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Minimisation du Risque Empirique avec
Régularisation par l’Entropie Relative

Généralisée
Résumé : Le problème de minimisation du risque empirique (ERM) avec
régularisation par l’entropie relative (ERM-RER) est étudié en considérant que
la mesure de référence est une mesure σ-finie au lieu d’une mesure de probabilité.
La solution de l’ERM-RER s’avère être une mesure de probabilité unique et son
expression explicite est présentée en termes de l’ensemble de données donné et
du coefficient de régularisation. Pour un ensemble de données fixe, les ensembles
négligeables et la concentration de la mesure optimale (solution à l’ERM-RER)
sont caractérisés afin de mettre en évidence l’influence du choix de la mesure
de référence et du coefficient de régularisation. Les propriétés de la fonction
génératrice de cumulants du risque empirique induite par la mesure optimale
sont également étudiées. En utilisant ces propriétés, le risque empirique induit
par la mesure optimale s’avère être une variable aléatoire sous-gaussienne. La
sensibilité de l’espérance du risque empirique aux déviations de la solution du
problème ERM-RER est étudiée. Ensuite, la sensibilité est utilisée pour fournir
des bornes supérieures et inférieures sur l’espérance du risque empirique. De
plus, il est montré que l’espérance de la sensibilité est majorée, à un facteur
constant près, par la racine carrée de l’information lautum entre les modèles et
l’ensemble de données.

Mots-clés : Apprentissage Supervisé, Apprentissage PAC, Régularisation, En-
tropie Relative, Minimisation du Risque Empirique, Principe d’Entropie Maxi-
male, Variables Aléatoires sous-Gaussiennes, Apprentissage Bayésien.
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1 Introduction

In supervised machine learning, the problem of empirical risk minimization
(ERM) with relative entropy regularization (ERM-RER) has been the workhorse
for building probability measures on the set of models, without any additional
assumption on the statistical description of the datasets [1–3]. Instead of ad-
ditional statistical assumptions on the datasets, which are typical in Bayesian
methods [4], relative entropy regularization requires a reference probability mea-
sure, which is external to the ERM problem. Often, such reference measure rep-
resents prior knowledge and is chosen to assign high probability to the models
that induce low empirical risks. The ERM-RER problem is known to possess a
unique solution, which is a Gibbs probability measure. Such Gibbs probability
measure has been studied using information theoretic notions in [5–10]; statisti-
cal physics in [1]; PAC (Probably Approximatively Correct)-Bayesian learning
theory in [11–14]; and proved to be of particular interest in classification prob-
lems in [15,16] and supervised learning with energy-based models [17].

In this report, the ERM-RER is generalized to incorporate a σ-finite measure
with arbitrary support as the reference measure. Such problem is referred to as
the generalized ERM-RER (g-ERM-RER) problem. The flexibility introduced
by the g-ERM-RER becomes particularly relevant for the case in which priors
are available in the form of probability distributions that can be evaluated up to
some normalizing factor [18], or cannot be represented by probability distribu-
tions, e.g., equal preferences among elements of infinite countable sets; or equal
preferences among the elements of the real numbers.

For some specific choices of the reference measure, the g-ERM-RER boils down
to particular cases of special interest: (i) the information-risk minimization
problem [8]; (ii) the ERM with differential entropy regularization; and (iii) the
ERM with discrete entropy regularization [19]. Hence, the proposed formulation
yields a unified mathematical framework that comprises a large class of prob-
lems. The g-ERM-RER is shown to possess a unique solution, which is mutually
absolutely continuous with the reference measure. Such a solution is recognized
as a Gibbs probability measure despite the fact that its partition function is de-
fined with respect to a σ-finite reference measure. Given a dataset, it is shown
that the empirical risk observed when models are sampled from the g-ERM-RER
optimal probability measure is a sub-Gaussian random variable that exhibits a
PAC guarantee for the ERM problem without regularization.

The sensitivity of the expected empirical risk to deviations from the solution of
the g-ERM-RER problem is studied. The sensitivity is defined as the difference
between two quantities: (a) The expectation of the empirical risk with respect to
the solution to the mesure that is solution to the g-ERM-RER problem; and (b)
the expectation of the empirical risk with respect to an alternative measure.
The absolute value of the sensitivity is shown to be upper bounded by a term
that is proportional to the squared-root of the relative entropy of the alternative
measure with respect to the g-ERM-RER-optimal measure. More interestingly,

RR n° 9454



6 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

in a special case, the expectation of the absolute value of the sensitivity with
respect to the probability distribution of the data sets is shown to be bounded
by a term that is proportional to the squared-root of the lautum information [31]
between the models and the datasets. This bound is reminiscent to the result
in [10] in which, under certain conditions, the generalization gap of certain
machine learning algorithms is upper bounded by a term that is proportional
to the squared-root of the mutual information between the models and the
datasets.

The reminder of this report is organized as follows. Section 2 introduces three
optimization problems: the ERM, the ERM-RER, and the g-ERM-RER. Sec-
tion 3 presents the solution to the g-ERM-RER problem and introduces its main
properties. Section 4 studies the properties of the log-partition function of the
g-ERM-RER-optimal probability measure. Section 5 and Section 6 study the
properties of the expectation and variance of the empirical risk when the mod-
els are sampled from the g-ERM-RER-optimal probability measure. Section 7
describes the monotonic concentration of the g-ERM-RER-optimal probability
measure when the regularization factor tends to zero. Section 8 and Section 9
respectively show that the empirical risk when the models are sampled from the
g-ERM-RER-optimal probability measure is a sub-Gaussian random variable
and exhibits a PAC guarantee with respect to the problem without regulariza-
tion. Finally, Section 10 studies the sensitivity of the empirical risk function
with respect to deviations from the g-ERM-RER optimal measure and shows
connections with the lautum information. Section 11 ends this work with con-
clusions and a discussion on the results.

2 Empirical Risk Minimization (ERM)

Consider three sets M, X and Y, with M ⊆ Rd and d ∈ N. Consider also a
function f :M×X → Y such that, for some θ? ∈ M, there exist two random
variables X and Y that satisfy,

Y = f(θ?, X). (1)

The random variables X and Y jointly form the probability space

(X × Y,F (X × Y) , PXY ) , (2)

where F (X × Y) is a σ-algebra on the set X ×Y, which is assumed to be fixed
in this analysis. The elements of the setsM, X and Y are often referred to as
models, patterns, and labels, respectively. A pair (x, y) ∈ X × Y forms a labeled
pattern or data point under the following condition.

Definition 2.1 (Data Point). The pair (x, y) is said to be a data point if (x, y) ∈
suppPXY .

Several data points form a dataset.

Inria
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Definition 2.2 (Dataset). Given n data points, with n ∈ N, denoted by (x1, y1),
(x2, y2), . . ., (xn, yn), a dataset is represented by the tuple

(
(x1, y1), (x2, y2),

. . ., (xn, yn)
)
∈ (X × Y)

n.

The model θ? in (1) is the ground truth model and is assumed to be unknown.
Given a dataset, the objective is to obtain a model θ ∈ M, such that, for all
patterns x ∈ X , the assigned label f(θ, x) minimizes a notion of loss or risk.
Let the function

` : Y × Y → [0,+∞), (3)

be such that given a data point (x, y) ∈ X × Y, the cost, loss or risk induced
by choosing the model θ ∈ M is ` (f(θ, x), y). Often, the function ` is referred
to as the cost function, loss function or risk function. In the following, it is
assumed that the function ` satisfies that, for all y ∈ Y, the loss ` (y, y) = 0,
which implies that correct labelling induces zero cost. Note that there might
exist several models θ ∈M\{θ?} such that ` (f(θ, x), y) = 0, which reveals the
need of a large number of labeled patterns for model selection.

The empirical risk induced by the model θ, with respect to a dataset

z =
(

(x1, y1) , (x2, y2) , . . . , (xn, yn)
)
∈ (X × Y)

n
, (4)

with n ∈ N, is determined by the function Lz : M → [0,+∞), which satis-
fies

Lz (θ) =
1

n

n∑
i=1

` (f(θ, xi), yi) . (5)

Using this notation, the ERM problem consists of the following optimization
problem

min
θ∈M

Lz (θ) , (6)

whose solutions form the set denoted by

T (z) , arg min
θ∈M

Lz (θ) . (7)

The ground truth model θ? in (1) is one of the solutions to the ERM problem
in (6). That is, the model θ? in (1) satisfies that θ? ∈ T (z) and Lz (θ?) = 0.
Hence, the ERM problem in (6) is well posed.

2.1 Main Assumptions
The generalized relative entropy is defined below as the extension to σ-finite
measures of the relative entropy usually defined for probability measures.

Definition 2.3 (Generalized Relative Entropy). Given two σ-finite measures P
and Q on the same measurable space, such that Q is absolutely continuous with
respect to P , the relative entropy of Q with respect to P is

D(Q‖P ) =

∫
dQ

dP
(x) log

Å
dQ

dP
(x)

ã
dP (x), (8)
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8 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

where the function dQ
dP is the Radon-Nikodym derivative of Q with respect to P .

In the following, given a measurable space (Ω,F ), the notation 4 (Ω,F ) is
used to represent the set of σ-finite measures that can be defined over such
a measurable space. Given a measure Q ∈ 4 (Ω,F ), the subset 4Q (Ω,F )
of 4 (Ω,F ) contains all measures that are absolutely continuous with respect
to the measure Q. Given a set A ⊂ Rd, with d ∈ N, the Borel σ-field over A is
denoted by B (A).

A fundamental assumption in this work is that the function ¯̀ :M×X × Y →
[0,+∞), such that for all (θ, x, y) ∈M×X × Y,

¯̀(θ, x, y) = ` (f(θ, x), y) , (9)

where the functions f and ` are those in (1) and (3), is Borel measurable with re-
spect to the measure space

(
M×X×Y, B (M)×F (X × Y)

)
, with F (X × Y)

the σ-field in (2).

2.2 ERM with Relative Entropy Regularization
When models are chosen by sampling from a probability measure over the mea-
surable space (M,B (M)), one of the performance metrics is the expected em-
pirical risk, which is introduced hereunder.

Definition 2.4 (Expected Empirical Risk). Given a dataset z ∈ (X × Y)
n,

let the function Rz : 4 (M,B (M)) → [0,+∞) be such that for all σ-finite
measures P ∈ 4 (M,B (M)), it holds that

Rz (P ) =

∫
Lz (θ) dP (θ), (10)

where the function Lz is in (5). Then, when P is a probability measure, the
expected empirical risk induced by P is Rz (P ).

The g-ERM-RER problem is parametrized by a σ-finite measure in4 (M,B (M))
and a positive real, which are referred to as the reference measure and the reg-
ularization factor, respectively. Let Q ∈ 4 (M,B (M)) be a σ-finite measure
and let λ be a positive real. The g-ERM-RER problem, with parameters Q
and λ, consists of the following optimization problem:

min
P∈4Q(M,B(M))

Rz (P ) + λD (P‖Q) ,

s. t.

∫
dP (θ) = 1, (11)

where the dataset z is in (4); and the function Rz is defined in (10).

2.3 Special Cases of the G-ERM-RER Problem
Particular choices of the setM and the reference measure Q lead to special cases
of the g-ERM-RER problem in (11). Three cases are of particular interest:

Inria



Empirical Risk Minimization with Generalized Relative Entropy Regularization9

(a) The set M is the set Rd, with d ∈ N, and Q is the Lebesgue measure
on (M,B (M)); (b) The set M ⊂ Rd is countable and the measure Q is a
counting measure; and (c) The set M and the measure Q form a probability
measure space (M,B (M) , Q).

In the former, the g-ERM-RER in (11) satisfies the following

min
P∈4Q(M,B(M))

∫
Lz (θ) dP (θ) + λD (P‖Q)

s. t.

∫
dP (θ) = 1

= min
P∈4Q(M,B(M))

∫
Lz (θ)

dP

dQ
(θ)dQ(θ) + λ

∫
dP

dQ
(θ) log

Å
dP

dQ
(θ)

ã
dQ (θ)

s. t.

∫
dP (θ) = 1 (12)

= min
g

∫
M

Lz (θ) g (θ) dθ + λ

∫
M
g(θ) log (g(θ)) dθ (13)

= min
g

∫
M

Lz (θ) g (θ) dθ − λH (g) , (14)

where the Radon-Nikodym derivative dP
dQ in (12) is a probability density function

(p.d.f.) denoted by g, which implies that the optimization domain in (13) is the
set of p.d.f.s on Rd. In (14), the notation H (g) represents the differential
entropy of the p.d.f. g, c.f., Chapter 8 in [20]. In this particular case, denote
the p.d.f. solution of the problem in (12) by g(λ)Θ|Z=z and thus, for all θ ∈M, it
follows that

g
(λ)
Θ|Z=z (θ) =

exp
Ä
−Lz(θ)

λ

ä∫
Rd

exp

Å
−Lz (ν)

λ

ã
dν

, (15)

which is the Gibbs measure with respect to the Lebesgue measure, with param-
eter λ and energy function Lz in (5).

In case (b), a similar analysis would show that the g-ERM-RER problem in (11)
boils down to the ERM with discrete entropy regularization (ERM-DisER).

RR n° 9454



10 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

More specifically,

min
P∈4Q(M,B(M))

∫
Lz (θ) dP (θ) + λD (P‖Q)

s. t.

∫
dP (θ) = 1

= min
P∈4Q(M,B(M))

∫
Lz (θ)

dP

dQ
(θ)dQ(θ) + λ

∫
dP

dQ
(θ) log

Å
dP

dQ
(θ)

ã
dQ(θ)

s. t.

∫
dP (θ) = 1 (16)

= min
p

∑
θ∈M

Lz (θ) p (θ) + λ
∑
θ∈M

p(θ) log (p(θ)) (17)

= min
p

∑
θ∈M

Lz (θ) p (θ)− λH (p) , (18)

where, the Radon-Nikodym derivative dQ
dP in (16) is a probability mass function

(p.m.f.) denoted by p. This implies that the optimization domain in (17) is the
set of p.m.f.s onM; and the entropy H (p) is that of the p.m.f. p, c.f., Chapter 2
in [20]. In this particular case, denote the p.m.f. solution of the problem in (18)
by p(λ)Θ|Z=z, and thus, for all θ ∈M, it follows that

p
(λ)
Θ|Z=z (θ) =

exp
Ä
−Lz(θ)

λ

ä
∑
ν∈M

exp

Å
−Lz (ν)

λ

ã , (19)

which is the Gibbs measure with respect to a counting measure, with parame-
ter λ and energy function Lz in (5).

Both, the ERM-DifER and ERM-DisER problems are closely related to those
typically arising while using Jayne’s maximum entropy principle [21, 22] for
classification problems such as those in [15,16,23].

Finally, case (c) is a classical optimization problem known as the information-
risk minimization (IRM) problem in information theory, see for instance [8]. In
this case, the g-ERM-RER problem in (11) is known to possess a unique solution
consisting in a Gibbs probability measure, see for instance [10, 24] and [25].
Denote such unique solution by P (Q,λ)

Θ|Z=z ∈ 4Q (M,B (M)), hence, the Radon-

Nikodym derivative of P (Q,λ)
Θ|Z=z with respect to Q is

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

. (20)

The probability measure P (Q,λ)
Θ|Z=z in (20) is a Gibbs measure with respect to the

probability measureQ, parameter λ, and energy function Lz in (5), c.f., [26].

Inria
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3 The Solution to the G-ERM-RER Problem

The solution to the g-ERM-RER problem in (11) is presented in terms of two
objects. First, the functionKQ,z : R→ R∪{+∞} such that for all t ∈ R,

KQ,z (t)=log

Å∫
exp (t Lz (θ)) dQ(θ)

ã
, (21)

with Lz in (5). Second, the set KQ,z ⊂ (0,+∞), which is defined by

KQ,z,
ß
s ∈ (0,+∞) : KQ,z

Å
−1

s

ã
< +∞

™
. (22)

The notation for the function KQ,z and the set KQ,z are chosen such that
their parametrization by (or dependence on) the dataset z in (4) and the σ-
finite measure Q in (11) are highlighted. The following lemma describes the
set KQ,z.

Lemma 3.1. The set KQ,z in (22) is either the empty set or a convex set that
satisfies

(0, b) ⊂ KQ,z, (23)

for some b ∈ (0,+∞].

Proof: The proof is presented in Appendix A.

In the special case in which the σ-finite measure Q in (11) is a probability
measure, the set KQ,z is the set formed by all positive reals, as shown by the
following lemma.

Lemma 3.2. Assume that the measure Q in (11) is a probability measure.
Then, the set KQ,z in (22) satisfies

KQ,z = (0,+∞). (24)

Proof: The proof is presented in Appendix B.

Using this notation, the solution to the g-ERM-RER problem in (11) is presented
by the following theorem.

Theorem 3.1. The solution to the optimization problem in (11) is a unique
measure on (M,B (M)), denoted by P (Q,λ)

Θ|Z=z, whose Radon-Nikodym derivative
with respect to the σ-finite measure Q satisfies for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
, (25)

where, the function Lz is defined in (5) and the function KQ,z is defined in (21).

Proof: The proof is presented in Appendix C.

RR n° 9454



12 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

In Theorem 3.1, when the σ-finite measure Q is a probability measure, the
probability measure P (Q,λ)

Θ|Z=z and the function KQ,z are often referred to as a
Gibbs measure and a log-partition function, see for instance, [27, Section 7.3.1].
In order not to disrupt with the current nomenclature, in the following, inde-
pendently of whether Q is a probability measure, the function KQ,z and the
probability measure P (Q,λ)

Θ|Z=z are respectively recognized as a log-partition func-
tion and a Gibbs measure with parameters Q, λ, and energy function Lz.

When the setM is discrete and the σ-finite measure Q in (11) is the counting

measure, the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) is equivalent to the

p.m.f. p(λ)Θ|Z=z in (19). Alternatively, whenM⊆ Rd and the σ-finite measure Q

in (11) is the Lebesgue measure, the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25)

is the p.d.f. g(λ)Θ|Z=z in (15). When Q is a probability measure, the expression
in (20) and (25) are identical.

The following lemma shows that the maximum of the Radon-Nikodym deriva-

tive
dP

(Q,λ)

Θ|Z=z

dQ in (25) is achieved by the models that are at the intersection of
the support of the reference measure Q and the set of solutions to the optimiza-
tion problem in (6), that is, the models in the set T (z) ∩ suppQ, with T (z)
in (7).

Lemma 3.3. For all λ ∈ KQ,z, with KQ,z in (22), for all θ ∈ suppQ, and for
all (θ1,θ2) ∈ (T (z) ∩ suppQ)

2, with T (z) in (7), the Radon-Nikodym deriva-

tive
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) 6

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) =

dP
(Q,λ)
Θ|Z=z

dQ
(θ2) . (26)

Proof: The proof is presented in Appendix D.

When the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) is either the p.d.f. g(λ)Θ|Z=z

in (15) or the p.m.f. p
(λ)
Θ|Z=z in (19), Lemma 3.4 shows that the elements of

the set T (z) ∩ suppQ in (7) are the modes of the corresponding p.d.f. or
p.m.f.

The following lemma shows other bounds on the Radon-Nikodym derivative
in (25).

Lemma 3.4. For all λ ∈ KQ,z, with KQ,z in (22), and for all θ ∈ suppQ, the

Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies that

0 6
dP

(Q,λ)
Θ|Z=z

dQ
(θ) < +∞. (27)
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Empirical Risk Minimization with Generalized Relative Entropy Regularization13

The equality
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0 holds if and only if Lz (θ) = +∞.

Proof: The proof is presented in Appendix E.

3.1 Asymptotic Regimes

The following lemma describes the asymptotic behavior of the Radon-Nikodym

derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) when λ→ +∞.

Lemma 3.5. Let the measure Q in (25) be a probability measure. Then, for

all θ ∈ suppQ, the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies

lim
λ→+∞

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=1. (28)

Proof: From Theorem 3.1, it follows that for all θ ∈ suppQ,

lim
λ→+∞

dP
(Q,λ)
Θ|Z=z

dQ
(θ)= lim

λ→+∞

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

=
1∫

dQ (ν)

= 1, (29)

where the function Lz is defined in (5). This completes the proof.

Lemma 3.5 unveils the fact that, when Q is a probability measure, for all mea-
surable sets A ⊆ suppQ,

lim
λ→+∞

P
(Q,λ)
Θ|Z=z (A) = Q (A) . (30)

This is consistent with the fact that when λ tends to infinity, the optimization
problem in (11) boils down to exclusively minimizing the relative entropy. Such
minimum is zero and is observed when both probability measures P (Q,λ)

Θ|Z=z and Q
are identical. Alternatively, from Lemma 3.1, it follows that, when Q is not
a probability measure, the set KQ,z might be an interval of the form (0, b),
with b < ∞. Hence, in such a case, the analysis in which λ tends to infinity is
void.

The limit of the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25), when λ tends to
zero from the right, can be studied using the following set

Lz (δ)={θ ∈M : Lz (θ) 6 δ} , (31)

where the function Lz is defined in (5) and δ ∈ [0,+∞). In particular consider
the nonnegative real

δ?Q,z , inf {δ ∈ [0,+∞) : Q (Lz (δ)) > 0} . (32)
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14 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

Let also L?Q,z be the following level set of the empirical risk function Lz in (5):

L?Q,z=
{
θ ∈M : Lz (θ) = δ?Q,z

}
. (33)

Using this notation, the limit of the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25),
when λ tends to zero from the right, is described by the following lemma.

Lemma 3.6. If Q
Ä
L?Q,z

ä
> 0, with the set L?Q,z in (33) and Q the σ-finite

measure in (25), then for all θ ∈ suppQ, the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ

in (25) satisfies

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

1

Q
Ä
L?Q,z

ä1{θ∈L?Q,z}. (34)

Alternatively, if Q
Ä
L?Q,z

ä
= 0. Then, for all θ ∈ suppQ,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

ß
+∞ if θ ∈ L?Q,z
0 otherwise. (35)

Proof: The proof is presented in Appendix F.

Consider that Q
Ä
L?Q,z

ä
> 0, with L?Q,z in (33). Under this assumption, from

Lemma 3.6, it holds that the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ asymptotically
concentrates on the set L?Q,z when λ tends to zero from the right. The same
observation holds for the probability measure P (Q,λ)

Θ|Z=z. More specifically, note
that for all measurable sets A ⊆ L?Q,z ∩ suppQ, it holds that

lim
λ→0+

P
(Q,λ)
Θ|Z=z (A)= lim

λ→0+

∫
A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) (36)

= lim
λ→0+

∫ dP
(Q,λ)
Θ|Z=z

dQ
(θ)1{θ∈A}dQ (θ) (37)

=

∫
lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)1{θ∈A}dQ (θ) (38)

=

∫
1

Q
Ä
L?Q,z

ä1{θ∈L?Q,z}1{θ∈A}dQ (θ) (39)

=
1

Q
Ä
L?Q,z

ä ∫ 1{θ∈A}dQ (θ) (40)

=
Q (A)

Q
Ä
L?Q,z

ä , (41)

where the equality in (38) follows from Lemma 3.4 and the dominated con-
vergence theorem [28, Theorem 2.6.9]; and the equality in (39) follows from
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Empirical Risk Minimization with Generalized Relative Entropy Regularization15

Lemma 3.6. In the particular case in which A = L?Q,z in (41), it holds that
lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
= 1, which verifies the asymptotic concentration of the

probability measure P (Q,λ)
Θ|Z=z on the set L?Q,z. Another interesting observation is

that the equality in (41) implies a uniform distribution of the probability among
the elements of the set L?Q,z in the limit when λ tends to zero from the right.
This becomes more evident in the case in which the set M is finite and Q is
the counting measure. In such a case, the asymptotic probability of each of the
elements in L?Q,z when λ tends to zero from the right is 1

|L?Q,z|
.

Alternatively, consider that Q
Ä
L?Q,z

ä
= 0, with L?Q,z in (33). Under this as-

sumption, for all λ ∈ KQ,z, with KQ,z in (22), the probability measure P (Q,λ)
Θ|Z=z is

absolutely continuous with respect to the measureQ, and thus, P (Q,λ)
Θ|Z=z

Ä
L?Q,z

ä
=

0. This is typically the case in which M = Rd, the measure Q is absolutely
continuous with the Lebesgue measure, and the solution to the ERM problem
in (6) has a unique solution, i.e., |T (z)| = 1.

The following lemma shows that independently of whether the set L?Q,z is neg-
ligible with respect to the measure Q, the limit when λ tends to zero from the
right of P (Q,λ)

Θ‖Z=z

Ä
L?Q,z

ä
is equal to one.

Lemma 3.7. The measure P (Q,λ)
Θ|Z=z in (25) and the set L?Q,z in (33) satisfy,

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
=1. (42)

Proof: The proof is presented in Appendix G.

In Lemma 3.7, in the case in which δ?Q,z = 0, with δ?Q,z in (32), it holds
that L?Q,z = T (z) and thus, when λ tends to zero from the right, the prob-
ability measure P (Q,λ)

Θ|Z=z asymptotically concentrates on the set of solutions to
the ERM problem in (6). Alternatively, in the case in which δ?Q,z > 0, it holds
that L?Q,z∩T (z) = ∅. Hence, when λ tends to zero from the right, the probabil-
ity measure P (Q,λ)

Θ|Z=z asymptotically concentrates on a set that does not contain
the set of solutions to the ERM problem in (6).

3.2 Coherent and Consistent Measures

Given a λ ∈ KQ,z, with KQ,z in (22), the support of the probability mea-
sure P (Q,λ)

Θ|Z=z is of particular interest. In this regard, note that for all sets C ∈
B (M), it follows from Theorem 3.1 that if Q (C) = 0, then P

(Q,λ)
Θ|Z=z (C) = 0.

That is, the probability measure P (Q,λ)
Θ|Z=z is absolutely continuous with the mea-

sure Q. The following lemma shows that the converse is also true, under a
certain condition.
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16 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

Lemma 3.8. For all λ ∈ KQ,z, with KQ,z in (22), under the assumption that

Q ({θ ∈M : Lz (θ) = +∞}) = 0, (43)

the σ-finite measure Q and the probability measure P (Q,λ)
Θ|Z=z in (25) are mutually

absolutely continuous.

Proof: The proof is presented in Appendix H.

The relevance of Lemma 3.8 is that it proves that for all λ ∈ KQ,z, the collection
of negligible sets with respect to the measure P (Q,λ)

Θ|Z=z in (25) is identical to the
collection of negligible sets with respect to the measure Q in (11), under the
assumption in (43). Under such assumption, for all subsets C ∈ B (M),

P
(Q,λ)
Θ|Z=z (C) > 0 if and only if Q (C) > 0. (44)

The assumption in (43) is trivially true when the function ` in (3) is finite.

At the light of Lemma 3.8, a class of reference measures of particular importance
in the following sections is that of coherent measures.

Definition 3.1 (Coherent Measures). The σ-finite measure Q in (11) is said
to be coherent if, for all δ ∈ (0,+∞), it holds that

Q (Lz (δ)) > 0, (45)

where the set Lz (δ) is defined in (31).

The following lemma highlights the relevance of coherence measures.

Lemma 3.9. The probability measure P
(Q,λ)
Θ|Z=z in (25) satisfies for all δ ∈

(0,+∞) that

P
(Q,λ)
Θ|Z=z (Lz (δ))>0, (46)

with Lz (δ) in (31), if and only if the σ-finite measure Q in (11) is coherent.

Proof: The proof is presented in Appendix I.

Reference measures that are coherent also exhibit an interesting property in
the asymptotic regime when λ tends to zero from the right, as shown by the
following lemma.

Lemma 3.10. The probability measure P (Q,λ)
Θ|Z=z in (25) and the set T (z) in (7)

satisfy

lim
λ→0+

P
(Q,λ)
Θ|Z=z (T (z))=1, (47)

if and only if the σ-finite measure Q in (11) is coherent.
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Proof: When the σ-finite measure Q in (11) is coherent, then δ?Q,z = 0, with δ?Q,z
in (32) and L?Q,z = T (z), with L?Q,z in (33). Thus, from Lemma 3.7, the
equality in (47) holds. Alternatively, when the measure Q in (11) is noncoherent,
then δ?Q,z > 0 and thus, L?Q,z ∩ T (z) = ∅, which implies

lim
λ→0+

P
(Q,λ)
Θ|Z=z (T (z))=0, (48)

and completes the proof.

Another reference measure Q of particular interest is the one in which for a
given λ ∈ KQ,z, withKQ,z in (22), the set L?Q,z in (33) satisfiesQ

Ä
L?Q,z

ä
> 0.

Definition 3.2 (Consistent Measure). The σ-finite measure Q in (11) is said
to be consistent if Q

Ä
L?Q,z

ä
> 0, with L?Q,z in (33).

The relevance of consistent measures is highlighted by the following lemma.

Lemma 3.11. For all λ ∈ KQ,z, with KQ,z in (22), the probability mea-
sure P (Q,λ)

Θ|Z=z in (25) and the set L?Q,z in (33) satisfy

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
>0, (49)

if and only if the σ-finite measure Q in (11) is consistent.

Proof: When Q is nonconsistent, it holds that Q
Ä
L?Q,z

ä
= 0 and thus, from

the fact that the measure P (Q,λ)
Θ|Z=z in (25) is absolutely continuous with Q, it

holds that for all λ ∈ KQ,z, P (Q,λ)
Θ|Z=z

Ä
L?Q,z

ä
= 0. When Q is consistent, it holds

that Q
Ä
L?Q,z

ä
> 0. Moreover, for all θ ∈ L?Q,z, it holds that Lz (θ) < +∞

and thus, from Lemma 3.4, it follows that for all λ ∈ KQ,z,
dP

(Q,λ)

Θ|Z=z

dQ (θ) > 0.
Hence,

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
=

∫
L?Q,z

dP
(Q,λ)
Θ|Z=z (θ) (50)

=

∫
L?Q,z

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) (51)

> 0, (52)

which completes the proof.

The case in which the reference measure Q is simultaneously coherent and con-
sistent exhibits a particular property, as shown by the following corollary of
Lemma 3.11.

Corollary 3.1. For all λ ∈ KQ,z, with KQ,z in (22), the probability mea-
sure P (Q,λ)

Θ|Z=z in (25) and the set T (z) in (7) satisfy

P
(Q,λ)
Θ|Z=z (T (z))>0, (53)

if and only if the σ-finite measure Q in (11) is coherent and consistent.
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3.3 Negligible Sets

Lemma 3.8 shows that, under the assumption in (43), the collection of negligible
sets with respect to the measure P (Q,λ)

Θ|Z=z in (25) is identical to the collection
of negligible sets with respect to the σ-measure Q. The following lemma shows
that the negligible sets with respect to the measure P (Q,λ)

Θ|Z=z in (25) are invariant
with respect to the choice of λ ∈ KQ,z.

Lemma 3.12. For all (α, β) ∈ KQ,z×KQ,z, with KQ,z in (22), assume that the
measures P (Q,λ)

Θ|Z=z and P (Q,β)
Θ|Z=z satisfy (25) with λ = α and λ = β, respectively.

Then, P (Q,α)
Θ|Z=z and P (Q,β)

Θ|Z=z are mutually absolutely continuous.

Proof: The proof is presented in Appendix J.

4 The Log-Partition Function

The function KQ,z in (25), often referred to as the log-partition function, ex-
hibits a number of properties, which are relevant in the following sections.

Lemma 4.1. The function KQ,z in (21) is continuous and differentiable in-
finitely many times in (−∞, 0).

Proof: The proof is presented in Appendix K.

More specific properties for the function KQ,z in (21) can be stated for the case
in which the empirical risk function Lz in (5) is separable with respect to the
measure Q in (25).

Definition 4.1 (Separable Empirical Risk Function). The empirical risk func-
tion Lz in (5) is said to be separable with respect to the σ-finite measure Q
in (25), if there exist a positive real c > 0 and two subsets A and B of M that
are nonnegligible with respect to Q, such that for all (θ1,θ2) ∈ A× B,

Lz (θ1)< c <Lz (θ2) < +∞. (54)

In a nutshell, a nonseparable empirical risk function is a constant almost surely
with respect to the measure Q. More specifically, there exists a real a > 0, such
that

Q ({θ ∈M : Lz (θ) = a}) = 1. (55)

From this perspective, nonseparable empirical risk functions exhibit little prac-
tical interest. This follows from observing that models sampled from a nonsepa-
rable probability measure P (Q,λ)

Θ|Z=z in (25) induce the same empirical risk.

The definition of separability in Definition 4.1 and Lemma 3.8 lead to the fol-
lowing lemma.
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Lemma 4.2. The empirical risk function Lz in (5) is separable with respect to
the σ-finite measure Q in (25) if and only if it is separable with respect to the
probability measure P (Q,λ)

Θ|Z=z in (25).

Proof: Consider first that the function Lz is separable with respect to the σ-finite
measure Q. Hence, there exist a positive real c > 0 and two subsets A and B
ofM that are nonnegligible with respect to Q, such that for all (θ1,θ2) ∈ A×B
the inequality in (54) holds. Hence, from (54) the following inequalities hold for
all λ ∈ KQ,z, with KQ,z in (22),

− 1

λ
Lz (θ1)>− c

λ
> − 1

λ
Lz (θ2) > −∞, (56)

exp

Å
− 1

λ
Lz (θ1)

ã
>exp

(
− c
λ

)
> exp

Å
− 1

λ
Lz (θ2)

ã
> 0, (57)

and finally,

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) > exp

Å
−KQ,z

Å
− 1

λ

ã
− c

λ

ã
>

dP
(Q,λ)
Θ|Z=z

dQ
(θ2) > 0. (58)

Using the inequality in (58) and the facts that Q (A) > 0 and Q (B) > 0, the
following holds

P
(Q,λ)
Θ|Z=z (A)=

∫
A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0, (59)

and

P
(Q,λ)
Θ|Z=z (B)=

∫
B

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0. (60)

which implies that the function Lz is separable with respect to the probability
measure P (Q,λ)

Θ|Z=z.

Consider now that the function Lz is separable with respect to the probabil-
ity measure P (Q,λ)

Θ|Z=z. Hence, there exist a positive real c > 0 and two sub-
sets A and B of M that are nonnegligible with respect to P (Q,λ)

Θ|Z=z, such that
for all (θ1,θ2) ∈ A× B the inequality in (54) holds. More specifically,

0<P
(Q,λ)
Θ|Z=z (A) =

∫
A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) (61)

and

0<P
(Q,λ)
Θ|Z=z (B) =

∫
B

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) . (62)

From Lemma 3.4 and the inequality in (54), it follows that for all pairs (θ1,θ2) ∈

A × B,
dP

(Q,λ)

Θ|Z=z

dQ (θ1) > 0 and
dP

(Q,λ)

Θ|Z=z

dQ (θ2) > 0. Hence, from (61) and (62),
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respectively, it follows that Q (A) > 0 and Q (B) > 0, which implies that the
function Lz is separable with respect to the σ-finite measure Q. This completes
the proof.

The following lemma presents a general property of the function KQ,z in (21)
for the case of separable empirical risk functions.

Lemma 4.3. The function KQ,z in (21) is convex. The function KQ,z in (21)
is strictly convex if and only if the empirical risk function Lz in (5) is separable
with respect to the σ-finite measure Q in (11).

Proof: The proof is presented in Appendix L.

Let the m-th derivative of the function KQ,z in (21) be denoted by K(m)
Q,z : R→

R, with m ∈ N. Hence, for all s ∈ KQ,z,

K
(m)
Q,z

Å
−1

s

ã
,

dm

dtm
KQ,z (t)

∣∣∣
t=− 1

s

. (63)

The following lemma provides explicit expressions for the first, second and third
derivatives of the function KQ,z in (21).

Lemma 4.4. The first, second and third derivatives of the function KQ,z in (21),
denoted respectively by K

(1)
Q,z, K

(2)
Q,z, and K

(3)
Q,z, satisfy for all λ ∈ intKQ,z,

with KQ,z in (22),

K
(1)
Q,z

Å
− 1

λ

ã
=

∫
Lz (θ) dP

(Q,λ)
Θ|Z=z(θ), (64)

K
(2)
Q,z

Å
− 1

λ

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

λ

ãã2
dP

(Q,λ)
Θ|Z=z(θ), and (65)

K
(3)
Q,z

Å
− 1

λ

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

λ

ãã3
dP

(Q,λ)
Θ|Z=z(θ), (66)

where the function Lz is defined in (5) and the measure P (Q,λ)
Θ|Z=z satisfies (25).

Proof: The proof is presented in Appendix M.

From Lemma 4.4, it follows that if Θ is the random vector that induces the
measure P (Q,λ)

Θ|Z=z in (25), with λ ∈ KQ,z, the empirical risk function Lz in (5)
becomes the random variable

W , Lz (Θ) , (67)

whose mean, variance, and third cumulant are K(1)
Q,z

(
− 1
λ

)
in (64), K(2)

Q,z

(
− 1
λ

)
in (65), and K(3)

Q,z

(
− 1
λ

)
in (66), respectively.
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5 Expectation of the Empirical Risk

The mean of the random variable W in (67) is equivalent to the expectation of
the empirical risk function Lz with respect to the probability measure P (Q,λ)

Θ|Z=z

in (25), which is equal to Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
, with the function Rz in (10). Of-

ten, Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is referred to as the g-ERM-RER-optimal expected empirical

risk to emphasize that this is the expected value of the empirical risk when
models are sampled from the solution of the g-ERM-RER problem in (11). The
following corollary of Lemma 4.4 formalizes this observation.

Corollary 5.1. For all λ ∈ KQ,z, with KQ,z in (22), the probability mea-
sure P (Q,λ)

Θ|Z=z in (25) verifies that

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
= K

(1)
Q,z

Å
− 1

λ

ã
, (68)

where the functions Rz and K(1)
Q,z are defined in (10) and (64), respectively.

The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (68) exhibits the following prop-

erty.

Theorem 5.1. The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (68) is nondecreas-

ing with λ ∈ KQ,z, with KQ,z in (22). Moreover, the function Lz in (5) is
separable with respect to the measure Q if and only if Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
is strictly

increasing with λ ∈ KQ,z.

Proof: The proof is presented in Appendix N.

A question that arises from Theorem 5.1 is whether the value Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (68) can be made arbitrarily close to Lz (θ?) = 0, with θ? in (1), by making λ
arbitrarily small. The following lemma shows that there exist cases in which
the value Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
is bounded away from zero, even for arbitrarily small

values of λ.

Lemma 5.1. For all λ ∈ KQ,z, with KQ,z in (22), the expected empirical
risk Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
in (68) satisfies,

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
> δ?Q,z, (69)

where δ?Q,z is defined in (32). Moreover, the function Lz in (5) is separable with
respect to the measure Q in (11) if and only if the inequality in (69) is strict.

Proof: The proof is presented in Appendix O.

In the asymptotic regime when λ tends to zero, the expected empirical risk
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (68) is equal to δ?Q,z, as shown by the following lemma.
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Theorem 5.2. The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (68) satisfies,

lim
λ→0+

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=δ?Q,z, (70)

where δ?Q,z is defined in (32).

Proof: The proof is presented in Appendix P.

6 Variance of the Empirical Risk
The monotonicity of the expectation of the random variableW in (67), stated by
Theorem 5.1, is not a property exhibited by the variance nor the third cumulant.
This section highlights this observation via the following example.

Example 6.1. Consider the g-ERM-RER problem in (11), under the assump-
tion that Q is a probability measure and the empirical risk function Lz in (5) is
such that for all θ ∈M,

Lz (θ) =

ß
0 if θ ∈ A
1 if θ ∈M \A, (71)

where the sets A ⊂M andM\A are nonnegligible with respect to the reference
probability measure Q. In this case, the function KQ,z in (21) satisfies for
all λ > 0,

KQ,z

Å
− 1

λ

ã
=log

Å
Q (A) + exp

Å
− 1

λ

ã
(1−Q (A))

ã
. (72)

The derivatives K(1)
Q,z, K

(2)
Q,z, and K

(3)
Q,z in (63) of the function KQ,z in (72)

satisfy:

K
(1)
Q,z

Å
− 1

λ

ã
=

exp
(
− 1
λ

)
(1−Q (A))

Q (A) + exp
(
− 1
λ

)
(1−Q (A))

; (73)

K
(2)
Q,z

Å
− 1

λ

ã
=

Q (A) (1−Q (A)) exp
(
− 1
λ

)(
Q (A) + exp

(
− 1
λ

)
(1−Q (A))

)2 ; and (74)

K
(3)
Q,z

Å
− 1

λ

ã
=
Q (A) (1−Q (A)) exp

(
− 1
λ

) (
Q (A)− (1−Q (A)) exp

(
− 1
λ

))(
Q (A) + exp

(
− 1
λ

)
(1−Q (A))

)3 .(75)

Note that K(3)
Q,z

(
− 1
λ

)
> 0 if and only if

Q (A)− (1−Q (A)) exp

Å
− 1

λ

ã
> 0. (76)

Assume that Q (A) > 1
2 . Thus, it holds that for all λ > 0, the inequality in (76)

is always satisfied. This follows from observing that for all λ > 0,

exp

Å
− 1

λ

ã
< 1 6

Q (A)

1−Q (A)
. (77)
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Hence, if Q (A) > 1
2 , for all decreasing sequences of positive reals λ1 > λ2 >

. . . > 0, it holds that

1

4
> K

(2)
Q,z

Å
− 1

λ1

ã
> K

(2)
Q,z

Å
− 1

λ2

ã
> . . . > 0. (78)

Alternatively, assume that Q (A) < 1
2 . In this case, the inequality in (76) is

satisfied if and only if

λ <

Å
log

Å
1−Q (A)

Q (A)

ãã−1
. (79)

Hence, if Q (A) < 1
2 , then for all decreasing sequences of positive realsÅ
log

Å
1−Q (A)

Q (A)

ãã−1
> λ1 > λ2 > . . . > 0,

it holds that

1

4
> K

(2)
Q,z

Å
− 1

λ1

ã
> K

(2)
Q,z

Å
− 1

λ2

ã
> . . . > 0. (80)

Moreover, for all decreasing sequences of positive reals

λ1 > λ2 > . . . >

Å
log

Å
1−Q (A)

Q (A)

ãã−1
,

it holds that

K
(2)
Q,z

Å
− 1

λ1

ã
< K

(2)
Q,z

Å
− 1

λ2

ã
< . . . <

1

4
. (81)

The upperbound by 1
4 in (78), (80) and (81) follows by noticing that the value

K
(2)
Q,z

(
− 1
λ

)
is maximized when λ =

Ä
log
Ä
1−Q(A)
Q(A)

ää−1
and K(2)

Q,z

(
− 1
λ

)
= 1

4 .

Example 6.1 provides important insights on the choice of the reference mea-
sure Q. Note for instance that when the reference measure assigns a probability
to the set of models T (z) that is greater than or equal to the probability of
suboptimal models M \ T (z), i.e., Q (T (z)) > 1

2 , the variance is strictly de-
creasing to zero when λ decreases. See for instance, Figure 1 and Figure 2.
That is, when the reference measure assigns higher probability to the set of
solutions to the ERM problem in (6), the variance is monotone with respect to
the parameter λ.

Alternatively, when the reference measure assigns a probability to the set T (z)
that is smaller than the probability of the set M \ T (z), i.e., Q (T (z)) <
1
2 , there exists a critical point for λ at

Ä
log
Ä
1−Q(A)
Q(A)

ää−1
. See for instance,

Figure 3. More importantly, such a critical point can be arbitrarily close to
zero depending on the value Q (A). The variance strictly decreases when λ
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decreases beyond the value
Ä
log
Ä
1−Q(A)
Q(A)

ää−1
. Otherwise, reducing λ above the

value
Ä
log
Ä
1−Q(A)
Q(A)

ää−1
increases the variance.

In general, these observations suggest that reference measures Q that allocate
small measures to the sets containing the set T (z) might require reducing the
value λ beyond a small threshold in order to observe small values of K(2)

Q,z

(
− 1
λ

)
,

which is the variance of the random variable W , in (67). These observations are
central to understanding the concentration of probability that occurs when λ
decreases, as discussed in the following section.

10
-1

10
0

10
1

10
2

Regularization Factor ( )

0

0.05

0.1

0.15

0.2

0.25

Figure 1: Mean K
(1)
Q,z

(
− 1
λ

)
, variance K(2)

Q,z

(
− 1
λ

)
, and third central moment

K
(3)
Q,z

(
− 1
λ

)
of the empirical risk in Example 6.1, with Q (A) = 3

4

7 Concentration of Probability

Given a positive real λ ∈ KQ,z, with KQ,z in (22), consider the following
set,

NQ,z(λ),
¶
θ ∈M : Lz (θ) 6 Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (82)
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Figure 2: Mean K
(1)
Q,z

(
− 1
λ

)
, variance K(2)

Q,z

(
− 1
λ

)
, and third central moment

K
(3)
Q,z

(
− 1
λ

)
of the empirical risk in Example 6.1, with Q (A) = 1

2

where the function Lz is defined by (5); the function Rz is defined by (10);
and the probability measure P (Q,λ)

Θ|Z=z is in (25). This section introduces two
main results. First, in Theorem 7.1, it is shown that when λ tends to zero, the
set NQ,z(λ) forms a monotonic sequence of sets that decreases to the set

N ?
Q,z , Lz

(
δ?Q,z

)
, (83)

where, δ?Q,z is defined in (32); and the set Lz(·) is defined in (31). Second, in
Theorem 7.2, it is shown that the sequence formed by P (Q,λ)

Θ|Z=z(NQ,z(λ)) when λ
tends to zero is increasing and monotone. More importantly, in Theorem 7.3,
it is shown that the limit of such sequence is equal to one. These observations
justify referring to the set N ?

Q,z as the limit set. This section ends by showing
that the probability measure P (Q,λ)

Θ|Z=z concentrates on a specific subset L?Q,z
in (33) of the set N ?

Q,z. At the light of this observation, the set L?Q,z is referred
to as the nonnegligible limit set. Finally, it is shown that when the σ-finite
measure Q in (25) is coherent, the sets N ?

Q,z and L?Q,z are identical.
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, variance K(2)
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(
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, and third central moment

K
(3)
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(
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λ

)
of the empirical risk in Example 6.1, with Q (A) = 1

4

7.1 The Limit Set
The set NQ,z(λ) in (82), with λ ∈ KQ,z and KQ,z in (22), contains all the models
that induce an empirical risk that is smaller than or equal to Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
,

i.e., the g-ERM-RER-optimal expected empirical risk in (68). This observation
unveils the existence of a relation between the set N ?

Q,z in (83) and the set T (z)
in (7), as shown by the following lemma.

Lemma 7.1. The set N ?
Q,z in (83) satisfies

T (z) ⊆ N ?
Q,z, (84)

where the set T (z) is in (7). Moreover,

T (z) = N ?
Q,z, (85)

if and only if the reference measure Q in (25) is coherent.

Proof: The proof of the inclusion in (84) follows from observing that for all θ ∈
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T (z), it holds that Lz (θ) = 0 6 δ?Q,z, with δ
?
Q,z in (32). Hence, θ ∈ N ?

Q,z. This
completes the proof of the inclusion in (84).

The proof of the second statement is presented in two parts. In the first part,
it is proved that if (85) holds, then the measure Q is coherent. The second part
proves the converse.

The proof of the first part is as follows. Under the assumption that T (z) = N ?
Q,z

holds, it follows that T (z) ⊇ N ?
Q,z, which implies that δ?Q,z = 0, and thus, for

all δ ∈ (0,+∞), it holds that Q (Lz (δ)) > 0. This verifies that the measure Q
is coherent and completes the proof of the first part.

The proof of the second part is as follows. Under the assumption that the
measure Q is coherent, it follows that δ?Q,z = 0. Hence, T (z) ⊇ N ?

Q,z, which
together with the inclusion in (84) leads to the equality in (85), which completes
the proof of the second part.

Lemma 7.1 shows that the limit set N ?
Q,z in (83) is not empty. This follows

from the fact that the set T (z), which is not empty, is a subset of N ?
Q,z. This

observation turns out to be particularly important at the light of the fact that
when λ decreases, the set NQ,z(λ) decreases to the set N ?

Q,z. This observation
is formalized by following theorem.

Theorem 7.1. For all (λ1, λ2) ∈ KQ,z ×KQ,z, with KQ,z in (22) and λ1 > λ2,
the sets NQ,z (λ1) and NQ,z (λ2) in (82) satisfy

M⊇ NQ,z(λ1) ⊇ NQ,z(λ2) ⊇ N ?
Q,z, (86)

with N ?
Q,z the set defined in (83). Moreover, if the empirical risk function Lz

in (5) is continuous onM and separable with respect to the measure Q in (11),
then,

M⊃ NQ,z(λ1) ⊃ NQ,z(λ2) ⊃ N ?
Q,z. (87)

Proof: The proof is presented in Appendix Q.

An interesting observation is that for all λ ∈ KQ,z, with KQ,z in (22), only a
subset of NQ,z (λ) might exhibit nonzero probability with respect to the mea-
sure P (Q,λ)

Θ|Z=z in (25). Consider for instance that the measure Q in (25) is non-
coherent (Definition 3.1). That is, δ?Q,z > 0, with δ?Q,z in (32), and thus, for
all γ ∈

î
0, δ?Q,z

ä
, it holds that Q (Lz (γ)) = 0, with the set Lz(·) in (31).

Then, for all λ ∈
¶
α ∈ KQ,z : Rz

Ä
P

(Q,α)
Θ|Z=z

ä
> δ?Q,z

©
and for all γ < δ?Q,z, it

holds that Lz (γ) ⊆ NQ,z (λ), while verifying that Q (Lz (γ)) = 0, which implies
that P (Q,λ)

Θ|Z=z (Lz (γ)) = 0 (Lemma 3.8). Hence, in this case, the set NQ,z (λ)

possesses a subset Lz (γ) that is negligible with respect to the probability mea-
sure P (Q,λ)

Θ|Z=z. These observations lead to the analysis of the asymptotic concen-
tration of probability in the following section.
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7.2 The Nonnegligible Limit Set
The first step in the analysis of the asymptotic concentration of the probabil-
ity measure P (Q,λ)

Θ|Z=z in (25) is to show that the probability P (Q,λ)
Θ|Z=z (NQ,z(λ))

increases when λ tends to zero, as shown by the following theorem.

Theorem 7.2. For all (λ1, λ2) ∈ KQ,z ×KQ,z, with KQ,z in (22) and λ1 > λ2,
assume that the measures P (Q,λ1)

Θ|Z=z and P (Q,λ2)
Θ|Z=z satisfy (25) with λ = λ1 and λ =

λ2, respectively. Then, the set NQ,z (λ2) in (82) satisfies

0 < P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) 6 P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)). (88)

Moreover, the function Lz is separable with respect to the σ-finite measure Q,
with Q in (25), if and only if for all pairs (λ1, λ2) ∈ KQ,z×KQ,z, with λ1 > λ2,
it holds that

0 < P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)). (89)

Proof: The proof is presented in Appendix R.

The following lemma highlights a case in which a stronger concentration of
probability is observed.

Lemma 7.2. Let the function Lz in (5) be separable with respect to the σ-finite
measure Q in (25), and consider two positive reals (λ1, λ2) ∈ KQ,z × KQ,z,
with KQ,z in (22) and λ1 > λ2. Assume that

Q

Å
NQ,z (λ1) ∩ (NQ,z (λ2))

c
ã

= 0. (90)

Then, two measures P (Q,λ1)
Θ|Z=z and P (Q,λ2)

Θ|Z=z that respectively satisfy (25) with λ =
λ1 and λ = λ2 verify that

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (91)

where, the set NQ,z (·) is defined in (82).

Proof: The proof is presented in Appendix S.

The following example shows the relevance of Lemma 7.2 in the case in which
the empirical risk function Lz in (5) is a simple function and separable with
respect to the σ-finite measure Q in (25).

Example 7.1. Consider Example 6.1. Note that, for all λ > 0,

0 < Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
< 1, (92)

where Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is the g-ERM-RER-optimal expected empirical risk in (68).

The equality in (92) implies that given two reals λ1 and λ2 such that λ1 > λ2 >
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0, it holds that,

NQ,z (λ1) ∩ (NQ,z (λ2))
c
=
¶
ν ∈M : Rz

Ä
P

(Q,λ2)
Θ|Z=z

ä
< Lz (ν) 6 Rz

Ä
P

(Q,λ1)
Θ|Z=z

ä©
=∅, (93)

and moreover, NQ,z(λ1) = NQ,z(λ2). Finally, from Lemma 7.2,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)). (94)

Finally, the main result of this section is presented by the following theo-
rem.

Theorem 7.3. The probability measure P (Q,λ)
Θ|Z=z in (25), with Q being a σ-finite

measure on (M,B (M)), satisfies

lim
λ→0+

P
(Q,λ)
Θ|Z=z (NQ,z (λ)) = 1, (95)

where, the set NQ,z (λ) is defined in (82).

Proof: The proof is presented in Appendix T.

Note that Theorem 7.3 and Lemma 3.7 lead to the following conclusion

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
NQ,z (λ) \ L?Q,z

)
= 0, (96)

which follows from the fact that L?Q,z ⊂ NQ,z (λ), with L?Q,z in (33). This
justifies referring to the set L?Q,z as the nonnegligible limit set.

8 Sub-Gaussianity of the Empirical Risk
Let λ be a real in KQ,z, with KQ,z in (22), and consider the transport of the mea-
sure P (Q,λ)

Θ|Z=z in (25) from (M,B (M)) to (R,B (R)) through the function Lz

in (5). Denote the resulting probability measure in (R,B (R)) by P
(Q,λ)
W |Z=z

in (R,B (R)). That is, for all A ∈ B (R),

P
(Q,λ)
W |Z=z (A) = P

(Q,λ)
Θ|Z=z

(
L−1z (A)

)
, (97)

where the term L−1z (A) represents the set

L−1z (A),{ν ∈M : Lz(ν) ∈ A} . (98)

Note that the random variableW in (67) induces the probability measure P (Q,λ)
W |Z=z

in (R,B (R)). The objective of this section is to prove that the random vari-
able W is a sub-Gaussian random variable. For this purpose, note that the cu-
mulant generating function induced by the measure P (Q,λ)

W |Z=z, denoted by Jz,Q,λ :
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R→ R ∪ {+∞}, satisfies for all t ∈ R,

Jz,Q,λ(t) = log

Å∫
exp (tw) dP

(Q,λ)
W |Z=z(w)

ã
(99)

= log

Å∫
exp (t Lz (u)) dP

(Q,λ)
Θ|Z=z(u)

ã
. (100)

For all λ ∈ KQ,z, with KQ,z in (22), the following lemma provides an expression
for Jz,Q,λ(t) in terms of the cumulant generating function KQ,z in (21), for
all t ∈ (−∞, 1

λ ).

Lemma 8.1. Given a real λ ∈ KQ,z, with KQ,z in (22), the cumulant generating
function Jz,Q,λ in (100), verifies the following equality for all t ∈

(
−∞, 1

λ

)
,

Jz,Q,λ(t) = KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
< +∞, (101)

with the function KQ,z in (21).

Proof: The proof is presented in Appendix U.

Denote by J (m)
z,Q,λ : R → R ∪ {+∞}, with m ∈ N, the m-th derivative of the

function Jz,Q,λ in (100). That is, for all s ∈
(
−∞, 1

λ

)
,

J
(m)
z,Q,λ(s) =

dm

dtm
Jz,Q,λ(t)

∣∣∣
t=s

. (102)

From Lemma 8.1, it follows that for all m ∈ N, and for all α ∈
(
−∞, 1

λ

)
, the

following holds,

J
(m)
z,Q,λ(α) = K

(m)
Q,z

Å
α− 1

λ

ã
, (103)

where the function K
(m)
Q,z denotes the m-th derivative of the function KQ,z

in (21). See for instance, Lemma 4.4. The equality in (103) establishes a rela-
tion between the cumulant generating function Jz,Q,λ and the function KQ,z.
The following lemma leverages these observations and presents the main result
of this section.

Theorem 8.1. The cumulant generating function Jz,Q,λ in (100) verifies the
following inequality for all α ∈

(
−∞, 1

λ

)
,

Jz,Q,λ(α) 6 αK
(1)
Q,z

Å
− 1

λ

ã
+

1

2
α2B2

z, (104)

wheret the constant Bz > 0 satisfies

B2
z = sup

γ∈KQ,z
K

(2)
Q,z

Å
− 1

γ

ã
, (105)

with KQ,z in (22); and the functions K(1)
Q,z and K

(2)
Q,z are respectively defined

in (64) and (65).
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Proof: The function KQ,z in (21) is differentiable infinitely many times over the
interior of the set KQ,z (Lemma 4.1). Thus, from the Taylor-Lagrange theorem,
c.f., [29, Theorem 2.5.4], it follows that for all λ ∈ KQ,z and for all α ∈

(
−∞, 1

λ

)
,

there exists a real ξ ∈
(
−∞, 1

λ

)
such that

KQ,z

Å
α− 1

λ

ã
=KQ,z

Å
− 1

λ

ã
+ αK

(1)
Q,z

Å
− 1

λ

ã
+
α2

2
K

(2)
Q,z (ξ) . (106)

From (106) and Lemma 8.1, it holds that

Jz,Q,λ(α)=αK
(1)
Q,z

Å
− 1

λ

ã
+
α2

2
K

(2)
Q,z (ξ) . (107)

Finally, the inequality in (104) follows from the maximization of the func-
tion K(2)

Q,z on the set KQ,z, which completes the proof.

The main implication of Theorem 8.1 is that the random variable W in (67) is
a sub-Gaussian random variable with parameter Bz in (105).

9 (δ, ε)-Optimality
This section introduces a PAC guarantee of optimality for the models that are
sampled from the probability measure P (Q,λ)

Θ|Z=z in (25) with respect to the ERM
problem in (6).

Definition 9.1 ((δ, ε)-Optimality). Given a pair of positive reals (δ, ε), with ε <
1, the probability measure P (Q,λ)

Θ|Z=z in (25) is said to be (δ, ε)-optimal, if the
set Lz (δ) in (31) satisfies

P
(Q,λ)
Θ|Z=z (Lz (δ)) > 1− ε. (108)

For all δ > 0, it holds that T (z) ⊂ Lz (δ), with the sets T (z) and Lz in (7)
and (31), respectively. Hence, from Definition 9.1, it follows that if the prob-
ability measure P (Q,λ)

Θ|Z=z in (25) is (δ, ε)-optimal, then it assigns a probability
that is always greater than 1− ε to the set that contains models that induce an
empirical risk that is smaller than δ. From this perspective, particular interest
is given to the smallest δ and ε for which P (Q,λ)

Θ|Z=z is (δ, ε)-optimal.

The main result of this section is presented by the following theorem.

Theorem 9.1. For all (δ, ε) ∈ (δ?Q,z,+∞)×(0, 1), with δ?Q,z in (32), there exists
a real λ ∈ KQ,z, with KQ,z in (22), such that the probability measure P (Q,λ)

Θ|Z=z

is (δ, ε)-optimal.

Proof of Theorem 9.1: Let δ be a real in
Ä
δ?Q,z,+∞

ä
, with δ?Q,z in (32). Let

also λ ∈ KQ,z satisfy the following equality:

K
(1)
Q,z

Å
− 1

λ

ã
6 δ. (109)
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Note that from Lemma 4.1, it follows that the function K
(1)
Q,z is continuous.

Moreover, from Theorem 5.2, it follows that such a λ in (109) always exists.
From (31) and (82), it holds that

NQ,z(λ) ⊆ Lz (δ) , (110)

and thus,
P

(Q,λ)
Θ|Z=z (Lz (δ)) > P

(Q,λ)
Θ|Z=z (NQ,z(λ)) . (111)

Let γ be a positive real such that γ 6 λ and

P
(Q,γ)
Θ|Z=z(NQ,z(γ)) > 1− ε. (112)

The existence of such a positive real γ follows from Theorem 7.3. Hence,
from (112), it holds that,

1− ε<P (Q,γ)
Θ|Z=z(NQ,z(γ)) (113)

6P (Q,γ)
Θ|Z=z (Lz (δ)) , (114)

where the inequality in (114) follows from the fact that NQ,z(γ) ⊆ NQ,z(λ) ⊆
Lz (δ). Finally, the inequality in (114) implies that the probability measure
P

(Q,λ)
Θ|Z=z is (δ, ε)-optimal (Definition 9.1). This completes the proof.

A stronger optimality claim can be stated when the reference measure is coher-
ent.

Theorem 9.2. For all (δ, ε) ∈ (0,+∞)× (0, 1), there always exists a λ ∈ KQ,z,
with KQ,z in (22), such that the probability measure P (Q,λ)

Θ|Z=z is (δ, ε)-optimal if
and only if the reference measure Q is coherent.

Proof of Theorem 9.2: The proof is divided into two parts. The first part shows
that if for all (δ, ε) ∈ (0,+∞)× (0, 1), there always exists a λ ∈ KQ,z, with KQ,z
in (22), such that the probability measure P (Q,λ)

Θ|Z=z in (25) is (δ, ε)-optimal, then,
the measure Q is coherent. The second part deals with the converse.

The first part is as follows. If for all (δ, ε) ∈ (0,+∞)× (0, 1), there always exists
a λ ∈ KQ,z, such that

P
(Q,γ)
Θ|Z=z (Lz (δ))>1− ε, (115)

then, it follows from Lemma 3.8 that for all δ > 0,

Q (Lz (δ))>0, (116)

which implies that the measure Q is coherent. This completes the first part of
the proof.

The second part of the proof is as follows. Under the assumption that the
measure Q is coherent, it follows that δ?Q,z = 0. Then, from Theorem 9.1, it
follows that for all (δ, ε) ∈ (0,+∞) × (0, 1), there always exists a λ ∈ KQ,z,
with KQ,z in (22), such that the probability measure P (Q,λ)

Θ|Z=z is (δ, ε)-optimal.
This completes the second part of the proof.
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10 Sensitivity

This section studies the sensitivity of the expected empirical risk Rz (Defini-
tion 2.4) to deviations from the probability measure P (Q,λ)

Θ|Z=z in (25) towards
an alternative probability measure P . Deviations from the probability mea-
sure P (Q,λ)

Θ|Z=z towards an alternative probability measure P over the measurable
space (M,B (M)) might arise due to several reasons. For instance, if new
datasets become available, a new g-ERM-RER problem can be formulated us-
ing a larger dataset obtained by aggregating the old and the new datasets [30].
Similarly, the parameters Q (the reference measure) and λ (the regularization
factor) in (11) might be changed based on side-information leading to new g-
ERM-RER problems and thus, to new probability measures. Other techniques
different from g-ERM-RER might also be used to obtain a probability measure
over the measurable space (M,B (M)), e.g., Bayesian methods. Within this
context, the sensitivity is a performance metric defined as follows.

Definition 10.1 (Sensitivity). Given a σ-finite measure Q ∈ 4 (M,B (M))
and a positive real λ > 0, let SQ,λ : (X × Y)

n ×4Q (M,B (M))→ (−∞,+∞]
be a function such that for all datasets z ∈ (X × Y)

n and for probability mea-
sures P ∈ 4Q (M,B (M)), it holds that

SQ,λ (z, P ) =

®
Rz (P )− Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
if λ ∈ KQ,z

+∞ otherwise,
(117)

where the function Rz is defined in (10) and the probability measure P (Q,λ)
Θ|Z=z

is in (25). The sensitivity of the expected empirical risk Rz due to a deviation
from P

(Q,λ)
Θ|Z=z to P is SQ,λ (z, P ).

10.1 Dataset-Dependent Bounds

In the aim of characterizing the sensitivity SQ,λ (z, P ) in (117), consider the
following lemma.

Lemma 10.1. Given two probability measures P and Q over (M,B (M)),
with Q absolutely continuous with P , the following holds for all z ∈ (X × Y)

n,

Rz (Q)− Rz (P )

6 inf
t∈(−∞,0)

Ç
D (Q‖P ) + log

(∫
exp (t (Lz (θ)− Rz (P ))) dP (θ)

)
t

å
, (118)

where the functions Lz and Rz is defined in (5) and in (10), respectively.

Proof: The proof is presented in Appendix V.

Lemma 10.1 together with Theorem 8.1 lead to an upper bound on the absolute
value of the sensitivity SQ,λ (z, P ) in (117).
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Theorem 10.1. The function SQ,λ in (117) satisfies for all probability mea-
sures P ∈ 4Q (M,B (M)),

|SQ,λ (z, P )|6
√

2B2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (119)

where the constant BQ,z is defined in (105).

Proof: The proof is presented in Appendix W.

Theorem 10.1 establishes an upper and a lower bound on the increase and
decrease of the expected empirical risk that can be obtained by deviating from
the optimal solution of the g-ERM-RER in (11). More specifically, note that
for all probability measures P ∈ 4Q (M,B (M)), it holds that,

Rz (P )>Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
−
√

2B2
zD
Ä
P‖P (Q,λ)

Θ|Z=z

ä
and (120a)

Rz (P )6Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+
√

2B2
zD
Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (120b)

The following theorem highlights the fact that the measure that minimizes the
expected empirical risk subject to a constraint in the relative entropy with
respect to the g-ERM-RER-optimal measure P (Q,λ)

Θ|Z=z in (25) is also the solution
to an g-ERM-RER problem with parameters Q and ω, for some specific ω >
0.

Theorem 10.2. Given a σ-finite measure Q ∈ 4 (M,B (M)), a dataset z ∈
(X × Y)

n, and a nonnegative real λ ∈ KQ,z, with KQ,z in (22), consider the
following optimization problem

min
P∈4

P
(Q,λ)
Θ|Z=z

(M,B(M))

∫
Lz(θ)dP (θ), (121a)

subject to: D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
6 c, and (121b)∫

dP (θ) = 1, (121c)

with, c a given nonnegative constant; P (Q,λ)
Θ|Z=z the probability measure in (25);

and Lz the function in (5). Then, the solution to the optimization problem
in (121) is a probability measure P (Q,ω)

Θ|Z=z satisfying for all θ ∈ suppQ,

dP
(Q,ω)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

ω

ã
− 1

ω
Lz (θ)

ã
, (122)

with ω ∈ (0, λ] such that

D
Ä
P

(Q,ω)
Θ|Z=z‖P

(Q,λ)
Θ|Z=z

ä
= c. (123)

Proof: The proof is presented in Appendix X.
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10.2 Dataset-Independent Bounds

Consider a probability measure, denoted by PZ ∈ 4
Å

(X × Y)
n
, (F (X × Y))

n
ã
,

such that for all A ∈
(
F (X × Y)

)n of the form A = A1 × A2 × . . . × An
with Ai ∈ F (X × Y) and i ∈ {1, 2, . . . , n}, it holds that

PZ (A) =

n∏
t=1

PXY (At) , (124)

where the probability measure PXY is defined in (2). More specifically, PZ (A)
is the probability measure induced by a random variable

Z = ((X1, Y1) , (X2, Y2) , . . . , (Xn, Yn)) ,

in which the n random variables (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) are indepen-
dent and identically distributed according to PXY .

Let the set KQ, with Q ∈ 4 (M,B (M)), be

KQ =
⋂

z∈suppPZ

KQ,z, (125)

where the set KQ,z is defined in (21) and the probability measure PZ is defined
in (124). The set KQ in (125) can be empty for some choices of the σ-finite
measure Q and empirical loss function Lz in (5). Nonetheless, from Lemma 3.2,
it follows that when Q is a probability measure, then,

KQ = (0,+∞) . (126)

Using this notation, the following corollary of Theorem 10.1 provides an up-
per bound on the expectation of the sensitivity with respect to the probability
measure PZ in (124).

Corollary 10.1. Given a σ-finite measure Q ∈ 4 (M,B (M)), for all λ ∈ KQ,
with KQ in (125), and for all probability measures P ∈ 4Q (M,B (M)), it holds
that ∫

|SQ,λ (z, P )|dPZ(z)6
∫√

2B2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
dPZ(z),

(127)

where BQ,z is defined in (105); the probability measure P (Q,λ)
Θ|Z=z is in (25); and

the probability measure PZ is defined in (124).

In the following theorem, the expectation of the sensitivity with respect to the
measure PZ in (124) is shown to have an upper bound that can be expressed in
terms of the lautum information between the models and the data sets.
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Theorem 10.3. Given a σ-finite measure Q ∈ 4 (M,B (M)), for all λ ∈ KQ,
with KQ in (125), it holds that∫ ∣∣∣SQ,λ Äz, P (Q,λ)

Θ

ä∣∣∣dPZ(z)

6

 
2B2

Q

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=u

ä
dPZ(u), (128)

where the probability measure P (Q,λ)
Θ|Z=z is the solution to the g-ERM-RER prob-

lem in (11); the probability measure PZ is defined in (124); the probability mea-
sure P (Q,λ)

Θ is such that for all A ∈ B (M),

P
(Q,λ)
Θ (A) =

∫
P

(Q,λ)
Θ|Z=z (A) dPZ (z) ; (129)

and the constant BQ satisfies

B2
Q = sup

z∈suppPZ
B2
Q,z, (130)

with BQ,z defined in (105).

Proof: The proof follows from Corollary 10.1. In particular, from (127), for
all probability measures P over (M,B (M)) absolutely continuous with Q, it
holds that ∫

|SQ,λ (z, P )|dPZ(z)6
∫√

2B2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
dPZ(z) (131)

6
∫√

2B2
QD
Ä
P‖P (Q,λ)

Θ|Z=z

ä
dPZ(z) (132)

6

 
2B2

Q

∫
D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
dPZ(z), (133)

where the inequality in (132) follows from (130); and the inequality in (133)
follows from Jensen’s inequality [28, Theorem 6.3.5]. This completes the proof.

Given a σ-finite measure Q ∈ 4 (M,B (M)) and a positive real λ ∈ KQ,
with KQ in (125), let Z and Θ be the random variables that jointly induce
a probability measure P (Q,λ)

ZΘ with marginals PZ in (124) and P (Q,λ)
Θ in (129).

Under these assumptions, the right-hand side in (128) can be written in terms
of the lautum information [31] between the random variables Z and Θ, which
is denoted by L (Z;Θ). More specifically, note that

L (Z;Θ) =

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=z

ä
dPZ(z). (134)

In a nutshell, it can be concluded that the expectation of
∣∣∣SQ,λ Äz, P (Q,λ)

Θ

ä∣∣∣ with
respect to the measure PZ in (124) is upper bounded up to a constant factor
by the square root of the lautum information between the random variables Z
and Θ.
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11 Discussion and Final Remarks
The classical ERM-RER problem in (11) has been studied under the assumption
that the reference measure Q is a σ-finite measure, instead of a probability mea-
sure, which leads to a more general problem coined as the g-ERM-RER problem.
In particular, it has been highlighted that the g-ERM-RER problem provides a
larger flexibility for including prior knowledge on the models. Special cases of
the g-ERM-RER problem include the ERM problem with (discrete or differen-
tial) entropy regularization and the information-risk minimization problem. The
solution to the g-ERM-RER problem has been shown to exist and to be unique.
Interestingly, the empirical risk observed when models are sampled from the g-
ERM-RER-optimal probability measure is a sub-Gaussian random variable that
exhibits a PAC guarantee for the ERM problem. That is, for some positive δ
and ε, it is shown that there always exist some parameters for the g-ERM-
RER-optimal measure such that the set of models that induce an empirical loss
smaller than δ exhibit a probability that is not smaller that 1− ε. Interestingly,
none of these results relies on statistical assumptions on the datasets. Finally,
the sensitivity of the expected empirical risk to deviations from the g-ERM-
RER-optimal measure has also been studied. In particular, an upper bound
on the expectation of the sensitivity with respect to the dataset is presented.
In some particular cases, connections between the sensitivity and the lautum
information between the models and the data sets have been stablished.
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Appendices

A Proof of Lemma 3.1
The proof is divided into two parts. The first part develops under the assump-
tion that the set KQ,z ⊂ (0,+∞) is not empty. The second part considers the
opposite assumption.

The first part is as follows. Under the assumption that the set KQ,z is not
empty, there always exists a real b ∈ KQ,z, such that KQ,z

(
− 1
b

)
< +∞. Note

that for all θ ∈M,
d

dt
exp

Å
−1

t
Lz (θ)

ã
=

1

t2
Lz (θ) exp

Å
−1

t
Lz (θ)

ã
> 0, (135)

with Lz in (5). Thus, from (21), it follows that KQ,z

(
− 1
b

)
is nondecreasing

with b. This implies that (0, b] ⊂ KQ,z. This proves the convexity ofKQ,z.

Let b? ∈ (0,+∞] be
b? = supKQ,z. (136)

Hence, if b? = +∞, it follows from (22) that

KQ,z = (0,+∞). (137)

Alternatively, if b? < +∞, it holds that

(0, b?) ⊂ KQ,z. (138)

This completes the first part.

The second part is trivial. Under the assumption that the set KQ,z in (22) is
empty, there is nothing to prove.

This completes the proof.

B Proof of Lemma 3.2
Note that for all θ ∈M and for all for all t > 0, it follows that

exp

Å
−1

t
Lz (θ)

ã
6 1, (139)

with Lz in (5). Thus,

KQ,z

Å
−1

t

ã
=log

Å∫
exp

Å
−1

t
Lz (θ)

ã
dQ(θ)

ã
(140)

6log

Å∫
dQ(θ)

ã
(141)

60, (142)

which implies that (0,+∞) ⊆ KQ,z. Thus, from (22), it holds that KQ,z =
(0,+∞), which completes the proof.
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C Proof of Theorem 3.1

The objective function in the optimization problem in (11) can be written as
follows:

min
P∈4Q(M,B(M))

∫
Lz (θ)

dP

dQ
(θ)dQ(θ) + λ

∫
dP

dQ
(θ) log

Å
dP

dQ
(θ)

ã
dQ (θ)(143a)

s. t.

∫
dP (θ) = 1. (143b)

with dP
dQ being the Radon-Nikodym derivative of P with respect to Q.

Let M be the set of nonnegative measurable functions with respect to the mea-
surable spaces (M,B (M)) and (R,B (R)). The Lagrangian of the optimization
problem in (143) can be constructed in terms of a function in M , instead of a
measure in 4 (M,B (M)). Let such Lagrangian be L : M × [0,+∞) → R of
the form

L

Å
dP

dQ
, β

ã
=

∫
Lz (ν)

dP

dQ
(ν) dQ (ν) + λ

∫
dP

dQ
(ν) log

Å
dP

dQ
(ν)

ã
dQ (ν)

+β

Å∫
dP

dQ
(ν) dP (ν)− 1

ã
, (144)

where β is a positive real that acts as a Lagrangian multiplier due to the con-
straint (143b).

Let g : Rk → R be a function in M . The Gateaux differential of the functional L
in (144) at

Ä
dP
dQ , β

ä
∈M × [0,+∞) in the direction of g is

∂L

Å
dP

dQ
, β; g

ã
,

d

dα
r(α)

∣∣∣∣
α=0

, (145)

where the real function r : R→ R is such that for all α ∈ R,

r(α)=

∫
Lz (ν)

Å
dP

dQ
(ν) + αg (ν)

ã
dQ (ν)

+β

Å∫ Å
dP

dQ
(ν) + αg (ν)

ã
dQ (ν)− 1

ã
+λ

∫ Å
dP

dQ
(ν) + αg (ν)

ã
log

Å
dP

dQ
(ν) + αg (ν)

ã
dQ (ν) . (146)

Note that the derivative of the real function r in (146) is

d

dα
r(α)=

∫
Lz (ν) g (ν) dQ (ν) + β

∫
g (ν) dQ (ν)

+λ

∫
g (ν)

Å
1 + log

Å
dP

dQ
(ν) + αg (ν)

ãã
dQ (ν) . (147)
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From (145) and (147), it follows that

∂L

Å
dP

dQ
, β; g

ã
=

∫
g (ν)

Å
Lz (ν) + λ

Å
1 + log

Å
dP

dQ
(ν)

ãã
+ β

ã
dQ (ν) .

(148)

The relevance of the Gateaux differential in (148) stems from [32, Theorem 1,
page 178], which unveils the fact that a necessary condition for the functional L

in (144) to have a minimum at
Å

dP
(Q,λ)

Θ|Z=z

dQ , β

ã
∈ M × [0,+∞) is that for all

functions g ∈M ,

∂L

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
; g

é
= 0. (149)

From (149), it follows that
dP

(Q,λ)

Θ|Z=z

dQ must satisfy for all functions g in M
that∫

g (ν)

Ñ
Lz (ν) + λ

Ñ
1 + log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(ν)

éé
+ β

é
dQ (ν) = 0, (150)

which implies that for all ν ∈M,

Lz (ν) + λ

Ñ
1 + log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(ν)

éé
+ β = 0, (151)

and thus,
dP

(Q,λ)
Θ|Z=z

dQ
(ν) = exp

Å
−β + λ

λ

ã
exp

Å
−Lz (ν)

λ

ã
, (152)

with β chosen to satisfy (143b). That is,

dP
(Q,λ)
Θ|Z=z

dQ
(ν)=

exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

(153)

=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (ν)

ã
. (154)

The proof continues by verifying that the objective function in (143) is strictly
convex, and thus, the measure P (Q,λ)

Θ|Z=z that satisfies (153) is the unique min-
imizer. More specifically, note that the objective function in (143) is the sum

of two terms. The first one, i.e.,
∫

Lz (ν)
dP

dQ
(ν) dQ (ν), is linear in dP

dQ . The

second, i.e.,
∫

dP

dQ
(ν) log

Å
dP

dQ
(ν)

ã
dQ (ν), is strictly convex with dP

dQ . Hence,

given that λ > 0, the sum of both terms is strictly convex with dP
dQ . This implies

the uniqueness of
dP

(Q,λ)

Θ|Z=z

dQ and completes the proof.
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D Proof of Lemma 3.3
For all θ ∈M and for all (µ,ν) ∈ T (z)× T (z), it follows that

Lz (θ)>Lz (ν) = Lz (µ) , (155)

and thus, for all λ ∈ KQ,z, with KQ,z in (22), it holds that

exp

Å
−Lz (θ)

λ

ã
6exp

Å
−Lz (ν)

λ

ã
= exp

Å
−Lz (µ)

λ

ã
, (156)

which implies

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dQ (α)

6
exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dQ (α)

(157)

=
exp
Ä
−Lz(µ)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dQ (α)

. (158)

Hence, under the assumption that T (z) ∩ suppQ 6= ∅, for all θ ∈ suppQ and
for all (µ,ν) ∈ (T (z) ∩ suppQ)

2, it holds that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) 6

dP
(Q,λ)
Θ|Z=z

dQ
(µ) =

dP
(Q,λ)
Θ|Z=z

dQ
(ν) . (159)

which completes the proof.

E Proof of Lemma 3.4
From Lemma 3.3, it follows that for all λ ∈ KQ,z, for all θ ∈ suppQ, and for
all µ ∈ T (z) ∩ suppQ, it holds that

dP
(Q,λ)
Θ|Z=z

dQ
(θ)6

dP
(Q,λ)
Θ|Z=z

dQ
(µ) (160)

=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (µ)

ã
(161)

=exp

Å
−KQ,z

Å
− 1

λ

ãã
(162)

<+∞, (163)

where the equality in (161) follows from (25); the equality in (162) follows
from the fact that Lz (µ) = 0; and the equality in (163) follows from the fact
that λ ∈ KQ,z. This completes the proof of finiteness.

The proof of positivity follows from observing that for all λ ∈ KQ,z, it holds
that KQ,z

(
− 1
λ

)
< +∞, and thus, exp

(
−KQ,z

(
− 1
λ

))
> 0. Moreover, for
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all λ ∈ KQ,z and for all θ ∈ suppQ, it holds that Lz (θ) 6 +∞, which im-
plies that − 1

λLz (θ) > −∞, and thus, exp
(
− 1
λLz (θ)

)
> 0, with equality if and

only if Lz (θ) = +∞. These two observations put together yield

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
(164)

=exp

Å
−KQ,z

Å
− 1

λ

ãã
exp

Å
− 1

λ
Lz (θ)

ã
(165)

>0, (166)

with equality if and only if Lz (θ) = +∞. This completes the proof.

F Proof of Lemma 3.6
From Theorem 3.1, it follows that for all λ ∈ KQ,z and for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

(167)

=

Å
exp

Å
Lz (θ)

λ

ã∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

ã−1
(168)

=

Å∫
exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

ã−1
. (169)

Given θ ∈ suppQ, consider the partition of suppQ formed by the sets A0 (θ),
A1 (θ), and A2 (θ), which satisfy the following:

A0 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) = 0} , (170a)
A1 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) < 0} , and (170b)
A2 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) > 0} . (170c)

Using the sets A0 (θ), A1 (θ), and A2 (θ) in (169), the following holds for all λ ∈
KQ,z and for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

(∫
A0(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

+

∫
A2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

)−1
(171)

=

(
Q (A0 (θ)) +

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

+

∫
A2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

)−1
. (172)
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Note that the sets {
ν ∈ suppQ : Lz (ν) = δ?Q,z

}
, (173){

ν ∈ suppQ : Lz (ν) > δ?Q,z
}
, and (174){

ν ∈ suppQ : Lz (ν) < δ?Q,z
}
, (175)

with δ?Q,z in (32), form a partition of the set suppQ. Following this obser-
vation, the rest of the proof is divided into three parts. The first part evalu-

ates limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ), with θ ∈
¶
ν ∈M : Lz (ν) = δ?Q,z

©
. The second part

considers the case in which θ ∈
¶
ν ∈M : Lz (ν) > δ?Q,z

©
. The third part con-

siders the remaining case.

The first part is as follows. Consider that θ ∈
¶
ν ∈M : Lz (ν) = δ?Q,z

©
and

note that
¶
ν ∈M : Lz (ν) = δ?Q,z

©
= L?Q,z. Hence, the sets A0 (θ), A1 (θ),

and A2 (θ) in (170) satisfy the following:

A0 (θ) = L?Q,z, (176a)
A1 (θ) =

{
µ ∈ suppQ : Lz (µ) > δ?Q,z

}
, and (176b)

A2 (θ) =
{
µ ∈ suppQ : Lz (µ) < δ?Q,z

}
. (176c)

From the definition of δ?Q,z in (32), it follows that Q (A2 (θ)) = 0. Plugging the
equalities in (176) in (172) yields for all θ ∈

¶
ν ∈M : Lz (ν) = δ?Q,z

©
,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

Å
Q
(
L?Q,z

)
+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

ã−1
.(177)

The equality in (177) implies that for all θ ∈
¶
ν ∈M : Lz (ν) = δ?Q,z

©
,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

Å
Q
(
L?Q,z

)
+ lim
λ→0+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

ã−1
(178)

=
1

Q
Ä
L?Q,z

ä (179)

where the equality in (179) follows from verifying that the dominated conver-
gence theorem [28, Theorem 2.6.9] holds. That is,
(a) For all ν ∈ A1 (θ), it holds that exp

(
1
λ (Lz (θ)− Lz (ν))

)
< 1; and

(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
= 0. (180)

This completes the first part of the proof.
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The second part is as follows. For all δ > δ?Q,z and for all θ ∈
{
ν ∈ suppQ :

Lz (ν) = δ
}
, the sets A0 (θ), A1 (θ), and A2 (θ) in (170) satisfy the following:

A0 (θ)={µ ∈ suppQ : Lz (µ) = δ} , (181a)
A1 (θ)={µ ∈ suppQ : Lz (µ) > δ} , and (181b)
A2 (θ)={µ ∈ suppQ : Lz (µ) < δ} . (181c)

Consider the sets

A2,1 (θ),
{
µ ∈ A2 (θ) : Lz (µ) < δ?Q,z

}
, and (182)

A2,2 (θ),
{
µ ∈ A2 (θ) : δ?Q,z 6 Lz (µ) < δ

}
, (183)

and note that A2,1 (θ) and A2,2 (θ) form a partition of A2 (θ). Moreover, from
the definition of δ?Q,z in (32), it holds that

Q (A2,1 (θ)) = 0. (184)

Hence, plugging the equalities in (181) and (184) in (172) yields, for all δ > δ?Q,z
and for all θ ∈ {ν ∈M : Lz (ν) = δ},

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

Å
Q (A0 (θ)) +

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

ã−1
. (185)

The equality in (185) implies that for all δ > δ?Q,z and for all θ ∈
{
ν ∈

M: Lz (ν) = δ
}
,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

(
Q (A0 (θ))

+ lim
λ→0+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

+ lim
λ→0+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

)−1
(186)

=

(
Q (A0 (θ))

+ lim
λ→0+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

)−1
(187)

=
(
Q (A0 (θ)) +∞

)−1 (188)
=0, (189)
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where the equality in (187) follows by verifying that the dominated convergence
theorem [28, Theorem 2.6.9] holds. That is,
(a) For all ν ∈ A1 (θ), it holds that exp

(
1
λ (Lz (θ)− Lz (ν))

)
< 1; and

(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
= 0. (190)

This completes the second part.

The third part of the proof follows by noticing that the set
{
ν ∈ suppQ: Lz (ν) <

δ?Q,z
}
is a negligible set with respect to Q and thus, for all θ ∈

{
ν ∈ suppQ :

Lz (ν) < δ?Q,z
}
, the value

dP
(Q,λ)

Θ|Z=z

dQ (θ) is immaterial. Hence, it is arbitrarily

assumed that for all θ ∈
¶
ν ∈ suppQ : Lz (ν) < δ?Q,z

©
, it holds that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) = 0. (191)

This completes the third part of the proof.

Finally, from (179), (189), and (191), it follows that for all θ ∈ suppQ,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

1

Q
Ä
L?Q,z

ä1{θ∈L?Q,z}, (192)

which completes the proof.

G Proof of Lemma 3.7
Consider the following partition of the setM formed by the sets

A0,
{
θ ∈M : Lz (θ) = δ?Q,z

}
, (193a)

A1,
{
θ ∈M : Lz (θ) < δ?Q,z

}
, and (193b)

A2,
{
θ ∈M : Lz (θ) > δ?Q,z

}
, (193c)

with δ?Q,z in (32) and the function Lz in (5). Note that A0 = L?Q,z, with L?Q,z
in (33).

For all λ ∈ KQ,z, the following holds,

1=P
(Q,λ)
Θ|Z=z (A0) + P

(Q,λ)
Θ|Z=z (A1) + P

(Q,λ)
Θ|Z=z (A2) (194)

=P
(Q,λ)
Θ|Z=z (A0) + P

(Q,λ)
Θ|Z=z (A2) (195)

=P
(Q,λ)
Θ|Z=z (A0) +

∫
A2

dP
(Q,λ)
Θ|Z=z(θ), (196)
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where, the equality in (195) follows from noticing that P
(Q,λ)
Θ|Z=z(A1) = 0, which

follows from the definition of δ?Q,z in (32) and the fact that the probability
measure P (Q,λ)

Θ|Z=z is absolutely continuous with the measure Q.

The above implies that

1= lim
λ→0+

P
(Q,λ)
Θ|Z=z (A0) + lim

λ→0+

∫
A2

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (197)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z (A0) +

∫
A2

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (198)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z (A0) , (199)

where, the equality in (198) follows from the dominated convergence theo-
rem [28, Theorem 1.6.9], given that for all λ ∈ KQ,z, the Randon-Nikodym

derivative
dP

(Q,λ)

Θ|Z=z

dQ is positive and finite (Lemma 3.4); and the inequality in (199)

holds from the fact that for all θ ∈ A2, it holds that limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0

(Lemma 3.6). Hence, it finally holds that

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
= 1, (200)

which completes the proof.

H Proof of Lemma 3.8

For all λ ∈ KQ,z, with KQ,z in (22), and for all C ∈ B (M),

P
(Q,λ)
Θ|Z=z (C)=

∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) , (201)

and thus, if Q (C) = 0, then

P
(Q,λ)
Θ|Z=z (C)=0, (202)

which implies the absolute continuity of P (Q,λ)
Θ|Z=z with respect to Q.

Alternatively, given a set C ∈ B (M) and a real λ ∈ KQ,z, assume now
that P (Q,λ)

Θ|Z=z (C) = 0. Hence, it follows that

0=P
(Q,λ)
Θ|Z=z (C) (203)

=

∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) . (204)
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From Lemma 3.4, and the assumption Q ({θ ∈M : Lz (θ) = +∞}) = 0, it holds
that for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ) > 0, (205)

which implies that ∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ)=0, (206)

if and only if Q (C) = 0. This verifies the absolute continuity of Q with respect
to P (Q,λ)

Θ|Z=z, and completes the proof.

I Proof of Lemma 3.9
The proof is presented in two parts. The first part shows that if for all δ ∈
(0,+∞), the inequality in (46) holds, then, Q is coherent. The second part
shows that if there exists a δ ∈ (0,+∞) such that

P
(Q,λ)
Θ|Z=z (Lz (δ))=0, (207)

then Q is noncoherent.

The first part is as follows. Note that for all δ ∈ (0,+∞) and for all θ ∈
Lz (δ) ∩ suppQ, it holds from Lemma 3.4 that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) > 0. (208)

Hence, if for all δ ∈ (0,+∞), the inequality in (46) holds, then

0 < P
(Q,λ)
Θ|Z=z (Lz (δ)) (209)

=

∫
Lz(δ)

dP
(Q,λ)
Θ|Z=z (θ) (210)

=

∫
Lz(δ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) , (211)

which, together with (208), implies that for all δ ∈ (0,+∞), Q (Lz (δ)) > 0.
Hence, Q is coherent.

The second part is as follows. Assume that there exists a δ ∈ (0,+∞), for which
it holds that P (Q,λ)

Θ|Z=z (Lz (δ)) = 0. Hence, the following holds for such δ,

0 = P
(Q,λ)
Θ|Z=z (Lz (δ)) (212)

=

∫
Lz(δ)

dP
(Q,λ)
Θ|Z=z (θ) (213)

=

∫
Lz(δ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) . (214)
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From Lemma 3.4, it holds that for all θ ∈ Lz (δ) ∩ suppQ, the inequality
in (208) holds, which implies that Q (Lz (δ)) = 0. That is, Q is noncoherent.
This completes the proof.

J Proof of Lemma 3.12
Consider the function g :M→ [0,+∞),

g(θ) =
dP

(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
, (215)

and note that from Lemma 3.4, it holds that for all θ ∈ suppQ \
{
ν ∈

M: Lz (ν) = +∞
}
, g (θ) > 0 and for all θ ∈ {ν ∈M : Lz (ν) = +∞} , g (θ) =

0, which follows from the assumption 0 · 10 = 0.

Consider a measure P on (M,B (M)), such that for all sets A ∈ B (M),

P (A) =

∫
A
g(θ)dP

(Q,β)
Θ|Z=z(θ), (216)

and note that if P (Q,β)
Θ|Z=z(A) = 0, then P (A) = 0. This implies that P is abso-

lutely continuous with P (Q,β)
Θ|Z=z(A). Moreover, from (216), it follows that

P (A) =

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
dP

(Q,β)
Θ|Z=z(θ) (217)

=

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
dP

(Q,β)
Θ|Z=z

dQ
(θ) dQ(θ) (218)

=

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ) dQ(θ) (219)

=

∫
A

dP
(Q,α)
Θ|Z=z(θ) (220)

= P
(Q,α)
Θ|Z=z(A). (221)

This proves that P (Q,α)
Θ|Z=z is absolutely continuous with P

(Q,β)
Θ|Z=z. The proof

that P (Q,β)
Θ|Z=z is absolutely continuous with P (Q,α)

Θ|Z=z follows the same argument.
This completes the proof.

K Proof of Lemma 4.1
Consider the transport of the σ-finite measure Q in (21) from the measure
space (M,B (M)) to the measure space ([0,+∞) ,B ([0,+∞))) through the
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function Lz in (5). Denote the resulting measure in ([0,+∞) ,B ([0,+∞)))
by P . More specifically, for all A ∈ B ([0,+∞)), it holds that P (A) =
Q ({θ ∈M : Lz (θ) ∈ A}). Hence, the function KQ,z in (21) can be written
for all t ∈ R in terms of the measure P as follows

KQ,z (t)=log

Å∫
exp (t v) dP (v)

ã
. (222)

Denote by φ the Laplace transform of the measure P . That is, for all t ∈
(0,+∞),

φ(t) =

∫
exp (t v) dP (v) = exp (KQ,z (−t)) . (223)

From [33, Theorem 1a (page 439)], it follows that the function φ has derivatives
of all orders in (0,+∞), and thus, so does the function KQ,z in (−∞, 0). This
implies the continuity of KQ,z in (−∞, 0), and completes the proof.

L Proof of Lemma 4.3
Let (γ1, γ2) ∈ R2, with γ1 6= γ2 and α ∈ [0, 1] be fixed. Assume thatKQ,z (γ1) <
+∞ and KQ,z (γ2) < +∞. Then, for all α ∈ (0, 1), the following holds

αKQ,z (γ1) + (1− α)KQ,z (γ2)

= α log

Å∫
exp (γ1 Lz (θ)) dQ(θ)

ã
+(1− α) log

Å∫
exp (γ2 Lz (θ)) dQ(θ)

ã
(224)

= log

ÅÅ∫
exp (γ1 Lz (θ)) dQ(θ)

ãαã
+ log

ÇÅ∫
exp (γ2 Lz (θ)) dQ(θ)

ã(1−α)å
(225)

= log

ÇÅ∫
exp (γ1 Lz (θ)) dQ(θ)

ãα Å∫
exp (γ2 Lz (θ)) dQ(θ)

ã(1−α)å
(226)

= log

(Å∫
exp (γ1αLz (θ))

p
dQ(θ)

ã 1
pÅ∫

exp (γ2(1− α)Lz (θ))
q

dQ(θ)

ã 1
q

)
(227)

> log

Å∫
exp (γ1αLz (θ)) exp (γ2(1− α)Lz (θ)) dQ(θ)

ã
(228)

= log

Å∫
exp

Å
(γ1α+ γ2(1− α)) Lz (θ)

ã
dQ(θ)

ã
(229)

= KQ,z (γ1α+ γ2(1− α)) , (230)

where the inequality in (227) follows with α = 1
p and 1− α = 1

q ; the inequality
in (228) follows from Hölder’s inequality. Hence, equality in (228) holds if and
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only if there exist two constants β1 and β2, not simultaneously equal to zero,
such that the set

A , {θ ∈M : β1 exp (γ1αLz (θ))
p

= β2 exp (γ2(1− α)Lz (θ))
q} (231)

= {θ ∈M : β1 exp (γ1Lz (θ)) = β2 exp (γ2Lz (θ))} (232)

=

ß
θ ∈M : exp ((γ1 − γ2) Lz (θ)) =

β2
β1

™
(233)

=

{
θ ∈M : Lz (θ) =

log β2

β1

(γ1 − γ2)

}
, (234)

satisfies

Q (A) = 1. (235)

That is, strict inequality in (228) holds if and only if the function Lz is separable
with respect to the σ-finite measureQ. When α = 0 or α = 1, the proof is trivial.
This completes the proof.

M Proof of Lemma 4.4

For all s ∈ KQ,z, with KQ,z in (22), the equality in (63) implies the follow-
ing,

K
(1)
Q,z

Å
−1

s

ã
=

d

dt
log

Å∫
exp (t Lz (θ)) dQ(θ)

ã∣∣∣∣∣
t=− 1

s

(236)

=
1∫

exp (t Lz (v)) dQ(v)

∫
Lz (θ) exp (t Lz (θ)) dQ(θ)

∣∣∣∣∣
t=− 1

s

(237)

=
1∫

exp
(
− 1
s Lz (v)

)
dQ(v)

∫
Lz (θ) exp

Å
−1

s
Lz (θ)

ã
dQ(θ) (238)

=exp

Å
−KQ,z

Å
−1

s

ãã∫
Lz (θ) exp

Å
−1

s
Lz (θ)

ã
dQ(θ) (239)

=

∫
Lz (θ) exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ(θ) (240)

=

∫
Lz (θ) dP

(Q,s)
Θ|Z=z(θ), (241)

where the equality in (237) holds from the dominated convergence theorem
[28]; the equality in (239) follows from (21); and the equality in (241) follows
from (25).

For all s ∈ KQ,z, with KQ,z in (22), the equalities in (63) and (240) imply
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that

K
(2)
Q,z

Å
−1

s

ã
=

d

dt

∫
Lz (θ) exp (−KQ,z (t) + t Lz (θ)) dQ(θ)

∣∣∣∣∣
t=− 1

s

(242)

=

∫
Lz (θ)

Ä
−K(1)

Q,z (t) + Lz (θ)
ä

exp (−KQ,z (t) + tLz (θ)) dQ(θ)

∣∣∣∣∣
t=− 1

s

(243)

=

∫
Lz (θ)

Å
−K(1)

Q,z

Å
−1

s

ã
+ Lz (θ)

ã
exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ(θ)

=

∫
Lz (θ)

Å
−K(1)

Q,z

Å
−1

s

ã
+ Lz (θ)

ã
dP

(Q,s)
Θ|Z=z (θ) (244)

=−K(1)
Q,z

Å
−1

s

ã∫
Lz (θ) dP

(Q,s)
Θ|Z=z (θ) +

∫
(Lz (θ))

2
dP

(Q,s)
Θ|Z=z (θ) (245)

=−
Å
K

(1)
Q,z

Å
−1

s

ãã2
+

∫
(Lz (θ))

2
dP

(Q,s)
Θ|Z=z (θ) (246)

=

∫ Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã2
dP

(Q,s)
Θ|Z=z (θ) , (247)

where the equality in (243) follows from the dominated convergence theorem
[28]; the equality in (244) is due to a change of measure through the Radon-
Nikodym derivative in (25); and the equality in (246) follows from (241).

For all s ∈ KQ,z, with KQ,z in (22), the equalities in (63) and (246) imply
that
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K
(3)
Q,z

Å
−1

s

ã
=

d

dt

Å∫
(Lz (θ))

2
dP

(Q,− 1
t )

Θ|Z=z (θ)−
Ä
K

(1)
Q,z (t)

ä2ã∣∣∣∣∣
t=− 1

s

(248)

=
d

dt

(∫ Å
(Lz (θ))

2
exp (−KQ,z (t) + tLz (θ))

ã
dQ (θ)

−
Ä
K

(1)
Q,z (t)

ä2)∣∣∣∣∣
t=− 1

s

(249)

=

∫
(Lz (θ))

2

Ñ
d

dt
exp (−KQ,z (t) + tLz (θ))

∣∣∣∣∣
t=− 1

s

é
dQ (θ)

−2K
(1)
Q,z (t)K

(2)
Q,z (t)

∣∣∣∣∣
t=− 1

s

(250)

=

∫
(Lz (θ))

2

ÑÄ
Lz (θ)−K(1)

Q,z (t)
ä

exp (−KQ,z (t) + tLz (θ))

∣∣∣∣∣
t=− 1

s

é
dQ (θ)

−2K
(1)
Q,z (t)K

(2)
Q,z (t)

∣∣∣∣∣
t=− 1

s

(251)

=

∫
(Lz (θ))

2
Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã
exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ (θ)

−2K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(252)

=

∫
(Lz (θ))

2
Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã
dP

(Q,s)
Θ|Z=z (θ)

−2K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(253)

=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)

−K(1)
Q,z

Å
−1

s

ã∫
(Lz (θ))

2
dP

(Q,s)
Θ|Z=z (θ)− 2K

(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(254)

=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)

−K(1)
Q,z

Å
−1

s

ãÇ
K

(2)
Q,z

Å
−1

s

ã
+

Å
K

(1)
Q,z

Å
−1

s

ãã2å
−2K

(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(255)

=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)−K(1)

Q,z

Å
−1

s

ã3
− 3K

(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(256)

=

∫ Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã3
dP

(Q,s)
Θ|Z=z (θ) , (257)Inria
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where the equality in (249) follows from (25); the equality in (250) follows from
the dominated convergence theorem [28]; the equality in (253) follows from (25);
and the equality in (255) follows from (246). This completes the proof.

N Proof of Theorem 5.1
The proof is based on the analysis of the derivative of K(1)

Q,z

(
− 1
λ

)
with respect

to λ in intKQ,z. That is,

d

dλ
K

(1)
Q,z

Å
− 1

λ

ã
=

1

λ2
K

(2)
Q,z

Å
− 1

λ

ã
(258)

>0, (259)

where the equality in (259) follows from Lemma 4.4. From Lemma 5.1, the
inequality in (259) implies that the expected empirical risk Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
=

K
(1)
Q,z

(
− 1
λ

)
in (21) is nondecreasing with respect to λ. That is, given two reals λ1

and λ2, with λ1 > λ2 > 0, it holds that

Rz
Ä
P

(Q,λ1)
Θ|Z=z

ä
= K

(1)
Q,z

Å
− 1

λ1

ã
> K

(1)
Q,z

Å
− 1

λ2

ã
= Rz

Ä
P

(Q,λ2)
Θ|Z=z

ä
. (260)

The rest of the proof consists in showing that for all α ∈ KQ,z, the functionK(2)
Q,z

in (63) satisfies K(2)
Q,z

(
− 1
α

)
> 0 if and only if the function Lz in (5) is separable.

For doing so, a handful of preliminary results are described in the following
subsection. The proof of Theorem 5.1 resumes in Subsection N.2

N.1 Preliminaries
Given a positive real λ ∈ KQ,z, with KQ,z in (22), consider a partition of M
formed by the sets R0(λ), R1(λ) and R2(λ), such that

R0(λ),
¶
ν ∈M : Lz (ν) = Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (261a)

R1(λ),
¶
ν ∈M : Lz (ν) < Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, and (261b)

R2(λ),
¶
ν ∈M : Lz (ν) > Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (261c)

where the function Rz is in (10) and the probability measure P (Q,λ)
Θ|Z=z is in (25).

Note that the value Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is the g-ERM-RER-optimal expected empiri-

cal risk in (68).

The sets in (261) exhibit several properties that are central for proving the main
results of this section.

Lemma N.1. The probability measure P (Q,λ)
Θ|Z=z in (25), satisfies

P
(Q,λ)
Θ|Z=z (R1(λ)) > 0, (262)
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if and only if

P
(Q,λ)
Θ|Z=z (R2(λ)) > 0, (263)

where the sets R1(α) and R2(α) are in (261b) and (261c), respectively.

Proof: The proof is divided into two parts. In the first part, given a real α ∈
KQ,z, it is proven that if the set R1 (α) is nonnegligible with respect to P (Q,α)

Θ|Z=z ,

then the set R2 (α) is nonnegligible with respect to P (Q,α)
Θ|Z=z . The second part

of the proof consists in proving that, given a real α ∈ KQ,z, if the set R2 (α)

is nonnegligible with respect to P (Q,α)
Θ|Z=z , then the set R1 (α) is nonnegligible

with respect to P (Q,α)
Θ|Z=z .

The first part is proved by contradiction. Assume that set R2 (α) is negligible
with respect to P (Q,α)

Θ|Z=z . Hence, from Lemma 4.4, it holds that

K
(1)
Q,z

Å
− 1

α

ã
=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν)

+

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (264)

=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (265)

=K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α)) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (266)

<K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α)) +K

(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R1(α))(267)

=K
(1)
Q,z

Å
− 1

α

ãÄ
P

(Q,α)
Θ|Z=z (R0(α)) + P

(Q,α)
Θ|Z=z (R1(α))

ä
(268)

=K
(1)
Q,z

Å
− 1

α

ã
, (269)

which is a contradiction.

The second part of the proof follows the same arguments as in the first part.
Assume that the set R1 (α) is negligible with respect to P (Q,α)

Θ|Z=z . Hence, from
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Lemma 4.4, it holds that

K
(1)
Q,z

Å
− 1

α

ã
=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν)

+

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (270)

=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (271)

=K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α)) +

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (272)

>K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α))

+K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R2(α)) (273)

=K
(1)
Q,z

Å
− 1

α

ãÄ
P

(Q,α)
Θ|Z=z (R0(α)) + P

(Q,α)
Θ|Z=z (R2(α))

ä
(274)

=K
(1)
Q,z

Å
− 1

α

ã
, (275)

which is also a contradiction. This completes the proof.

A more general result can be immediately obtained by combining Lemma 3.12
and Lemma N.1.

Lemma N.2. For all α ∈ KQ,z, with KQ,z in (22), the measure P (Q,λ)
Θ|Z=z in (25),

satisfies

P
(Q,λ)
Θ|Z=z (R1(α)) > 0, (276)

if and only if

P
(Q,λ)
Θ|Z=z (R2(α)) > 0, (277)

where the sets R1(α) and R2(α) are in (261b) and (261c), respectively.

N.2 The proof

The rest of the proof of Theorem 5.1 is divided into two parts. In the first
part, it is shown that if for all α ∈ KQ,z, K(2)

Q,z

(
− 1
α

)
> 0, then the function Lz

in (5) is separable. The second part of the proof, consists in showing that if the
function Lz is separable, then, for all α ∈ KQ,z, K(2)

Q,z

(
− 1
α

)
> 0.
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The first part is as follows. From Lemma 4.4, it holds that for all α ∈ KQ,z,

K
(2)
Q,z

Å
− 1

α

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (278)

=

∫
R0(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (279)

+

∫
R1(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (280)

+

∫
R2(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) , (281)

where the sets R0(α), R1(α), and R2(α) are respectively defined in (261).
Hence,

K
(2)
Q,z

Å
− 1

α

ã
=

∫
R1(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ)

+

∫
R2(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (282)

6
Å

0−K(1)
Q,z

Å
− 1

α

ãã2
P

(Q,α)
Θ|Z=z (R1(α))

+

Å
sup
θ

Lz (θ)−K(1)
Q,z

Å
− 1

α

ãã2
P

(Q,α)
Θ|Z=z (R2(α)) . (283)

Under the assumption that for all α ∈ KQ,z the function K
(2)
Q,z in (63) satis-

fies K(2)
Q,z

(
− 1
α

)
> 0, it follows from (283) that

0<

Å
0−K(1)

Q,z

Å
− 1

α

ãã2
P

(Q,α)
Θ|Z=z (R1(α))

+

Å
sup
θ

Lz (θ)−K(1)
Q,z

Å
− 1

α

ãã2
P

(Q,α)
Θ|Z=z (R2(α)) . (284)

Note that if
P

(Q,α)
Θ|Z=z (R1(α)) > 0, (285)

then, 0 6= K
(1)
Q,z

(
− 1
α

)
. Moreover, if

P
(Q,α)
Θ|Z=z (R2(α)) > 0, (286)

then, supθ Lz (θ) 6= K
(1)
Q,z

(
− 1
α

)
. Therefore, the inequality in (284) implies that

at least one of the following claims is true:
(a) P (Q,α)

Θ|Z=z (R1(α)) > 0; and

(b) P (Q,α)
Θ|Z=z (R2(α)) > 0.
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Nonetheless, from Lemma N.1, it follows that both claims (a) and (b) hold
simultaneously. Hence, the sets R1(α) and R2(α) are both nonnegligible with
respect to P

(Q,α)
Θ|Z=z and moreover, it holds that for all (ν1,ν2) ∈ R1(α) ×

R2(α),

Lz (ν1)> K
(1)
Q,z

Å
− 1

α

ã
>Lz (ν2) . (287)

This proves that under the assumption that for all α ∈ KQ,z, K(2)
Q,z

(
− 1
α

)
> 0,

the function Lz in (5) is separable with respect to P (Q,α)
Θ|Z=z. From Lemma 4.2, it

holds that the function Lz is separable with respect to Q. This completes the
first part of the proof.

The second part of the proof is simpler. Assume that the empirical risk func-
tion Lz in (5) is separable with respect to P (Q,α)

Θ|Z=z. That is, for all γ ∈ KQ,z,
there exist a positive real cγ > 0; and two subsets A(γ) and B(γ) ofM that are
nonnegligible with respect to P (Q,γ)

Θ|Z=z in (25) and verify that for all (ν1,ν2) ∈
A(γ)× B(γ),

Lz (ν1)> cγ >Lz (ν2) . (288)

From Lemma 4.4, it holds that

K
(2)
Q,z

Å
− 1

γ

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (289)

=

∫
A(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (290)

+

∫
B(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (291)

+

∫
M\(A(γ)∪B(γ))

Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (292)

>0, (293)

where the inequality (293) follows from the following facts. First, if cγ <

K
(1)
Q,z

Ä
− 1
γ

ä
, with cγ in (288), then for all ν ∈ B(γ), it holds thatÅ

Lz (θ)−K(1)
Q,z

Å
− 1

γ

ãã2
>

Å
cγ −K(1)

Q,z

Å
− 1

γ

ãã2
, (294)

and thus,∫
B(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ)>

Å
cγ −K(1)

Q,z

Å
− 1

γ

ãã2
P

(Q,γ)
Θ|Z=z (B (γ))(295)

>0. (296)
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Second, if cγ > K
(1)
Q,z

Ä
− 1
γ

ä
then for all ν ∈ A(γ), it holds thatÅ

Lz (θ)−K(1)
Q,z

Å
− 1

γ

ãã2
>

Å
cγ −K(1)

Q,z

Å
− 1

γ

ãã2
, (297)

and thus,

∫
A(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ)

>

Å
cγ −K(1)

Q,z

Å
− 1

γ

ãã2
P

(Q,γ)
Θ|Z=z (A (γ)) (298)

>0. (299)

Hence, under the assumption that the empirical risk function Lz in (5) is sep-
arable, it holds that for all γ ∈ KQ,z, K(2)

Q,z

Ä
− 1
γ

ä
> 0. This completes the

proof.

O Proof of Lemma 5.1

Consider the partition of the set M formed by the sets following sets A0, A1,
and A2 in (193). From (64), for all λ ∈ KQ,z, with KQ,z in (22), it holds
that,

K
(1)
Q,z

Å
− 1

λ

ã
=

∫
A0

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) +

∫
A1

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (300)

+

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (301)

=

∫
A0

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) +

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (302)

=δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z) +

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (303)

>δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z) + δ?Q,zP

(Q,λ)
Θ|Z=z(A2) (304)

=δ?Q,z, (305)

where, the equality in (302) follows by noticing that Q (A1) = 0, which im-
plies that P (Q,λ)

Θ|Z=z(A1) = 0 (Lemma 3.8); the equality in (303) follows from
noticing that A0 = L?Q,z, with L?Q,z in (33); and the equality in (304) follows
from (193c).

This completes the proof.
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P Proof of Theorem 5.2
From (303) in the proof of Lemma 5.1, it holds that

lim
λ→0+

K
(1)
Q,z

Å
− 1

λ

ã
= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z) + lim

λ→0+

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ)(306)

= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z)

+ lim
λ→0+

∫
A2

Lz (θ)
dP

(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (307)

= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z)

+

∫
A2

Lz (θ) lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (308)

=δ?Q,z lim
λ→0+

P
(Q,λ)
Θ|Z=z(L?Q,z) (309)

=δ?Q,z, (310)

where, the equality in (308) follows from noticing two facts: (a) For all λ ∈

KQ,z, the Randon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ is positive and finite (Lemma 3.4);

and (b) For all θ ∈ A2, it holds that limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0. Hence, the dom-
inated convergence theorem [28, Theorem 1.6.9] holds. The inequality in (309)
follows from Lemma 3.7 This completes the proof.

Q Proof of Theorem 7.1
From Theorem 5.1, it follows that for all (λ1, λ2) ∈ KQ,z × KQ,z with λ1 >
λ2, ∫

Lz (α)
dP

(Q,λ1)
Θ|Z=z

dQ
(α) dQ (α)>

∫
Lz (α)

dP
(Q,λ2)
Θ|Z=z

dQ
(α) dQ (α) , (311)

which implies the following inclusions:

R1(λ2)⊆R1(λ1), and (312a)
R2(λ1)⊆R2(λ2), (312b)

with the sets R1(·) and R2(·) in (261). From (82), it holds that for all i ∈
{1, 2},

NQ,z(λi) = R2(λi)
c, (313)

where the complement is with respect toM. Thus, the inclusion in (312b) and
the equality in (313) yields,

NQ,z(λ1) ⊇ NQ,z(λ2). (314)
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The inclusion M ⊇ NQ,z(λ1) follows from (82). Alternatively, the inclu-
sion NQ,z(λ2) ⊇ N ?

Q,z, follows from Lemma 5.1 and from observing that for
all ν ∈ N ?

Q,z,

Rz
Ä
P

(Q,λ2)
Θ|Z=z

ä
>δ?Q,z (315)
>Lz (ν) , (316)

which implies that ν ∈ NQ,z(λ2). This completes the proof of (86).

The proof of (87) is as follows. From the mean value theorem [28] and the as-
sumption that the empirical risk function Lz in (5) is continuous onM, it follows
that for all λ ∈ KQ,z, there always exists a model θ ∈M, such that

Lz (θ) =

∫
Lz (α) dP

(Q,λ)
Θ|Z=z (α) , (317)

which implies that R0 (λ) is not empty, and as a consequence, NQ,z (λ) =
R0 (λ) ∪ R1 (λ) is not empty. Hence, for all θ ∈ R0 (λ1) it holds that θ /∈
NQ,z (λ2). This proves that the elements of R0 (λ1) are in NQ,z (λ1) but not
in NQ,z (λ2). This, together with (314), verifies that

NQ,z (λ1)⊃NQ,z (λ2) . (318)

The strict inclusion M ⊃ NQ,z(λ1) is proved by contradiction. Assume that
there exists a λ ∈ KQ,z such that M = NQ,z(λ). Then, R2 (λ) = ∅ and
thus, P (Q,λ)

Θ|Z=z (R2 (λ)) = 0, which together with Lemma N.1, implies that

P
(Q,λ)
Θ|Z=z (R1 (λ)) = 0 and consequently,

P
(Q,λ)
Θ|Z=z (R0 (λ)) = 1. (319)

This contradicts the assumption that the function Lz is separable (Definition 4.1).
Hence,M⊃ NQ,z(λ1).

Finally, the strict inclusion NQ,z(λ2) ⊃ N ?
Q,z is proved by contradiction. As-

sume that there exists a λ ∈ KQ,z such that N ?
Q,z = NQ,z(λ). That is,{

θ ∈M : Lz (θ) 6 δ?Q,z
}

= N ?
Q,z (320)

= NQ,z(λ) (321)

=

ß
θ ∈M : Lz (θ) 6 K

(1)
Q,z

Å
− 1

λ

ã™
. (322)

Hence, three cases might arise:
(a) there exists a λ ∈ KQ,z, such that δ?Q,z < K

(1)
Q,z

(
− 1
λ

)
and it holds thatß

ν ∈M : δ?Q,z < Lz (ν) 6 K
(1)
Q,z

Å
− 1

λ

ã™
= ∅;
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(b) there exists a λ ∈ KQ,z, such that δ?Q,z > K
(1)
Q,z

(
− 1
λ

)
and it holds thatß

ν ∈M : K
(1)
Q,z

Å
− 1

λ

ã
< Lz (ν) 6 δ?Q,z

™
= ∅;

or (c) there exists a λ ∈ KQ,z, such that δ?Q,z = K
(1)
Q,z

(
− 1
λ

)
.

The cases (a) and (b) are absurd. Hence, the proof is complete only by consid-
ering the case (c). In the case (c), it holds that,

R1 (λ)=
{
ν ∈M : Lz (ν) < δ?Q,z

}
, (323)

and from the definition of δ?Q,z in (32), it holds that

P
(Q,λ)
Θ|Z=z (R1 (λ)) = 0. (324)

From Lemma N.1 and (324), it follows that,

P
(Q,λ)
Θ|Z=z (R2 (λ)) = 0. (325)

Finally, by noticing that

1=P
(Q,λ)
Θ|Z=z (R0 (λ)) + P

(Q,λ)
Θ|Z=z (R1 (λ)) + P

(Q,λ)
Θ|Z=z (R2 (λ)) (326)

=P
(Q,λ)
Θ|Z=z (R0 (λ)) , (327)

reveals a contradiction to the assumption that the function Lz is separable with
respect to P (Q,λ)

Θ|Z=z (and thus, separable with respect to Q by Lemma 4.2). This
completes the proof of (87).

R Proof of Theorem 7.2
The proof of (88) is based on the analysis of the derivative of P (Q,λ)

Θ|Z=z (A) with
respect to λ, for some fixed set A ⊆M. More specifically, given a γ ∈ KQ,z, it
holds that

P
(Q,γ)
Θ|Z=z (A)=

∫
A

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) , (328)

and from the fundamental theorem of calculus [34], it follows that for all (λ1, λ2) ∈
KQ,z ×KQ,z with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z (A)− P (Q,λ2)

Θ|Z=z (A)=

∫ λ1

λ2

d

dγ
P

(Q,γ)
Θ|Z=z (A) dγ (329)

=

∫ λ1

λ2

d

dγ

∫
A

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) dγ (330)

=

∫ λ1

λ2

∫
A

d

dγ

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) dγ, (331)
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where the equality in (330) follows from (328); and the equality in (331) holds
from Lemma 3.4 and the dominated convergence theorem [28].

For all θ ∈ suppQ, the following holds,

d

dλ

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

d

dλ

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

(332)

=

1
λ2 Lz (θ) exp

Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

−
1
λ2 exp

Ä
−Lz(θ)

λ

ä∫
Lz (α) exp

Å
−Lz (α)

λ

ã
dQ (α)Å∫

exp

Å
−Lz (ν)

λ

ã
dQ (ν)

ã2 (333)

=
1

λ2
Lz (θ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

− 1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

∫
Lz (ν)

dP
(Q,λ)
Θ|Z=z

dQ
(ν) dQ (ν) (334)

=
1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

Å
Lz (θ)−

∫
Lz (ν) dP

(Q,λ)
Θ|Z=z (ν)

ã
. (335)

Plugging (335) into (331) yields,

P
(Q,λ1)
Θ|Z=z (A)− P (Q,λ2)

Θ|Z=z (A)

=

∫ λ1

λ2

∫
A

1

γ2

dP
(Q,γ)
Θ|Z=z

dQ
(α)

Å
Lz (α)−

∫
Lz (ν) dP

(Q,γ)
Θ|Z=z (ν)

ã
dQ (α) dγ (336)

=

∫ λ1

λ2

∫
A

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(Q,γ)
Θ|Z=z (ν)

ã
dP

(Q,γ)
Θ|Z=z (α) dγ. (337)

Note that for all α ∈ NQ,z (λ2), it holds that for all γ ∈ (λ2, λ1),

Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z (ν) 6 0, (338)

and thus,∫
NQ,z(λ2)

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(Q,γ)
Θ|Z=z (ν)

ã
dP

(Q,γ)
Θ|Z=z (α)60. (339)

The equalities in (337) and (339), with A = NQ,z (λ), imply that

P
(Q,λ1)
Θ|Z=z (NQ,z (λ2))− P (Q,λ2)

Θ|Z=z (NQ,z (λ2))60. (340)
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The inequality 0 < P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) in (88) is proved by contradiction. As-

sume that for some λ ∈ KQ,z it holds that 0 = P
(Q,λ)
Θ|Z=z(NQ,z(λ2)). Then,

P
(Q,λ)
Θ|Z=z(R0(λ2)) + P

(Q,λ)
Θ|Z=z(R1(λ2)) = 0, which implies that P (Q,λ)

Θ|Z=z(R2(λ2)) =

1, which is a contradiction. See for instance, Lemma N.2. This completes the
proof of (88).

The proof of (89) is divided into two parts. The first part shows that if for all
pairs (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (341)

then the function Lz is separable with respect to Q. The second part of the
proof shows that if the function Lz is separable with respect to Q, then, for all
pairs (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2, the inequality in (341) holds.

The first part is as follows. In the proof of Theorem 7.1 it is shown (see (337))
that for all pairs (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z (NQ,z (λ2))− P (Q,λ2)

Θ|Z=z (NQ,z (λ2))

=

∫ λ1

λ2

∫
NQ,z(λ2)

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(Q,γ)
Θ|Z=z (ν)

ã
dP

(Q,γ)
Θ|Z=z (α) dγ.(342)

Assume that for a given pair (λ1, λ2) ∈ KQ,z×KQ,z, with λ1 > λ2, the inequality
in (341) holds. Then, from (342),

0>

∫ λ1

λ2

∫
NQ,z(λ2)

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(Q,γ)
Θ|Z=z (ν)

ã
dP

(Q,γ)
Θ|Z=z (α) dγ

>
∫ λ1

λ2

∫
R1(λ2)

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(Q,γ)
Θ|Z=z (ν)

ã
dP

(Q,γ)
Θ|Z=z (α) dγ (343)

where the equality in (343) follows from noticing that R0 (λ2) and R1 (λ2) form
a partition of NQ,z (λ2), with the sets R0 (λ2), R1 (λ2) and NQ,z (λ2) defined
in (261a), (261b), and (82), respectively.

The inequality in (343) implies that the set R1 (λ2) is nonnegligible with respect
to P

(Q,γ)
Θ|Z=z, for some γ ∈ (λ2, λ1). Hence, from Lemma N.2, it follows that both

sets R1 (λ2) and R2 (λ2) are nonnegligible with respect to P (Q,γ)
Θ|Z=z.

From the above arguments, it has been proved that given a pair (λ1, λ2) ∈
KQ,z ×KQ,z with λ1 > λ2, if

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (344)

then there always exists a positive γ ∈ (λ1, λ2) such that the sets R1 (λ2)

andR2 (λ2) are not negligible with respect to P (Q,γ)
Θ|Z=z. Moreover, such setsR1 (λ2)

and R2 (λ2) satisfy for all (ν1,ν2) ∈ R2 (λ)×R1 (λ),

Lz (ν1)> K
(1)
Q,z

Å
− 1

λ

ã
>Lz (ν2) , (345)
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which together with Definition 4.2 verify that the function Lz is separable with
respect to P (Q,γ)

Θ|Z=z (and thus, with respect to Q by Lemma 4.2). This ends the
first part of the proof.

The second part of the proof is under the assumption that the empirical risk
function Lz in (5) is separable with respect to Q (and thus, with respect to P (Q,γ)

Θ|Z=z

by Lemma 4.2). That is, from Definition 4.2, for all γ ∈ KQ,z, there exist a
positive real cγ > 0 and two subsets A(γ) and B(γ) of M nonnegligible with
respect to P (Q,γ)

Θ|Z=z in (25) that verify that for all (ν1,ν2) ∈ A(γ)×B(γ),

Lz (ν1)> cγ >Lz (ν2) . (346)

In the proof of Theorem 7.1, c.f. (337), it has been proved that given a pair
(α1, α2) ∈ KQ,z × KQ,z, with α1 > γ > α2, it holds that for all subsets A
ofM,

P
(Q,α1)
Θ|Z=z (A)− P (Q,α2)

Θ|Z=z (A)

=

∫ α1

α2

∫
A

1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(α)

Å
Lz (α)−

∫
Lz (ν) dP

(Q,λ)
Θ|Z=z (ν)

ã
dP (α) dλ (347)

=

∫ α1

α2

∫
A

1

λ2

Å
Lz (α)−

∫
Lz (ν) dP

(Q,λ)
Θ|Z=z (ν)

ã
dP

(Q,λ)
Θ|Z=z (α) dλ. (348)

Hence, two cases are studied. The first case considers that

cγ < K
(1)
Q,z

Å
− 1

γ

ã
, (349)

with cγ in (346). The second case considers that

cγ > K
(1)
Q,z

Å
− 1

γ

ã
. (350)

In the first case, it follows from (82) that

B (γ) ⊂ NQ,z (γ) , (351)

which implies that

P
(Q,γ)
Θ|Z=z (NQ,z (γ))>P (Q,γ)

Θ|Z=z (B (γ)) (352)
>0, (353)

where, the inequality in (353) follows from the fact that B (γ) is nonnegligible
with respect to P (Q,γ)

Θ|Z=z. This implies that the set NQ,z (γ) is not negligible
with respect P (Q,γ)

Θ|Z=z. Moreover, from (82) and (351), it follows that for all α ∈
NQ,z (γ) and for all λ ∈ (γ, α1),

Lz (α)−
∫

Lz (ν) dP
(Q,λ)
Θ|Z=z (ν)<Lz (α)− cγ (354)

<0, (355)
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where the inequality in (354) follows from (349); and the inequality in (355)
follows from (346). Thus,∫ α1

γ

∫
NQ,z(γ)

1

λ2

Å
Lz (α)−

∫
Lz (ν) dP

(Q,λ)
Θ|Z=z (ν)

ã
dP

(Q,λ)
Θ|Z=z (α) dλ<0,(356)

which implies, from (348), that

P
(Q,α1)
Θ|Z=z (NQ,z (γ))− P (Q,γ)

Θ|Z=z (NQ,z (γ))<0. (357)

Assume now that cγ > K
(1)
Q,z

Ä
− 1
γ

ä
. Hence, the following holds

A (γ) ⊆ R2 (γ) , (358)

which implies that

P
(Q,γ)
Θ|Z=z (R2 (γ))>P (Q,γ)

Θ|Z=z (A (γ)) (359)
>0, (360)

where the inequality in (360) follows from the fact that A (γ) is nonnegli-
gible with respect to P

(Q,γ)
Θ|Z=z. This implies that the set R2 (γ) is not neg-

ligible with respect P (Q,γ)
Θ|Z=z. From Lemma N.1, it follows that both R1 (γ)

and R2 (γ) are nonnegligible with respect to P
(Q,γ)
Θ|Z=z. Using this result, the

following holds,

P
(Q,γ)
Θ|Z=z (NQ,z (γ))>P (Q,γ)

Θ|Z=z (R1 (γ)) (361)
>0, (362)

which proves the set NQ,z (γ) is nonnegligible with respect to P (Q,γ)
Θ|Z=z.

From (82) and Theorem 5.1, it follows that for all α ∈ NQ,z (γ) and for all λ ∈
(γ, α1),

0>Lz (α)−
∫

Lz (ν) dP
(γ)
Θ|X=z=y (ν) (363)

>Lz (α)−
∫

Lz (ν) dP
(λ)
Θ|X=z=y (ν) . (364)

Thus,∫ α1

γ

∫
NQ,z(γ)

1

λ2

Å
Lz (α)−

∫
Lz (ν) dP

(Q,λ)
Θ|Z=z (ν)

ã
dP

(Q,λ)
Θ|Z=z (α) dλ<0,(365)

which implies, from (348), that

P
(Q,α1)
Θ|Z=z (NQ,z (γ))− P (Q,γ)

Θ|Z=z (NQ,z (γ))<0. (366)

The inequality 0 < P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) in (89) has already been proved while

proving (88), and thus, this completes the proof of (89).
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S Proof of Lemma 7.2

The proof is based on the following two observations. First, note that (NQ,z (λ2))
c

= R2 (λ2), with the set R2 (·) defined in (261c). Second, note that

NQ,z (λ1)=NQ,z (λ2) ∪ (NQ,z (λ1) ∩R2 (λ2)) , (367)

and the fact that the sets NQ,z (λ2) and (NQ,z (λ1) ∩R2 (λ2)) are disjoint.
Hence, for all i ∈ {1, 2},

P
(λi)
Θ|Z=z(NQ,z(λ1))=P

(λi)
Θ|Z=z

Å
NQ,z (λ2) ∪ (NQ,z (λ1) ∩R2 (λ2))

ã
(368)

=P
(λi)
Θ|Z=z

Å
NQ,z (λ2)

ã
+P

(λi)
Θ|Z=z

Å
NQ,z (λ1) ∩R2 (λ2)

ã
(369)

=P
(λi)
Θ|Z=z

Å
NQ,z (λ2)

ã
, (370)

where the equality in (369) follows from Lemma 3.8 and the equality in (90).

Finally, under the assumption that the empirical function Lz in (5) is separable,
it holds from Theorem 7.2 that

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)). (371)

Plugging (370) into (371), with i = 1, yields,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (372)

and this completes the proof.

T Proof of Theorem 7.3

lim
λ→0+

P
(Q,λ)
Θ|Z=z(NQ,z (λ))= lim

λ→0+
P

(Q,λ)
Θ|Z=z(L?Q,z)

+ lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
NQ,z (λ) \ L?Q,z

)
(373)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z(L?Q,z) (374)

=1 (375)

where, the equalities in (374) follows Lemma 3.7. This completes the proof.
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U Proof of Lemma 8.1
The cumulant generating function Jz,Q,λ in (100) induced by the measure
P

(λ)
W |Z=z in (97) evaluated at t, with t 6 1

λ , is

Jz,Q,λ(t)=log

Ñ∫
exp (t Lz (u))

dP
(Q,λ)
Θ|Z=z

dQ
(u) dQ (u)

é
(376)

=log

Å∫
exp (t Lz (u)) exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (u)

ã
dQ (u)

ã
(377)

=log

Å∫
exp

ÅÅ
t− 1

λ

ã
Lz (u)−KQ,z

Å
− 1

λ

ãã
dQ (u)

ã
(378)

=log

(∫
exp

(Å
t− 1

λ

ã
Lz (u)−KQ,z

Å
t− 1

λ

ã
+KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã)
dQ (u)

)
(379)

=KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
+ log

Å∫
exp

ÅÅ
t− 1

λ

ã
Lz (u)−KQ,z

Å
t− 1

λ

ãã
dQ (u)

ã
(380)

=KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
+ log

Ü∫ dP

Å
Q,− 1

t− 1
λ

ã
Θ|Z=z

dQ
(u) dQ (u)

ê
(381)

=KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
, (382)

where the equality in (377) follows from Theorem 3.1; and the equality in (381)
follows from the fact that − 1

t− 1
λ

> 0 for all t < 1
λ . This completes the

proof.

V Proof of Lemma 10.1
From [35, Corollary 4.15, Page 100], it follows that the probability measures P
and Q in (M,B (M)) satisfy the following equality:

D (Q‖P ) = sup
f

∫
f (θ) dQ (θ)− log

∫
exp (f (θ)) dP (θ) , (383)

where the supremum is over the space of all measurable functions f with respect
to (M,B (M)) and (R,B (R)), such that

∫
exp (f (θ)) dP (θ) <∞. Hence, for
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all u ∈ (X × Y)
n and for all t ∈ (−∞, 0), it follows that the empirical risk

function Lz in (5) satisfies that

D (Q‖P )>
∫
tLz (θ) dQ (θ)− log

∫
exp (tLz (θ)) dP (θ) (384)

>
∫
tLz (θ) dQ (θ)

− log

∫
exp (tLz (θ) + tRz (P )− tRz (P )) dP (θ) (385)

=

∫
tLz (θ) dQ (θ)− tRz (P )

− log

∫
exp (tLz (θ)− tRz (P )) dP (θ) (386)

=tRz (Q)− tRz (P )− log

∫
exp (tLz (θ)− tRz (P )) dP (θ) , (387)

which leads to

Rz (Q)− Rz (P )6
D (Q‖P ) + log

∫
exp (t (Lu (θ)− Rz (P ))) dP (θ)

t
. (388)

Given that t can be chosen arbitrarily in (−∞, 0), it holds that

Rz (Q)− Rz (P )6 inf
t∈(−∞,0)

D (Q‖P ) + log
∫

exp (t (Lu (θ)− Rz (P ))) dP (θ)

t
,(389)

which completes the proof.

W Proof of Theorem 10.1
From Lemma 10.1, it holds that the probability measure P (Q,λ)

Θ|Z=z in (25), satis-
fies

Rz (Q)−Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 inf
t∈(−∞,0)

(
D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
t

+
log
Ä∫

exp
Ä
t
Ä
Lz (θ)−K(1)

Q,z

(
− 1
λ

)ää
dP

(Q,λ)
Θ|Z=z(θ)

ä
t

)
, (390)

where the function K
(1)
Q,z is defined in (64) and satisfies (68). Moreover, for

all t ∈ (−∞, 0),

log

Å∫
exp

Å
t

Å
Lz (θ)−K(1)

Q,z

Å
− 1

λ

ããã
dP

(Q,λ)
Θ|Z=z(θ)

ã
=log

Å∫
exp (t Lz (θ)) dP

(Q,λ)
Θ|Z=z(θ)

ã
− tK(1)

Q,z

Å
− 1

λ

ã
(391)

=Jz,Q,λ(t)− tK(1)
Q,z

Å
− 1

λ

ã
(392)

6
1

2
t2B2

z, (393)
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where the inequality in (392) follows from (100); the inequality in (393) follows
from Theorem 8.1; and the constant Bz is defined in (105).

Plugging (393) into (390) yields for all t ∈ (−∞, 0),

Rz (Q)− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 inf
t∈(−∞,0)

D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
+ 1

2 t
2B2
z

t
: (394)

Let the c ∈ R be defined as follows:

c , Rz (Q)− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
. (395)

Hence, from (394), it follows that for all t ∈ (−∞, 0),

c t− 1

2
t2B2

z 6 D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
. (396)

The rest of the proof consists in finding an explicit expression for the absolute
value of c. To this aim, consider the function φ : R→ R such that

φ(α) =
1

2
α2B2

z, (397)

and note that φ is a positive and strictly convex function with φ(0) = 0. Let
the Legendre-Fenchel transform of φ be the function φ∗ : R → R, and thus for
all x ∈ R,

φ∗(x) = max
t∈(−∞,0)

xt− φ(t). (398)

In particular, note that

φ∗(c) 6 D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
. (399)

Note that for all x ∈ R and for all t ∈ (−∞, 0), the function φ? in (398)
satisfies

x t− 1

2
t2B2

z 6 φ?(x) = xα?(x)− φ (α?(x)) , (400)

where the term α?(x) represents the unique solution in α within the inter-
val (−∞, 0) to

d

dα
(xα− φ (α)) = x− αB2

z = 0. (401)

That is,

α?(x)=
x

B2
z

. (402)

Plugging (402) into (400) yields,

φ?(x)=
x2

2B2
z

. (403)
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Hence, from (399) and (400), given c in (395) for all t ∈ (−∞, 0),

c t− 1

2
t2B2

z 6 φ?(c) 6 D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
, (404)

and thus,
c2

2B2
z

6 D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
. (405)

This implies that

c 6
√

2B2
zD
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
(406)

and
c > −

√
2B2

zD
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
, (407)

which leads to∣∣∣∣∫ Lz(θ)dQ(θ)−
∫

Lz(θ)dP
(Q,λ)
Θ|Z=z(θ)

∣∣∣∣6√2B2
zD
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
, (408)

and completes the proof.

X Proof of Theorem 10.2

The optimization problem in (121) can be re-written as follows:

min
P∈4

P
(Q,λ)
Θ|Z=z

(M,B(M))

∫
Lz (ν)

dP

dP
(Q,λ)
Θ|Z=z

(ν) dP
(Q,λ)
Θ|Z=z (ν) , (409a)

subject to:
∫

dP

dP
(Q,λ)
Θ|Z=z

(ν) log

Ñ
dP

dP
(Q,λ)
Θ|Z=z

(ν)

é
dP

(Q,λ)
Θ|Z=z (ν) 6 c,(409b)∫

dP

dP
(Q,λ)
Θ|Z=z

(θ) dP
(Q,λ)
Θ|Z=z(θ) = 1. (409c)

Let M be the set of nonnegative measurable functions with respect to the
measurable spaces (M,B (M)) and (R,B (R)). The Lagrangian of the opti-
mization problem in (409) can be constructed in terms of a function in M ,
instead of a measure over the measurable space (M,B (M)) . Let such La-
grangian L : M × [0,+∞)2 → R be of the form

L (g, α, β)=

∫
Lz (ν) g (ν) dP

(Q,λ)
Θ|Z=z (ν)

+α

Å∫
g (ν) log (g (ν)) dP

(Q,λ)
Θ|Z=z (ν)− c

ã
+β

Å∫
g (ν) dP

(Q,λ)
Θ|Z=z (ν)− 1

ã
, (410)
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where g is a notation to represent the Radon-Nikodym derivative dP

dP
(Q,λ)

Θ|Z=z

; the

reals α and β are both nonnegative and act as Lagrangian multipliers due to
the constraint (409b) and (409c), respectively.

Let h : Rk → R be a function in M . The Gateaux differential of the functional L
in (410) at (g, α, β) ∈M × [0,+∞)2 in the direction of h is

∂L (g, α, β;h) ,
d

dγ
r(γ)

∣∣∣∣
γ=0

, (411)

where the real function r : R→ R is such that for all γ ∈ R,

r(γ)=

∫
Lz (ν) (g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν) +

α

Å∫
(g (ν) + γh (ν)) log (g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)− c

ã
+β

Å∫
(g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)− 1

ã
, (412)

Note that the derivative of the real function r in (412) is

d

dγ
r(γ)=

∫
Lzh (ν) dP

(Q,λ)
Θ|Z=z (ν)

+α

∫
h (ν) dP

(Q,λ)
Θ|Z=z (ν) + α

∫
h (ν) log (g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)

+β

∫
h (ν) dP

(Q,λ)
Θ|Z=z (ν) . (413)

From (411) and (413), it follows that

∂L (g, α, β;h)=

∫
h (ν) (Lz (ν) + α (1 + log g (ν)) + β) dP

(Q,λ)
Θ|Z=z (ν) . (414)

From [32, Theorem 1, page 178], it holds that a necessary condition for the
functional L in (410) to have a minimum at (g, α, β) ∈ M × [0,+∞)2 is that
for all functions h ∈ C (M)

∂L (g, α, β;h) = 0, (415)

which implies that for all ν ∈M,

Lz (ν) + α (1 + log g (ν)) + β = 0. (416)

Thus,

g (ν) = exp

Å
−Lz (ν)

α

ã
exp

Å
−β + α

α

ã
, (417)
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where α and β are chosen to satisfy their corresponding constraints. Denote
by P ? the solution of the optimization problem in (121). Hence, from (417), it
follows that

dP ?

dP
(Q,λ)
Θ|Z=z

(ν) =
exp
Ä
−Lz(ν)

α

ä∫
exp

Å
−Lz (θ)

α

ã
dP

(Q,λ)
Θ|Z=z (θ)

, (418)

where α is chosen to satisfy

D
Ä
P ?‖P (Q,λ)

Θ|Z=z

ä
= c. (419)

From Lemma 3.8, it follows that the probability measure P ? and the σ-finite
measure Q satisfy,

dP ?

dQ
(ν)=

dP ?

dP
(Q,λ)
Θ|Z=z

(ν)
dP

(Q,λ)
Θ|Z=z

dQ
(ν) (420)

=

Ü
exp
Ä
−Lz(ν)

α

ä∫
exp

Å
−Lz (θ)

α

ã
dP

(Q,λ)
Θ|Z=z (θ)

ê
Ü

exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

ê
(421)

=


exp
Ä
−Lz(ν)

α

ä
∫ exp

Ä
−Lz(θ)

α

ä
exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dQ (α)

dQ (θ)

Ü
exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

ê
(422)

=
exp

(
−
(
1
α + 1

λ

)
Lz (ν)

)∫
exp

Å
−
Å

1

α
+

1

λ

ã
Lz (ν)

ã
dQ (θ)

, (423)

which implies that P ? is a Gibbs probability measure on (M,B (M)), with
reference measure Q, regularization parameter 1

1
α+ 1

λ

, and energy function Lz.
That is, for all ν ∈ suppQ,

P ?(v) = P
(Q, αλα+λ )
Θ|Z=z (ν) , (424)
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where α is chosen to satisfy (419). Let the positive real ω be ω , αλ
α+λ and note

that ω ∈ (0, λ] and satisfies D
Ä
P

(Q,ω)
Θ|Z=z (ν) ‖P (Q,λ)

Θ|Z=z

ä
= c. The proof ends by

verifying that the objective function in (410) is strictly convex, and thus, the
measure P (Q,ω)

Θ|Z=z is the unique minimizer. This completes the proof.

RR n° 9454



74 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

References

[1] O. Catoni, Statistical learning theory and stochastic optimization: Ecole
d’Eté de Probabilités de Saint-Flour, XXXI-2001, 1st ed. New York, NY,
USA: Springer Science & Business Media, 2004, vol. 1851.

[2] L. Zdeborová and F. Krzakala, “Statistical physics of inference: Thresholds
and algorithms,” Advances in Physics, vol. 65, no. 5, pp. 453–552, Aug.
2016.

[3] P. Alquier, J. Ridgway, and N. Chopin, “On the properties of variational
approximations of Gibbs posteriors,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 8374–8414, 2016.

[4] C. P. Robert, The Bayesian choice: From decision-theoretic foundations to
computational implementation, 1st ed. New York, NY: Springer, 2007.

[5] G. Aminian, Y. Bu, L. Toni, M. Rodrigues, and G. Wornell, “An exact
characterization of the generalization error for the Gibbs algorithm,” in
Proc. Conference on Neural Information Processing Systems (NeurIPS),
vol. 4, New Orleans, LA, USA, Dec. 2021, pp. 831–838.

[6] M. Raginsky, A. Rakhlin, M. Tsao, Y. Wu, and A. Xu, “Information-
theoretic analysis of stability and bias of learning algorithms,” in Infor-
mation Theory Workshop, Cambridge, United Kingdom, Sep. 2016, pp.
26–30.

[7] D. Russo and J. Zou, “How much does your data exploration overfit? Con-
trolling bias via information usage,” Transactions on Information Theory,
vol. 66, no. 1, pp. 302–323, Jan. 2019.

[8] T. Zhang, “Information-theoretic upper and lower bounds for statistical
estimation,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp.
1307–1321, Apr. 2006.

[9] A. R. Asadi and E. Abbe, “Chaining meets chain rule: Multilevel en-
tropic regularization and training of neural networks.” J. Mach. Learn.
Res., vol. 21, pp. 139–1, 2020.

[10] A. Xu and M. Raginsky, “Information-theoretic analysis of generalization
capability of learning algorithms,” in Proc. of the Thirty-first Conference
on Neural Information Processing Systems (NeurIPS), Dec. 2017.

[11] J. Shawe-Taylor and R. C. Williamson, “A PAC analysis of a Bayesian
estimator,” in Proceedings of the tenth annual conference on Computational
learning theory, 1997, pp. 2–9.

[12] D. A. McAllester, “PAC-Bayesian stochastic model selection,” Machine
Learning, vol. 51, no. 1, pp. 5–21, 2003.

Inria



Empirical Risk Minimization with Generalized Relative Entropy Regularization75

[13] M. Haddouche, B. Guedj, O. Rivasplata, and J. Shawe-Taylor, “PAC-Bayes
unleashed: Generalisation bounds with unbounded losses,” Entropy, vol. 23,
no. 10, 2021.

[14] B. Guedj and L. Pujol, “Still no free lunches: The price to pay for tighter
PAC-Bayes bounds,” Entropy, vol. 23, no. 11, 2021.

[15] T. Jaakkola, M. Meila, and T. Jebara, “Maximum entropy discrimination,”
Neural Information Processing Systems, 1999.

[16] J. Zhu and E. P. Xing, “Maximum entropy discrimination Markov net-
works,” Journal of Machine Learning Research, vol. 10, no. 11, 2009.

[17] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial
on energy-based learning,” in Predicting structured data, 1st ed., G. BakIr,
T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. Vishwanathan,
Eds. New York, NY.: The MIT Press, 2007, ch. 10, pp. 191–241.

[18] C. P. Robert and G. Casella, Monte Carlo statistical methods, 2nd ed. New
York, NY, USA: Springer, 2004.

[19] J. N. Kapur, Maximum Entropy Models in Science and Engineering, 1st ed.
New York, NY: Wiley, 1989.

[20] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ: Wiley-Interscience, 2006.

[21] E. T. Jaynes, “Information theory and statistical mechanics I,” Physical
Review Journals, vol. 106, pp. 620–630, May 1957.

[22] ——, “Information theory and statistical mechanics II,” Physical Review
Journals, vol. 108, pp. 171–190, Oct. 1957.

[23] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images,” IEEE Transactions on pattern analysis
and machine intelligence, vol. 11, no. 6, pp. 721–741, 1984.

[24] O. Catoni, PAC-Bayesian supervised classification: The thermodynamics
of statistical learning, 1st ed. Beachwood, OH, USA: Institute of Mathe-
matical Statistics Lecture Notes - Monograph Series, 2007, vol. 56.

[25] B. Guedj, “A primer on PAC-Bayesian learning.” in Tutorials of the Inter-
national Conference on Machine Learning (ICML), Jun. 2019.

[26] J. W. Gibbs, Elementary principles in statistical mechanics, 1st ed. New
Haven, NJ: Yale University Press, 1902.

[27] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications,
2nd ed. New York, NY: Springer-Verlag, 2009.

[28] R. B. Ash and C. A. Doleans-Dade, Probability and Measure Theory,
2nd ed. Burlington, MA: Harcourt/Academic Press, 1999.

RR n° 9454



76 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

[29] W. F. Trench, Introduction to Real Analysis, 1st ed. Hoboken, NJ: Prentice
Hall/Pearson Education, 2003.

[30] S. M. Perlaza, I. Esnaola, and H. V. Poor, “Sensitivity of the Gibbs algo-
rithm to data aggregation in supervised machine learning,” Inria, Centre de
Recherche de Sophia Antipolis Méditérranée, Sophia Antipolis, Tech. Rep.
RR-9474, Jun. 2022.

[31] D. P. Palomar and S. Verdú, “Lautum information,” IEEE Transactions on
Information Theory, vol. 54, no. 3, pp. 964–975, Mar. 2008.

[32] D. G. Luenberger, Optimization by Vector Space Methods, 1st ed. New
York, NY: Wiley, 1997.

[33] W. Feller, An Introduction to Probability Theory and Its Applications,
2nd ed. New York, NY: Jhon Wiley & Sons, 1971, vol. II.

[34] W. Rudin, Principles of mathematical analysis, 1st ed. New York, NY:
McGraw-Hill Book Company, Inc., 1953.

[35] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A
nonasymptotic theory of independence, 1st ed. Oxford, UK: Oxford Uni-
versity Press, 2013.

Inria



RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau -
Rocquencourt
BP 105 - 78153 Le Chesnay
Cedex
inria.fr

ISSN 0249-6399


	Introduction
	Empirical Risk Minimization (ERM)
	Main Assumptions
	ERM with Relative Entropy Regularization
	Special Cases of the G-ERM-RER Problem

	The Solution to the G-ERM-RER Problem
	Asymptotic Regimes
	Coherent and Consistent Measures
	Negligible Sets

	The Log-Partition Function
	Expectation of the Empirical Risk
	Variance of the Empirical Risk
	Concentration of Probability
	The Limit Set
	The Nonnegligible Limit Set

	Sub-Gaussianity of the Empirical Risk
	(, )-Optimality
	Sensitivity
	Dataset-Dependent Bounds
	Dataset-Independent Bounds

	Discussion and Final Remarks
	Appendices
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.1
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.6
	Proof of Lemma 3.7
	Proof of Lemma 3.8
	Proof of Lemma 3.9
	Proof of Lemma 3.12
	Proof of Lemma 4.1
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Theorem 5.1
	Preliminaries
	The proof

	Proof of Lemma 5.1
	Proof of Theorem 5.2
	Proof of Theorem 7.1
	Proof of Theorem 7.2
	Proof of Lemma 7.2
	Proof of Theorem 7.3
	Proof of Lemma 8.1
	Proof of Lemma 10.1
	Proof of Theorem 10.1
	Proof of Theorem 10.2

