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Abstract: The empirical risk minimization problem with relative entropy regularization (ERM-
RER) is investigated considering that the reference measure is a σ-finite measure instead of a
probability measure. This generalization allows for a larger degree of flexibility in the incorporation
of prior knowledge over the set of models. In this setting, the interplay of the regularization
parameter, the reference measure, the risk measure, and the expected empirical risk induced by
the solution of the ERM-RER problem, which is proved to be unique, is characterized. For a fixed
dataset, the empirical risk is shown to be a sub-Gaussian random variable, when the models follow
the probability measure that is the solution to the ERM-RER problem. The sensitivity of the
expected empirical risk to deviations from the solution of the ERM-RER problem is studied and
upper and lower bounds on the expected empirical risk are provided. Finally, it is shown that the
expectation of the sensitivity is upper bounded, up to a constant factor, by the square root of the
lautum information between the models and the datasets.
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Minimisation du Risque Empirique avec Régularisation par
l’Entropie Relative Généralisée

Résumé : Le problème de minimisation du risque empirique (ERM) avec régularisation
par l’entropie relative (ERM-RER) est étudié en considérant que la mesure de référence est une
mesure σ-finie au lieu d’une mesure de probabilité. La solution de l’ERM-RER s’avère être une
mesure de probabilité unique et son expression explicite est présentée en termes de l’ensemble de
données donné et du coefficient de régularisation. Pour un ensemble de données fixe, les ensembles
négligeables et la concentration de la mesure optimale (solution à l’ERM-RER) sont caractérisés
afin de mettre en évidence l’influence du choix de la mesure de référence et du coefficient de
régularisation. Les propriétés de la fonction génératrice de cumulants du risque empirique induite
par la mesure optimale sont également étudiées. En utilisant ces propriétés, le risque empirique
induit par la mesure optimale s’avère être une variable aléatoire sous-gaussienne. La sensibilité de
l’espérance du risque empirique aux déviations de la solution du problème ERM-RER est étudiée.
Ensuite, la sensibilité est utilisée pour fournir des bornes supérieures et inférieures sur l’espérance
du risque empirique. De plus, il est montré que l’espérance de la sensibilité est majorée, à un
facteur constant près, par la racine carrée de l’information lautum entre les modèles et l’ensemble
de données.

Mots-clés : Apprentissage Supervisé, Apprentissage PAC, Régularisation, Entropie Relative,
Minimisation du Risque Empirique, Principe d’Entropie Maximale, Variables Aléatoires sous-
Gaussiennes, Apprentissage Bayésien.
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1 Introduction
The problem of empirical risk minimization (ERM), also known as M -estimation [42], minimum
contrast estimation [4,29], sample average approximation [26], among other appellations, appears
in numerous central problems in machine learning [45], information theory [32], statistics [47,48],
and operations research [10, 13], etc. Depending on the field, the ERM problem might take
different forms and certain mathematical objects might take different names. In the following,
ERM and the main results in this work, are presented in the context of supervised machine
learning using the notation and nomenclature of this application field.

The empirical risk minimization (ERM) problem with relative entropy regularization (ERM-
RER) has been the workhorse for building probability measures on the set of models, without any
additional assumption on the statistical description of the datasets and/or the models [2,10,51].
Instead of additional statistical assumptions, which is typical in Bayesian methods [36], relative
entropy regularization requires a reference probability measure, which is external to the ERM
problem. Often, such reference represents prior knowledge and is chosen to assign high probability
to the models that induce low empirical risks. The ERM-RER problem is known to possess a
unique solution, which is a Gibbs probability measure and has been studied using information
theoretic notions in [39,50,53]; statistical physics [10]; PAC (Probably Approximatively Correct)-
Bayesian learning theory [19, 20, 31, 41]; and proved to be of particular interest in classification
problems in [22,54].

In this report, the ERM with relative entropy regularization (ERM-RER) is generalized to in-
corporate a σ-finite measure with arbitrary support as the reference measure. That is, in this
setting, the prior knowledge incorporated by the reference measure need not contain in its sup-
port the set of solutions of the ERM problem without regularization. The flexibility introduced
by this formulation becomes particularly relevant for the case in which priors are available in
the form of probability distributions that can be evaluated up to some normalizing factor, as is
often the case in practical scenarios [37]. Moreover, as shown below, for some specific choices
of the reference measure, the ERM-RER boils down to particular cases of special interest: the
information-risk minimization problem, the ERM with differential entropy regularization; and
the ERM with discrete entropy regularization. Hence, the proposed formulation yields a unified
mathematical framework that comprises a large class of problems. Nonetheless, despite its gen-
eral character, the ERM-RER with an arbitrary σ-finite reference measure is shown to possess
a unique solution. Indeed, the solution is a Gibbs probability measure whose partition function
is defined with respect to the σ-finite reference measure. More importantly, the solution does
not depend on the probability distribution of the dataset and can be computed for a particular
dataset realization.

Finally, using the mathematical framework described above, the sensitivity of the ERM-RER
problem is studied at a given dataset. The sensitivity is defined as the absolute value of the
difference between two quantities: (a) The expectation of the empirical risk at a given dataset
with respect to the measure that is the solution to the ERM-RER problem; and (b) the expec-
tation of the empirical risk at such dataset with respect to another measure. The sensitivity is
upper bounded by a term that is proportional to the squared-root of the relative entropy of the
alternative measure with respect to the mesure that is a solution to the ERM problem. More
interestingly, the expectation of the sensitivity with respect to the probability distribution of
the data sets turns out to be bounded by a term that is proportional to the squared-root of
the lautum information between the models and the datasets. This bound is reminiscent to the
result in [50] in which, under certain conditions, the generalization gap is upper bounded by a
term that is proportional to the squared-root of the mutual information between the models and

RR n° 9454



6 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

the datasets. Together, the existing characterisations of the generalization gap and the proposed
characterization of the sensitivity provide a solid theoretical framework to study the trade-off
between generalization error and empirical risk.

1.1 Notation
In this work, sets are denoted by calligraphic letters. Given a setA, the notation F (A) represents
a sigma-field (σ-field) on A. When A ⊂ Rd, for some d ∈ N, the Borel sigma-field on A is denoted
by B (A). The interior of A is denoted intA. The set of all measures that might be defined
over a measurable space denoted by the tuple (A,F (A)) is denoted by 4 (A,F (A)). The
support of the measure P is denoted by suppP . The generalized relative entropy is defined
below as the extension to σ-finite measures of the relative entropy usually defined for probability
measures.

Definition 1.1 (Relative Entropy). Given two σ-finite measures P and Q on the same measur-
able space, such that Q is absolutely continuous with respect to P , the relative entropy of Q with
respect to P is

D(Q‖P ) =

∫
dQ

dP
(x) log

Å
dQ

dP
(x)

ã
dP (x), (1)

where the function dQ
dP is the Radon-Nikodym derivative of Q with respect to P .

Definition 1.2 (Mutual and Lautum Information). Consider two random variables X and Y
jointly inducing the probability measure PXY in

(
R2,B

(
R2
))
. Let the measure PX and the

measure PY , both on (R,B (R)), be the marginal probability measures of PXY . The mutual
information between X and Y is

I (PXY ) = D (PXY ‖PY PX) ; (2)

and the lautum information [33] between X and Y is

L (PXY ) = D (PY PX‖PXY ) . (3)

1.2 The Problem of Empirical Risk Minimization (ERM)
Consider three sets M, X and Y, with M ⊆ Rd and d ∈ N. Consider also a function f :
M× X → Y such that, for some θ? ∈ M, there exist two random variables X and Y that
satisfy,

Y = f(θ?, X). (4)

The elements of the sets M, X and Y are often referred to as models, patterns and labels,
respectively. A pair (x, y) ∈ X × Y is referred to as a labeled pattern. In practice, patterns are
high dimensional structures such as digital photos, medical images, digital text, speech signals,
DNA sequences, etc. Labels are often countable sets, e.g., proper names, or uncountable sets,
e.g., the reals numbers. A typical example of a labeled pattern (x, y) is the case in which x is
a representation of a medical image and y is the representation of an indication of whether an
anomaly is observed in such image.

The model θ? in (4), which is not necessarily unique and often referred to as the ground truth
model, is unknown. Given a number of labelled patterns, the objective consists in obtaining a
model θ̂, such that given a new pattern u ∈ X , the estimated label f(θ̂, u) is equal, or as close
as possible, to the true label f(θ?, u). Establishing a distance between the labels f(θ̂, u) and

Inria
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f(θ?, u) is made possible by the assumption that the set Y can be equipped with a metric to
form a metric space.

The loss or risk of adopting a model ν ∈ M for a particular labelled pattern (x, y) ∈ X × Y is
determined by the function ` : Y × Y → [0,+∞), which is often referred to as the risk function.
More specifically, the model θ induces the risk ` (f(θ, x), y) with respect to the labelled pattern
(x, y) ∈ X×Y. The risk function is chosen such that ` (y, y) = 0. Nonetheless, it might exist other
models θ ∈M \ {θ?} such that ` (f(θ, x′), y′) = 0 for some specific data points (x′, y′).

The empirical risk induced by the model θ, with respect to a data set

z =
(

(x1, y1) , (x2, y2) , . . . , (xn, yn)
)
∈ (X × Y)

n
, (5a)

is determined by the function Lz :M→ [0,+∞), which satisfies

Lz (θ)=
1

n

n∑
i=1

` (f(θ, xi), yi) . (5b)

Thus, given the data set z in (5a), the model θ is preferred against another model µ ∈ M, if
Lz (θ) < Lz (µ). Using this notation, the ERM problem, with respect to the data set z, can be
formulated as an optimization problem of the form [45]:

min
θ∈M

Lz (θ) , (5c)

whose solutions form the set denoted by

T (z) , arg min
θ∈M

Lz (θ) . (5d)

The ground truth model θ? in (4) satisfies that θ? ∈ T (z) and Lz (θ?) = 0. That is, the model
θ? is one of the solutions to the ERM problem in (5), and thus, the set T (z) is not empty.

Despite the apparent simplicity of the ERM problem in (5), it is a difficult problem [46]. Of-
ten, the difficulty is due in part to the representation of the patterns, which are collections of
heterogeneous classes of data with large dimensions; the function f in (4), which might be com-
putationally difficult to calculate; the choice of the risk function, which is left at the discretion
of the statistician; and the large number of data points whose processing requires unprecedented
computing capabilities; among many others reasons. See for instance [5] and [21] for a detailed
discussion.

1.3 Stochastic Solvers
Among the most popular methods for solving the ERM problem in (5) are those based on the
gradient. The stochastic gradient descent algorithm [35] and its variants fall within this class
of methods. See, for instance, the literature reviews in [8, 45, 49] and references therein. Other
methods are based on constructing probability measures on (M,B (M)) that are used to choose
a particular model from the set M. This operation is known as sampling [37]. Methods based
on the construction of probability measures include Bayesian methods [29,36] and PAC-Bayesian
methods [18, 40]. In order to describe these methods, it is assumed that independently of the
choice of representation of patterns and labels, it is possible to form the following probability
space:

(X × Y,F (X × Y) , PXY ) . (6)

Given the probability space in (6), a more formal definition of labeled pattern or data point is
the following.

RR n° 9454



8 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

Definition 1.3 (Data Point). The pair (x, y) is said to be a data point if (x, y) ∈ suppPXY .

Several data points form a data set, as shown hereunder.

Definition 1.4 (Data Set). Given n data points, with n ∈ N, denoted by (x1, y1), (x2, y2), . . .,
(xn, yn), a data set is represented by the tuple ((x1, y1) , (x2, y2) , . . . , (xn, yn)) ∈ (X × Y)

n.

In the following, a central idea is that of stochastic solvers, also known as stochastic estimators in
the realm of estimation theory [34]; and samplers in the realm of learning theory [10,37].

A stochastic solver to the ERM problem in (5) is a probability measure on (M,B (M)) condi-
tioned on an element of the set (X × Y)

n, i.e., a dataset.

Definition 1.5 (Stochastic Solver). A function g : B (M) × (X × Y)
n → [0, 1] is said to be a

stochastic solver to the ERM problem in (5) if it satisfies the following conditions:
(a) For all u ∈ (X × Y)

n, the function hu : B (M)→ [0, 1] that satisfies for all A ∈ B (M) that

hu(A) = g (A,u) , (7)

is a probability measure on (M,B (M)); and
(b) For all A ∈ B (M), the function hA : (X × Y)

n → [0, 1] that satisfies for all u ∈ (X × Y)
n

that
hA(u) = g (A,u) , (8)

is measurable with respect to the measurable spaces ((X × Y)
n
,F ((X × Y)

n
)) and ([0, 1],B ([0, 1])).

In the following, stochastic solvers are denoted by PΘ|Z . Hence, for all u ∈ (X × Y)
n, the

notation PΘ|Z=u represents the probability measure from which models can be sampled from to
approximate the solution to the ERM problem in (5) given the dataset u. Moreover, given a
set A ∈ B (M), the function PΘ|Z (A|·) : (X × Y)

n → [0, 1] is Borel measurable with respect to
the product measurable space ((X × Y)

n
,F ((X × Y)

n
)). Hence, the notations PΘ|Z (A|u) or

PΘ|Z=u (A) are indifferently used and represent the probability assigned by the stochastic solver
PΘ|Z to the set A conditioned on the observation of the data set u.

Using this notation, this work focuses in the case in which given a stochastic solver PΘ|Z to
the ERM problem in (5), a model θ̂ is randomly selected fromM according to the probability
measure PΘ|Z=z, with z being the data set z in (5a). Other choices for model selection might
be, for instance, the first cumulant of the measure PΘ|Z=z, i.e.,

θ̂=

∫
θdPΘ|Z=z (θ) . (9)

Another choice might be the maximum of the Radon-Nikodym derivative of the measure PΘ|Z=z

with respect to a given measure P on the measurable space (M,B (M)), i.e.,

θ̂=arg max
θ∈M

dPΘ|Z=z

dP
(θ) , (10)

if the Radon-Nikodym derivative and the maximum exist. The choice in (10) is reminiscent to
maximum à posteriori estimation and maximum likelihood estimation, when P is chosen to be
the Lebesgue measure onM. See for instance, [34, Chapter IV]. Other choices of θ̂ obtained from
PΘ|Z=z, and the corresponding implications, are described in [18] and references therein.

In order to study the case in which a model θ̂ is randomly chosen according to PΘ|Z=z, it is
assumed that the function ¯̀ :M×X ×Y → [0,+∞), which satisfies

¯̀(θ, x, y) = ` (f(θ, x), y) , (11)

Inria



Empirical Risk Minimization with Generalized Relative Entropy Regularization 9

where the functions f and ` are those in (4) and (5b), is measurable with respect to the measurable
spaces (M×X ×Y,F (M×X ×Y)) and ([0,+∞),B ([0,+∞))). This assumption implies that
for all u ∈ (X × Y)

n, the empirical risk function Lu in (5b) is measurable with respect to the
measurable spaces (M,B (M)) and ([0,+∞),B ([0,+∞))).

Under these assumptions, let the expected empirical risk induced by the stochastic solver PΘ|Z
be defined as follows.

1.3.1 Expected Empirical Risk

The expected empirical risk is defined with respect to a dataset, as follows.

Definition 1.6 (Expected Empirical Risk). Given a data set u ∈ (X × Y), let the function
Ru : 4 (M,B (M))→ [0,+∞) be such that for all probability measures Q ∈ 4 (M,B (M)),

Ru (Q) =

∫
Lu (θ) dQ(θ), (12)

where the function Lu is in (5b). The empirical risk induced by the measure Q at dataset u is
Ru (Q).

Consider a stochastic solver PΘ|Z to the ERM problem with respect to the data set z in (5),
and assume that

PΘ|Z=z (T (z)) = 1, (13)

with the set T (z) in (5d). Hence, Rz
(
PΘ|Z=z

)
= 0, i.e., the stochastic solver PΘ|Z achieves

zero expected empirical risk with respect to the data set z in (5). Nonetheless, given a data set u
different from z, the stochastic solver PΘ|Z might induce a nonzero expected empirical risk. That
is, Ru

(
PΘ|Z=z

)
> Rz

(
PΘ|Z=z

)
= 0. This implies that a desired property for any stochastic

solver PΘ|Z is that for all data sets u ∈ (X × Y)
n, the expected empirical risk Ru

(
PΘ|Z=z

)
be

small and exhibit small changes with respect to changes in the data set u. In order to formalize
this desired property, the expected empirical risk is compared to the expected risk.

1.3.2 Expected Risk

The expected risk is defined as follows.

Definition 1.7 (Expected Risk). Let the function R : 4 (M,B (M)) → [0,+∞) be such that
for all probability measures Q ∈ 4 (M,B (M)),

R (Q) =

∫ Å∫
¯̀(θ, u, v) dPXY (u, v)

ã
dQ(θ), (14)

where the function ¯̀ is in (11) and the measure PXY is specified in (6). The expected risk induced
by the measure Q is R (Q).

The interest in the expected risk, i.e., the function R in (14), lies on the fact that it establishes
a metric of preference among stochastic solvers. More specifically, let PΘ|Z and QΘ|Z be two
stochastic solvers to the ERM in (5). The stochastic solver PΘ|Z is preferred against QΘ|Z , if
R
(
PΘ|Z=z

)
< R

(
QΘ|Z=z

)
. In particular, consider a stochastic solver P ?Θ|Z to the ERM problem

with respect to the data set z in (5) for which for all u ∈ (X × Y)
n,

P ?Θ|Z=u (T ) = 1, (15)

RR n° 9454



10 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

with T being the following set,

T = arg min
θ∈M

∫
¯̀(θ, u, v) dPXY (u, v) , (16)

where the function ¯̀ is in (11). The optimal model θ? in (4) satisfies θ? ∈ T ; and the stochastic
solver P ?Θ|Z satisfies that for all u ∈ (X × Y)

n,

Ru
Ä
P ?Θ|Z=u

ä
= R
Ä
P ?Θ|Z=u

ä
= 0. (17)

In the context of the ERM problem in (5), this justifies the preference for P ?Θ|Z against stochastic
solvers PΘ|Z for which R

(
PΘ|Z=z

)
> 0, with z being the data set in (5a). Unfortunately, such

preference metric is purely theoretical, as in practice, the function R in (14) and the stochastic
solver in (15) cannot be calculated due to their dependence on the unknown probability measure
PXY in (6).

Despite the fact that the function R in (14) cannot be calculated, it draws particular interest
due to the following equality, which holds for all measures Q ∈ 4 (M,B (M)),

R (Q) =

∫
Ru (Q) dPZ (u) , (18)

where the probability measure PZ is a product measure in the product measurable space
(

(X × Y)
n,

F ((X × Y)
n
)
)
. That is, for all A ∈ F ((X × Y)

n
) of the form A = A1 × A2 × . . . × An, such

that for all i ∈ {1, 2, . . . , n}, Ai ∈ F (X × Y), it holds that

PZ (A) =

n∏
t=1

PXY (At) . (19)

More specifically, under the assumption that data points are independent and identically dis-
tributed according to PXY in (6), the expected value with respect to PZ of the expected empirical
risk in (18) is equal to the expected risk in (14). Given a stochastic solver, this observation allows
studying the difference between the expected empirical risk with respect to a given data set u
and the expected risk, which is defined as the generalization gap (GG).

1.3.3 Generalization Gap

The generalization gap is defined as follows.

Definition 1.8 (Generalization Gap). Let PΘ|Z be a stochastic solver to the ERM problem in
(5). Let also the function G : (X × Y)

n → R be such that for all data sets u ∈ (X × Y)
n,

G (u) = Ru
(
PΘ|Z=u

)
− R

(
PΘ|Z=u

)
, (20)

where the functions Ru and R are in (12) and (14), respectively. The generalization gap induced
by the stochastic solver PΘ|Z at the dataset u is G (u).

The analysis of the generalization gap relies on the fact that the function G in (20) is measurable
with respect to the measurable spaces ((X × Y)

n
,F ((X × Y)

n
)) and (R,B (R)). This is a con-

sequence of the fact that the function ¯̀ in (11) is assumed to be measurable with respect to the
measurable spaces (M×X ×Y,F (M×X ×Y)) and ([0,+∞),B ([0,+∞))). The measurabil-
ity of the function G allows leveraging existing results in concentration inequalities for obtaining
generalization guarantees.

Inria



Empirical Risk Minimization with Generalized Relative Entropy Regularization 11

1.4 Generalization Guarantees
Generalization guarantees are upper-bounds on the generalization gap, which can be of two
types [1]. The first type consists in upper bounds on the expected value with respect to PZ in
(19) of the absolute value of G. See for instance, [39, 50, 52, 53]. The second type consists in
upper bounds on the function G that hold with high probability with respect to the measure PZ .
Bounds of this type are described in [11, 18–20, 30, 52, 53] and are often referred to as probably
approximately correct (PAC) guarantees for generalization. This appellation follows from the
fact that probability measures satisfying such bounds, concentrate on sets containing models
that induce small generalization gaps. Therefore, models sampled according to such measures
are approximately correct, in the sense of small generalization gaps, with high probability. The
notion of PAC can be understood as a generalization of the concept first introduced in [44] and
the development of bounds of this kind is a central objective in the so-called PAC-Learning [40,
Chapter 3].

The following examples illustrate these two types of guarantees.

Example 1.1 (Theorem 1 in [50]). Assume that there exists a real σ > 0 such that for all θ ∈M
and for all t ∈ R,

log

Å∫
exp

(
t ¯̀(θ, u, v)

)
dPXY (u, v)

ã
6

1

2
σ2t2 + t

∫
¯̀(θ, u, v) dPXY (u, v) , (21)

with the function ¯̀ in (11). Then, for all stochastic solvers PΘ|Z to the ERM problem in (5), it
holds that ∫

|G (u)|dPZ (u) 6

 
2σ2

n

∫
D
(
PΘ|Z=u‖PΘ

)
dPZ (u), (22)

where the data set z is in (5a); the probability measure PΘ is such that for all A ∈ B (M),

PΘ (A) =

∫
PΘ|Z (A|u) dPZ (u) ; (23)

and the measure PZ is in (19).

Example 1.2 (Theorem 2 in [30]). Given a real δ > 0, a stochastic solver PΘ|Z to the ERM
problem in (5), and a probability measure P on (M,B (M)) such that PΘ|Z=z is absolutely
continuous with P , let R(δ, PΘ|Z=z, P ) be the set

R(δ, PΘ|Z=z, P ),

{
u ∈ (X × Y)

n
: G (u) <

 
D
(
PΘ|Z=z‖P

)
+ ln 2

√
n
δ

2n

}
, (24a)

where the dataset z is in (5a). Then, for all δ > 0, and for all stochastic solvers PΘ|Z to the
ERM problem in (5) for which the measure PΘ|Z=z is absolutely continuous with P , it holds that

PZ
(
R(δ, PΘ|Z=z, P )

)
> 1− δ, (24b)

where the product probability measure PZ is defined in (19).

In Example 1.1, the inequality in (21) implies that, for all θ ∈M, the random variable ¯̀(θ, X, Y ),
with X and Y being the random variables that induce the probability measure PXY in (6), is σ
sub-Gaussian. In such a case, for all stochastic solvers PΘ|Z for which∫

D
(
PΘ|Z=u‖P̄Θ

)
dPZ (u) 6 γ, (25)
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12 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

with γ ∈ (0,+∞), it is always possible to arbitrarily reduce to zero the expectation with respect
to PZ of the absolute value of G in (20) by increasing the number n of data points in the data
set z in (5a). This observation is central as it justifies the fact that a stochastic solver that
minimizes Rz in (12) and satisfies the condition∫

|G (u)|dPZ (u) 6 ε, (26)

for some ε > 0 arbitrarily small, can be accepted as an approximation to a stochastic solver that
minimizes the expected risk R in (14). The relevance of this observation stems from the fact that
the function R cannot be directly minimized as it depends on the unknown probability measure
PXY in (6).

Alternatively, the expectation with respect to PZ of the absolute value of G in (20) can be made
arbitrarily small by reducing the dependence of the measure PΘ|Z=z on the data set z in (5a).
See, for instance [39] and [50] in which such dependence is studied using information measures.
Consider for instance a stochastic solver PΘ|Z that is independent of the data set z. That is, for
all data sets u ∈ (X × Y)

n,
PΘ|Z=u = Q, (27)

for some probability measure Q on (M,B (M)). In this case, D
(
PΘ|Z=u‖P̄Θ

)
= 0, and thus,

equality is met in (25) with γ = 0. Together with (22), this implies that for all data sets
u ∈ (X × Y)

n, the generalization gap at data set u is zero, i.e., G (u) = 0.

In a nutshell, two desired properties for a stochastic solver PΘ|Z to the ERM problem in (5)
are:

(a) The stochastic solver PΘ|Z induces a small expected empirical risk Rz
(
PΘ|Z=z

)
; and

(b) the relative entropy of PΘ|Z=z with respect to a probability measure independent of the
data set z is close to zero.

As shown by the previous examples, properties (a) and (b) can be simultaneously satisfied in
the asymptotic regime of large data sets, under some specific conditions. This implies arbitrarily
small generalization gap and small expected empirical risk. Nonetheless, in the case in which
data sets contain only a finite number of labelled patterns, satisfying condition (a) and satisfying
condition (b) are mutually opposing objectives. Hence, observing small generalization gaps does
not imply small expected empirical risk. A class of stochastic solvers that is widely known to
handle this tradeoff is that of the Gibbs stochastic solvers [16].

1.4.1 Gibbs Stochastic Solvers

A Gibbs stochastic solver to the ERM problem in (5) is often defined with respect to another
probability measure on the measurable space (M,B (M)). Nonetheless, in this work, a more
general definition is adopted and Gibbs stochastic solvers are defined with respect to σ-finite
measures. The following definition strengthen this observation.

Definition 1.9 (Gibbs Stochastic Solver). Let P be a σ-finite measure on the mesurable space
(M,B (M)) and let λ be a positive real. A stochastic solver of the ERM problem with respect to
the data set z in (5), denoted by P (λ)

Θ|Z , is said to be a P -Gibbs stochastic solver with parameter
λ, if for all θ ∈M, it holds that,

dP
(λ)
Θ|Z=z

dP
(θ) =

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

, (28)
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Empirical Risk Minimization with Generalized Relative Entropy Regularization 13

where the function Lz is defined in (5b).

Let P (λ)
Θ|Z be a Gibbs stochastic solver with respect to a given probability measure P with

parameter λ > 0. Then, the main feature of P (λ)
Θ|Z is that the measure P (λ)

Θ|Z=z, with z in (5a),
is a Gibbs measure with respect to the measure P , c.f., [6, 7, 17] and [14, Chapter 4].

1.4.2 Empirical Risk Minimization with Relative Entropy Regularization

One of the main properties of the P -Gibbs stochastic solver P (λ)
Θ|Z in (28), when P is a probability

measure, is that the measure P (λ)
Θ|Z=z is the unique solution to the following optimization problem

[11,18,50],
min

Q∈4(M,B(M))
Rz (Q) + λD (Q‖P ) , (29)

where the function Rz is specified in (12). In the following, the optimization problem in (29) is
referred to as ERM with relative entropy regularization (ERM-RER) problem.

From the objective function of the optimization problem in (29), it is easy to see that the P -
Gibbs stochastic solver P (λ)

Θ|Z in (28) trades off via the parameter λ, the two competing objectives
described above: (a) minimizing the expected empirical risk with respect to the data set z, i.e.,
the function Rz; and (b) approaching, in the sense of relative entropy, the measure P (λ)

Θ|Z=z to
another measure, i.e., P , which is independent of the data sets. This is in part, one of the reasons
that justify the popularity of Gibbs stochastic solvers. Nonetheless, a prominent difficulty for
adopting Gibbs stochastic solvers is the choice of the reference probability measure P , which is
often restricted to probability measures.

1.4.3 Special Cases of the ERM-RER Problem

The nature of the set M and the choice of the reference measure P lead to special cases of
the ERM-RER problem in (29). Three cases are of particular interest: (a) The setM satisfies
M ⊆ Rd, with d ∈ N; and P is the Lebesgue measure on (M,B (M)); (b) The set M is
countable; and the measure P is a counting measure; and (c) The set M and the measure P
form a probability measure space (M,B (M)).

In the former, the ERM-RER in (29) satisfies the following

min
Q∈4(M,B(M))

Rz (Q) + λD (Q‖P )= min
Q∈4(M,B(M))

∫
Lz (ν)

dQ

dP
(ν)dP (ν)

+λ

∫
dQ

dP
(x) log

Å
dQ

dP
(x)

ã
dP (x) (30)

=min
g

∫
M

Lz (ν) g (ν) dν + λ

∫
M
g(θ) log (g(θ)) dθ (31)

=min
g

∫
M

Lz (ν) g (ν) dν − λH (g) , (32)

where the Radon-Nikodym derivative dQ
dP in (30) is a probability density function (pdf) denoted

by g, which implies that the optimization domain in (32) is the set of pdfs onM. In (32), the
notation H (g) represents the differential entropy of the pdf g, c.f., Chapter 8 in [12].

In case (b), a similar analysis would show that the ERM-RER problem in (29) boils down to the
ERM with discrete entropy regularization (ERM-DisER). More specifically, the Radon-Nikodym
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14 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

derivative dQ
dP in (30) is a probability mass function (pmf) denoted by p. This implies that the

optimization domain is the set of pmfs onM; and the entropy is that of the pmf p, c.f., Chapter
2 in [12]. Both, the ERM-DifER and ERM-DisER problems are closely related to those typically
arising while using Jayne’s maximum entropy principle [23–25]. In the case of classification
problems, see for instance, [16, 22,54].

Finally, case (c) is the classical formulation of ERM-RER and often referred to as the information-
risk minimization (IRM) problem in information theory [53].

1.5 Contributions

In this report, the problem of ERM-RER with respect to the data set z in (29) is studied by
assuming that the reference measure P is a σ-finite measure on (M,B (M)), and not necessarily
a probability measure. The motivation for this generalization is that some specific choices of the
reference measure lead to special cases of the ERM-RER problem that are central in learning
theory, e.g., the ERM with (differential or discrete) entropy; or the IRM problem. Moreover,
this generalization allows for a larger degree of flexibility in the incorporation of prior knowledge
over the set of models. In a nutshell, the proposed formulation yields a unified mathematical
framework that comprises a large class of problems.

Under these assumptions, the most relevant results in this work are described hereunder:

(i) The optimal solution to the ERM-RER with respect to the dataset z in (29), when P is a
σ-finite measure, is unique and forms a P -Gibbs stochastic solver P (λ)

Θ|Z , where λ ∈ (0, b),
for some b ∈ R ∪ {+∞}.

(ii) The expected empirical risk Rz
Ä
P

(λ)
Θ|Z=z

ä
is nondecreasing with λ (Theorem 2.2). The class

of loss functions for which Rz
Ä
P

(λ)
Θ|Z=z

ä
is monotone an increasing with λ is introduced.

(iii) In the limit as λ tends to zero, the probability measure P (λ)
Θ|Z=z is proved to concentrate

on a set, often referred to as the limiting set. Depending on the choice of the reference
measure P , the limiting set might be empty; identical to the set T (z) in (5d); or exhibit an
empty intersection with T (z). This is due to the flexibility in the choice of the reference
measure in this formulation.

(iv) The class of reference measures for which the limiting set is identical to the set of solutions
to the ERM problem in (5), i.e., the set T (z) in (5d), is characterized.

(v) The empirical risk, when the models are distributed according to the optimal probability
measure, is shown to be a sub-Gaussian random variable.

(vi) Necessary and sufficient conditions for the existence of a regularization parameter that
achieves an arbitrarily small empirical risk with arbitrarily high probability are presented.

(vii) The sensitivity of the expected empirical risk to deviations from the solution of the ERM-
RER problem is studied. The sensitivity is then used to provide upper and lower bounds
on the expected empirical risk. Moreover, it is shown that the expectation of the sensitivity
is upper bounded, up to a constant factor, by the square root of the lautum information
between the models and the datasets.

These findings, together with other results described in the following sections, provide a deeper
understanding of the ERM-RER problem and set a theoretical base for designing algorithms
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Empirical Risk Minimization with Generalized Relative Entropy Regularization 15

based on Gibbs stochastic solvers whose reference measures are not necessarily probability mea-
sures.

2 The Solution to the ERM Problem with Relative Entropy
Regularization

This section studies the ERM-RER problem with respect to the data set z in (29) assuming that
the reference measure P is a σ-finite measure on (M,B (M)); the parameter λ > 0 is fixed; and
the dataset z is the one in (5a). Under these assumptions, the solution is presented in terms of
the function Kz : R → R ∪ {+∞} and the set Kz ⊂ (0,+∞), which are both parametrized by
the data set z and the measure P . The former satisfies that for all t ∈ R,

Kz (t)=log

Å∫
exp (t Lz (θ)) dP (θ)

ã
, (33)

with Lz in (5b), whereas, the latter satisfies that

Kz,
ß
s > 0 : Kz

Å
−1

s

ã
< +∞

™
. (34)

The following lemma describes the set Kz.

Lemma 2.1. The set Kz in (34) is either the empty set or a convex set that satisfies

(0, b) ⊂ Kz, (35)

for some real b ∈ (0,+∞].

Proof. The proof of Lemma 2.1 is presented in Appendix A.

In the special case in which P is chosen to be a probability measure over (M,B (M)), it holds
that for all t > 0, the valueKz

(
− 1
t

)
is upper bounded by zero. The following corollary formalizes

this observation.

Lemma 2.2. Assume that the measure P in (33) is a probability measure. Then, the set Kz in
(34) satisfies

Kz = (0,+∞). (36)

Proof. The proof of Lemma 2.2 is presented in Appendix B.

Using this notation, the solution to the ERM-RER problem in (29) is presented by the following
theorem.

Theorem 2.1. Consider the ERM-RER problem with respect to the data set z in (29), when
P is a σ-finite measure on (M,B (M)) and λ ∈ Kz, with Kz in (34). Then, the solution to
such problem is a unique measure on (M,B (M)), denoted by P (λ)

Θ|Z=z, whose Radon-Nikodym
derivative with respect to P satisfies for all θ ∈ suppP ,

dP
(λ)
Θ|Z=z

dP
(θ)=exp

Å
−Kz

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
, (37)

where, the function Lz is defined in (5b) and the function Kz is defined in (33).
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Proof: The proof of Theorem 2.1 is presented in Appendix C.

In Theorem 2.1, when the measure P is a probability measure, the measure P (λ)
Θ|Z=z is a Gibbs

measure with parameter λ with respect to the function Lz and the measure P . Moreover, in such
a case, the function Kz is often referred to as the partition function. See for instance, [13, Section
7.3.1]. In order not to disrupt with the current nomenclature, in the following, independently on
whether P is a probability measure, both the function Kz and the probability measure P (λ)

Θ|Z=z

are referred to as the partition function and the Gibbs measure with parameter λ with respect
to the function Lz and the measure P . Similarly, in Definition 1.9, the notion of stochastic
solver was introduced by considering that the measure P in the ERM-RER problem in (29) was
a probability measure. In the following, as long as P is a σ-finite measure, a stochastic solver
P

(λ)
Θ|Z is said to be a P -Gibbs stochastic solver if the measure P (λ)

Θ|Z=z satisfies the equality in
(37).

The Radon-Nikodym derivative
dP

(λ)

Θ|Z=z

dP in (37) is strictly positive and bounded, as shown by
the following lemma.

Lemma 2.3. Let the set T (z) in (5d) and the σ-finite measure P in (37) be such that T (z) ∩

suppP 6= ∅. Then, for all θ ∈ suppP , the Radon-Nikodym derivative
dP

(λ)

Θ|Z=z

dP in (37) satisfies
for all (θ1,θ2) ∈ T (z)× T (z) that

dP
(λ)
Θ|Z=z

dP
(θ) 6

dP
(λ)
Θ|Z=z

dP
(θ1) =

dP
(λ)
Θ|Z=z

dP
(θ2) . (38)

Proof: The proof of Lemma 2.3 is presented in Appendix D.

The following lemmas describe the asymptotic behaviour of the Radon-Nikodym derivative
dP

(λ)

Θ|Z=z

dP in (37) when λ→ 0 or λ→ +∞.

Lemma 2.4. Let the measure P in (37) be a probability measure. Then, for all θ ∈ suppP , the

Radon-Nikodym derivative
dP

(λ)

Θ|Z=z

dP in (37) satisfies

lim
λ→+∞

dP
(λ)
Θ|Z=z

dP
(θ)=1. (39)

Proof: From Theorem 2.1, it follows that for all θ ∈ suppP ,

lim
λ→+∞

dP
(λ)
Θ|Z=z

dP
(θ)= lim

λ→+∞

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

(40)

=
1∫

dP (ν)

(41)

=1, (42)

which completes the proof.

Lemma 2.4 unveils the fact that for all ν ∈ suppP ,

lim
λ→+∞

P
(λ)
Θ|Z=z (ν) = P (ν) . (43)
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This is consistent with the fact that when λ is arbitrarily large, the optimization problem in (29)
boils down to exclusively minimizing the relative entropy. Such minimum is zero and is observed
when both measures P (λ)

Θ|Z=z and P are identical.

From Lemma 2.1, it follows that, when P is not a probability measure, the set Kz might be an
interval of the form (0, b), with b < ∞. Hence, in such a case, the analysis in which λ tends to
infinity is void.

In the limit when λ tends to zero, the Radon-Nikodym derivative
dP

(λ)

Θ|Z=z

dP in (37) can be presented
in terms of the set

Lz (δ),
¶
θ ∈M : Lz (θ) 6 Lz

Ä
θ̂
ä

+ δ, with θ̂ ∈ T (z)
©

(44)
={θ ∈M : Lz (θ) 6 δ} , (45)

with δ ∈ [0,+∞). In particular consider the positive real

δ? , inf {δ ∈ [0,+∞) : P (Lz (δ)) > 0} , (46)

and let L?z be the following set:

L?z,{θ ∈M : Lz (θ) = Lz (θ∗) + δ?, with θ∗ ∈ T (z)} (47)
={θ ∈M : Lz (θ) = δ?} . (48)

Lemma 2.5. If P (L?z) > 0, with the set L?z in (47) and P the σ-finite measure in (37), then

for all θ ∈ suppP , the Radon-Nikodym derivative
dP

(λ)

Θ|Z=z

dP in (37) satisfies

lim
λ→0+

dP
(λ)
Θ|Z=z

dP
(θ)=

1

P (L?z)
1{θ∈L?z}. (49)

Alternatively, if P (L?z) = 0. Then, for all θ ∈ suppP ,

lim
λ→0+

dP
(λ)
Θ|Z=z

dP
(θ) =

ß
+∞ if θ ∈ L?z
0 otherwise. (50)

Proof: The proof of Lemma 2.5 is presented in Appendix E.

Lemma 2.5 describes a concentration phenomenon of the measure P (λ)
Θ|Z=z in (37) on the set L?z

in (47) as λ tends to zero. This is evident from the fact that in the limit, the Radon-Nikodym

derivative
dP

(λ)

Θ|Z=z

dP is nonzero only over the elements of L?z. This implication is formally proved
in Lemma 2.12 below. Nonetheless, before a formal proof of the concentration of probability, it
is interesting to study the set L?z in some special cases.

Consider for instance the case in which for all δ > 0 it holds that P (Lz (δ)) > 0. Then, δ? = 0
and L?z = T (z), with T (z) in (5d). Hence, in this particular case, the probability measure
P

(λ)
Θ|Z=z asymptotically concentrates on the set of solutions to the problem (5), as λ tends to

zero. Interestingly, independently of whether P (T (z)) = 0 or P (T (z)) > 0, the concentration
phenomenon takes place. Note that measures that satisfy that for all δ > 0, it holds that
P (Lz (δ)) > 0, always exist. For instance, the Lebesgue measure when M is uncountable; or
counting measures whenM is countable. Another case of interest arises when the concentration
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of probability occurs over a set that does not contain the set T (z). This occurs when δ? > 0 and
thus, for all δ < δ?, it holds that P (Lz (δ)) = 0. In this case, as λ tends to zero, the measure
P

(λ)
Θ|Z=z concentrates on the set L?z, for which L?z ∩ T (z) = ∅.

Finally, it is interesting to highlight a case in which the concentration of probability does not
take place. Consider for instance, the case in which the L?z is empty. In such a case, for all

θ ∈ suppP , it holds that limλ→0+
dP

(λ)

Θ|Z=z

dP (θ) = 0. This implies that, in the limit as λ tends to
zero, the measure P (λ)

Θ|Z=z is not a probability measure, but the trivial measure. This follows from
the fact that in the context of the ERM-RER in (29), a λ arbitrarily small leads to exclusively
minimizing the empirical risk, which in this case, does not have an optimum in suppP .

These observations highlight the influence of the reference measure P on the probability measure
Gibbs measure P (λ)

Θ|Z=z. A more in-depth analysis of this influence is presented in the following
subsection via the negligible sets with respect to the measure P .

2.1 Negligible Sets and Coherent Measures
A central observation in the choice of the reference measure P in the ERM-RER in (29) is that
it determines the negligible sets with respect to the measure P (λ)

Θ|Z=z in (37). More specifically,

for all sets C ∈ B (M), it follows from Theorem 2.1 that if P (C) = 0, then P (λ)
Θ|Z=z (C) = 0. The

following lemma shows that the converse is also true.

Lemma 2.6. The probability measures P and P (λ)
Θ|Z=z in (37) are mutually absolutely continuous.

Proof: The proof of Lemma 2.6 is presented in Appendix F.

The relevance of Lemma 2.6 is that it proves that for all λ ∈ Kz, the collection of negligible sets
with respect to the measure P (λ)

Θ|Z=z in (37) is identical to the collection of negligible sets with
respect to the measure P . That is, for all subsets C ∈ B (M),

P
(λ)
Θ|Z=z (C) > 0 if and only if P (C) > 0. (51)

An immediate consequence of these observations is the following.

Lemma 2.7. For all (α, β) ∈ Kz × Kz, with Kz in (34), assume that the measures P (α)
Θ|Z=z

and P (β)
Θ|Z=z satisfy (37) with λ = α and λ = β, respectively. Then, P (α)

Θ|Z=z and P (β)
Θ|Z=z are

mutually absolutely continuous.

Proof: The proof of Lemma 2.7 is presented in Appendix G.

Lemma 2.7 proves that for all (α, β) ∈ Kz ×Kz, the collection of negligible sets with respect to
P

(α)
Θ|Z=z and the collection of negligible sets with respect to P (β)

Θ|Z=z are identical. This implies

that the negligible sets with respect to the measure P (λ)
Θ|Z=z in (37) are invariant with respect to

the choice of λ ∈ Kz.

In the context of the ERM-RER problem with respect to the data set z in (29), a desired
condition for a P -Gibbs stochastic solver is that for all δ > 0, the set Lz (δ) in (44) possesses
nonzero probability measure, i.e., P (λ)

Θ|Z=z (Lz (δ)) > 0. More explicitly, it is desired that the
models that induce empirical risks smaller than δ concentrate most of the probability with respect
to P (λ)

Θ|Z=z. This is motivated by the fact that if P (λ)
Θ|Z=z (Lz (δ)) = 0, the expected empirical risk
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Rz
Ä
P

(λ)
Θ|Z=z

ä
in (12) is bounded away from zero, c.f., Lemma 2.11. In this context, Lemma 2.6

and Lemma 2.7 rise the need of choosing the reference measure P in (37) such that P (Lz (δ)) > 0,
for all δ > 0 arbitrarily small. Measures satisfying this condition are referred to as coherent
measures.

Definition 2.1. A measure P is said to be coherent with the ERM-RER problem with respect to
the data set z in (29), if for all δ > 0,

P (Lz (δ)) > 0, (52)

where the set Lz (δ) is defined in (44).

In the case in which P is coherent, the probability measure P (λ)
Θ|Z=z in (37) satisfies for all

δ > 0

P
(λ)
Θ|Z=z (Lz (δ)) > 0, (53)

as desired.

2.2 The Partition Function, Cumulants and Separability

This section introduces some properties of the partition function Kz in (33), which are central in
this work. The first property is concerned with the continuity and differentiability of the function
Kz.

Lemma 2.8. The function Kz in (33) is continuous and differentiable infinitely many times in
(−∞, 0).

Proof: The proof of Lemma 2.8 is presented in Appendix H.

More specific properties for the function Kz in (33) can be stated for the case in which the
empirical risk function Lz in (5b) is separable with respect to the measure P in (37).

Definition 2.2 (Separable Empirical Risk Function). The empirical risk function Lz in (5b) is
said to be separable with respect to the σ-finite measure P in (37), if there exist a positive real
c > 0 and two subsets A and B of M that are nonnegligible with respect to P , such that for all
(θ1,θ2) ∈ A× B,

Lz (θ1)> c >Lz (θ2) . (54)

In a nutshell, a nonseparable empirical risk function is a constant almost surely with respect to
the measure P . More specifically, there exists a real a > 0, such that

P ({θ ∈M : Lz (θ) = a}) = 1. (55)

From this perspective, nonseparable empirical risk functions exhibit little practical interest. This
follows from observing that models sampled from the probability measure P (λ)

Θ|Z=z in (37) induce
the same empirical risk.

The definition of separability in Definition 2.2 is in terms of the reference measure P in (37).
Nonetheless, Lemma 2.6 provides an alternative definition in terms of the measure P

(λ)
Θ|Z=z

in (37), with λ ∈ Kz.
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Definition 2.3. The empirical risk function Lz in (5b) is said to be separable with respect to
a σ-finite measure P , if and only if there exist a real λ ∈ Kz, with Kz in (34); a positive real
c > 0; and two subsets A and B of M nonnegligible with respect to the probability measure
P

(λ)
Θ|Z=z in (37), such that for all (ν1,ν2) ∈ A× B, the inequality in (54) holds.

The following lemma presents a general property of the function Kz in (33) for the case of
separable empirical risk functions.

Lemma 2.9. The function Kz in (33) is convex. If the empirical risk function Lz in (5b) is
separable with respect to the σ-finite measure P in (33), then the function Kz is strictly convex.

Proof: The proof of Lemma 2.9 is presented in Appendix I.

Let the m-th derivative of the function Kz in (33) be denoted by K(m)
z : R → R, with m ∈ N.

Hence, for all s ∈ Kz,

K(m)
z

Å
−1

s

ã
,

dm

dtm
Kz (t)

∣∣∣
t=− 1

s

. (56)

The following lemma provides explicit expressions for the first, second and third derivatives of
the function Kz in (33).

Lemma 2.10. The first, second and third derivatives of the function Kz in (33) evaluated at
− 1
λ , with λ ∈ intKz and Kz in (34), satisfy the following equalities,

K(1)
z

Å
− 1

λ

ã
=

∫
Lz (θ) dP

(λ)
Θ|Z=z(θ), (57)

K(2)
z

Å
− 1

λ

ã
=

∫ Å
Lz (θ)−K(1)

z

Å
− 1

λ

ãã2
dP

(λ)
Θ|Z=z(θ), and (58)

K(3)
z

Å
− 1

λ

ã
=

∫ Å
Lz (θ)−K(1)

z

Å
− 1

λ

ãã3
dP

(λ)
Θ|Z=z(θ), (59)

where the function Lz is defined in (5b) and the measure P (λ)
Θ|Z=z satisfies (37).

Proof: The proof of Lemma 2.10 is presented in Appendix J.

From Lemma 2.10, it follows that if Θ is the random vector that induces the measure P (λ)
Θ|Z=z

in (37), with λ ∈ Kz, the empirical risk Lz in (5b) becomes the random variable

W , Lz (Θ) , (60)

whose mean, variance, and third cumulant are respectivelyK(1)
z

(
− 1
λ

)
,K(2)

z

(
− 1
λ

)
, andK(3)

z

(
− 1
λ

)
.

2.2.1 The Mean of the Empirical Risk

The mean of the random variable W in (60) is equivalent to the expected empirical risk with
respect to the data set z induced by P (λ)

Θ|Z=z, i.e., the value Rz
Ä
P

(λ)
Θ|Z=z

ä
in (12), as shown by

the following corollary.

Corollary 2.1. The probability measure P (λ)
Θ|Z=z in (37) verifies that

Rz
Ä
P

(λ)
Θ|Z=z

ä
= K(1)

z

Å
− 1

λ

ã
, (61)

where the functions Rz and K(1)
z are defined in (12) and (57), respectively.
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The following theorem shows an interesting property of the value Rz
Ä
P

(λ)
Θ|Z=z

ä
.

Theorem 2.2. The value Rz
Ä
P

(λ)
Θ|Z=z

ä
in (61) is nondecreasing with λ ∈ Kz. Moreover, the

function Lz in (5b) is separable with respect to the measure P if and only if the value Rz
Ä
P

(λ)
Θ|Z=z

ä
is strictly increasing with λ ∈ Kz.

Proof: The proof of Theorem 2.2 is presented in Appendix K.

A question that arises from Theorem 2.2 is whether the value Rz
Ä
P

(λ)
Θ|Z=z

ä
in (61) can be made

arbitrarily close to Lz (θ?) = 0, with θ? in (4), by making λ arbitrarily small. The following
lemma shows that there exist cases in which the value Rz

Ä
P

(λ)
Θ|Z=z

ä
is bounded away from zero,

even for arbitrarily small values of λ.

Lemma 2.11. For all λ ∈ Kz, with Kz in (34), the function K(1)
z in (57) satisfies,

K(1)
z

Å
− 1

λ

ã
> δ?, (62)

where δ? is defined in (46). Moreover, the function Lz in (5b) is separable with respect to the
measure P if and only if the inequality in (62) is strict.

Proof: The proof of Lemma 2.11 is presented in Appendix L.

In the limit as λ tends to zero, a probability concentration phenomena takes place. This phe-
nomena is studied in detail in Section 2.3. Nonetheless, the following lemma leads to preliminary
intuitions.

Lemma 2.12. The measure P (λ)
Θ|Z=z in (37) and the set L?z in (47) satisfy,

lim
λ→0+

P
(λ)
Θ|Z=z (L?z)=

ß
0 if L?z = ∅
1 if L?z 6= ∅.

(63)

Proof: The proof of Lemma 2.12 is presented in Appendix M.

Lemma 2.12 reveals the fact that as λ tends to zero, the probability measure P (λ)
Θ|Z=z concentrates

in the set L?z. An immediate consequence of this observation is the following theorem.

Theorem 2.3. The function K(1)
z in (57) satisfies,

lim
λ→0+

K(1)
z

Å
− 1

λ

ã
=

ß
0 if L?z = ∅
δ? if L?z 6= ∅.

(64)

where δ? is defined in (46).

Proof: The proof of Theorem 2.3 is presented in Appendix N.

Theorem 2.3 unveils the relevance of coherent measures (Definition 2.1). More specifically,
the expected empirical risk with respect to the dataset z induced by P

(λ)
Θ|Z=z, i.e., the value

Rz
Ä
P

(λ)
Θ|Z=z

ä
in (12), can be made arbitrarily close to zero, if the reference measure P is coher-

ent.

The anomalous case in which L?z is empty leads to a zero expected empirical risk in the limit
as λ tends to zero, i.e., limλ→0+ Rz

Ä
P

(λ)
Θ|Z=z

ä
= 0. Nonetheless, in such a case, in the limit
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as λ tends to zero, the measure P (λ)
Θ|Z=z is the trivial measure. That is, all sets in F (M)

exhibit zero measure with respect to P (λ)
Θ|Z=z. Hence, this is an anomaly instead of an optimality

guarantee.

2.2.2 Second and Third Cumulants of the Emprical Risk

The monotonicity of the function K(1)
z , stated by Theorem 2.2, is not a property exhibit by the

functions K(2)
z and K

(3)
z , respectively specified by (58) and (59). This section highlights this

observation via the following example.

Example 2.1. Consider the ERM-RER problem with respect to the data set z in (29), under
the assumption that P is a probability measure and the empirical risk function is of the form

Lz (θ) =

ß
0 if θ ∈ A
1 if θ ∈M \A, (65)

where, the sets A and M\A are nonnegligible with respect to the reference probability measure
P in (29). Hence, from (33), the following holds for all λ > 0,

Kz

Å
− 1

λ

ã
=log

Å
P (A) + exp

Å
− 1

λ

ã
(1− P (A))

ã
. (66)

The derivatives K(1)
z , K(2)

z , and K(3)
z in (56) of the function Kz in (66) are:

K(1)
z

Å
− 1

λ

ã
=

exp
(
− 1
λ

)
(1− P (A))

P (A) + exp
(
− 1
λ

)
(1− P (A))

; (67)

K(2)
z

Å
− 1

λ

ã
=

P (A) (1− P (A)) exp
(
− 1
λ

)(
P (A) + exp

(
− 1
λ

)
(1− P (A))

)2 ; and (68)

K(3)
z

Å
− 1

λ

ã
=
P (A) (1− P (A)) exp

(
− 1
λ

) (
P (A)− (1− P (A)) exp

(
− 1
λ

))(
P (A) + exp

(
− 1
λ

)
(1− P (A))

)3 . (69)

Note that K(3)
z

(
− 1
λ

)
> 0 if and only if

P (A)− (1− P (A)) exp

Å
− 1

λ

ã
> 0. (70)

Assume that P (A) > 1
2 . Thus, it holds that for all λ > 0, the inequality in (70) is always

satisfied. This follows from observing that for all λ > 0,

exp

Å
− 1

λ

ã
< 1 6

P (A)

1− P (A)
. (71)

Hence, if P (A) > 1
2 , for all decreasing sequences of positive reals λ1 > λ2 > . . . > 0, it holds

that

1

4
> K(2)

z

Å
− 1

λ1

ã
> K(2)

z

Å
− 1

λ2

ã
> . . . > 0. (72)

Alternatively, assume that P (A) < 1
2 . In this case, the inequality in (70) is satisfied if and only

if

λ <

Å
log

Å
1− P (A)

P (A)

ãã−1
. (73)
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Hence, if P (A) < 1
2 , then for all decreasing sequences of positive reals

Ä
log
Ä
1−P (A)
P (A)

ää−1
> λ1 >

λ2 > . . . > 0, it holds that

1

4
> K(2)

z

Å
− 1

λ1

ã
> K(2)

z

Å
− 1

λ2

ã
> . . . > 0. (74)

Moreover, for all decreasing sequences of positive reals λ1 > λ2 > . . . >
Ä
log
Ä
1−P (A)
P (A)

ää−1
, it

holds that

K(2)
z

Å
− 1

λ1

ã
< K(2)

z

Å
− 1

λ2

ã
< . . . <

1

4
. (75)

The upperbound by 1
4 in (72), (74) and (75) follows by noticing that the value K(2)

z

(
− 1
λ

)
is

maximized when λ =
Ä
log
Ä
1−P (A)
P (A)

ää−1
and K(2)

z

(
− 1
λ

)
= 1

4 .

Example 2.1 provides important insights on the choice of the reference measure P . Note for
instance that the optimal set of models is the set A. That is, T (z) = A, with T (z) in (5d).
When the reference measure assigns a probability to the set of optimal models T (z) that is
bigger than or equal to the probability of suboptimal modelsM\T (z), i.e., P (T (z)) > 1

2 , the
variance is strictly decreasing to zero when λ decreases.

Alternatively, when the reference measure assigns a probability to the set of optimal models
T (z) that is smaller than the probability of suboptimal modelsM\ T (z), i.e., P (T (z)) < 1

2 ,

there exists a critical point for λ at
Ä
log
Ä
1−P (A)
P (A)

ää−1
. More importantly, such a critical point

can be arbitrarily close to zero depending on the value P (A). The variance strictly decreases
when λ decreases beyond the value

Ä
log
Ä
1−P (A)
P (A)

ää−1
. Otherwise, reducing λ above the valueÄ

log
Ä
1−P (A)
P (A)

ää−1
increases the variance.

In general, these observation suggest that reference measures P that allocate small measures to
the sets containing the set T (z) might require reducing the value λ beyond a small threshold in
order to observe small values of K(2)

z

(
− 1
λ

)
, e.g., the variance of the random variable W in (60).

These observations are central to understanding the concentration of probability that occurs
when λ decreases, as discussed in the following section.

2.3 Concentration of Probability

This section describes two phenomena concerning the properties of the measure P (λ)
Θ|Z=z in (37).

First, this section shows that it is possible to determine a subset of M, denoted by N (λ) and
defined later in (81), over which the measure P (λ)

Θ|Z=z concentrates most of the probability as a
consequence of reducing λ ∈ Kz, with Kz in (34). As λ tends to zero, the set N (λ) decreases
to a set that is independent of λ, but strongly dependent on the reference measure P in (37).
Second, this section shows that at the same time that the set N (λ) decreases as a consequence
of reducing λ ∈ Kz, the probability P (λ)

Θ|Z=z (N (λ)) increases to one.
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2.3.1 Preliminaries

Given a real λ ∈ Kz, with Kz in (34), consider a partition ofM formed by the sets R0(λ), R1(λ)
and R2(λ), such that

R0(λ),
ß
ν ∈M : Lz (ν) =

∫
Lz (α) dP

(λ)
Θ|Z=z (α)

™
, (76a)

R1(λ),
ß
ν ∈M : Lz (ν) <

∫
Lz (α) dP

(λ)
Θ|Z=z (α)

™
, and (76b)

R2(λ),
ß
ν ∈M : Lz (ν) >

∫
Lz (α) dP

(λ)
Θ|Z=z (α)

™
, (76c)

where the function Lz is in (5b).

These sets exhibit several properties that are central for proving the main results of this sec-
tion.

Lemma 2.13. The measure P (λ)
Θ|Z=z in (37), satisfies

P
(λ)
Θ|Z=z (R1(λ)) > 0, (77)

if and only if
P

(λ)
Θ|Z=z (R2(λ)) > 0, (78)

where the sets R1(α) and R2(α) are in (76b) and (76c), respectively.

Proof: The proof of Lemma 2.13 is presented in Appendix O.

Lemma 2.13 shows that given a real γ ∈ Kz, if there exists a nonnegligible set with respect
to P (γ)

Θ|Z=z whose elements induce an empirical risk that is smaller than the expected empirical

risk K
(1)
z

Ä
− 1
γ

ä
, then there exists a nonnegligible set with respect to P (γ)

Θ|Z=z whose elements

induce an empirical risk that is bigger than the expected empirical risk K(1)
z

Ä
− 1
γ

ä
. Moreover,

the converse also holds.

A more general result can be immediately obtained by combining Lemma 2.7 and Lemma 2.13.

Lemma 2.14. For all α ∈ Kz, with Kz in (34), the measure P (λ)
Θ|Z=z in (37), satisfies

P
(λ)
Θ|Z=z (R1(α)) > 0, (79)

if and only if
P

(λ)
Θ|Z=z (R2(α)) > 0, (80)

where the sets R1(α) and R2(α) are in (76b) and (76c), respectively.

2.3.2 The Limiting Set

Consider the following set, with λ ∈ Kz,

N (λ),
ß
ν ∈M : Lz (ν) 6 K(1)

z

Å
− 1

λ

ã™
, (81)
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where the function K(1)
z is defined by (57). This section shows that, when λ decreases, the set

N (λ) forms a monotonic sequence of sets that decreases to the set

N ? , Lz (δ?) , (82)

where, δ? is defined in (46); and the set Lz(·) is defined in (44).

In the context of the ERM-RER problem in (29), when the reference measure P is a σ-finite
measure on (M,B (M)) and the data set z is the one in (5a), the set N (λ), with λ ∈ Kz,
contains all the models that induce an empirical risk that is smaller than the expected empirical
risk (with respect to the dataset z) induced by the measure P (λ)

Θ|Z=z in (37). This observation
unveils the existence of a relation between the set N ? in (82) and the set T (z) in (5d), as shown
by the following corollary.

Corollary 2.2. The set N ? in (82) satisfies

T (z) ⊆ N ?, (83)

where the set T (z) is in (5d). Moreover,

T (z) = N ?, (84)

if and only if the reference measure P in (37) is coherent with the ERM-RER problem with
respect to the data set z in (29).

Corollary 2.2 shows that N ? is not empty. This follows from the fact that the set T (z), which
is not empty, is a subset of N ?. This observation turns out to be particularly important at the
light of the following theorem.

Theorem 2.4. For all (λ1, λ2) ∈ Kz × Kz, with Kz in (34) and λ1 > λ2, the sets N (λ1) and
N (λ2) in (81) satisfy

M⊇ N (λ1) ⊇ N (λ2) ⊇ N ?, (85)

with M and N ? the sets defined in (5d) and (82). Moreover, if the empirical risk function Lz
in (5b) is continuous onM and separable (Definition 2.2), then,

M⊃ N (λ1) ⊃ N (λ2) ⊃ N ?. (86)

Proof: The proof of Theorem 2.4 is presented in Appendix P.

Theorem 2.4 shows that, when λ decreases, the set N (λ) monotonically decreases to the set N ?,
which always contains the set of solutions T (z) to the ERM problem in (5). Nonetheless, for
all λ ∈ Kz, with Kz in (34), depending on the choice of the σ-finite measure P in (37), only a
subset of N (λ) might exhibit nonzero probability with respect to the measure P (λ)

Θ|Z=z in (37).
Consider for instance a noncoherent measure P . That is, there exists a δ > 0, such that for
all γ < δ, it holds that P (Lz (γ)) = 0. Therefore, for all λ ∈

¶
α ∈ Kz : K

(1)
z

(
− 1
α

)
> δ
©
, it

holds that Lz (γ) ⊆ N (λ). In this case, note also that the set T (z) in (5d) is a subset of a
zero-measure set, i.e., T (z) ⊆ Lz (γ).
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2.3.3 Probability of the Limiting Set

The following theorem shows that the probability measure P (λ)
Θ|Z=z over the set N (λ) does not

increase when λ increases.

Theorem 2.5. For all (λ1, λ2) ∈ Kz × Kz, with Kz in (34) and λ1 > λ2, assume that the
measures P (λ1)

Θ|Z=z and P (λ2)
Θ|Z=z satisfy (37) with λ = λ1 and λ = λ2, respectively. Then, the set

N (λ2) in (81) satisfies

P
(λ1)
Θ|Z=z(N (λ2)) 6 P

(λ2)
Θ|Z=z(N (λ2)). (87)

Moreover, the function Lz is separable with respect to P , with P in (37), (Definition 2.2) if and
only if for all pairs (λ1, λ2) ∈ Kz ×Kz, with λ1 > λ2, it holds that

P
(λ1)
Θ|Z=z(N (λ2)) < P

(λ2)
Θ|Z=z(N (λ2)). (88)

Proof: The proof of Theorem 2.5 is presented in Appendix Q.

The following lemma highlights a case in which a stronger concentration of probability is ob-
served.

Lemma 2.15. Let the function Lz in (5b) be separable and consider two positive reals (λ1, λ2) ∈
Kz ×Kz, with Kz in (34) and λ1 > λ2. Assume that

P

Å
N (λ1) ∩R2 (λ2)

ã
= 0. (89)

Then, the measures P (λ1)
Θ|Z=z and P (λ2)

Θ|Z=z, which satisfy (37) with λ = λ1 and λ = λ2 respectively,
verify

P
(λ1)
Θ|Z=z(N (λ1)) < P

(λ2)
Θ|Z=z(N (λ2)), (90)

where for all t ∈ {1, 2}, the sets R2 (λt) and N (λt) are in (76c) and (81), respectively.

Proof: The proof of Lemma 2.15 is presented in Appendix R.

The following example shows the relevance of Lemma 2.15 in the case in which the empirical risk
function Lz in (5b) is a simple function.

Example 2.2. Consider Example 2.1. Note that, for all λ > 0,

0 < K(1)
z

Å
− 1

λ

ã
< 1, (91)

which implies that given two reals λ1 and λ2 such that λ1 > λ2 > 0, it holds that,

N (λ1) ∩R2 (λ2)=

ß
ν ∈M : K(1)

z

Å
− 1

λ2

ã
< Lz (ν) 6 K(1)

z

Å
− 1

λ1

ã™
(92)

=∅, (93)

and moreover, N (λ1) = N (λ2). Finally, from Lemma 2.15,

P
(λ1)
Θ|Z=z(N (λ1)) < P

(λ2)
Θ|Z=z(N (λ2)). (94)
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Finally, the main result of this section is presented by the following theorem.

Theorem 2.6. The probability measure P (λ)
Θ|Z=z in (37), with the measure P being a σ-finite

measure P on (M,B (M)), satisfies

lim
λ→0+

P
(λ)
Θ|Z=z (N (λ)) =

ß
0 if L?z = ∅
1 if L?z 6= ∅,

(95)

where, the sets N (·) and L?z are respectively defined in (81) and (47).

Proof: The proof of Theorem 2.6 is presented in Appendix S.

2.4 Cumulant Generating Function of the empirical risk

Let λ be a real in Kz, with Kz in (34), and consider the transport of the measure P (λ)
Θ|Z=z

in (37) from (M,B (M)) to (R,B (R)) through the function Lz in (5b). Denote the resulting
probability measure in (R,B (R)) by P (λ)

W |Z=z in (R,B (R)). That is, for all A ∈ B (R),

P
(λ)
W |Z=z (A) = P

(λ)
Θ|Z=z

(
L−1z (A)

)
, (96)

where the term L−1z (A) represents the set

L−1z (A),{ν ∈M : Lz(ν) ∈ A} . (97)

Note that the random variableW in (60) induces the probability measure P (λ)
W |Z=z. The objective

of this section is to prove that the random variableW is a sub-Gaussian random variable. For this
purpose, note that the cumulant generating function induced by the measure P (λ)

W |Z=z, denoted
by Jz,λ : R→ R ∪ {+∞}, satisfies for all t ∈ R,

Jz,λ(t) = log

Å∫
exp (tz) dP

(λ)
W |Z=z(z)

ã
= log

Å∫
exp (t Lz (u)) dP

(λ)
Θ|Z=z(u)

ã
. (98)

For all λ ∈ Kz, with Kz in (34), the following lemma provides an expression for Jz,λ(t) in terms
of the cumulant generating function Kz in (33), for all t ∈ (−∞, 1

λ ).

Lemma 2.16. Given a real λ ∈ Kz, with Kz in (34), the cumulant generating function Jz,λ
in (98), verifies the following equality for all t ∈

(
−∞, 1

λ

)
,

Jz,λ(t) = Kz

Å
t− 1

λ

ã
−Kz

Å
− 1

λ

ã
< +∞. (99)

Proof: The proof of Lemma 2.16 is presented in Appendix T.

Denote by J (m)
z,λ : R→ R∪ {+∞}, with m ∈ N, the m-th derivative of the function Jz,λ in (98).

That is, for all s ∈
(
−∞, 1

λ

)
,

J
(m)
z,λ (s) =

dm

dtm
Jz,λ(t)

∣∣∣
t=s

. (100)

From Lemma 2.16, it follows that for all m ∈ N, and for all α ∈
(
−∞, 1

λ

)
, the following

holds,

J
(m)
z,λ (α) = K(m)

z

Å
α− 1

λ

ã
. (101)
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The equality in (101) establishes a relation between the cumulant generating functions Jz,λ
and Kz respectively induced by the measures P (λ)

W |Z=z in (96) and P
(λ)
Θ|Z=z in (37), with λ ∈

Kz. The following lemma leverages these observations and presents the main result of this
section.

Theorem 2.7. The cumulant generating function Jz,λ in (98) verifies the following inequality
for all α ∈

(
−∞, 1

λ

)
,

Jz,λ(α) 6 αK(1)
z

Å
− 1

λ

ã
+

1

2
α2B2

z (102)

where, the constant Bz > 0 satisfies

B2
z = sup

γ∈Kz

K(2)
z

Å
− 1

γ

ã
< +∞, (103)

with Kz in (34); and the functions K(1)
z and K(2)

z are respectively defined in (57), and (58).

Proof: The function Kz in (33) is differentiable infinitely many times over the interior of the set
Kz (Lemma 2.8). Thus, from the Taylor-Lagrange theorem, c.f., [43, Theorem 2.5.4], it follows
that for all λ ∈ Kz and for all α ∈

(
−∞, 1

λ

)
, there exists a real ξ ∈

(
−∞, 1

λ

)
such that

Kz

Å
α− 1

λ

ã
=Kz

Å
− 1

λ

ã
+ αK(1)

z

Å
− 1

λ

ã
+
α2

2
K(2)
z (ξ) . (104)

From (104) and Lemma 2.16, it holds that

Jz,λ(α)=αK(1)
z

Å
− 1

λ

ã
+
α2

2
K(2)
z (ξ) . (105)

Finally, the inequality in (102) follows from the maximization of the function K
(2)
z on the set

Kz, which completes the proof.

The main implication of Theorem 2.7 is that the random variable W in (60) is a sub-Gaussian
random variable with parameter B. This result is central for studying of the generalization error
of Gibbs stochastic solvers. Based on Theorem 2.7 and previous results in [50], generalization
guarantees can be immediately obtained. Nonetheless, such analysis is left out of the scope of
this work.

3 (δ, ε)-Optimality and Sensitivity
This section introduces a notion of optimality in probability, which is reminiscent to the existing
PAC-generalization guarantees. In this case, the optimality is in the sense of low expected
empirical risks instead of small generalization gaps.

Definition 3.1 ((δ, ε)-Optimality). Given a pair of positive reals (δ, ε), with ε < 1, a stochastic
solver PΘ|Z to the ERM problem with respect to the data set z in (5) is said to be (δ, ε)-optimal,
if the set Lz (δ) in (44) satisfies

PΘ|Z=z (Lz (δ)) > 1− ε. (106)

For all δ > 0, it holds that T (z) ⊂ Lz (δ), with the sets T (z) and Lz in (5d) and (44),
respectively. Hence, from Definition 3.1, it follows that if the stochastic solver PΘ|Z is (δ, ε)-
optimal, then it assigns a probability that is always bigger than 1− ε to the set Lz (δ). That is,
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the measure PΘ|Z=z concentrates on a set that contains models that induce an empirical risk
that is smaller than δ. From this perspective, particular interest is given to the smallest δ and
the smallest ε when choosing a (δ, ε)-optimal stochastic solver.

3.1 (δ, ε)-Optimality of Gibbs Stochastic Solvers
This section shows that Gibbs stochastic solvers to the ERM-RER in (29) might be (δ, ε)-optimal
for some values of δ and ε, when the reference measure is consistent.

Definition 3.2 (Consistent Measure). A measure P is said to be consistent with the ERM-RER
problem with respect to the data set z in (29), if the set L?z in (47) is not empty.

The relation between coherent and consistent measures is described by the following corol-
lary.

Corollary 3.1. Every coherent measure is consistent.

The main result of this section is presented by the following theorem.

Theorem 3.1. Consider the ERM-RER problem with respect to the data set z in (29), when P
is a σ-finite measure on (M,B (M)). If the measure P is consistent, for all (δ, ε) ∈ (δ?,+∞)×
(0, 1), with δ? in (46), then, there exists a λ ∈ Kz, with Kz in (34), such that the P -Gibbs
stochastic solver P (λ)

Θ|Z is (δ, ε)-optimal.

Proof of Theorem 3.1: Let δ be a real in (δ?,+∞), with δ? in (46). Let also λ ∈ Kz satisfy the
following equality:

K(1)
z

Å
− 1

λ

ã
6 δ. (107)

Note that under the assumption that P is consistent, such a λ in (107) always exists. This follows
from the fact that the value K(1)

z

(
− 1
λ

)
is nondecreasing with λ (Theorem 2.2) and in the limit as

λ tends to zero (Theorem 2.3), the value K(1)
z

(
− 1
λ

)
tends to δ?. Moreover, from (44) and (81),

it holds that
N (λ) ⊆ Lz (δ) , (108)

and thus,
P

(λ)
Θ|Z=z (Lz (δ)) > P

(λ)
Θ|Z=z (N (λ)) . (109)

Let γ be a positive real such that γ 6 λ and

P
(γ)
Θ|Z=z(N (γ)) > 1− ε. (110)

The existence of such a positive real γ follows from Theorem 2.6. Hence, from (110), it holds
that,

1− ε<P (γ)
Θ|Z=z(N (γ)) (111)

6P (γ)
Θ|Z=z (Lz (δ)) , (112)

where the inequality in (112) follows from the fact that N (γ) ⊆ N (λ) ⊆ Lz (δ). Finally, the in-
equality in (112) implies that the stochastic solver P (γ)

Θ|Z=z is a (δ, ε)-optimal probability measure
(Definition 3.1). This completes the proof.

A stronger optimality claim can be stated when the reference measure is coherent.
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Theorem 3.2. Consider the ERM-RER problem with respect to the data set z in (29), when P
is a σ-finite measure on (M,B (M)). Then, for all (δ, ε) ∈ (0,+∞)× (0, 1), there always exists
a λ ∈ Kz, with Kz in (34), such that the P -Gibbs stochastic solver P (λ)

Θ|Z is (δ, ε)-optimal if and
only if the reference measure P is coherent.

Proof of Theorem 3.2: The proof is divided into two parts. The first part deals with the case
in which the measure P is coherent. The second part deals with the converse case.

The first part is as follows. Under the assumption that the measure P is coherent it follows that
δ? = 0. Moreover, it follows from Corollary 3.1 that the measure P is also consistent. Then,
from Theorem 3.1, it follows that for all (δ, ε) ∈ (0,+∞) × (0, 1), there always exists a λ ∈ Kz,
with Kz in (34), such that the P -Gibbs stochastic solver P (λ)

Θ|Z is (δ, ε)-optimal.

The second part is as follows. Under the assumption that the measure P is not coherent, there
always exists a δ > 0, such that for all γ < δ, it holds that P (Lz (γ)) = 0. Hence, the P -Gibbs
stochastic solver P (λ)

Θ|Z is not (γ, ε)-optimal, for all γ < δ, with ε ∈ (0, 1). This completes the
proof.

3.2 Sensitivity of the Expected Empirical Risk

The sensitivity due to a change of measure is a performance metric defined as follows.

Definition 3.3. Given a σ-finite measure P and a real λ > 0, let

Dλ : (X × Y)
n ×4P (M,B (M))→ [0,+∞]

be a function such that

Dλ (u, Q) =

® ∣∣∣Ru (Q)− Ru
Ä
P

(λ)
Θ|Z=u

ä∣∣∣ if λ ∈ Ku
+∞ otherwise,

(113)

where the function Ru is defined in (12) and the measure P (λ)
Θ|Z=u is the solution to the ERM-

RER problem in (29) with respect to the data set u. The sensitivity of the expected empirical
risk at dataset u when the measure changes from P

(λ)
Θ|Z=u to Q is Dλ (u, Q).

The sensitivity Dλ (z, Q), with z the data set in (5a), is a positive real that indicates the variation
of the expected empirical risk with respect to z, i.e., the function Rz in (61), when the measure is
changed from the optimal solution to the ERM-RER problem in (29), i.e., the measure P (λ)

Θ|Z=z,
to an alternative measure Q. That is, the sensitivity Dλ (z, Q) is a means to quantify the change
of the expected empirical risk with respect to deviations from the optimal solution of the ERM-
RER problem. In the aim of characterizing the sensitivity Dλ (z, Q), consider the following
lemma.

Lemma 3.1. Given two probability measures P and Q over (M,B (M)), with Q absolutely
continuous with P , the following holds for all u ∈ (X × Y)

n,∫
Lu(θ)dQ(θ)−

∫
Lu(θ)dP (θ)6 inf

t∈(−∞,0)

Ç
D (Q‖P ) + log

(∫
exp (t (Lu (θ)− µ)) dP (θ)

)
t

å
,(114)

where µ =
∫
Lu (θ) dP (θ), and the function Lu is defined in (5b).

Inria



Empirical Risk Minimization with Generalized Relative Entropy Regularization 31

Proof: The proof of Lemma 3.1 is presented in Appendix U.

Lemma 3.1 together with Theorem 2.7 lead to an upper bound on the sensitivity to a change of
measure.

Theorem 3.3. Consider the solution P (λ)
Θ|Z=z in (37) to ERM-RER problem in (29) with λ ∈ Kz

and Kz in (34). Let Q be a probability measure over (M,B (M)) absolutely continuous with P .
Then,

Dλ (z, Q)6
√

2B2
zD
Ä
Q‖P (λ)

Θ|Z=z

ä
(115)

where the function Dλ is defined in (113); and the constant Bz is defined in (103).

Proof: The proof of Theorem 3.3 is presented in Appendix V.

In the context of the ERM problem in (5), Theorem 3.3 establishes an upper and a lower bound
on the increase or decrease on the expected empirical risk minimization that can be obtained
by deviating from the optimal solution of the ERM-RER in (29). More specifically, note that
for all probability measures Q ∈ 4 (M,B (M)) that are absolutely continuous with P , it holds
that,

Rz
Ä
P

(λ)
Θ|Z=z

ä
−
√

2B2
zD
Ä
Q‖P (λ)

Θ|Z=z

ä
6Rz (Q)6 Rz

Ä
P

(λ)
Θ|Z=z

ä
+
√

2B2
zD
Ä
Q‖P (λ)

Θ|Z=z

ä
. (116)

The probability measure Q over (M,B (M)) that achieves the lower bound (or the upper bound)
in (116) can be explicitly calculated, as shown by the following theorem.

Theorem 3.4. Consider the solution P (λ)
Θ|Z=z in (37) to ERM-RER problem in (29) with λ ∈ Kz

and Kz in (34). Consider also the following optimization problem,

min
Q∈4P (M,B(M))

∫
Lz(θ)dQ(θ), (117a)

subject to: D
Ä
Q‖P (λ)

Θ|Z=z

ä
6 c, (117b)

where the function Lz is in (5b); and the constant c is nonnegative. Then, the solution to
optimization problem in (117) is a Gibbs probability measure P (ω)

Θ|Z=z satisfying (37) with ω 6 λ
such that

D
Ä
P

(ω)
Θ|Z=z‖P

(λ)
Θ|Z=z

ä
= c. (118)

Proof: The proof of Theorem 3.4 is presented in Appendix W.

The relevance of Theorem 3.4 is that it shows that the measure Q that reduces the expected
empirical risk beyond the expected empirical risk induced by the Gibbs measure P (λ)

Θ|Z=z in

(37), i.e., the value Rz
Ä
P

(λ)
Θ|Z=z

ä
in (61), subject to the constraint D

Ä
Q‖P (λ)

Θ|Z=z

ä
6 c, with

c > 0, is also a Gibbs measure P (ω)
Θ|Z=z, with ω < λ chosen to satisfy (118). More specifically, the

inequality in the left hand side in (116) is observed with equality when Q = P
(ω)
Θ|Z=z. Similarly, it

can be shown that the measure Q that increases the expected empirical risk beyond the expected
empirical risk induced by the Gibbs measure P (λ)

Θ|Z=z in (37), i.e., the value Rz
Ä
P

(λ)
Θ|Z=z

ä
in

(61), subject to the constraint D
Ä
Q‖P (λ)

Θ|Z=z

ä
6 c, with c > 0, is also a Gibbs measure P (ω)

Θ|Z=z,
with ω > λ chosen to satisfy (118), provided that such ω exists in Kz, with Kz in (34), c.f.,
Lemma 2.1.
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The following corollary of Theorem 3.3 studies the expectation of the sensitivity with respect to
the probability measure PZ in (19).

Corollary 3.2. For all
λ ∈

⋂
u∈(X×Y)n

Ku, (119)

with Ku in (34), given a probability measure Q over (M,B (M)) absolutely continuous with P ,
it holds that ∫

Dλ (u, Q) dPZ(u)6
∫ √

2B2
uD
Ä
Q‖P (λ)

Θ|Z=u

ä
dPZ(u), (120)

where Bu is defined in (103); the probability measure P (λ)
Θ|Z=u is the solution to the ERM-RER

problem in (29) with respect to the data set u; and the probability measure PZ is defined in (19).

The set
⋂
u∈(X×Y)n Ku in (122) can be empty for some choices of the σ-finite measure P and

empirical loss function Lz in (5b). Nonetheless, from Lemma 2.2, it follows that when P is a
probability measure, ⋂

u∈(X×Y)n
Ku = (0,+∞) . (121)

In the following, the expectation of the sensitivity with respect to the measure PZ in (19) is
to shown to have an upper-bounded that can be expressed in terms of the lautum information
between the models and the data sets.

Theorem 3.5. For all
λ ∈

⋂
u∈(X×Y)n

Ku, (122)

with Ku in (34), it follows that∫
Dλ
Ä
u, P

(λ)
Θ

ä
dPZ(u) 6

 
2B2

∫
D
Ä
P

(λ)
Θ ‖P

(λ)
Θ|Z=u

ä
dPZ(u), (123)

where the probability measure P (λ)
Θ|Z=u is the solution to the ERM-RER problem in (29) with

respect to the data set u; the probability measure PZ is defined in (19); the probability measure
P

(λ)
Θ is such that for all A ∈ B (M),

P
(λ)
Θ (A) =

∫
P

(λ)
Θ|Z=u (A) dPZ (u) ; (124)

and the constant B satisfies B2 = supu∈(X×Y)n B
2
u, with Bu defined in (103).

Proof: The proof follows from Corollary 3.5. In particular, from (120), for all probability mea-
sures Q over (M,B (M)) absolutely continuous with P , it holds that∫

Dλ (u, Q) dPZ(u)6
∫ √

2B2
uD
Ä
Q‖P (λ)

Θ|Z=u

ä
dPZ(u) (125)

6
∫ √

2B2D
Ä
Q‖P (λ)

Θ|Z=u

ä
dPZ(u) (126)

6

 
2B2

∫
D
Ä
Q‖P (λ)

Θ|Z=u

ä
dPZ(u). (127)
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where the inequality in (126) follows from (3.5); and the inequality in (127) follows from Jensen’s
inequality [3, Theorem 6.3.5].

Finally, from (124) and (127), it holds that∫
Dλ
Ä
u, P

(λ)
Θ

ä
dPZ(u)6

√
2B2 L

Ä
P

(λ)
Θ|ZPZ

ä
, (128)

where the function L in (128) is the lautum information (Definition 1.2). This completes the
proof.

The right-hand side in (123) can be written in terms of the lautum information [33] between the
models and the data sets, denoted by L

Ä
P

(λ)
Θ|ZPZ

ä
, by observing that

L
Ä
P

(λ)
Θ|ZPZ

ä
=

∫
D
Ä
P

(λ)
Θ ‖P

(λ)
Θ|Z=u

ä
dPZ(u). (129)

In a nutshell, it can be concluded that as the expectation of the absolute value of the general-
ization gap with respect to the measure PZ in (19) is upper bounded in terms of the mutual
information between the models and the datasets, c.f., Example 1.1; the expectation of the sen-
sitivity with respect to the measure PZ is upper bounded by the lautum information between
the models and the datasets, c.f., Theorem 3.5.

4 Discussion and Final Remarks
The ERM-RER problem in (29) has been studied under the assumption that the reference mea-
sure P is a σ-finite measure. In this context, it has been shown that the solution exists and is
the unique probability measure whose Radon-Nikodym derivative with respect to P is in The-
orem 2.1. Interestingly, the optimal measure is shown to belong to a extended class of Gibbs
measures for which the partition function is with respect to a σ-finite measure instead of a prob-
ability measure. An important remark is that the choice of the reference measure P plays a
central role in the concentration of the probability of the optimal measure; and the mean and
variance of the empirical risk when the models are distributed according to the optimal mea-
sure. A class of reference measures (coherent measures) for which the highest probability is
always allocated to the set of models that are solutions ERM problem (lowest empirical risk) is
introduced. More interestingly, it is shown that when the reference measure does not belong to
this class, the models that induce the lowest empirical risk are observed with zero probability.
Finally, the empirical risk when the models are distributed according to the optimal probability
measure is shown to be a sub-Gaussian random variable. This observation is leveraged to study
the sensitivity of the ERM-RER problems and unveil the connections between the sensitivity
and the lautum information between the models and the data sets.
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Appendices

A Proof of Lemma 2.1
The proof is divided into two parts. The first part develops under the assumption that the set
Kz ⊂ (0,+∞) is not empty. The second part develops under the converse assumption.

The first part is as follows. Under the assumption that the set Kz is not empty, there always
exists a real b ∈ Kz, such that Kz

(
− 1
b

)
< +∞. Note that for all θ ∈M,

d

dt
exp

Å
−1

t
Lz (θ)

ã
=

1

t2
Lz (θ) exp

Å
−1

t
Lz (θ)

ã
> 0, (130)

and thus, from (33), it follows that Kz
(
− 1
b

)
is nondecreasing with b. This implies that (0, b] ⊂

Kz. This proves the convexity of Kz.

Let b? ∈ (0,+∞] be
b? = supKz. (131)

Hence, if b? = +∞, it follows from (34) that

Kz = (0,+∞). (132)

Alternatively, if b? < +∞, it holds that

(0, b?) ⊂ Kz. (133)

This completes the first part.

The second part is trivial. Under the assumption that the set Kz in (34) is empty, there is
nothing to prove.

This completes the proof.

B Proof of Lemma 2.2
Note that for all θ ∈M and for all for all t > 0, it follows that

exp

Å
−1

t
Lz (θ)

ã
6 1, (134)

and thus,

Kz

Å
−1

t

ã
=log

Å∫
exp

Å
−1

t
Lz (u)

ã
dP (u)

ã
(135)

6log

Å∫
dP (u)

ã
(136)

60, (137)

which implies that (0,+∞) ⊆ Kz. Thus, from (34), it holds that Kz = (0,+∞), which completes
the proof.
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C Proof of Theorem 2.1

The objective function in the optimization problem in (29) can be written as follows:

min
Q

[∫
Lz (ν)

dQ

dP
(ν) dP (ν) + λ

∫
dQ

dP
(ν) log

Å
dQ

dP
(ν)

ã
dP (ν)

]
, (138)

where the optimization is over all measures Q on (M,B (M)) that are absolutely continuous
with P and satisfy ∫

dQ

dP
(ν) dP (ν) = 1, (139)

with dQ
dP being the Radon-Nikodym derivative of Q with respect to P .

Let M be the set of nonnegative measurable functions with respect to the measurable spaces
(suppP,B (suppP )) and (R,B (R)). The Lagrangian of the optimization problem in (138) can
be constructed in terms of a function in M , instead of a measure in 4 (suppP,B (suppP )). Let
such Lagrangian be L : M × [0,+∞)→ R of the form

L

Å
dQ

dP
, β

ã
=

∫
Lz (ν)

dQ

dP
(ν) dP (ν) + λ

∫
dQ

dP
(ν) log

Å
dQ

dP
(ν)

ã
dP (ν)

+β

Å∫
dQ

dP
(ν) dP (ν)− 1

ã
, (140)

where β is a positive real that acts as a Lagrangian multiplier due to the constraint (139).

Let g : Rk → R be a function in M . The Gateaux differential of the functional L in (140) atÄ
dQ
dP , β

ä
∈M × [0,+∞) in the direction of g is

∂L

Å
dQ

dP
, β; g

ã
,

d

dα
r(α)

∣∣∣∣
α=0

, (141)

where the real function r : R→ R is such that for all α ∈ R,

r(α)=

∫
Lz (ν)

Å
dQ

dP
(ν) + αg (ν)

ã
dP (ν) + β

Å∫ Å
dQ

dP
(ν) + αg (ν)

ã
dP (ν)− 1

ã
+λ

∫ Å
dQ

dP
(ν) + αg (ν)

ã
log

Å
dQ

dP
(ν) + αg (ν)

ã
dP (ν) . (142)

Note that the derivative of the real function r in (142) is

d

dα
r(α)=

∫
Lz (ν) g (ν) dP (ν) + β

∫
g (ν) dP (ν)

+λ

∫
g (ν)

Å
1 + log

Å
dQ

dP
(ν) + αg (ν)

ãã
dP (ν) . (143)

From (141) and (143), it follows that

∂L

Å
dQ

dP
, β; g

ã
=

∫
g (ν)

Å
Lz (ν) + λ

Å
1 + log

Å
dQ

dP
(ν)

ãã
+ β

ã
dP (ν) . (144)
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The relevance of the Gateaux differential in (144) stems from [27, Theorem 1, page 178], which
unveils the fact that a necessary condition for the functional L in (140) to have a minimum atÅ

dP
(λ)

Θ|Z=z

dP , β

ã
∈M × [0,+∞) is that for all functions g ∈M ,

∂L

Ñ
dP

(λ)
Θ|Z=z

dP
; g

é
= 0. (145)

From (145), it follows that
dP

(λ)

Θ|Z=z

dP must satisfy for all functions g in M that

∫
g (ν)

Ñ
Lz (ν) + λ

Ñ
1 + log

Ñ
dP

(λ)
Θ|Z=z

dP
(ν)

éé
+ β

é
dP (ν) = 0, (146)

which implies that for all ν ∈M,

Lz (ν) + λ

Ñ
1 + log

Ñ
dP

(λ)
Θ|Z=z

dP
(ν)

éé
+ β = 0, (147)

and thus,
dP

(λ)
Θ|Z=z

dP
(ν) = exp

Å
−β + λ

λ

ã
exp

Å
−Lz (ν)

λ

ã
, (148)

with β chosen to satisfy (139). That is,

dP
(λ)
Θ|Z=z

dP
(ν)=

exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dP (θ)

(149)

=exp

Å
−Kz

Å
− 1

λ

ã
− 1

λ
Lz (ν)

ã
. (150)

The proof continues by verifying that the objective function in (138) is strictly convex, and thus,
the measure P (λ)

Θ|Z=z that satisfies (149) is the unique minimizer. More specifically, note that the

objective function in (138) is the sum of two terms. The first one, i.e.,
∫

Lz (ν)
dQ

dP
(ν) dP (ν),

is linear in dQ
dP . The second, i.e.,

∫
dQ

dP
(ν) log

Å
dQ

dP
(ν)

ã
dP (ν), is strictly convex with dQ

dP .

Hence, given that λ > 0, the sum of both terms is strictly convex with dQ
dP . This implies the

uniqueness of P (λ)
Θ|Z=z and completes the proof.

D Proof of Lemma 2.3

For all θ ∈M and for all (µ,ν) ∈ T (z)× T (z), it follows that

Lz (θ)>Lz (ν) = Lz (µ) , (151)
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and thus, for all λ ∈ Kz, with Kz in (34), it holds that

exp

Å
−Lz (θ)

λ

ã
6exp

Å
−Lz (ν)

λ

ã
= exp

Å
−Lz (µ)

λ

ã
, (152)

which implies

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dP (α)

6
exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dP (α)

=
exp
Ä
−Lz(µ)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dP (α)

. (153)

Hence, under the assumption that T (z) ∩ suppP 6= ∅, it holds that for θ ∈ suppP and for all
(µ,ν) ∈ T (z)× T (z),

dP
(λ)
Θ|Z=z

dP
(θ) 6

dP
(λ)
Θ|Z=z

dP
(µ) =

dP
(λ)
Θ|Z=z

dP
(ν) , (154)

which completes the proof.

E Proof of Lemma 2.5

From Theorem 2.1, it follows that for all λ ∈ Kz and for all θ ∈ suppP ,

dP
(λ)
Θ|Z=z

dP
(θ)=

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

(155)

=

Å
exp

Å
Lz (θ)

λ

ã∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

ã−1
(156)

=

Å∫
exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

ã−1
. (157)

Given θ ∈M, consider the partition ofM formed by the sets A0 (θ), A1 (θ), and A2 (θ), which
satisfy the following:

A0 (θ),{ν ∈M : Lz (θ)− Lz (ν) = 0} , (158a)
A1 (θ),{ν ∈M : Lz (θ)− Lz (ν) < 0} , and (158b)
A2 (θ),{ν ∈M : Lz (θ)− Lz (ν) > 0} . (158c)
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Using the sets A0 (θ), A1 (θ), and A2 (θ) in (157), the following holds for all λ ∈ Kz and for all
θ ∈ suppP ,

dP
(λ)
Θ|Z=z

dP
(θ)=

(∫
A0(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

+

∫
A2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

)−1
(159)

=

(
P (A0 (θ)) +

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

+

∫
A2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

)−1
. (160)

Note that the sets {ν ∈M : Lz (ν) > δ?} and {ν ∈M : Lz (ν) = δ?}, with δ? in (46), form a
partition of the set suppP . Following this observation, the rest of the proof is divided into

two parts. The first part evaluates limλ→0+
dP

(λ)

Θ|Z=z

dP (θ), with θ ∈ {ν ∈M : Lz (ν) > δ?}. The
second part considers the case in which θ ∈ {ν ∈M : Lz (ν) = δ?}.

The first part is as follows. For all δ > δ? and for all θ ∈ {ν ∈M : Lz (ν) = δ}, the sets A0 (θ),
A1 (θ), and A2 (θ) satisfy the following:

A0 (θ)={µ ∈M : Lz (µ) = δ} , (161a)
A1 (θ)={µ ∈M : Lz (µ) > δ} , and (161b)
A2 (θ)={µ ∈M : Lz (µ) < δ} . (161c)

Consider the sets A2,1 (θ) , {µ ∈M : Lz (µ) < δ?} and A2,2 (θ) = {µ ∈M : δ? 6 Lz (µ) < δ},
and note that A2,1 (θ) and A2,2 (θ) form a partition of A2 (θ), and

P (A2,1 (θ)) = 0. (162)

Hence, plugging the equalities in (161) and (162) in (160) yields,

dP
(λ)
Θ|Z=z

dP
(θ)=

Å
P (A0 (θ)) +

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

ã−1
. (163)
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The equality in (163) implies that for all δ > δ? and for all θ ∈ {ν ∈M : Lz (ν) = δ},

lim
λ→0+

dP
(λ)
Θ|Z=z

dP
(θ)=

(
P (A0 (θ)) + lim

λ→0+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

+ lim
λ→0+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

)−1
(164)

=

(
P (A0 (θ)) + lim

λ→0+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

)−1
(165)

=
(
P (A0 (θ)) +∞

)−1 (166)
=0, (167)

where the equality in (165) follows verifying that the dominated convergence theorem [3, Theorem
2.6.9] holds. That is,
(a) For all ν ∈ A1 (θ), it holds that exp

(
1
λ (Lz (θ)− Lz (ν))

)
< 1; and

(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
= 0. (168)

This completes the first part of the proof.

The second part is as follows. Consider that θ ∈ {ν ∈M : Lz (ν) = δ?}. Hence, the sets A0 (θ),
A1 (θ), and A2 (θ) satisfy the following:

A0 (θ)={µ ∈M : Lz (µ) = δ?} , (169a)
A1 (θ)={µ ∈M : Lz (µ) > δ?} , and (169b)
A2 (θ)={µ ∈M : Lz (µ) < δ?} . (169c)

Observing that P (A2 (θ)) = 0, plugging the equalities in (169) in (160) yields,

dP
(λ)
Θ|Z=z

dP
(θ)=

Å
P (A0 (θ)) +

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

ã−1
. (170)

The equality in (170) implies that for all θ ∈ Lz (δ?),

lim
λ→0+

dP
(λ)
Θ|Z=z

dP
(θ)=

Å
P (A0 (θ)) + lim

λ→0+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dP (ν)

ã−1
=

1

P (A0 (θ))
, (171)

where the equality in (171) follows from the same arguments as in (165). This completes the
second part.

Finally, from (167) and (171), it follows that for all θ ∈ suppP ,

lim
λ→0+

dP
(λ)
Θ|Z=z

dP
(θ)=

1

P (L?z)
1{θ∈L?z}, (172)

which completes the proof.
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F Proof of Lemma 2.6

For all λ ∈ Kz, with Kz in (34), and for all C ∈ B (M),

P
(λ)
Θ|Z=z (C)=

∫
C

dP
(λ)
Θ|Z=z

dP
(θ) dP (θ) , (173)

and thus, if P (C) = 0, then

P
(λ)
Θ|Z=z (C)=0, (174)

which implies the absolute continuity of P (λ)
Θ|Z=z with respect to P .

Alternatively, given a set C ∈ B (M) and a real λ ∈ Kz, assume that P (λ)
Θ|Z=z (C) = 0. Hence, it

follows that

0=P
(λ)
Θ|Z=z (C) (175)

=

∫
C

dP
(λ)
Θ|Z=z

dP
(θ) dP (θ) . (176)

From Theorem 2.1, it holds that for all α ∈ Kz and for all ν ∈ suppP ,

dP
(α)
Θ|Z=z

dP
(ν) > 0, (177)

which implies that

∫
C

dP
(λ)
Θ|Z=z

dP
(θ) dP (θ)=0, (178)

if and only if P (C) = 0. This verifies the absolute continuity of P with respect to P (λ)
Θ|Z=z, and

completes the proof.

G Proof of Lemma 2.7

The proof that the measure P (α)
Θ|Z=z is absolutely continuous with respect to P

(β)
Θ|Z=z is an

immediate consequence of Lemma 2.6 and the Radon-Nikodym theorem [3, Theorem 2.2.1].
More specifically, from Lemma 2.6 it holds that for all (α, β) ∈ Kz ×Kz,
(i) the measure P (α)

Θ|Z=z is absolutely continuous with respect to P ; and

(ii) the measure P is absolutely continuous with respect to P (β)
Θ|Z=z.

From (i) and the Radon-Nikodym theorem [3, Theorem 2.2.1], it follows that Radon-Nikodym

derivative
dP

(α)

Θ|Z=z

dP exists.

From (ii) and the Radon-Nikodym theorem [3, Theorem 2.2.1], it follows that the Radon-
Nikodym derivative dP

dP
(β)

Θ|Z=z

exists.
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Hence, from [28, Theorem 3.41], the Radon-Nikodym derivative
dP

(α)

Θ|Z=z

dP
(β)

Θ|Z=z

exists and for all θ ∈
suppP ,

dP
(α)
Θ|Z=z

dP
(β)
Θ|Z=z

(θ) =
dP

(α)
Θ|Z=z

dP
(θ)

Ñ
dP

(β)
Θ|Z=z

dP
(θ)

é−1
, (179)

which implies the absolute continuity of the measure P
(α)
Θ|Z=z with respect to P

(β)
Θ|Z=z ( [3,

Theorem 2.2.1]).

The proof that the measure P (β)
Θ|Z=z is absolutely continuous with respect to P (α)

Θ|Z=z is obtained
by exchanging the choices of α and β and completes the proof.

H Proof of Lemma 2.8

Consider the transport of the measure P from (M,B (M)) to ([0,+∞) ,B ([0,+∞))) through
the function Lz in (5b). Denote the resulting measure in ([0,+∞) ,B ([0,+∞))) by PV . More
specifically, for all A ∈ B ([0,+∞)), it holds that PV (A) = P ({θ ∈M : Lz (θ) ∈ A}). Hence,
the function Kz in (33) can be written for all t ∈ R in terms of the measure PV as follows

Kz (t)=log

Å∫
exp (t v) dPV (v)

ã
. (180)

Denote by φV the Laplace transform of the measure PV . That is, for all t ∈ (0,+∞),

φV (t) =

∫
exp (t v) dPV (v) = exp (Kz (−t)) . (181)

From [15, Theorem 1a (page 439)], it follows that the function φV has derivatives of all orders
in (0,+∞), and thus, so does the function Kz in (−∞, 0). This implies the continuity of Kz in
(−∞, 0), and completes the proof.

RR n° 9454



42 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

I Proof of Lemma 2.9
Let (γ1, γ2) ∈ Kz ×Kz and α ∈ [0, 1] be fixed. When α = 0 or α = 1, the proof is trivial. Then,
for all α ∈ (0, 1), the following holds

αKz (γ1) + (1− α)Kz (γ2)

= α log

Å∫
exp (γ1 Lz (u)) dP (u)

ã
+ (1− α) log

Å∫
exp (γ2 Lz (u)) dP (u)

ã
(182)

= log

ÅÅ∫
exp (γ1 Lz (u)) dP (u)

ãαã
+ log

ÇÅ∫
exp (γ2 Lz (u)) dP (u)

ã(1−α)å
(183)

= log

ÇÅ∫
exp (γ1 Lz (u)) dP (u)

ãα Å∫
exp (γ2 Lz (u)) dP (u)

ã(1−α)å
(184)

= log

ÇÅ∫
exp (αγ1 Lz (u))

1
α dP (u)

ãα Å∫
exp ((1− α)γ2 Lz (u))

1
1−α dP (u)

ã(1−α)å
(185)

> log

Å∫
exp (αγ1 Lz (u)) exp ((1− α)γ2 Lz (u)) dP (u)

ã
(186)

= log

Å∫
exp

(
(αγ1 + (1− α)γ2) Lz (u)

)
dP (u)

ã
(187)

= Kz (αγ1 + (1− α)γ2) , (188)

where the inequality in (186) follows from Hölder’s inequality. Note that if the function Lz
in (5b) is a constant, then (186) holds with equality. Alternatively, under the assumption that
there exist at least two disjoint subsets A and B of M that are nonnegligible with respect to
P and satisfy (54) for some positive real c > 0, the inequality is strict. This completes the
proof.

J Proof of Lemma 2.10
For all s ∈ Kz, with Kz in (34), the equality in (56) implies the following,

K(1)
z

Å
−1

s

ã
=

d

dt
log

Å∫
exp (t Lz (u)) dP (u)

ã∣∣∣∣∣
t=− 1

s

(189)

=
1∫

exp (t Lz (v)) dP (v)

∫
Lz (u) exp (t Lz (u)) dP (u)

∣∣∣∣∣
t=− 1

s

(190)

=
1∫

exp
(
− 1
s Lz (v)

)
dP (v)

∫
Lz (u) exp

Å
−1

s
Lz (u)

ã
dP (u) (191)

=exp

Å
−Kz

Å
−1

s

ãã∫
Lz (u) exp

Å
−1

s
Lz (u)

ã
dP (u) (192)

=

∫
Lz (u) exp

Å
−Kz

Å
−1

s

ã
− 1

s
Lz (u)

ã
dP (u) (193)

=

∫
Lz (θ) dP

(s)
Θ|Z=z(θ), (194)

where the equality in (190) holds from the dominated convergence theorem [3]; the equality
in (192) follows from (33); and the equality in (194) follows from (37).
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For all s ∈ Kz, with Kz in (34), the equalities in (56) and (193) imply that

K(2)
z

Å
−1

s

ã
=

d

dt

∫
Lz (u) exp (−Kz (t) + t Lz (u)) dP (u)

∣∣∣∣∣
t=− 1

s

(195)

=

∫
Lz (u)

Ä
−K(1)

z (t) + Lz (u)
ä

exp (−Kz (t) + tLz (u)) dP (u)

∣∣∣∣∣
t=− 1

s

(196)

=

∫
Lz (u)

Å
−K(1)

z

Å
−1

s

ã
+ Lz (u)

ã
exp

Å
−Kz

Å
−1

s

ã
− 1

s
Lz (u)

ã
dP (u) (197)

=

∫
Lz (u)

Å
−K(1)

z

Å
−1

s

ã
+ Lz (u)

ã
dP

(s)
Θ|Z=z (u) (198)

=−K(1)
z

Å
−1

s

ã∫
Lz (u) dP

(s)
Θ|Z=z (u) +

∫
(Lz (u))

2
dP

(s)
Θ|Z=z (u) (199)

=−
Å
K(1)
z

Å
−1

s

ãã2
+

∫
(Lz (u))

2
dP

(s)
Θ|Z=z (u) (200)

=

∫ Å
Lz (u)−K(1)

z

Å
−1

s

ãã2
dP

(s)
Θ|Z=z (u) , (201)

where the equality in (196) follows from the dominated convergence theorem [3]; the equality
in (198) is due to a change of measure through the Radon-Nikodym derivative in (37); and the
equality in (200) follows from (194).

For all s ∈ Kz, with Kz in (34), the equalities in (56) and (200) imply that
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K(3)
z

Å
−1

s

ã
=

d

dt

Å∫
(Lz (u))

2
dP

(− 1
t )

Θ|Z=z (u)−
Ä
K(1)
z (t)

ä2ã∣∣∣∣∣
t=− 1

s

(202)

=
d

dt

Å∫
(Lz (u))

2
exp (−Kz (t) + tLz (u)) dP (u)−

Ä
K(1)
z (t)

ä2ã∣∣∣∣∣
t=− 1

s

(203)

=

∫
(Lz (u))

2

Ñ
d

dt
exp (−Kz (t) + tLz (u))

∣∣∣∣∣
t=− 1

s

é
dP (u)

−2K(1)
z (t)K(2)

z (t)

∣∣∣∣∣
t=− 1

s

(204)

=

∫
(Lz (u))

2

ÑÄ
Lz (u)−K(1)

z (t)
ä

exp (−Kz (t) + tLz (u))

∣∣∣∣∣
t=− 1

s

é
dP (u)

−2K(1)
z (t)K(2)

z (t)

∣∣∣∣∣
t=− 1

s

(205)

=

∫
(Lz (u))

2
Å
Lz (u)−K(1)

z

Å
−1

s

ãã
exp

Å
−Kz

Å
−1

s

ã
− 1

s
Lz (u)

ã
dP (u)

−2K(1)
z

Å
−1

s

ã
K(2)
z

Å
−1

s

ã
(206)

=

∫
(Lz (u))

2
Å
Lz (u)−K(1)

z

Å
−1

s

ãã
dP

(s)
Θ|Z=z (u)

−2K(1)
z

Å
−1

s

ã
K(2)
z

Å
−1

s

ã
(207)

=

∫
(Lz (u))

3
dP

(s)
Θ|Z=z (u)

−K(1)
z

Å
−1

s

ã∫
(Lz (u))

2
dP

(s)
Θ|Z=z (u)

−2K(1)
z

Å
−1

s

ã
K(2)
z

Å
−1

s

ã
(208)

=

∫
(Lz (u))

3
dP

(s)
Θ|Z=z (u)

−K(1)
z

Å
−1

s

ãÇ
K(2)
z

Å
−1

s

ã
+

Å
K(1)
z

Å
−1

s

ãã2å
− 2K(1)

z

Å
−1

s

ã
K(2)
z

Å
−1

s

ã
(209)

=

∫
(Lz (u))

3
dP

(s)
Θ|Z=z (u)−K(1)

z

Å
−1

s

ã3
− 3K(1)

z

Å
−1

s

ã
K(2)
z

Å
−1

s

ã
(210)

=

∫ Å
Lz (u)−K(1)

z

Å
−1

s

ãã3
dP

(s)
Θ|Z=z (u) , (211)

where the equality in (203) follows from (37); the equality in (204) follows from the dominated
convergence theorem [3]; the equality in (207) follows from (37); and the equality in (209) follows
from (200). This completes the proof.
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K Proof of Theorem 2.2

The proof is based on the analysis of the derivative of K(1)
z

(
− 1
λ

)
with respect to λ in intKz.

That is,

d

dλ

∫
Lz (θ)

dP
(λ)
Θ|Z=z

dP
(θ) dP (θ) (212)

=
d

dλ

∫ Lz (θ) exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

dP (θ) (213)

=

∫
Lz (θ)

d

dλ

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

dP (θ) (214)

=
1

λ2

∫
(Lz (θ))

2
exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

dP (θ)

− 1

λ2

∫ Lz (θ) exp
Ä
−Lz(θ)

λ

ä ∫
Lz (α) exp

Å
−Lz (α)

λ

ã
dP (α)Å∫

exp

Å
−Lz (ν)

λ

ã
dP (ν)

ã2 dP (θ) (215)

=
1

λ2

∫
(Lz (θ))

2
dP

(λ)
Θ|Z=z

dP
(θ) dP (θ)

− 1

λ2

Ñ∫
Lz (θ)

dP
(λ)
Θ|Z=z

dP
(θ) dP (θ)

é2

(216)

=
1

λ2

∫ Å
Lz (θ)−

∫
Lz (ν) dP

(λ)
Θ|Z=z (ν)

ã2
dP

(λ)
Θ|Z=z (θ) (217)

> 0, (218)

where the equality in (214) follows from the dominated convergence theorem [3].

The inequality in (218) implies that the the expected empirical risk K(1)
z

(
− 1
λ

)
in (33) is non-

decreasing with respect to λ. Hence, given two reals λ1 and λ2, with λ1 > λ2 > 0, it holds
that

K(1)
z

Å
− 1

λ1

ã
> K(1)

z

Å
− 1

λ2

ã
. (219)

The rest of the proof consists in showing that for all α ∈ Kz, the function K(2)
z in (56) satisfies

K
(2)
z

(
− 1
α

)
> 0 if and only if the function Lz in (5b) is separable. Hence, the proof is divided into

two parts. In the first part, it is shown that if for all α ∈ Kz, K(2)
z

(
− 1
α

)
> 0, then the function

Lz in (5b) is separable. The second part of the proof, consists in showing that if the function Lz
is separable, then, for all α ∈ Kz, K(2)

z

(
− 1
α

)
> 0.

RR n° 9454



46 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

The first part is as follows. From Lemma 2.10, it holds that for all α ∈ Kz,

K(2)
z

Å
− 1

α

ã
=

∫ Å
Lz (θ)−K(1)

z

Å
− 1

α

ãã2
dP

(α)
Θ|Z=z (θ) (220)

=

∫
R0(α)

Å
Lz (θ)−K(1)

z

Å
− 1

α

ãã2
dP

(α)
Θ|Z=z (θ) (221)

+

∫
R1(α)

Å
Lz (θ)−K(1)

z

Å
− 1

α

ãã2
dP

(α)
Θ|Z=z (θ) (222)

+

∫
R2(α)

Å
Lz (θ)−K(1)

z

Å
− 1

α

ãã2
dP

(α)
Θ|Z=z (θ) , (223)

where the sets R0(α), R1(α), and R2(α) are respectively defined in (76). Hence,

K(2)
z

Å
− 1

α

ã
=

∫
R1(α)

Å
Lz (θ)−K(1)

z

Å
− 1

α

ãã2
dP

(α)
Θ|Z=z (θ)

+

∫
R2(γ)

Å
Lz (θ)−K(1)

z

Å
− 1

α

ãã2
dP

(α)
Θ|Z=z (θ) (224)

6
Å

inf
θ

Lz (θ)−K(1)
z

Å
− 1

α

ãã2
P

(α)
Θ|Z=z (R1(α))

+

Å
sup
θ

Lz (θ)−K(1)
z

Å
− 1

α

ãã2
P

(α)
Θ|Z=z (R2(α)) . (225)

Under the assumption that for all α ∈ Kz the function K(2)
z in (56) satisfies K(2)

z

(
− 1
α

)
> 0, it

follows from (225) that

0<

Å
inf
θ

Lz (θ)−K(1)
z

Å
− 1

α

ãã2
P

(α)
Θ|Z=z (R1(α))

+

Å
sup
θ

Lz (θ)−K(1)
z

Å
− 1

α

ãã2
P

(α)
Θ|Z=z (R2(α)) . (226)

Note that if
P

(α)
Θ|Z=z (R1(α)) > 0, (227)

then, infθ Lz (θ) 6= K
(1)
z

(
− 1
α

)
. Moreover, if

P
(α)
Θ|Z=z (R2(α)) > 0, (228)

then, supθ Lz (θ) 6= K
(1)
z

(
− 1
α

)
. Therefore, the inequality in (226) implies that at least one of

the following claims is true:
(a) P (α)

Θ|Z=z (R1(α)) > 0; and

(b) P (α)
Θ|Z=z (R2(α)) > 0.

Nonetheless, from Lemma 2.13, it follows that both claims (a) and (b) hold simultaneously.
Hence, the sets R1(α) and R2(α) are both nonnegligible with respect to P (α)

Θ|Z=z and moreover,
it holds that for all (µ,ν) ∈ R1(α)×R2(α),

Lz (ν1)> K(1)
z

Å
− 1

α

ã
>Lz (ν2) . (229)
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This proves that under the assumption that for all α ∈ Kz, K(2)
z

(
− 1
α

)
> 0, the function Lz

in (5b) is separable. This completes the first part of the proof.

The second part of the proof is simpler. Assume that the empirical risk function Lz in (5b) is
separable. That is, for all γ ∈ Kz, there exist a positive real cγ > 0; and two subsets A(γ)

and B(γ) of M that are nonnegligible with respect to P (γ)
Θ|Z=z in (37) and verify that for all

(ν1,ν2) ∈ A(γ)× B(γ),

Lz (ν1)> cγ >Lz (ν2) . (230)

From Lemma 2.10, it holds that for all γ ∈ Kz,

K(2)
z

Å
− 1

γ

ã
=

∫ Å
Lz (θ)−K(1)

z

Å
− 1

γ

ãã2
dP

(γ)
Θ|Z=z (θ) (231)

=

∫
A(γ)

Å
Lz (θ)−K(1)

z

Å
− 1

γ

ãã2
dP

(γ)
Θ|Z=z (θ) (232)

+

∫
B(γ)

Å
Lz (θ)−K(1)

z

Å
− 1

γ

ãã2
dP

(γ)
Θ|Z=z (θ) (233)

+

∫
(A(γ)∪B(γ))c

Å
Lz (θ)−K(1)

z

Å
− 1

γ

ãã2
dP

(γ)
Θ|Z=z (θ) (234)

>0, (235)

where the inequality (235) follows from the following facts. First, if cγ < K
(1)
z

Ä
− 1
γ

ä
, with cγ

in (230), then for all ν ∈ B(γ), it holds thatÅ
Lz (θ)−K(1)

z

Å
− 1

γ

ãã2
>

Å
c−K(1)

z

Å
− 1

γ

ãã2
, (236)

and thus,∫
B(γ)

Å
Lz (θ)−K(1)

z

Å
− 1

γ

ãã2
dP

(γ)
Θ|Z=z (θ)>

Å
c−K(1)

z

Å
− 1

γ

ãã2
P

(γ)
Θ|Z=z (B (γ)) (237)

>0. (238)

Second, if c > K
(1)
z

Ä
− 1
γ

ä
then for all ν ∈ A(γ), it holds thatÅ
Lz (θ)−K(1)

z

Å
− 1

γ

ãã2
>

Å
c−K(1)

z

Å
− 1

γ

ãã2
, (239)

and thus,∫
B(γ)

Å
Lz (θ)−K(1)

z

Å
− 1

γ

ãã2
dP

(γ)
Θ|Z=z (θ)>

Å
c−K(1)

z

Å
− 1

γ

ãã2
P

(γ)
Θ|Z=z (B (γ)) (240)

>0. (241)

Hence, under the assumption that the empirical risk function Lz in (5b) is separable, it holds
that for all γ ∈ Kz, K(2)

z

Ä
− 1
γ

ä
> 0. This completes the proof.

RR n° 9454



48 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

L Proof of Lemma 2.11

Consider the following sets

A0,{ν ∈M : Lz (ν) = δ?} , (242)
A1,{ν ∈M : Lz (ν) < δ?} , and (243)
A2,{ν ∈M : Lz (ν) > δ?} , (244)

with δ? in (46) and the function Lz in (5b).

From (57), for all λ ∈ Kz, with Kz in (34), it holds that,

K(1)
z

Å
− 1

λ

ã
=

∫
A0

Lz (θ) dP
(λ)
Θ|Z=z(θ) +

∫
A1

Lz (θ) dP
(λ)
Θ|Z=z(θ) +

∫
A2

Lz (θ) dP
(λ)
Θ|Z=z(θ) (245)

=

∫
A0

Lz (θ) dP
(λ)
Θ|Z=z(θ) +

∫
A2

Lz (θ) dP
(λ)
Θ|Z=z(θ) (246)

=δ?P
(λ)
Θ|Z=z(L?z) +

∫
A2

Lz (θ) dP
(λ)
Θ|Z=z(θ), (247)

where, the equality in (246) follows from noticing that P (A1) = 0 and thus, P (λ)
Θ|Z=z(A1) =

0 (Lemma 2.6); and the equality in (247) follows from noticing that A0 = L?z, with L?z in
(47).

The rest of the proof is divided into two parts. The first part considers the case in which the
function Lz in (5b) is separable with respect to the measure P . The second part considers the
converse case.

The first part is as follows. Under the assumption that the function Lz in (5b) is separable with
respect to the measure P , if P (A0) > 0, it follows that there exists a real c > δ?, such that
P ({ν ∈M : Lz (ν) > c}) > 0. By observing that {ν ∈M : Lz (ν) > c} ⊂ A2, it follows that
P (A2) > 0. Moreover, if P (A0) = 0, it holds that P (A2) = 1. Hence, from (247), for all
λ ∈ Kz, it holds that,

K(1)
z

Å
− 1

λ

ã
>δ?P

(λ)
Θ|Z=z(L?z) + δ?P

(λ)
Θ|Z=z(A2) (248)

=δ?, (249)

where, the inequality in (248) follows from noticing that for all θ ∈ A2, it holds that Lz (θ) >
δ?.

The second part of the proof is as follows. Under the assumption that the function Lz in (5b) is
not separable with respect to the measure P , it holds that P (A0) = 1 and P (A1) = P (A2) = 0.
Hence, from (247), it follows that

K(1)
z

Å
− 1

λ

ã
= δ?. (250)

This completes the proof.
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M Proof of Lemma 2.12

Consider the following sets

A0,{ν ∈M : Lz (ν) = δ?} , (251)
A1,{ν ∈M : Lz (ν) < δ?} , and (252)
A2,{ν ∈M : Lz (ν) > δ?} , (253)

with δ? in (46) and the function Lz in (5b).

For all λ ∈ Kz, the following holds,

1=P
(λ)
Θ|Z=z (A0) + P

(λ)
Θ|Z=z (A1) + P

(λ)
Θ|Z=z (A2) (254)

=P
(λ)
Θ|Z=z (A0) + P

(λ)
Θ|Z=z (A2) (255)

=P
(λ)
Θ|Z=z (A0) +

∫
A2

dP
(λ)
Θ|Z=z(θ), (256)

where, the equality in (255) follows from noticing that P (A1) = 0 and thus, P (λ)
Θ|Z=z(A1) = 0

(Lemma 2.6).

The above implies that

1= lim
λ→0+

P
(λ)
Θ|Z=z (A0) + lim

λ→0+

∫
A2

dP
(λ)
Θ|Z=z

dP
(θ) dP (θ) (257)

= lim
λ→0+

P
(λ)
Θ|Z=z (A0) +

∫
A2

lim
λ→0+

dP
(λ)
Θ|Z=z

dP
(θ) dP (θ) (258)

= lim
λ→0+

P
(λ)
Θ|Z=z (A0) , (259)

where, the equality in (258) follows from noticing two facts: (a) For all λ ∈ Kz, the Randon-

Nikodym derivative
dP

(λ)

Θ|Z=z

dP is positive and bounded (Lemma 2.3); and (b) For all θ ∈ A2, it

holds that limλ→0+
dP

(λ)

Θ|Z=z

dP (θ) = 0. Hence, the dominated convergence theorem [3, Theorem
1.6.9] holds.

Finally, by noticing that A0 = L?z, it holds that

lim
λ→0+

P
(λ)
Θ|Z=z (L?z) = 1, (260)

which completes the proof.
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N Proof of Theorem 2.3
From (247) in the proof of Lemma 2.11, it holds that

lim
λ→0+

K(1)
z

Å
− 1

λ

ã
= lim
λ→0+

δ?P
(λ)
Θ|Z=z(L?z) + lim

λ→0+

∫
A2

Lz (θ) dP
(λ)
Θ|Z=z(θ) (261)

= lim
λ→0+

δ?P
(λ)
Θ|Z=z(L?z) + lim

λ→0+

∫
A2

Lz (θ)
dP

(λ)
Θ|Z=z

dP
(θ) dP (θ) (262)

= lim
λ→0+

δ?P
(λ)
Θ|Z=z(L?z) +

∫
A2

Lz (θ) lim
λ→0+

dP
(λ)
Θ|Z=z

dP
(θ) dP (θ) (263)

=δ? lim
λ→0+

P
(λ)
Θ|Z=z(L?z) (264)

=δ?, (265)

where, the equality in (263) follows from noticing two facts: (a) For all λ ∈ Kz, the Randon-

Nikodym derivative
dP

(λ)

Θ|Z=z

dP is positive and bounded (Lemma 2.3); and (b) For all θ ∈ A2, it

holds that limλ→0+
dP

(λ)

Θ|Z=z

dP (θ) = 0. Hence, the dominated convergence theorem [3, Theorem
1.6.9] holds. The inequality in (264) follows from Lemma 2.12 This completes the proof.

O Proof of Lemma 2.13
The proof is divided into two parts. In the first part, given a real α ∈ Kz, it is proven that if
the set R1 (α) is nonnegligible with respect to P (α)

Θ|Z=z, then the set R2 (α) is nonnegligible with

respect to P (α)
Θ|Z=z. The second part of the proof consists in proving that, given a real α ∈ Kz, if

the set R2 (α) is nonnegligible with respect to P (α)
Θ|Z=z, then the set R1 (α) is nonnegligible with

respect to P (α)
Θ|Z=z.

The first part is proved by contradiction. Assume that set R2 (α) is negligible with respect to
P

(α)
Θ|Z=z. Hence, from Lemma 2.10, it holds that

K(1)
z

Å
− 1

α

ã
=

∫
R0(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(α)
Θ|Z=z (ν)

+

∫
R2(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) (266)

=

∫
R0(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) (267)

=K(1)
z

Å
− 1

α

ã
P

(α)
Θ|Z=z (R0(α)) +

∫
R1(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) (268)

<K(1)
z

Å
− 1

α

ã
P

(α)
Θ|Z=z (R0(α)) +K(1)

z

Å
− 1

α

ã
P

(α)
Θ|Z=z (R1(α)) (269)

=K(1)
z

Å
− 1

α

ãÄ
P

(α)
Θ|Z=z (R0(α)) + P

(α)
Θ|Z=z (R1(α))

ä
(270)

=K(1)
z

Å
− 1

α

ã
, (271)

which is a contradiction.
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The second part of the proof follows the same arguments as in the first part. Assume that the
set R1 (α) is negligible with respect to P (α)

Θ|Z=z. Hence, from Lemma 2.10, it holds that

K(1)
z

Å
− 1

α

ã
=

∫
R0(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(α)
Θ|Z=z (ν)

+

∫
R2(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) (272)

=

∫
R0(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) +

∫
R2(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) (273)

=K(1)
z

Å
− 1

α

ã
P

(α)
Θ|Z=z (R0(α)) +

∫
R2(α)

Lz (ν) dP
(α)
Θ|Z=z (ν) (274)

>K(1)
z

Å
− 1

α

ã
P

(α)
Θ|Z=z (R0(α)) +K(1)

z

Å
− 1

α

ã
P

(α)
Θ|Z=z (R2(α)) (275)

=K(1)
z

Å
− 1

α

ãÄ
P

(α)
Θ|Z=z (R0(α)) + P

(α)
Θ|Z=z (R2(α))

ä
(276)

=K(1)
z

Å
− 1

α

ã
, (277)

which is also a contradiction. This completes the proof.

P Proof of Theorem 2.4
From Theorem 2.2, it follows that for all (λ1, λ2) ∈ Kz ×Kz with λ1 > λ2,∫

Lz (α)
dP

(λ1)
Θ|Z=z

dP
(α) dP (α)>

∫
Lz (α)

dP
(λ2)
Θ|Z=z

dP
(α) dP (α) , (278)

which implies the following inclusions:

R1(λ2)⊆R1(λ1), and (279a)
R2(λ1)⊆R2(λ2), (279b)

with the sets R1(·) and R2(·) in (76). From (81), it holds that for all i ∈ {1, 2},

N (λi) = R2(λi)
c, (280)

where the complement is with respect to M. Thus, the inclusion in (279b) and the equality
in (280) yields,

N (λ1) ⊇ N (λ2). (281)

The inclusion M ⊇ N (λ1) follows from (81). Alternatively, the inclusion N (λ2) ⊇ N ?, follows
from observing that for all ν ∈ N ?,∫

Lz (α)
dP

(λ2)
Θ|Z=z

dP
(α) dP (α)>δ?

∫ dP
(λ2)
Θ|Z=z

dP
(α) dP (α) (282)

>δ? (283)
>Lz (ν) , (284)
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which implies that ν ∈ N (λ2). This completes the proof of (85).

The proof of (86) is as follows. From the mean value theorem [3] and the assumption that the
empirical risk function Lz in (5b) is continuous onM, it follows that for all λ ∈ Kz, there always
exists a model θ ∈M, such that

Lz (θ) =

∫
Lz (α) dP

(λ)
Θ|Z=z (α) , (285)

which implies that R0 (λ) is not empty, and as a consequence, N (λ) = R0 (λ1) ∪R1 (λ1) is not
empty. Hence, for all θ ∈ R0 (λ1) it holds that θ /∈ N (λ2). This proves that the elements of
R0 (λ1) are in N (λ1) but not in N (λ2). This, together with (281), verifies that

N (λ1)⊃N (λ2) . (286)

The strict inclusionM⊃ N (λ1) is proved by contradiction. Assume that there exists a λ ∈ Kz
such that M = N (λ). Then, R2 (λ) = ∅ and thus, P (λ)

Θ|Z=z (R2 (λ)) = 0, which together with

Lemma 2.13, implies that P (λ)
Θ|Z=z (R1 (λ)) = 0 and consequently,

P
(λ)
Θ|Z=z (R0 (λ)) = 1. (287)

This contradicts the assumption that the function Lz is separable (Definition 2.2). Hence,M⊃
N (λ1).

Finally, the strict inclusion N (λ2) ⊃ N ? is proved by contradiction. Assume that there exists a
λ ∈ Kz such that N ? = N (λ). Hence, three cases might arise:
(a) there exists a λ ∈ Kz, such that δ? < K

(1)
z

(
− 1
λ

)
and the set

¶
ν ∈M : δ? < Lz (ν) 6 K

(1)
z

(
− 1
λ

)©
=

∅;
(b) there exists a λ ∈ Kz, such that δ? > K

(1)
z

(
− 1
λ

)
and the set

¶
ν ∈M : K

(1)
z

(
− 1
λ

)
< Lz (ν) 6 δ?

©
=

∅; or
(c) there exists a λ ∈ Kz, such that δ? = K

(1)
z

(
− 1
λ

)
.

The cases (a) and (b) are absurd. Hence, the proof is complete only by considering the case (c).
In the case (c), it holds that,

R1 (λ)={ν ∈M : Lz (ν) < δ?} , (288)

which implies that
P

(λ)
Θ|Z=z (R1 (λ)) = 0. (289)

From Lemma 2.13 and (289), it follows that,

P
(λ)
Θ|Z=z (R2 (λ)) = 0. (290)

Finally, by noticing that

1=P
(λ)
Θ|Z=z (R0 (λ)) + P

(λ)
Θ|Z=z (R1 (λ)) + P

(λ)
Θ|Z=z (R2 (λ)) (291)

=P
(λ)
Θ|Z=z (R0 (λ)) , (292)

leads to the conclusion that the assumption that there exists a λ ∈ Kz such that N ? = N (λ)
is a contradiction to the assumption that the function Lz is separable (Definition 2.2). Hence,
N (λ2) ⊃ T (z), which completes the proof of (86).
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Q Proof of Theorem 2.5

The proof of (87) is based on the analysis of the derivative of P (λ)
Θ|Z=z (A) with respect to λ, for

some fixed set A ⊆M. More specifically, given a γ ∈ Kz, it holds that

P
(γ)
Θ|Z=z (A)=

∫
A

dP
(γ)
Θ|Z=z

dP
(α) dP (α) , (293)

and from the fundamental theorem of calculus [38], it follows that for all (λ1, λ2) ∈ Kz×Kz with
λ1 > λ2,

P
(λ1)
Θ|Z=z (A)− P (λ2)

Θ|Z=z (A)=

∫ λ1

λ2

d

dγ
P

(γ)
Θ|Z=z (A) dγ (294)

=

∫ λ1

λ2

d

dγ

∫
A

dP
(γ)
Θ|Z=z

dP
(α) dP (α) dγ (295)

=

∫ λ1

λ2

∫
A

d

dγ

dP
(γ)
Θ|Z=z

dP
(α) dP (α) dγ, (296)

where the equality in (295) follows from (293); and the equality in (296) holds from Theorem 2.1
and the dominated convergence theorem [3].

For all θ ∈ suppP , the following holds,

d

dλ

dP
(λ)
Θ|Z=z

dP
(θ)=

d

dλ

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

(297)

=

1
λ2 Lz (θ) exp

Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dP (ν)

−
1
λ2 exp

Ä
−Lz(θ)

λ

ä∫
Lz (α) exp

Å
−Lz (α)

λ

ã
dP (α)Å∫

exp

Å
−Lz (ν)

λ

ã
dP (ν)

ã2 (298)

=
1

λ2
Lz (θ)

dP
(λ)
Θ|Z=z

dP
(θ)

− 1

λ2

dP
(λ)
Θ|Z=z

dP
(θ)

∫
Lz (ν)

dP
(λ)
Θ|Z=z

dP
(ν) dP (ν) (299)

=
1

λ2

dP
(λ)
Θ|Z=z

dP
(θ)

Å
Lz (θ)−

∫
Lz (ν) dP

(λ)
Θ|Z=z (ν)

ã
. (300)

Plugging (300) into (296) yields,

P
(λ1)
Θ|Z=z (A)− P (λ2)

Θ|Z=z (A)

=

∫ λ1

λ2

∫
A

1

γ2

dP
(γ)
Θ|Z=z

dP
(α)

Å
Lz (α)−

∫
Lz (ν) dP

(γ)
Θ|Z=z (ν)

ã
dP (α) dγ (301)

=

∫ λ1

λ2

∫
A

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(γ)
Θ|Z=z (ν)

ã
dP

(γ)
Θ|Z=z (α) dγ. (302)

RR n° 9454



54 Perlaza, Bisson, Esnaola, Jean-Marie, and Rini

Note that for all α ∈ N (λ2), it holds that for all γ ∈ (λ2, λ1),

Lz (α)−
∫

Lz (ν) dP
(γ)
Θ|Z=z (ν) 6 0, (303)

and thus, ∫
N (λ2)

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(γ)
Θ|Z=z (ν)

ã
dP

(γ)
Θ|Z=z (α)60. (304)

The equalities in (302) and (304), with A = N (λ), imply that

P
(λ1)
Θ|Z=z (N (λ2))− P (λ2)

Θ|Z=z (N (λ2))60. (305)

The inequality 0 < P
(λ1)
Θ|Z=z(N (λ2)) in (87) is proved by contradiction. Assume that for some

λ ∈ Kz it holds that 0 = P
(λ)
Θ|Z=z(N (λ2)). Then, P (λ)

Θ|Z=z(R0(λ2))+P
(λ)
Θ|Z=z(R1(λ2)) = 0, which

implies that P (λ)
Θ|Z=z(R2(λ2)) = 1, which is a contradiction. See for instance, Lemma 2.14. This

completes the proof of (87).

The proof of (88) is divided into two parts. The first part shows that if for all pairs (λ1, λ2) ∈
Kz ×Kz with λ1 > λ2,

P
(λ1)
Θ|Z=z(N (λ2)) < P

(λ2)
Θ|Z=z(N (λ2)), (306)

then the function Lz is separable. The second part of the proof shows that if the function Lz is
separable, then, for all pairs (λ1, λ2) ∈ Kz×Kz with λ1 > λ2, the inequality in (306) holds.

The first part is as follows. In the proof of Theorem 2.4 it is shown (see (302)) that for all pairs
(λ1, λ2) ∈ Kz ×Kz with λ1 > λ2,

P
(λ1)
Θ|Z=z (N (λ2))− P (λ2)

Θ|Z=z (N (λ2))

=

∫ λ1

λ2

∫
N (λ2)

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(γ)
Θ|Z=z (ν)

ã
dP

(γ)
Θ|Z=z (α) dγ. (307)

Assume that for a given pair (λ1, λ2) ∈ Kz × Kz, with λ1 > λ2, the inequality in (306) holds.
Then, from (307),

0>

∫ λ1

λ2

∫
N (λ2)

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(γ)
Θ|Z=z (ν)

ã
dP

(γ)
Θ|Z=z (α) dγ

=

∫ λ1

λ2

∫
R1(λ2)

1

γ2

Å
Lz (α)−

∫
Lz (ν) dP

(γ)
Θ|Z=z (ν)

ã
dP

(γ)
Θ|Z=z (α) dγ (308)

where the equality in (308) follows from noticing that R0 (λ2) and R1 (λ2) form a partition of
N (λ2), with the sets R0 (λ2), R1 (λ2) and N (λ2) defined in (76a), (76b), and (81), respec-
tively.

The inequality in (308) implies that the set R1 (λ2) is nonnegligible with respect to P (γ)
Θ|Z=z, for

some γ ∈ (λ2, λ1). Hence, from Lemma 2.14, it follows that both sets R1 (λ2) and R2 (λ2) are
nonnegligible with respect to P (γ)

Θ|Z=z.
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From the above arguments, it has been proved that given a pair (λ1, λ2) ∈ Kz×Kz with λ1 > λ2,
if

P
(λ1)
Θ|Z=z(N (λ2)) < P

(λ2)
Θ|Z=z(N (λ2)), (309)

then there always exists a positive γ ∈ (λ1, λ2) such that the sets R1 (λ2) and R2 (λ2) are
not negligible with respect to P (γ)

Θ|Z=z. Moreover, such sets R1 (λ2) and R2 (λ2) satisfy for all
(ν1,ν2) ∈ R2 (λ)×R1 (λ),

Lz (ν1)> K(1)
z

Å
− 1

λ

ã
>Lz (ν2) , (310)

which together with Definition 2.3 verify that the function Lz is separable. This ends the first
part of the proof.

The second part of the proof is under the assumption that the empirical risk function Lz in (5b)
is separable. That is, from Definition 2.3, for all γ ∈ Kz, there exist a positive real cγ > 0 and
two subsets A(γ) and B(γ) ofM nonnegligible with respect to P (γ)

Θ|Z=z in (37) that verify that
for all (ν1,ν2) ∈ A(γ)× B(γ),

Lz (ν1)> cγ >Lz (ν2) . (311)

In the proof of Theorem 2.4, c.f. (302), it has been proved that given a pair (α1, α2) ∈ Kz ×Kz,
with α1 > γ > α2, it holds that for all subsets A ofM,

P
(α1)
Θ|Z=z (A)− P (α2)

Θ|Z=z (A)

=

∫ α1

α2

∫
A

1

λ2

dP
(λ)
Θ|Z=z

dP
(α)

Å
Lz (α)−

∫
Lz (ν) dP

(λ)
Θ|Z=z (ν)

ã
dP (α) dλ (312)

=

∫ α1

α2

∫
A

1

λ2

Å
Lz (α)−

∫
Lz (ν) dP

(λ)
Θ|Z=z (ν)

ã
dP

(λ)
Θ|Z=z (α) dλ. (313)

Hence, two cases are studied. The first case considers that

cγ < K(1)
z

Å
− 1

γ

ã
, (314)

with cγ in (311). The second case considers that

cγ > K(1)
z

Å
− 1

γ

ã
. (315)

In the first case, it follows from (81) that

B (γ) ⊂ N (γ) , (316)

which implies that

P
(γ)
Θ|Z=z (N (γ))>P (γ)

Θ|Z=z (B (γ)) (317)
>0, (318)
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where, the inequality in (318) follows from the fact that B (γ) is nonnegligible with respect to
P

(γ)
Θ|Z=z. This implies that the set N1 (γ) is not negligible with respect P (γ)

Θ|Z=z. Moreover,
from (81) and (316), it follows that for all α ∈ N (γ) and for all λ ∈ (γ, α1),

Lz (α)−
∫

Lz (ν) dP
(λ)
Θ|Z=z (ν)<Lz (α)− cγ (319)

<0, (320)

where the inequality in (319) follows from (314); and the inequality in (320) follows from (311).
Thus, ∫ α1

γ

∫
N (γ)

1

λ2

Å
Lz (α)−

∫
Lz (ν) dP

(λ)
Θ|Z=z (ν)

ã
dP

(λ)
Θ|Z=z (α) dλ<0, (321)

which implies, from (313), that

P
(α1)
Θ|Z=z (N (γ))− P (γ)

Θ|Z=z (N (γ))<0. (322)

Assume now that cγ > K
(1)
z

Ä
− 1
γ

ä
. Hence, the following holds

A (γ) ⊆ R2 (γ) , (323)

which implies that

P
(γ)
Θ|Z=z (R2 (γ))>P (γ)

Θ|Z=z (A (γ)) (324)
>0, (325)

where the inequality in (325) follows from the fact that A (γ) is nonnegligible with respect
to P

(γ)
Θ|Z=z. This implies that the set R2 (γ) is not negligible with respect P (γ)

Θ|Z=z. From
Lemma 2.13, it follows that both R1 (γ) and R2 (γ) are nonnegligible with respect to P (γ)

Θ|Z=z.
Using this result, the following holds,

P
(γ)
Θ|Z=z (N (γ))>P (γ)

Θ|Z=z (R1 (γ)) (326)
>0, (327)

which proves the set N (γ) is nonnegligible with respect to P (γ)
Θ|Z=z.

From (81) and Theorem 2.2, it follows that for all α ∈ N (γ) and for all λ ∈ (γ, α1),

0>Lz (α)−
∫

Lz (ν) dP
(γ)
Θ|X=z=y (ν) (328)

>Lz (α)−
∫

Lz (ν) dP
(λ)
Θ|X=z=y (ν) . (329)

Thus, ∫ α1

γ

∫
N (γ)

1

λ2

Å
Lz (α)−

∫
Lz (ν) dP

(λ)
Θ|Z=z (ν)

ã
dP

(λ)
Θ|Z=z (α) dλ<0, (330)

which implies, from (313), that

P
(α1)
Θ|Z=z (N (γ))− P (γ)

Θ|Z=z (N (γ))<0. (331)

The inequality 0 < P
(λ1)
Θ|Z=z(N (λ2)) in (88) has already been proved while proving (87), and thus,

this completes the proof of (88).
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R Proof of Lemma 2.15

The proof is based on the observation that

N (λ1)=N (λ2) ∪ (N (λ1) ∩R2 (λ2)) , (332)

and the fact that N (λ2) and (N (λ1) ∩R2 (λ2)) are disjoint. Hence, for all i ∈ {1, 2},

P
(λi)
Θ|Z=z(N (λ1))=P

(λi)
Θ|Z=z

Å
N (λ2) ∪ (N (λ1) ∩R2 (λ2))

ã
(333)

=P
(λi)
Θ|Z=z

Å
N (λ2)

ã
+ P

(λi)
Θ|Z=z

Å
N (λ1) ∩R2 (λ2)

ã
(334)

=P
(λi)
Θ|Z=z

Å
N (λ2)

ã
, (335)

where the equality in (334) follows from Lemma 2.6 and the equality in (89).

Note that the sets N (λ2), N (λ1) ∩ R2 (λ2) and R1 (λ1) form a partition of M and thus, the
equality in (89) implies that for all i ∈ {1, 2},

0 < P
(λi)
Θ|Z=z(N (λ2))=1− P (λi)

Θ|Z=z

Å
R1 (λ1)

ã
(336)

=P
(λi)
Θ|Z=z

Å
R0 (λ1)

ã
+ P

(λi)
Θ|Z=z

Å
R2 (λ1)

ã
, (337)

where the inequality in (336) holds from Theorem 2.5. Finally, under the assumption that the
empirical function Lz in (5b) is separable, it holds from Theorem 2.5 that

P
(λ1)
Θ|Z=z(N (λ2)) < P

(λ2)
Θ|Z=z(N (λ2)). (338)

Plugging (335) into (338), with i = 1, yields,

P
(λ1)
Θ|Z=z(N (λ1)) < P

(λ2)
Θ|Z=z(N (λ2)), (339)

and this completes the proof.

S Proof of Theorem 2.6

lim
λ→0+

P
(λ)
Θ|Z=z(N (λ))= lim

λ→0+
P

(λ)
Θ|Z=z(L?z) + lim

λ→0+
P

(λ)
Θ|Z=z(N (λ)) (340)

= lim
λ→0+

P
(λ)
Θ|Z=z(L?z) (341)

=

ß
0 if L?z = ∅
1 if L?z 6= ∅,

(342)

where, the equalities in (341) follows Lemma 2.12. This completes the proof.
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T Proof of Lemma 2.16
The cumulant generating function Jz,λ in (98) induced by the measure P (λ)

W |Z=z in (96) evaluated
at t, with t 6 1

λ , is

Jz,λ(t)=log

Ñ∫
exp (t Lz (u))

dP
(λ)
Θ|Z=z

dP
(u) dP (u)

é
(343)

=log

Å∫
exp (t Lz (u)) exp

Å
−Kz

Å
− 1

λ

ã
− 1

λ
Lz (u)

ã
dP (u)

ã
(344)

=log

Å∫
exp

ÅÅ
t− 1

λ

ã
Lz (u)−Kz

Å
− 1

λ

ãã
dP (u)

ã
(345)

=log

(∫
exp

(Å
t− 1

λ

ã
Lz (u)−Kz

Å
t− 1

λ

ã
+Kz

Å
t− 1

λ

ã
−Kz

Å
− 1

λ

ã)
dP (u)

)
(346)

=Kz

Å
t− 1

λ

ã
−Kz

Å
− 1

λ

ã
=+ log

Å∫
exp

ÅÅ
t− 1

λ

ã
Lz (u)−Kz

Å
t− 1

λ

ãã
dP (u)

ã
(347)

=Kz

Å
t− 1

λ

ã
−Kz

Å
− 1

λ

ã
+ log

Ü∫ dP

Å
− 1

t− 1
λ

ã
Θ|Z=z

dP
(u) dP (u)

ê
(348)

=Kz

Å
t− 1

λ

ã
−Kz

Å
− 1

λ

ã
, (349)

where the equality in (344) follows from Theorem 2.1; and the equality in (348) follows from the
fact that − 1

t− 1
λ

> 0 for all t < 1
λ . This completes the proof.

U Proof of Lemma 3.1
From [9, Corollary 4.15, Page 100], it follows that the probability measures P andQ in (M,B (M))
satisfy the following equality:

D (Q‖P ) = sup
f

∫
f (θ) dQ (θ)− log

∫
exp (f (θ)) dP (θ) , (350)

where the supremum is over the space of all measurable functions f with respect to (M,B (M))
and (R,B (R)), such that

∫
exp (f (θ)) dP (θ) < ∞. Hence, for all u ∈ (X × Y)

n and for all
t ∈ (−∞, 0), it follows that the empirical risk function Lu in (5b) satisfies that

D (Q‖P )>
∫
tLu (θ) dQ (θ)− log

∫
exp (tLu (θ)) dP (θ) (351)

>
∫
tLu (θ) dQ (θ)− log

∫
exp (tLu (θ) + tµ− tµ) dP (θ) . (352)

=

∫
tLu (θ) dQ (θ)−

∫
tLu (θ) dP (θ)− log

∫
exp (tLu (θ)− tµ) dP (θ) , (353)
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which leads to∫
Lu (θ) dQ (θ)−

∫
Lu (θ) dP (θ)6

D (Q‖P ) + log
∫

exp (t (Lu (θ)− µ)) dP (θ)

t
. (354)

Given that t can be chosen arbitrarily in (−∞, 0), it holds that∫
Lu (θ) dQ (θ)−

∫
Lu (θ) dP (θ)6 inf

t∈(−∞,0)

D (Q‖P ) + log
∫

exp (t (Lu (θ)− µ)) dP (θ)

t
, (355)

which completes the proof.

V Proof of Theorem 3.3
From Lemma 3.1, it holds that the probability measure P (λ)

Θ|Z=z in (37), satisfies∫
Lz(θ)dQ(θ)−

∫
Lz(θ)dP

(λ)
Θ|Z=z(θ)

6 inf
t∈(−∞,0)

Ñ
D
Ä
Q‖P (λ)

Θ|Z=z

ä
+ log

Ä∫
exp
Ä
t
Ä
Lz (θ)−K(1)

z

(
− 1
λ

)ää
dP

(λ)
Θ|Z=z(θ)

ä
t

é
, (356)

where the function K(1)
z is defined in (57). Moreover, for all t ∈ (−∞, 0),

log

Å∫
exp

Å
t

Å
Lz (θ)−K(1)

z

Å
− 1

λ

ããã
dP

(λ)
Θ|Z=z(θ)

ã
=log

Å∫
exp (t Lz (θ)) dP

(λ)
Θ|Z=z(θ)

ã
− tK(1)

z

Å
− 1

λ

ã
(357)

=Jz,λ(t)− tK(1)
z

Å
− 1

λ

ã
(358)

6
1

2
t2B2

z, (359)

where the inequality in (358) follows from (98); the inequality in (359) follows from Theorem 2.7;
and the constant Bz is defined in (103).

Plugging (359) into (356) yields for all t ∈ (−∞, 0),∫
Lz(θ)dQ(θ)−

∫
Lz(θ)dP

(λ)
Θ|Z=z(θ)6 inf

t∈(−∞,0)

D
Ä
Q‖P (λ)

Θ|Z=z

ä
+ 1

2 t
2B2
z

t
: (360)

Let the c ∈ R be defined as follows:

c,
∫

Lz(θ)dQ(θ)−
∫

Lz(θ)dP
(λ)
Θ|Z=z(θ). (361)

Hence, for all t ∈ (−∞, 0),

c t− 1

2
t2B2

z 6 D
Ä
Q‖P (λ)

Θ|Z=z

ä
. (362)

The rest of the proof consists in finding an explicit expression for the absolute value of c. To this
aim, consider the function φ : R→ R such that

φ(α) =
1

2
α2B2

z, (363)
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and note that φ is a positive and strictly convex function with φ(0) = 0. Let the Legendre-Fenchel
transform of φ be the function φ∗ : R→ R, and thus for all x ∈ R,

φ∗(x) = max
t∈(−∞,0)

xt− φ(t). (364)

In particular, note that

φ∗(c) 6 D
Ä
Q‖P (λ)

Θ|Z=z

ä
. (365)

Note that for all x ∈ R and for all t ∈ (−∞, 0), the function φ? in (364) satisfies

x t− 1

2
t2B2

z 6 φ?(x) = xα?(x)− φ (α?(x)) , (366)

where the term α?(x) represents the unique solution in α ∈ (−∞, 0) to

d

dα
(xα− φ (α)) = x− αB2

z = 0. (367)

That is,

α?(x)=
x

B2
z

. (368)

Plugging (368) into (366) yields,

φ?(x)=
x2

2B2
z

. (369)

Hence, from (365) and (366), given c in (361) for all t ∈ (−∞, 0),

c t− 1

2
t2B2

z 6 φ?(c) 6 D
Ä
Q‖P (λ)

Θ|Z=z

ä
, (370)

and thus,
c2

2B2
z

6 D
Ä
Q‖P (λ)

Θ|Z=z

ä
. (371)

This implies that either,

c 6
√

2B2
zD
Ä
Q‖P (λ)

Θ|Z=z

ä
(372)

or

c > −
√

2B2
zD
Ä
Q‖P (λ)

Θ|Z=z

ä
, (373)

which leads to ∣∣∣∣∫ Lz(θ)dQ(θ)−
∫

Lz(θ)dP
(λ)
Θ|Z=z(θ)

∣∣∣∣6√2B2
zD
Ä
Q‖P (λ)

Θ|Z=z

ä
, (374)

and completes the proof.
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W Proof of Theorem 3.4
The optimization problem in (117) can be re-written as follows:

min
Q

∫
Lz (ν)

dQ

dP
(λ)
Θ|Z=z

(ν) dP
(λ)
Θ|Z=z (ν) , (375a)

subject to:
∫

dQ

dP
(λ)
Θ|Z=z

(ν) log

Ñ
dQ

dP
(λ)
Θ|Z=z

(ν)

é
dP

(λ)
Θ|Z=z (ν) 6 c, (375b)

where the optimization is over all measures Q on (M,B (M)) that are absolutely continuous
with P (λ)

Θ|Z=z (ν) and satisfy ∫
dQ (ν) = 1. (376)

Let M be the set of nonnegative measurable functions with respect to the measurable spacesÄ
suppP

(λ)
Θ|Z=z,B

Ä
suppP

(λ)
Θ|Z=z

ää
and (R,B (R)). The Lagrangian of the optimization problem

in (375) can be constructed in terms of a function in M , instead of a measure over the measurable
space

Ä
suppP

(λ)
Θ|Z=z,B

Ä
suppP

(λ)
Θ|Z=z

ää
. Let such Lagrangian L : M × [0,+∞)2 → R be of the

form

L (g, α, β)=

∫
Lz (ν) g (ν) dP

(λ)
Θ|Z=z (ν) + α

Å∫
g (ν) log (g (ν)) dP

(λ)
Θ|Z=z (ν)− c

ã
+β

Å∫
g (ν) dP

(λ)
Θ|Z=z (ν)− 1

ã
, (377)

where g is a notation to represent the Radon-Nikodym derivative dQ

dP
(λ)

Θ|Z=z

; the reals α and β

are both nonnegative and act as Lagrangian multipliers due to the constraint (375b) and (139),
respectively.

Let h : Rk → R be a function in M . The Gateaux differential of the functional L in (377) at
(g, α, β) ∈M × [0,+∞)2 in the direction of h is

∂L (g, α, β;h) ,
d

dγ
r(γ)

∣∣∣∣
γ=0

, (378)

where the real function r : R→ R is such that for all γ ∈ R,

r(γ)=

∫
Lz (ν) (g (ν) + γh (ν)) dP

(λ)
Θ|Z=z (ν) +

α

Å∫
(g (ν) + γh (ν)) log (g (ν) + γh (ν)) dP

(λ)
Θ|Z=z (ν)− c

ã
+β

Å∫
(g (ν) + γh (ν)) dP

(λ)
Θ|Z=z (ν)− 1

ã
, (379)

Note that the derivative of the real function r in (380) is

d

dγ
r(γ)=

∫
Lzh (ν) dP

(λ)
Θ|Z=z (ν)

+α

∫
h (ν) dP

(λ)
Θ|Z=z (ν) + α

∫
h (ν) log (g (ν) + γh (ν)) dP

(λ)
Θ|Z=z (ν)

+β

∫
h (ν) dP

(λ)
Θ|Z=z (ν) . (380)
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From (378) and (380), it follows that

∂L (g, α, β;h)=

∫
h (ν) (Lz (ν) + α (1 + log g (ν)) + β) dP

(λ)
Θ|Z=z (ν) . (381)

From [27, Theorem 1, page 178], it holds that a necessary condition for the functional L in (377)
to have a minimum at (g, α, β) ∈M × [0,+∞)2 is that for all functions h ∈ C (M)

∂L (g, α, β;h) = 0, (382)

which implies that for all ν ∈M,

Lz (ν) + α (1 + log g (ν)) + β = 0. (383)

Thus,

g (ν) = exp

Å
−Lz (ν)

α

ã
exp

Å
−β + α

α

ã
, (384)

where α and β are chosen to satisfy their corresponding constraints. That is,

dQ

dP
(λ)
Θ|Z=z

(ν) =
exp
Ä
−Lz(ν)

α

ä∫
exp

Å
−Lz (θ)

α

ã
dP

(λ)
Θ|Z=z (θ)

, (385)

where α is chosen to satisfy

D
Ä
Q‖P (λ)

Θ|Z=z

ä
= c. (386)

From Lemma 2.6, it follows that the probability measure Q and the σ-finite measure P sat-
isfy,

dQ

dP
(ν)=

dQ

dP
(λ)
Θ|Z=z

(ν)
dP

(λ)
Θ|Z=z

dP
(ν) (387)

=

Ü
exp
Ä
−Lz(ν)

α

ä∫
exp

Å
−Lz (θ)

α

ã
dP

(λ)
Θ|Z=z (θ)

êÜ
exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dP (θ)

ê
(388)

=


exp
Ä
−Lz(ν)

α

ä
∫ exp

Ä
−Lz(θ)

α

ä
exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dP (α)

dP (θ)



Ü
exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dP (θ)

ê
(389)

=
exp

(
−
(
1
α + 1

λ

)
Lz (ν)

)∫
exp

Å
−
Å

1

α
+

1

λ

ã
Lz (ν)

ã
dP (θ)

, (390)

which implies that Q is a P -Gibbs probability measure on (M,B (M)), with parameter αλ
α+λ .

That is, for all ν ∈ suppP ,

Q(v) = P
( αλ
α+λ )

Θ|Z=z (ν) , (391)
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where α is chosen to satisfy (386). Let the positive real ω be ω , αλ
α+λ . Thus, from Theorem 2.2,

it follows that ω ∈ (0, λ] and satisfies D
Ä
P

(ω)
Θ|Z=z (ν) ‖P (λ)

Θ|Z=z

ä
= c. The proof ends by verifying

that the objective function in (377) is strictly convex, and thus, the measure P (ω)
Θ|Z=z is the

unique minimizer. This completes the proof.
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