∫
NQ,z(γ)

1

λ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

λ

ãã
dP

(Q,λ)
Θ|Z=z (α)dλ<0,

which implies, from (495), that

P
(Q,α1)
Θ|Z=z (NQ,z (γ))− P (Q,γ)

Θ|Z=z (NQ,z (γ))<0. (503)

Assume now that cγ > K
(1)
Q,z

Ä
− 1
γ

ä
. Hence, the following holds

A (γ) ⊆ R2 (γ) , (504)

which implies that

P
(Q,γ)
Θ|Z=z (R2 (γ))>P (Q,γ)

Θ|Z=z (A (γ)) (505)
>0, (506)

where the inequality in (506) follows from the fact that A (γ) is nonnegli-
gible with respect to P

(Q,γ)
Θ|Z=z. This implies that the set R2 (γ) is not neg-

ligible with respect P (Q,γ)
Θ|Z=z. From Lemma N.1, it follows that both R1 (γ)

and R2 (γ) are nonnegligible with respect to P
(Q,γ)
Θ|Z=z. Using this result, the

following holds,

P
(Q,γ)
Θ|Z=z (NQ,z (γ))>P (Q,γ)

Θ|Z=z (R1 (γ)) (507)
>0, (508)

which proves the set NQ,z (γ) is nonnegligible with respect to P (Q,γ)
Θ|Z=z.

From (193) and Theorem 6.1, it follows that for all α ∈ NQ,z (γ) and for all λ ∈
(γ, α1),

0>Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z (ν) (509)

>Lz (α)−
∫

Lz (ν) dP
(Q,λ)
Θ|Z=z (ν) . (510)

Thus, ∫ α1

γ

∫
NQ,z(γ)

1

λ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

λ

ãã
dP

(Q,λ)
Θ|Z=z (α)dλ<0,

which implies, from (495), that

P
(Q,α1)
Θ|Z=z (NQ,z (γ))− P (Q,γ)

Θ|Z=z (NQ,z (γ))<0. (511)

This completes the proof.
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S Proof of Lemma 9.2

The proof is based on the following two observations. First, note that (NQ,z (λ2))
c

= R2 (λ2), with the set R2 (·) defined in (410c). Second, note that

NQ,z (λ1)=NQ,z (λ2) ∪ (NQ,z (λ1) ∩R2 (λ2)) , (512)

and the fact that the sets NQ,z (λ2) and (NQ,z (λ1) ∩R2 (λ2)) are disjoint.
Hence, for all i ∈ {1, 2},

P
(λi)
Θ|Z=z(NQ,z(λ1))=P

(λi)
Θ|Z=z

Å
NQ,z(λ2)∪(NQ,z(λ1)∩R2(λ2))

ã
(513)

=P
(λi)
Θ|Z=z

Å
NQ,z (λ2)

ã
+P

(λi)
Θ|Z=z

Å
NQ,z (λ1) ∩R2 (λ2)

ã
(514)

=P
(λi)
Θ|Z=z

Å
NQ,z (λ2)

ã
, (515)

where the equality in (514) follows from Lemma 3.3 and the equality in (200).

Finally, under the assumption that the empirical function Lz in (3) is separable,
it holds from Theorem 9.2 that

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)). (516)

Plugging (515) into (516), with i = 1, yields,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (517)

and this completes the proof.

T Proof of Theorem 11.2

Consider the following lemma.

Lemma T.1. Given two probability measures P1 and P2 over (M,B (M)),
with P2 absolutely continuous with respect to P1, the following holds for all z ∈
(X × Y)

n,

Rz (P2)− Rz (P1)6inf
t<0

Ç
D(P2‖P1)+log

(∫
exp(t (Lz(θ)−Rz(P1)))dP1(θ)

)
t

å
,(518)

where the function Lz and the functional Rz are defined in (3) and in (18),
respectively.
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Proof: From [53, Corollary 4.15, Page 100], it follows that the probability mea-
sures P1 and P2 in (M,B (M)) satisfy the following equality:

D(P2‖P1)=sup
f

∫
f(θ)dP2(θ)−log

∫
exp(f(θ))dP1(θ), (519)

where the supremum is over the space of all measurable functions f with respect
to (M,B (M)) and (R,B (R)), such that

∫
exp (f (θ)) dP1 (θ) < ∞. Hence,

for all z ∈ (X × Y)
n and for all t ∈ (−∞, 0), it follows that the empirical risk

function Lz in (3) satisfies that

D (P2‖P1)>
∫
tLz (θ) dP2 (θ)− log

∫
exp (tLz (θ)) dP1 (θ) (520)

>
∫
tLz (θ) dP2 (θ)

− log

∫
exp (tLz (θ) + tRz (P1)− tRz (P1)) dP1 (θ) (521)

=

∫
tLz (θ) dP2 (θ)− tRz (P1)

− log

∫
exp (tLz (θ)− tRz (P1)) dP1 (θ) (522)

=tRz(P2)−tRz(P1)−log

∫
exp(tLz(θ)−tRz(P1))dP1(θ), (523)

which leads to

Rz (P2)−Rz (P1)6
D(P2‖P1)+log

∫
exp(t(Lz (θ)−Rz (P1)))dP1(θ)

t
. (524)

Given that t can be chosen arbitrarily in (−∞, 0), it holds that

Rz(P2)−Rz(P1)6 inf
t∈(−∞,0)

D(P2‖P1)+log
∫

exp(t(Lz(θ)−Rz(P1)))dP1(θ)

t
, (525)

which completes the proof.

From Lemma T.1, it holds that the probability measure P (Q,λ)
Θ|Z=z in (25), satisfies

for all P ∈ 4Q (M,B (M)),

Rz (P )− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 inf
t∈(−∞,0)

(
D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
t

+
log
Ä∫

exp
Ä
t
Ä
Lz(θ)−K(1)

Q,z

(
−1
λ

)ää
dP

(Q,λ)
Θ|Z=z(θ)

ä
t

)
,(526)

where the function K
(1)
Q,z is defined in (97) and satisfies (105). Moreover, for
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all t ∈ (−∞, 0),

log

Å∫
exp

Å
t

Å
Lz (θ)−K(1)

Q,z

Å
− 1

λ

ããã
dP

(Q,λ)
Θ|Z=z(θ)

ã
=log

Å∫
exp (t Lz (θ)) dP

(Q,λ)
Θ|Z=z(θ)

ã
− tK(1)

Q,z

Å
− 1

λ

ã
(527)

=Jz,Q,λ(t)− tK(1)
Q,z

Å
− 1

λ

ã
(528)

6
1

2
t2β2

Q,z, (529)

where the equality in (528) follows from (142); the inequality in (529) follows
from Theorem 8.1; and the constant βQ,z is defined in (165).

Plugging (529) into (526) yields for all t ∈ (−∞, 0),

Rz (P )− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 inf
t∈(−∞,0)

D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
+ 1

2 t
2β2
Q,z

t
. (530)

Let the c ∈ R be defined as follows:

c , Rz (P )− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
. (531)

Hence, from (530), it follows that for all t ∈ (−∞, 0),

c t− 1

2
t2β2

Q,z 6 D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (532)

The rest of the proof consists in finding an explicit expression for the absolute
value of c in (532). To this aim, consider the function φ : R→ R such that

φ(α) =
1

2
α2β2

Q,z, (533)

and note that φ is a positive and strictly convex function with φ(0) = 0. Let
the Legendre-Fenchel transform of φ be the function φ∗ : R → R, and thus for
all x ∈ R,

φ∗(x) = max
t∈(−∞,0)

xt− φ(t). (534)

In particular, note that

φ∗(c) 6 D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (535)

Note that for all x ∈ R and for all t ∈ (−∞, 0), the function φ? in (534)
satisfies

x t− 1

2
t2β2

Q,z 6 φ?(x) = xα?(x)− φ (α?(x)) , (536)

where the term α?(x) represents the unique solution in α within the inter-
val (−∞, 0) to

d

dα
(xα− φ (α)) = x− αβ2

Q,z = 0. (537)
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That is,

α?(x)=
x

β2
Q,z

. (538)

Plugging (538) into (536) yields,

φ?(x)=
x2

2β2
Q,z

. (539)

Hence, from (535) and (536), given c in (531) for all t ∈ (−∞, 0),

c t− 1

2
t2β2

Q,z 6 φ?(c) 6 D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (540)

and thus,

c2

2β2
Q,z

6 D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (541)

This implies that

c 6
√

2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
(542)

and

c > −
√

2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (543)

which leads to∣∣∣∣∫ Lz(θ)dP (θ)−
∫

Lz(θ)dP
(Q,λ)
Θ|Z=z(θ)

∣∣∣∣6√2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (544)

and completes the proof.

U Proof of Theorem 11.4

Under the condition that λ ∈ KQ,PZ
, from Theorem 11.1 and Definition 11.2,

it follows that the generalization error GQ,λ (PZ) in (232) satisfies

GQ,λ (PZ)

= λ

∫ (
D
Ä
P

(Q,λ)
Θ|Z=ν‖Q

ä
+D

Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
−D

Ä
P

(Q,λ)
Θ ‖Q

ä)
dPZ(ν), (545)

= λ

(∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
dPZ(ν)+

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν)

)
, (546)
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where the equality in (546) follows from the fact that∫ (
D
Ä
P

(Q,λ)
Θ|Z=ν‖Q

ä
−D
Ä
P

(Q,λ)
Θ ‖Q

ä)
dPZ(ν)

=

∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖Q

ä
dPZ(ν)−D

Ä
P

(Q,λ)
Θ ‖Q

ä
(547)

=

∫ Ñ∫
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=ν(θ)

é
PZ(ν)−D

Ä
P

(Q,λ)
Θ ‖Q

ä
(548)

=

∫ Ñ∫
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=ν(θ)

é
dPZ(ν)

−
∫

log

Ç
dP

(Q,λ)
Θ

dQ
(θ)

å
dP

(Q,λ)
Θ (θ) (549)

=

∫ Ñ∫
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=ν(θ)

é
dPZ(ν)

−
∫ Ç∫

log

Ç
dP

(Q,λ)
Θ

dQ
(θ)

å
dP

(Q,λ)
Θ|Z=ν(θ)

å
dPZ(ν) (550)

=

∫ (∫ (
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dQ
(θ)

é
+log

Ç
dQ

dP
(Q,λ)
Θ

(θ)

å)
dP

(Q,λ)
Θ|Z=ν(θ)

)
dPZ(ν) (551)

=

∫ (∫
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dP
(Q,λ)
Θ

(θ)

é
dP

(Q,λ)
Θ|Z=ν(θ)

)
dPZ(ν) (552)

=

∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
dPZ(ν). (553)

The equality in (550) follows from (230); and the equality in (551) follows from
the fact that the measures Q and P

(Q,λ)
Θ|Z=ν , with ν ∈ suppPZ , are mutually

absolutely continuous. This completes the proof.
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