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Abstract

Statistical wisdom suggests that very complex models, interpolating training data, will
be poor at prediction on unseen examples. Yet, this aphorism has been recently challenged
by the identification of benign overfitting regimes, specially studied in the case of parametric
models: generalization capabilities may be preserved despite model high complexity. While it
is widely known that fully-grown decision trees interpolate and, in turn, have bad predictive
performances, the same behavior is yet to be analyzed for random forests. In this paper, we
study the trade-off between interpolation and consistency for several types of random forest
algorithms. Theoretically, we prove that interpolation regimes and consistency cannot be
achieved for non-adaptive random forests. Since adaptivity seems to be the cornerstone to bring
together interpolation and consistency, we introduce and study interpolating Adaptive Centered
Forests, which are proved to be consistent in a noiseless scenario. Numerical experiments show
that Breiman’s random forests are consistent while exactly interpolating, when no bootstrap
step is involved. We theoretically control the size of the interpolation area, which converges fast
enough to zero, so that exact interpolation and consistency occur in conjunction.

1 Introduction

Random Forests (RF) [8] have proven to be very efficient algorithms, especially on tabular data
sets. As any machine learning (ML) algorithm, Random Forests and Decision Trees have been
analyzed and used according to the overfitting-underfitting trade-off. Regularization parameters
have been introduced in order to control the variance while still reducing the bias. For instance,
one can increase the variety of the constructed trees (by playing either with bootstrap samples or
feature subsampling), or control the tree structure (by limiting either the number of points falling
within each leaf or the maximum depth of all trees).

However, the paradigm stating that high model complexity leads to bad generalization capacity
has been recently challenged: in particular, deeper and larger neural networks still empirically
exhibit high predictive performances [12]. In such situations, overfitting can be qualified of “benign”:
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complex models, possibly leading to interpolation of the training examples, still generalizes well on
unseen data [4].

Regarding parametric methods, benign overfitting has been exhibited and well understood in linear
regression [3, 22, 15]. Many researchers currently study the implicit bias or implicit regularisation
of stochastic gradient (SGD) strategies used during neural network training: the optimization of an
over-parametrized one-hidden-layer neural network via SGD will converge to a minimum of minimal
norm with good generalization properties in a regression setting [2], or with maximal margin in a
classification setting [10].

Regarding non-parametric methods, practitioners have noticed the good performances of high-depth
RFs for a long time (by default, several ML libraries, as the popular Scikit-Learn one, grow trees until
pure leaves are reached). More recently, the use of interpolating (or very deep) trees for boosting and
bagging methods has been advocated in Wyner et al.. Indeed, [24] believe that the self-averaging
process at hand in RF (or in boosting methods) also produces an implicit regularization which
restrains the interpolating algorithm from overfitting. They even argue that interpolation actually
provides robustness against noise: (i) the interpolating estimator would grasp the main signal thanks
to its averaging ability; (ii) its high complexity would allow it to locally interpolate a noisy point
without damaging the estimated function globally. This argument is to put in parallel with the
results proved in [6] where they show that an interpolating kernel method using a singular kernel
(K(x) = ||x||−α1||x||≤1) reaches minimax convergence rate for β-Hölder regular functions.

Contributions In this paper, we study the trade-off between interpolation and consistency for
several types of random forest algorithms. Theoretically, we prove that interpolation regimes and
consistency cannot be achieved for non-adaptive centered random forests (Section 3). The major
problems for combining interpolation and consistency arises from empty cells in tree partitions.
Therefore, we study kernel random forests (KeRF) that are built by averaging over all connected
data points (Section 4). By neglecting empty cells, these methods are consistent for larger tree
depths, which unfortunately does not meet the strict interpolation requirement. Since adaptivity
seems to be the cornerstone to bring together interpolation and consistency, we introduce and
study interpolating Adaptive Centered Forests (AdaCRF), which are proved to be consistent in
a noiseless scenario (Section 5). Numerical experiments show that Breiman random forests are
consistent and interpolate exactly, when the whole data set is used to build each tree (Section 6).
If bootstrap is used instead, we numerically show that Breiman random forests are consistent but
does not interpolate anymore: however each weak learner in the forest is inconsistent while being an
interpolator. Finally, we prove that the volume of the interpolation zone for an infinite Breiman RF
(without bootstrap) tends to 0 at a polynomial rate in the number of samples n and an exponential
rate in the dimension d (Section 6). This supports the idea that the decay of the interpolation
volume is fast enough to retrieve consistency despite interpolation. All proofs are given in Appendix
A and all details on experiments in Appendix B.
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2 Setting

Framework The general framework is the one of nonparametric regression. We assume to be
given a training set Dn := ((X1, Y1), ..., (Xn, Yn)), composed of i.i.d. copies of the generic random
variable (X,Y ), where X ∈ [0, 1]d is the input and Y ∈ R is the output. The underlying model
is assumed to satisfy Y = f?(X) + ε, where f?(x) = E [Y |X = x] is the regression function and
ε is a random centered noise of variance σ2 < ∞. Given an input vector x, the goal is then to
predict the associated square integrable random response by estimating f?(x). We measure the
performance of any estimator mn via its quadratic risk defined as R(mn) := E

[
(mn(x)− f?(x))2

]
.

The asymptotic performance of an estimator mn is assessed via its consistency, a property stating
that lim

n→∞
R(mn) = 0.

Estimator A Random Forest (RF) is a predictor consisting of a collection of M randomized trees
[see 9, for details about decision trees]. To build a forest, we generate M ∈ N? independent random
variables (Θ1, . . . ,ΘM ), distributed as a generic random variable Θ, independent of Dn. In our
setting, Θj actually represents the successive random splitting directions and the resampling data
mechanism in the j-th tree. The predicted value at the query point x given by the j-th tree is
defined as

mn(x,Θj) =

n∑
i=1

1Xi∈An(x,Θj)Yi

Nn(x,Θj)
1Nn(x,Θj)>0

where An(x,Θj) is the cell containing x and Nn(x,Θj) is the number of points falling into An(x,Θj).
The (finite) forest estimate then results from the aggregation of M trees:

mM,n(x,ΘM ) =
1

M

M∑
j=1

mn(x,Θj),

where ΘM := (Θ1, ...,ΘM ). By making the number M of trees grows towards infinity, we can
consider instead the infinite forest estimate, which has also played an important role in the theoretical
understanding of forests:

m∞,n(x) = EΘ[mn(x,Θ)],

where EΘ denotes the expectation w.r.t. Θ, conditional on Dn. This operation is justified by the
law of large numbers [see 20, for more details].

Several random forests have been proposed depending on the type of randomness they contain
(what Θ represents) and the type of decision trees they aggregate. Breiman forest is one of the most
widely used random forests, which exhibits excellent predictive performances. Unfortunately, its
behavior is difficult to theoretically analyze, because of the numerous complex mechanisms involved
in the predictive process (data resampling, data-dependent splits, split randomization). Therefore,
in this paper, we simultaneously study the consistency and interpolation properties of different
simplified versions of RF, both adaptive (i.e. when trees are built in a data-dependent manner) and
non-adaptive.
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All forests include a depth parameter, denoted kn, which limits the maximum length of each branch
in a tree, hence limiting the number of leaves (up to 2kn). In this work, we analyze how the tuning
of kn allows us to adjust the consistency and interpolation characteristics of the forest. The classical
notion of (exact) interpolation is defined below.

Definition 2.1 ((Exact) interpolation). An estimator mn is said to interpolate if for all training
data (Xi, Yi), we have mn(Xi) = Yi almost surely.

Recall that the prediction of a single tree at a point x is given by the average of all Yi such that
Xi is contained in the leaf of x. Therefore, each tree within a forest can be parameterized in order
to interpolate: it is sufficient to grow the tree until pure leaves (i.e. leaves containing labels of the
same values) are reached. In any regression model with continuous random noise, we have Yi 6= Yj
for all i 6= j almost surely. Therefore, an interpolating tree is a tree that contains at most one point
per leaf.

As the final prediction of the random forest is made by averaging the predictions of all its trees,
if all trees interpolate, the random forest interpolates as well. Consequently, throughout all the
theoretical analysis, we consider RF built without sub-sampling: each tree is built using the whole
dataset instead of bootstrap samples as in standard RF. We will discuss the empirical effect of
bootstrap in Section 6.

We start our analysis of interpolation and consistency of RF with the simple yet widely studied
Centered Random Forest (CRF).

3 Centered RF

Centered Random Forests [7] are ensemble methods that are said to be non-adaptive since trees are
built independently of the data: at each step of a centered tree construction, a feature is uniformly
chosen among all possible d features and the split along the chosen feature is made at the center
of the current cell. Then trees are aggregated to produce a CRF. For CRF, forest interpolation is
equivalent to tree interpolation, as shown below.

Lemma 3.1. The CRF mM,n interpolates if and only if all trees that compose the CRF interpolate.

Since CRF construction is non-adaptive, it is impossible to enforce exactly one observation per
leaf. Hence trees do not interpolate and in turn, the interpolation regime (Definition 2.1) cannot be
satisfied for CRF. This leads us to examine a weaker notion of interpolation in probability.

Proposition 3.2 (Probability of interpolation for a centered tree). Denote IT the event “a centered
tree of depth kn interpolates the training data”. Then, for all n ≥ 3, fixing kn = blog2(αnn)c, with
αn > 1, one has

e−
n

αn−1 ≤ P (IT ) ≤ e−
n

2(αn+1) .

4



According to Proposition 3.2, the probability that a tree interpolates tends to one if and only if
kn = blog2(αnn)c with αn = ω(n)1. Consequently, the regime αn = ω(n) completely characterizes
the interpolation of a centered tree. Proposition 3.2 can be in turn used to control the interpolation
probability of a centered RF.

Corollary 3.3 (Probability of interpolation for a CRF). We denote IF the event “a centered forest
mM,n(.,ΘM ) interpolates”. Then, for kn = blog2(αnn)c with αn ≥ 1,

P (IF ) ≤ e−
n

2(αn+1) . (1)

According to Corollary 3.3, the condition αn = ω(n) (corresponding to the interpolation of a
single centered tree with an overwhelming probability) is necessary to ensure that w.h.p., the forest
interpolates. Our analysis stresses out that a tree depth of at least kn = 2 log2(n) is required to
obtain tree/forest interpolation.

In fact, choosing kn of the order of log2(n) characterizes another type of interpolation regime. To
see this, consider a centered tree of depth k, whose leaves are denoted L1, . . . , L2k . The number of
points falling into the leaf Li is denoted Nn(Li). If X is uniformly distributed over [0, 1]d, then by
construction, for a given leaf Li,

P (X ∈ Li) =
1

2k
and E [Nn(Li)] =

n

2k
. (2)

Definition 3.4 (Mean interpolation regime). A CRF mM,n satisfies the mean interpolation regime
when each tree of mM,n has at least n leaves.

The mean interpolation regime is met for CRF if and only if kn ≥ log2 n. By Equation (2), this
implies that for all leaves Li, E [Nn(Li)] ≤ 1, that is each leaf contains at most one point in
expectation. Therefore, one could say that trees interpolate in expectation in the mean interpolation
regime.

In both interpolation regimes (mean and in probability), trees need to be very deep, with a growing
number of empty cells as n tends to infinity, eventually damaging the consistency of the overall
CRF.

Proposition 3.5. Suppose that E
[
f(X)2

]
> 0. Then the infinite Centered Random Forest of depth

kn ≥ blog2 nc is inconsistent.

The non-consistency of the CRF stems from the fact that the probability for a random point X to
fall in an empty cell does not converge to zero, introducing an irreducible bias in the excess risk.

Proposition 3.5 emphasizes the poor generalisation capacities of the interpolating CRF (under any
interpolating regime), which could be expected given its non-adaptive construction. Since controlling
empty cells seems crucial for the consistency, this motivates the analysis of kernel RFs (KeRF), in
which empty cells are not taken into account for the prediction at x (unless all cells containing x are
empty across all trees in the forest).

1i.e. αn asymptotically dominates n.
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4 Centered kernel RF

As formalized in [11] and developed in [1], slightly modifying the aggregation rule of tree estimates
provides a kernel-type estimator. Instead of averaging the predictions of all centered trees, the
construction of a kernel RF (KeRF) is performed by growing all centered trees and then averaging
along all points contained in the leaves in which x falls, i.e.

m̃M,n(x,ΘM ) :=

∑n
i=1 Yi

∑M
j=1 1Xi∈An(x,Θj)∑n

i=1

∑M
i=1 1Xi∈An(x,Θj)

.

One of the benefits of this construction is to limit the influence of empty cells, which can be harmful
for both consistency and interpolation (see Section 3). Letting KM,n be the connection function of
the M finite forest defined by

KM,n(x, z) :=
1

M

M∑
j=1

1z∈An(x,Θj),

[21] shows that the KeRF can be rewritten as

m̃M,n(x,ΘM ) =

∑n
i=1 YiKM,n(x,Xi)∑n
i=1KM,n(x,Xi)

,

hence the name of kernel RF. In addition, it is shown that

lim
M→∞

KM,n(x, z) := Kn(x, z),

where Kn(x, z) = PΘ [z ∈ An(x,Θ)] which can be seen as the empirical probability for x and z to
be in the same cell w.r.t. a tree built according to Θ. Consequently, for all x ∈ [0, 1]d, the infinite
KeRF reads as

m̃∞,n(x) =

∑n
i=1 YiKn(x,Xi)∑n
i=1Kn(x,Xi)

.

4.1 Interpolation Conditions

Since KeRF aggregate centered trees as CRF (but in a different way), results from Section 3 can be
extended to KeRF:

1. the mean interpolation regime is met for centered trees, and therefore for KeRF, as soon as
kn ≥ log2 n;

2. a necessary condition to attain the KeRF interpolation in probability is kn > 2 log2(n).

One can note that the depths required for both interpolation regimes are still large, leading to as
many empty cells for KeRF as for classical CRF but the aggregation rule is such that they are not
taken into account in KeRF predictions, which gives hope that consistency could be preserved.
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4.2 Consistency

In this section, we study the convergence of the centered KeRF when kn is of the order of log2(n),
i.e. under the mean interpolation regime. To this end, we consider extra hypotheses on the noise
and on the regularity of f?.

Theorem 4.1. Assume that f? is Lipschitz continuous and that the additive noise ε is a centered
Gaussian variable with a finite variance σ2. Then, the risk of the infinite centered KeRF of depth
kn = blog2(n)c verifies, for all n ≥ 2,

R(m̃∞,n) ≤ Cd log(n)−(d−11)/6,

with Cd > 0 a constant depending on σ, d, ‖f?‖∞.

Theorem 4.1 states that the infinite centered KeRF estimator is consistent as soon as d > 11, with a
slow convergence rate of log(n)−(d−11)/6. The proof is based on the general paradigm of bias-variance
trade-off and is adapted from [21]. At first sight, one might think that the rate becomes better as
the dimension d increases. This would be without thinking that the constant in front of it depends
on the dimension, so that the established bound should be regarded for any fixed d.

Choosing kn = blog2(n)c in Theorem 4.1 allows us to have a mean interpolation regime concomitant
with consistency for KeRF, therefore highlighting that consistency and mean interpolation are
compatible. This is not the case for CRF for which the mean interpolation regime forbids convergence
(Proposition 3.5). If a “mean” overfitting regime is benign for the consistency of KeRF, it seems to
be nonetheless malignant for the convergence rate. Indeed, Lin and Jeon [16] provides a lower bound
on the optimal convergence rate of a non-adaptive RF (such as the CRF), scaling in (log n)−(d−1).
This leads us to believe that the convergence rate we obtain in Theorem 4.1 is marginally improvable.

Interpolation for kernel estimators has been studied recently for singular kernel by [6]. Since KeRF
are kernel estimators, one can wonder how sharp is our bound (Theorem 4.1) compared to that of
[6], which is minimax. Due to the spikiness of the singular kernel studied in [6], interpolation arises
for any kernel bandwidth. The latter can be then tuned to reach minimax rates of consistency. The
story is totally different for KeRF since interpolation occurs only for specific tree depths kn ≥ log(n)
(where the depth parameter is closely related to the bandwidth of classical kernel estimates). Less
latitude for choosing the depth then leads to sub-optimal rates of consistency (see Theorem 4.1). Of
course, a better rate of consistency in O(n1/(3+d log 2)) could be obtained as in [21] when optimizing
this depth parameter, but leaving the interpolation world.

4.3 Empirical results

We numerically assess the performance of KeRF in the mean interpolation regime.

Experimental framework We consider four different regression models, most of which have
been already considered in [23]: Model 1 is additive without noise (d = 2), Model 2 is polynomial
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with interactions (d = 8), Model 3 is the sum of elementary terms that contain non-polynomial
interactions (d = 6) and Model 4 (d = 5) corresponds to a generalized linear model. All models are
specified in Appendix B. For each model, the simulated dataset is divided into a training set (80%
of the data set) and a test set (the remaining 20%). We train a centered KeRF (with M = 500) of
depth fixed to blog2 nc+ 1 (mean interpolation regime) for different sample sizes n and evaluate the
empirical quadratic risk on the test set.
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Figure 1: KeRF consistency results: excess risk w.r.t. sample sizes. For each sample size n, the
experiment is repeated 30 times: we represent the mean over the 30 tries (bold line) and the mean
± std (filled zone).

Results On Figure 1, for all models, the risk decreases toward zero as the number of samples n
increases (with slow convergence rates). These numerical results, even though obtained for a finite
KeRF with a large number M = 500 of centered trees, support the theoretical consistency of the
infinite KeRF in the mean interpolation regime (see Theorem 4.1).

5 Adaptive CRF

Since consistency can be only analyzed for KeRF in the mean interpolation regime, we introduce a
new adaptive tree which reaches the strict interpolation regime. This so-called adaptive centered
tree is a modified version of a centered tree, built by taking into account the positions of the Xi’s,
and thereby reduces the number of empty leaves. It is recursively grown: at each node, a feature
is uniformly chosen among the set of all separable d features (a feature is separable if cutting this
feature produces two non-empty cells) and the split is made in the middle of the current node along
the chosen feature. If there are more than one point in the current node and none of the feature
separates them, the splitting direction is uniformly chosen among all the separable features of the
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previous cut. The construction stops when all leaves contain 0 or 1 observation. The Adaptive
Centered RF (AdaCRF) results from a specific aggregation of such trees: for a given point x, the
final prediction of the RF is given by averaging along all the trees for which x falls into a non-empty
leaf.

5.1 Interpolation

By construction, AdaCRF interpolates since all trees interpolate. AdaCRF adaptivity allows it
to reach full growth while preserving a reasonable depth in probability. To this aim, we grow an
adaptive centered tree and measure, for a given point x, the depth kn(x) associated to the cell
containing x.

Lemma 5.1 (Depth of an adaptive centered tree). For all α ∈ [0, 1),

P
(
kn(X) ∈ [log(n)± log1−α(n)]

)
−−−−→
n→∞

1.

Lemma 5.1 states that the asymptotic behavior of kn(X) is equivalent to log n up to a negligible
factor. The log(n) equivalent matches the condition for the mean interpolation regime in the case of
CRF exhibited in Section 3. Therefore, while AdaCRF has a depth of the same order as that of a
classical CRF, its adaptivity nature ensures its interpolation. Finally, given AdaCRF flexibility, we
go beyond the depth O((1− 2 log2(1− 1

2d ))−1 log2 n), proved to be optimal for classical CRF [14],
to establish that AdaCRF is consistent in the log n regime.

5.2 Consistency

We study the consistency of an interpolating infinite AdaCRF for which we are able to conclude
favourably in a noiseless scenario.

Theorem 5.2. Assume a noiseless setting (ε = 0 a.s.) and suppose that f? is bounded and has
bounded partial derivatives ∂jf

? for all j. Let M tend to infinity such that M = o(n− log2(1−3/4d)).
Then, the interpolating Adaptive Centered Random Forest with M trees is consistent.

The proof is adapted from [14]. Theorem 5.2 is the first result to establish the consistency of an
interpolating (adaptive) forest, therefore highlighting that consistency and (exact) interpolation
are not contradictory for random forests. Note that the consistency achieved by AdaCRF cannot
be obtained for non-adaptive CRF under the interpolation regime, even in the noiseless setting,
as proved in Section 3. Indeed, the inconsistency of non-adaptive centered random forests results
from the non-negligible probability of falling into empty cells, which cannot be coerced under any
interpolation regimes.

As a matter of fact, bounding above the probability of falling into an empty cell is a cornerstone to
establish Theorem 5.2, even beyond the noiseless setting. This probability decreases in O(1/n) as
detailed in the following lemma.
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Lemma 5.3. Consider a finite forest mM,n with M trees. Let X be a uniform random variable on
[0, 1]d, d ≥ 2. We denote EM the event “X falls in an empty leaf for all trees in the forest mM,n”.
Then, for all n ≥ 6,

P (EM ) ≤ 4M

2n− 1
+

(
1− 1

d

)M

Letting M tend to infinity as M = o(n) is sufficient to ensure that empty cells are negligible. The
stringer condition in Theorem 5.2 results from the additional control of the approximation error of
the forest. Analyses of CRF conducted by [7, 14] showed that the probability of falling into an empty
cell is upper bounded by exp(−n/2kn). This leads them to consider the regime kn = o(log2(n)), in
order to prove the forest consistency. It turns out that the sharp analysis provided by [14] highlights
that the probability of falling into empty cells is the only limiting term to reach consistency in the
kn = log2(n) regime. This stresses out the importance of Lemma 5.3, to derive the consistency of
CRF in a noisy setting.

Following this comment, we firmly believe that Theorem 5.2 also stands in the more general setting
of noisy data and that the limitation is mainly due to a technical obstruction within the proof. This
intuition is substantiated by a theoretical control of the volume of interpolation zones (Section 5.3)
and by numerical experiments (Section 5.4).

5.3 Volume of the interpolation area

To go one step further in the analysis of AdaCRF, we introduce the notion of interpolation area
defined below.

Definition 5.4. The interpolation area is the subspace of [0, 1]d where the prediction of the
forest depends on one training point only. For a given forest mM,n(.,ΘM ), the interpolation area is
denoted by

A(mM,n(.,ΘM ))

=

{
x ∈ [0, 1]d,∃!Xi ∈ Dn, Xi ∈

M⋂
m=1

An(x,Θm)

}
.

The interpolation zone heavily depends on both the geometry of the training points Xi’s and the
construction of the trees. Analyzing the interpolation area for a finite AdaCRF turns out to be quite
a challenging task. Therefore, we focus our study on the core interpolation area Amin written as

Amin =
⋂

M∈N,ΘM

A(mM,n(.,ΘM )).

The area Amin is nothing but the intersection of the interpolation zones of all possible forests, or
equivalently of a forest containing all the possible trees (and therefore all possible cuts). As an
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example note that in the case of centered trees, every cut may occur with a positive probability.
Therefore, Amin matches the volume of the interpolation area of an infinite centered AdaCRF.
In the following proposition, we control the volume µ(Amin) of the minimal interpolation zone of
AdaCRF, where µ is the Lebesgue measure.

Proposition 5.5. For all n ≥ 2, for all d ≥ 2, consider an infinite AdaCRF m∞,n. Then,

EDn [µ(Amin)] ≤
(

2

log 2

)d
(1− 2−n)d

nd−1
.

The volume of the interpolation area for an infinite AdaCRF tends to 0 polynomially in n and
exponentially in d, and so does EDn [P (X ∈ Amin)]. Hence, apart from a very restricted zone,
the prediction of the AdaCRF mostly relies on more than one training point. This highlights the
predominant self-averaging property of such forest architectures, and hence underpins the idea of
good capabilities of AdaCRF in interpolation regimes (with or without noise).

5.4 Empirical consistency results

We analyze the empirical performances of AdaCRF in noiseless and noisy settings on the same
models as considered in Section 4.3. For each model, given a training set, we train AdaCRF (with
M = 500 trees) until pure leaves are reached, and measure its excess risk on a test set.
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Figure 2: Consistency results for an AdaCRF with M = 500 trees: excess risk w.r.t. the sample size
n. For each sample size, the experiment is repeated 30 times: we represent the mean over the 30
tries (bold line) and the mean ± std (filled zone).

Figure 2 shows that the excess risk of AdaCRF decreases as n grows. The particular shape of Model
1 probably results from the absence of noise (the excess risk is still close to zero but with large
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variations). These empirical performances lend support to the idea that AdaCRF are consistent
even with a finite number of trees and beyond the noiseless setting.

6 Breiman RF

The widely-used Breiman RF is composed of several trees, built with CART methodology, each one
trained on bootstrap samples, and for which the successive splitting directions and thresholds are
chosen at each step (among a random subset of directions) in order to minimize the CART criterion
(empirical variance for instance). Breiman forests are among the state-of-the-art ensemble methods
in terms of predictive performance even if their adaptivity to the data remains a real hurdle to their
theoretical analysis.

From the interpolation perspective, each CART being trained on a bootstrap sample, the RF
interpolation is not ensured when considering fully-grown trees. Indeed, a tree cannot interpolate a
point that is not chosen in the bootstrap step. For this reason, we focus our study on the volume of
interpolation areas for Breiman RF without bootstrap and then analyze their empirical behavior in
interpolating regimes through a battery of numerical experiments.

6.1 Interpolation Conditions

As a Breiman RF is built using both the Xi’s and the Yi’s, it is hard to determine the depth
necessary to reach the interpolation state. Depending on the data, the latter can be of the order
k ≈ log2(n) in the best case, if each cut creates approximately two groups of the same size), or k ≈ n
in the worst case, if only one point is separated from the others at each step [low signal-to-noise
ratios situations, see e.g., 13]. Note that by omitting the bootstrap step in the RF construction, the
interpolation of Breiman forests directly results from aggregating fully-grown trees.

6.2 Volume of the interpolation zone

As shown in the next proposition, the volume of the minimal interpolation zone tends to 0 as n
tends to infinity.

Proposition 6.1. Consider an infinite Breiman forest constructed without bootstrap. Suppose that
for a given configuration of the training data, all cuts have a probability strictly greater than 0 to
appear. Then, the volume of the minimal interpolation zone verifies

E [µ(Amin)] ≤ 1

nd−1

(
1− 2−n

)d
.

Similarly to the AdaCRF, the bound on the interpolation volume for a Breiman forest enjoys the
same order of decay, improved by a constant exponential in the dimension. Since, predictions cannot
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be accurate in the interpolation area in a noisy setting, it is necessary that the volume of this area
decreases to zero in order to ensure the RF consistency. Proposition 6.1 therefore suggests the good
generalization properties of Breiman RF in interpolation regimes, as several training points are
mostly used for prediction.

Setting the number of eligible features for splitting to 1 is sufficient to ensure the hypothesis on cuts
in Proposition 6.1: one can obtain a tree in which all splits are performed along a single direction.
This is a minor modification to the original algorithm and an easy one to implement since most ML
libraries have a “max-feature” (as scikit-learn in Python) or “mtry” (in R) parameter that can be
set to 1.

6.3 Empirical study

Interpolation volume We numerically evaluate the volume of the interpolation area of a Breiman
RF (with 5000 trees, see Figure 10 in Appendix B.2 for details about this choice) when the sample
size n increases.
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Figure 3: Log volume of the interpolation zone of a Breiman RF with 5000 Trees, max features set
to 1, no bootstrap. Mean over 10 tries (red line) and mean ± std (filled zone). The theoretical
bound (Proposition 6.1) is represented in green.

In Figure 3, the volume of the minimal interpolation zone is shown to tend polynomially fast to 0
(linear in the logarithmic scale) for all considered models as the dataset size increases, matching the
behavior of the theoretical bound established in Proposition 6.1.

One could notice the slight gap between the theoretical and experimental curves, which actually
reflects the gap between an infinite forest (for which Proposition 6.1 holds) and its approximation
by a finite forest (5000 trees here). This gap naturally tends to increase with n (when the number
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of trees is fixed) as the approximation of the infinite RF by a finite one deteriorates with n.

Consistency We now present an empirical study of Breiman RF consistency in interpolation
regimes. In the theoretical analysis, we have focused on a specific type of Breiman RF (with no
bootstrap and a max-features parameter equal to 1). We now examine the characteristics of Breiman
forests with their default parameter and study the regularization processes that limit the noise
sensitivity in the interpolation regime.

In order to reach a better estimation of the regression function, Breiman RF averages several
CARTs while introducing randomness in the construction of each tree to diversify them. The first
randomization comes from the bootstrap: each tree is trained on a bootstrap sample (selecting n
observations out of the n original ones, with replacement). The other randomization results from a
random selection of splitting directions: at each node, a subset of {1, . . . , d} of size max-features is
randomly selected and CART criterion is optimized along these directions only (setting max-features
to 1 provides the maximum diversity whereas setting it to d results in the construction of a unique
tree).

The benefit of these two aspects in the construction of the Breiman RF is numerically analyzed
when using interpolating Breiman trees. In Figure 4, we measure the excess risk of two RFs with
500 trees and max-depth= None, where for the first one, bootstrap is used and the max-features
parameter is set to 1, whereas the second one excludes bootstrap and set the max-features parameter
to dd/3e (default value in randomForest in R).
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Figure 4: Consistency of two Breiman RF: excess risk w.r.t. sample size n. Parameters : 500 trees
per forest, max-depth=None, max-features= d for the “bootstrap on” RF, bootstrap off for the
“max-feature= dd/3e” RF. Mean over 30 tries (bold lines) and mean ± std (filled zone).

In Figure 4, we observe that the excess risk decreases to 0 for all models and for both forests. Indeed,
each randomizing process alone induces enough diversity across trees for the self-averaging property
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to be efficient, resulting in the consistency of the overall forests [see also 20, 17, 18, for insights
about tree diversity in random forests].

However, when using bootstrap, consistency comes at the cost of leaving the interpolation regime,
as only 2/3 of the data are used in average to build each tree (see Figures 11, 12 in Section B.2.3
for more details about the forest non-interpolation). In regards of this internal sampling selection,
the aggregation of interpolating bagged trees results in smoothing the decision process of the entire
forest, providing thereby a consistent but not interpolating estimate.

In turn, Breiman RF built with max-features= dd/3e seems consistent while preserving its interpo-
lating behavior. Within this configuration, the final RF still interpolates the data but the volume of
the interpolation zone is very small as shown in Figure 9. This is in line with the vision of a locally
spiky estimator developed in [24] and [4]. Indeed, the influence of the averaging effect is locally
null near the data training points, but increases with the distance from these points. Note that
bootstrap and feature subsampling act differently. Bootstrap smoothens predictions by averaging
different observations, even at points of the training set, which leads to an empty interpolation area.
On the other hand, feature subsampling increases tree partition diversity, which reduces but does
not annihilate the interpolation area of the overall forest.

In this regard, Breiman RF with max-features= dd/3e are similar to interpolating spiky non-singular
kernel methods, as the ones introduced in [6], except for the leeway allowed for the hyperparameters
tuning. Indeed, as underlined for non-adaptive centered forests, the depth kn (i.e. the tuned
parameter) is constrained to a strict range to ensure both consistency and interpolation. This is not
the case for singular kernel methods, as they interpolate regardless of the window parameter value.

7 Conclusion

In this paper, we study both empirically and theoretically the tradeoff between interpolation and
consistency of different types of random forests. In particular, we show that interpolation is harmless
in the case of adaptive methods when the self-averaging process in the forest is sufficient to restrain
the interpolation effect to a local influence.

Indeed, we prove that the AdaCRF reaches consistency and exact interpolation regimes in a noiseless
scenario. This is the first result to prove that consistency and interpolation are not irreconcilable for
such powerful learners. Breiman forests is also shown empirically to be consistent and interpolate
when no bootstrap step is involved. This results from a fast decrease of the interpolation area, which
limits the negative impact of interpolation on the overall consistency of the method.

We believe that the analysis of the interpolation zone of RF introduced in this article is a milestone for
the understanding of RF prediction in interpolation regimes. Indeed the volume of the interpolation
area is actually a roundabout way to measure the diversity in the constructed trees: if this volume
is high, all trees end up building similar partitions.

Studying the impact of max-feature on the interpolation area volume is also a promising way to
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gain a better understanding of the role of this parameter in random forests.
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A Proofs

A.1 Proofs of Section 3

A.1.1 Proof of Proposition 3.2

As all the leaves have the same volume and the data points are independent and uniformly distributed, having at
most one point per leaf is equivalent to distribute n balls into 2k boxes containing at most one point with 2k ≥ n
as can be seen on Figure 5.
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 Figure 5: Computing the interpolation probability (depth k = 3, n = 6)

Thus

P (IT ) =

(
2k

n

)(
n+2k−1

n

)
=

2k!

(2k − n)!n!

n!(2k − 1)!

(n+ 2k − 1)!
.

With k = blog2(αnn)c ∈ N, we have

P (IT ) =
αnn

(αn + 1)n− 1
· αnn− 1

(αn + 1)n− 2
. . .

(αn − 1)n+ 1

αnn
.

• We begin by computing the lower bound:

P (IT ) ≥ αnn

(αn + 1)n
· αnn− 1

(αn + 1)n− 1
. . .

(αn − 1)n+ 1

αnn+ 1

≥
(
αn − 1

αn

)n
≥ en log(1− 1

αn
)

≥ e−
n

αn−1 −−−−−→
αn→∞

1

• The computation of the upper bound is similar, note that for all r ∈ {0, ..., n},

αnn− r
(αn + 1)n− r − 1

≤ αn + 1/2

αn + 1
.
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It follows that

P (IT ) ≤
(
αn + 1/2

αn + 1

)
n

≤ en log(
αn+1/2
αn+1 )

≤ e−
n

2(αn+1) .

A.1.2 Proof of Lemmma 3.1

Suppose that a tree mr in the forest does not interpolate for a given point Xs, s ∈ {1, . . . , n}, we write
mr(Xs,Θr) = Ys + ξ, ξ 6= 0. Then, by definition of mM,n,

mM,n(Xs,ΘM ) =
1

M

M∑
j=1

n∑
i=1

YiWij

=
1

M

M∑
j=1,j 6=r

n∑
i=1

(f?(Xi) + εi)Wij +
1

M
(Ys + ξ)

where Wij :=
1Xi∈An(Xs,Θj)

Nn(Xs,Θj)
1Nn(Xs,Θj)>0. Therefore, mM,n(Xs,ΘM ) = Ys if and only if

1

M

M∑
j=1,j 6=r

n∑
i=1

(f?(Xi) + εi)Wij +
1

M
(Ys + ξ) = Ys

⇐⇒ 1

M

M∑
j=1,j 6=r

n∑
i=1

(f?(Xi) + εi)Wij = − ξ

M

⇐⇒ 1

M

M∑
j=1,j 6=r

n∑
i=1

εiWij = − ξ

M
+ C

where C is random and independent from εi for all i. ξ was computed with the label noise of at least one point
different from Xs (otherwise it would equal 0). We can write

ξ = C ′ +
1

M

n∑
i=1

εiWir

where C ′ is independent from the εis . Finally, the forest interpolates at Xs if and only if

1

M

M∑
j=1

n∑
i=1

εiWij = C + C ′

However, as the noise is continuous and independent from Wij for all i, j and from C,C ′ , this equality happens
with a zero probability.

A.1.3 Proof of Corollary 3.3

As it is necessary for all trees to interpolation for the forest to interpolate, the probability that the forest
interpolates is smaller than the probability that a single tree interpolates.

A.1.4 Proof of Proposition 3.5

Let mn,∞(.) be an infinite CRF with each tree containing at least αnn leaves, with αn > 1. Let X be
uniformly distributed on [0, 1]d. We write m̄n,∞(X) = E [mn,∞(X)|X,X1, ..., Xn]. Then, denoting E the event
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“Nn,∞(X) = 0” (or equivalently, “X falls into a non-empty leaf”),

R(mn,∞(X)) = E
[
(mn,∞(X)− f?(X))

2
)
]

(3)

≥ E
[
(m̄n,∞(X)− f?(X))

2
]

(4)

= E

( n∑
i=1

EΘ [Wif(Xi)]− (1E + 1Ec) f
?(X)

)2
 (5)

= E

( n∑
i=1

EΘ [Wi (f(Xi)− f?(X))]− 1Ecf?(X)

)2
 (6)

≥ E
[
f?(X)21Ec

]
(7)

≥ E
[
f?(X)2P (Ec|X)

]
. (8)

Besides,

P (Ec|X) = P (Nn,∞(X) = 0|X) (9)

=

(
1− 1

αnn

)n
, (10)

and as log(1− 1/x) ≥ − 1
x−1 for x > 1, (

1− 1

αnn

)n
= en log(1− 1

αnn
) (11)

≥ e−
n

αnn−1 . (12)

The above quantity does not tend to 0 when n tends to infinity. Therefore, if E
[
f?(X)2

]
> 0, the infinite CRF is

inconsistent.

A.2 Proofs of Section 4 (Theorem 4.1)

In this section, we prove the consistency of the infinite KeRF estimator in the interpolating regime in expectancy
(Theorem 4.1). We follow the proof given in [21] and first present two of its results.

Lemma A.1. Let k ∈ N and consider an infinite centered random forest of depth k. Then, for all x, z ∈ [0, 1]d,

Kcc
n (x, z) =

∑
k1,...,kd∑d
`=1 k`=k

k!

k1! . . . kd!

(
1

d

)k d∏
j=1

1d2kjxje=d2kj zje.

Theorem A.2. From [21]. Let f be a L-Lipschitz function. Then, for all k,

sup
x∈[0,1]d

∣∣∣∣∣
∫

[0,1]d
Kcc
k (x, z)f(z)dz1 . . . dzd∫

[0,1]d
Kcc
k (x, z)dz1 . . . dzd

− f(x)

∣∣∣∣∣ ≤ Ld
(

1− 1

2d

)k
.

Proof of Theorem 4.1. Let x ∈ [0, 1]d, ‖f?‖∞ = sup
x∈[0,1]d

|f?(x)| and recall that

m̃cc
∞,n(x) =

∑n
i=1 YiK

cc
k (x,Xi)∑n

i=1K
cc
k (x,Xi)

.
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Thus, letting

An(x) =
1

n

n∑
i=1

(
YiK

cc
k (x,Xi)

E [Kcc
k (x,X)]

− E [Y Kcc
k (x,X)]

E [Kcc
k (x,X)]

)
,

Bn(x) =
1

n

n∑
i=1

(
Kcc
k (x,Xi)

E [Kcc
k (x,X)]

− 1

)
,

and Mn(x) =
E [Y Kcc

k (x,X)]

E [Kcc
k (x,X)]

,

the estimate m̃cc
∞,n(x) can be rewritten as

m̃cc
∞,n(x) =

Mn(x) +An(x)

1 +Bn(x)
,

which leads to

m̃cc
∞,n(x)− f?(x) =

Mn(x)− f?(x) +An(x)−Bn(x)f?(x)

1 +Bn(x)
.

According to Theorem A.2, we have

|Mn(x)− f?(x)| =
∣∣∣∣E [f?(X)Kcc

k (x,X)]

E [Kcc
k (x,X)]

+
E [εKcc

k (x,X)]

E [Kcc
k (x,X)]

− f?(x)

∣∣∣∣
≤
∣∣∣∣E [f?(X)Kcc

k (x,X)]

E [Kcc
k (x,X)]

− f?(x)

∣∣∣∣
≤ C

(
1− 1

2d

)k
,

where C = Ld. Take α ∈]0, 1/2]. Let Cα(x) be the event on which
{
|An(x)|, |Bn(x)| ≤ α

}
. On the event Cα(x),

we have

|m̃cc
∞,n(x)− f?(x)|2 ≤ 8|Mn(x)− f?(x)|2 + 8|An(x)−Bn(x)f?(x)|2

≤ 8C2

(
1− 1

2d

)2k

+ 8α2(1 + ‖f?‖∞)2.

Thus,

E[|m̃cc
∞,n(x)− f?(x)|21Cα(x)] ≤ 8C2

(
1− 1

2d

)2k

+ 8α2(1 + ‖f?‖∞)2. (13)

Consequently, to find an upper bound on the rate of consistency of m̃cc
∞,n, we just need to upper bound

E
[
|m̃cc
∞,n(x)− f?(x)|21Ccα(x)

]
≤ E

[
| max
1≤i≤n

Yi + f?(x)|21Ccα(x)

]
(since m̃cc

∞,n is a local averaging estimate)

≤ E
[
|2‖m‖∞ + max

1≤i≤n
εi|21Ccα(x)

]
≤

(
E

[
2‖m‖∞ + max

1≤i≤n
εi

]4

P [Ccα(x)]

)1/2

(by Cauchy-Schwarz inequality)

≤
((

16‖m‖4∞ + 8E
[

max
1≤i≤n

εi

]4)
P [Ccα(x)]

)1/2

.
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Simple calculations on Gaussian tails show that one can find a constant C ′ > 0 such that for all n,

E
[

max
1≤i≤n

εi

]4
≤ C ′(log n)2.

Thus, there exists C ′′ such that, for all n > 1,

E
[
|m̃cc
∞,n(x)− f?(x)|21Ccα(x)

]
≤ C ′′(log n)(P [Ccα(x)])1/2. (14)

The last probability P [Ccα(x)] can be upper bounded by using Chebyshev’s inequality. Indeed, with respect to
An(x),

P
[
|An(x)| > α

]
≤ 1

nα2
E

[
Y Kcc

k (x,X)

E [Kcc
k (x,X)]

− E [Y Kcc
k (x,X)]

E [Kcc
k (x,X)]

]2

≤ 1

nα2

1

(E [Kcc
k (x,X)])2

E

[
Y 2Kcc

k (x,X)2

]
≤ 2

nα2

1

(E [Kcc
k (x,X)])2

(
E

[
f?(X)2Kcc

k (x,X)2

]
+ E

[
ε2Kcc

k (x,X)2

])
≤ 2(‖f?‖2∞ + σ2)

nα2

E
[
Kcc
k (x,X)2

]
(E [Kcc

k (x,X)])2
. (15)

Meanwhile with respect to Bn(x), we obtain, still by Chebyshev’s inequality,

P
[
|Bn(x)| > α

]
≤ 1

nα2
E

[
Kcc
k (x,Xi)

2

E [Kcc
k (x,X)]

2

]
(16)

which matches the control made by [21]. Note that from here, the control on P
[
|An(x)| > α

]
(15) and on

P
[
|Bn(x)| > α

]
(16) will depart from the work of [21].

First, we need a Lemma to upper bound E
[
Kcc
k (x,X)2

]
.

Lemma A.3. For all k,

E
[
Kcc
k (x,X)2

]
≤ vk + 2−

k
d−1 + C2

(
2

d

)k
kd+1/2

where C2 is a constant depending only on d and vk ≈ C1/(2
kk(d−1)/2) with C1 also a constant depending only on

d.

Proof of Lemma A.3. We know that

E [Kcc
k (x,X)] =

1

2k
≥ E

[
Kcc
k (x,X)2

]
≥ E [Kcc

k (x,X)]
2

=
1

22k
, (17)

but we need a tighter upper bound on E
[
Kcc
k (x,X)2

]
. From Lemma A.1, we know that

E
[
Kcc
k (x,X)2

]
= E


 ∑

k1,...,kd∑d
j=1 kj=k

k!

k1!...kd!

(
1

d

)k d∏
j=1

1d2kjxje=d2kj zje


2 . (18)
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Developing the square within the expectation, we obtain two terms, the first one being the sum of the squares:

A := E

 ∑
k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k d∏
j=1

1d2kjxje=d2kjXje

 (19)

=
∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k d∏
j=1

P
(
d2kjxje = d2kjXje

)
. (20)

Note that, for all j,

P
(
d2kjxje = d2kjXje

)
=

(
1

2

)kj
,

and
d∏
j=1

(
1

2

)kj
=

(
1

2

)k
.

Therefore,

A =
∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k (
1

2

)k
. (21)

Thanks to [19], we know that ∑
k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2

≈ d2k+d/2

k(d−1)/2
. (22)

The second term corresponds to the sum of cross-products:

B := E


∑

(k1,...,kd)
6=(l1,...,ld),∑d

j=1 kj=
∑d
j=1 lj=k

k!

k1! . . . kd!

k!

l1! . . . ld!

(
1

d

)2k d∏
j=1

1d2kjxje=d2kjXje1d2ljxje=d2ljXje

 (23)

=
∑

(k1,...,kd)
6=(l1,...,ld),∑d

j=1 kj=
∑d
j=1 lj=k

k!

k1! . . . kd!

k!

l1! . . . ld!

(
1

d

)2k

P

 d⋂
j=1

(
(d2kjxje = d2kjXje) ∩ (d2ljxje = d2ljXje)

) .

A small computation yields

P

 d⋂
j=1

(
(d2kjxje = d2kjXje) ∩ (d2ljxje = d2ljXje)

) =

(
1

2

)k+
∑d
j=1 lj1lj 6=kj

. (24)

Therefore,

B =

(
1

d

)2k (
1

2

)k ∑
(k1,...,kd)
6=(l1,...,ld),∑d

j=1 kj=
∑d
j=1 lj=k

k!

k1! . . . kd!

k!

l1! . . . ld!

(
1

2

)∑d
j=1 lj1lj 6=kj

. (25)
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As d > 2, we can write k = qd+r with (q, r) ∈ N×{0, ..., d−1}. DenotingKq = {l = (l1, . . . , ld)|
∑

(l1,...,ld)6=(k1,...,kd)

lj ≥

q}, we can write:

B =

(
1

2d2

)k ∑
(k1,...,kd)∑d
j=1 kj=k

k!

k1! . . . kd!

∑
l∈Kq

k!

l1! . . . ld!

(
1

2

)∑d
j=1 lj1lj 6=kj

(26)

+

(
1

2d2

)k ∑
(k1,...,kd)∑d
j=1 kj=k

k!

k1! . . . kd!

∑
l/∈Kq

k!

l1! . . . ld!

(
1

2

)∑d
j=1 lj1lj 6=kj

(27)

=

(
1

2d2

)k
(B1 +B2) . (28)

Then, regarding B1, as we sum over l ∈ Kq,

k!

k1! . . . kd!

k!

l1! . . . ld!

(
1

2

)∑d
j=1 lj1lj 6=kj

≤ k!

k1! . . . kd!

k!

l1! . . . ld!

(
1

2

)q
(29)

≤ k!

k1! . . . kd!

k!

l1! . . . ld!

(
1

2

) k
d−1

. (30)

Regarding B2, there are at most d− 1 integers summing at most at q − 1. Therefore for a fixed k1, . . . , kd, we
have

∑
l/∈K

k!

l1! . . . ld!

(
1

2

)∑d
j=1 lj1lj 6=kj

≤
∑
l/∈K

k!

l1! . . . ld!
. (31)

As a first remark, for s ∈ {2, . . . , d− 2}, k!/(li1 ! . . . lis !) is maximal when all lis are equal. We will use Γ function
verifying Γ(n+ 1) = n! for all n ∈ N. Using an inequality from [5], we know that

k!

l1! . . . ld!
≤ k!

li1 ! . . . lis !
(32)

≤ k!

Γ(k/s+ 1)s
(33)

≤
√

2πss+s/2
√
kkke−ke1/12k

k
s
2 kks−ke−ke−

s
6k/s+3/8

(34)

≤ 2Csk
− s−1

2 sk, (35)

with Cs a constant depending only on s. Note that when we are not in K, we can choose s kjs such that their
sum is greater than k − q + 1. For l /∈ K, we denote Kl = {l = (l′i1 , ..., li′d−s)|lj 6= kj}. We obtain

B2 =

q−1∑
p=2

d−2∑
s=2

∑
(k1,...,kd)∑s
i=1 kji=k−p∑d
i=1 ki=k

k!

k1! . . . kd!

∑
l′∈Kl

lj1=kj1 ,...,ljs=kjs
fixed∑d
i=1 li=k

k!

l1! . . . ld!
(36)

≤
q−1∑
p=2

d−2∑
s=2

∑
(k1,...,kd)∑s
i=1 kji=k−p∑d
i=1 ki=k

k!

k1! . . . kd!

∑
l′∈Kl

lj1=kj1 ,...,ljs=kjs
fixed∑d
i=1 li=k

2Csk
− s−1

2 sk. (37)
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The number of terms in the third sum over the d-uplet with s elements being fixed equals(
d

s

)(
(p− 1) + d− s− 1

p− 1

)
(38)

and is maximum for p = q − 1. Therefore,

B2 ≤
q−1∑
p=2

d−2∑
s=2

∑
(k1,...,kd)∑s
i=1 kji=k−p∑d
i=1 ki=k

k!

k1! . . . kd!
C ′s

(q + d− s− 3)!

(q − 2)!
k−

s−1
2 sk, (39)

with C ′s > 0 a constant depending only on d. Recall that q = bk/dc. Note that (q+d−s−2)!
(q−1)! is in O(qd−s−2). The

maximal term of the previous sum is therefore reached for s = 2. Overall, we find

B2 ≤
q−1∑
p=2

d−2∑
s=2

∑
(k1,...,kd)∑s
i=1 kji=k−p∑d
i=1 ki=k

k!

k1! . . . kd!
C2 · kd · k−1/2 · 2k (40)

=
∑

(k1,...,kd)∑d
i=1 ki=k

k!

k1! . . . kd!
C2 · kd · k−1/2 · 2k, (41)

with C2 > 0 a constant depending only on d.

Finally, as ∑
k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)
= dk,

we obtain

B2 ≤ C2 · (2d)k ·
√
k · kd. (42)

Using the previous Lemma, we have

P (|An(x)| > α) ≤ 2M2
1

2k

nα2

(
vk + 2−

k
d−1 + C2

(
2

d

)k
kd+1/2

)
, (43)

where vk ≈ Cd/(k(d−1)/2), and

P (|Bn(x)| > α) ≤ 2k

nα2

(
vk + 2−

k
d−1 + C2

(
2

d

)k
kd+1/2

)
.

Thus, the probability of Cα(x) is given by

P
[
Cα(x)

]
≥ 1− P

(
|An(x)| ≥ α

)
− P

(
|Bn(x)| ≥ α

)
≥ 1−

(
2k

n

2M2
1

α2
+

2k

nα2

)(
vk + 2−

k
d−1 + C2

(
2

d

)k
kd+1/2

)
.

Consequently, according to inequality (14), we obtain

E
[
|m̃cc
∞,n(x)− f?(x)|21Ccα(x)

]
≤ C2(log n)

(
2k

n

2M2
1

α2
+

2k

nα2

)1/2
(
vk + 2−

k
d−1 + C2

(
2

d

)k
kd+1/2

)1/2

.
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Then using inequality (13),

E
[
m̃cc
∞,n(x)− f?(x)

]2
≤ E

[
|m̃cc
∞,n(x)− f?(x)|21Cα(x)

]
+ E

[
|m̃cc
∞,n(x)− f?(x)|21Ccα(x)

]
≤ 8C2

1

(
1− 1

2d

)2k

+ 8α2(1 + ‖m‖∞)2

+ C2(log n)

(
2k

n

2M2
1

α2
+

2k

nα2

)1/2
(
vk + 2−

k
d−1 + C2

(
2

d

)k
kd+1/2

)1/2

.

Optimizing the right hand side in α

(α3 = C2(log n)
(

2k

n 2M2
1 + 2k

n

)1/2 (
vk + 2−

k
d−1 + C2

(
2
d

)k
kd+1/2

)1/2

(1 + ‖m‖∞)−2/16), we get

E
[
m̃cc
∞,n(x)− f?(x)

]2
≤ 8C2

1

(
1− 1

2d

)2k

+ C3(log n)2/3

(
2k

n
2M2

1 +
2k

n

)1/3
(
vk + 2−

k
d−1 + C2

(
2

d

)k
kd+1/2

)1/3

.

for some constant C3 > 0. Choosing kn = blog2(n)c, we obtain:

E
[
m̃cc
∞,n(x)− f?(x)

]2
(44)

≤ Cdn2 log(1− 1
d ) + Cd(log n)2/3

(
wn +

n−1/2d

2
+ n− log2(d−2)(log n)d+1/2

)1/3

, (45)

with Cd > 0 and wn ≈ log(n)−(d−1)/2. Finally,

E
[
m̃cc
∞,n(x)− f?(x)

]2
≤ Cd

(
log(n)2wn +

log(n)2n−1/d

2
+ n− log2(d−2)(log n)d+5/2

)1/3

+ Cdn
2 log(1− 1

2d ).

A.3 Proofs of section 5

A.3.1 Proof of Lemma 5.1

To begin with, we have

P (kn(X) ≥ k) = P

(
k−1⋂
i=1

Ni,Θ(X) ≥ 2

)
(46)

= P (N1,Θ ≥ 2)

k−1∏
i=2

P (Ni,Θ(X) ≥ 2|Ni−1,Θ(X) ≥ 2) (47)

= P (Nk−1,Θ(X) ≥ 2) (48)

= E [P (Nk−1,Θ(X) ≥ 2|X)] (49)

= 1−
(

1− 1

2k−1

)n
− n

2k−1

(
1− 1

2k−1

)n−1

. (50)
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Studying the right-hand side of equality (50) with k = (1− log−α(n)) log2(n) and using the inequalities

exp(− n

2k − 1
) ≤ exp(n log(1− 1

2k
)) ≤ exp(− n

2k
)

yields the result.

A.3.2 Proof of Lemma 5.3

Given a single tree built with Θ1, a random point x, its depth kn(x) and An,−1 := An,−1(x,Θ1) the node
preceding the leaf An(x,Θ1), two configurations lead to x falling into an empty cell :

1. All the Xi’s are in the leaf diametrically opposite to the leaf An(x) within the cell An,−1(x) (see point X
on Figure 6).

2. At least one of the Xi’s falls in an adjacent leaf of An(x) (along any feature) within An,−1(x) (see point X ′

on Figure 6).






























































X’

Real splits

Potential splits

Train set

X

Test set 

Figure 6: Illustration of situations 1 and 2.

Situation 1. could lead to x falling in an empty leaf for all tree, whereas in situation 2., a tree could produce a
non-empty cell containing x with a probability greater than 0 by choosing a different feature to cut over in node
An,−1. These two situations are illustrated on Figure 6: for this tree, in the node An,−1, X can only fall into an
empty cell for all trees whereas the point X ′ could fall in a non-empty cell if the randomly selected next split is
vertical. Therefore, in situation 2., the probability of x falling in an empty cell in the infinite forest is 0.

Call EM the event “Nn(x,ΘM ) = 0”. We denote S1(ΘM ) the event “there exists a tree Θj in ΘM for which all
the Xi’s are in the leaf diametrically opposite to the leaf An(x) within the cell An,−1(x)” and S2(ΘM ) the event
“for all trees Θj of ΘM , at least one of the Xi’s falls in an adjacent leaf of An(x) (along any feature) within
An,−1(x) ”.

Then,

P (EM ) = P ((Nn(X,ΘM ) = 0) ∩ S1(ΘM )) + P ((Nn(X,ΘM ) = 0) ∩ Sc1(ΘM )) (51)

= P ((Nn(X,ΘM ) = 0) ∩ S1(ΘM )) + P ((Nn(X,ΘM ) = 0) ∩ S2(ΘM )) (52)

≤MP (S1(Θ1)) + P (S2(ΘM )) . (53)

We use the following Lemma to compute P (S1(Θ1)):

Lemma A.4. One has

P (S1(Θ1)) ≤ 4

2n− 1
.
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Proof. Recall that the event S1(Θ1) happens when all Xi’s are in the leaf An,−1,OD(X) Diametrically Opposite
to the leaf An(x) within the cell An,−1(x).

P (S1(Θ1)) ≤
(

2d

1

)
· E
[
E
[
P
((

Xi1 , . . . , XiNn(An,−1
) ∈ An,−1,OD(X)

)
∩ (X ∈ An(X)) |Nn(An,−1)

)
|An,−1

]]
= 2d · E

[
E

[
µ(An,−1)

2d

(
µ(An,−1)

2d

)Nn(An,−1)

|An,−1

]]

= E
[

1

2kn(x)−1

(
1− 1

2kn(x)−1
+

1

2kn(X)+d−1
· 1

2kn(x)−1

)n]
≤ 2 · E

[
1

2kn(x)

(
1− 1

2kn(x)
+

1

22kn(x)

)n]
,

as soon as d ≥ 2. We introduce the function g ∈ C1([1,∞)) defined as

g : z → 1

z

(
1− 1

z
+

1

z2

)n
.

Let z ≥ 1, we have

g′(z) =
( 1
z2 − 1

z + 1)n(n(z − 2)− z2 + z − 1)

z2(z2 − z + 1)
.

Consequently,

g′(z) ≥ 0 ⇐⇒ −z2 + z(n+ 1)− (2n+ 1) ≥ 0

⇐⇒ z ≤
(n+ 1) +

√
(n+ 1)2 − 4(2n+ 1)

2
:= r∗n

with n ≥ 6. Note that g is non-decreasing over [1, r∗n] and non-increasing over [r∗n,∞), its maximum is reached at
z = r∗n. Finally,

P (E) ≤ 4

n+ 1 +
√

∆n

(
1− 2

n+ 1 +
√

∆n

+
4(

n+ 1 +
√

∆n

)2
)n

≤ 4

2n− 1
.

Besides,

P (S2(ΘM )) = E [P (S2(ΘM )|X,Dn)] (54)

= E
[
P (S2(Θ1)|X,Dn)

M
]
. (55)

as the trees are built independently conditional on Dn. Furthermore, note that the probability is taken over Θ1.
Therefore for a given x, for any configuration of the dataset, if there exists a tree Θ such that S2(Θ)|Dn can
be realized, it means that there is a cut that leads x to fall into an empty cell of an adjacent non-empty one.
As a matter of fact, there also exists a tree Θ′ such that S2(Θ)|Dn does not happen, meaning that there exists
another cut such that x does not end in an empty cell. This last cut happens with probability at least equal to
1/d. Consequently,

P (S2(Θ1)|X,Dn) ≤ 1− 1

d
. (56)

28



Finally,

P (EM ) ≤ 4M

2n− 1
+

(
1− 1

d

)M
. (57)

A.3.3 Proof of theorem 5.2

We upper bound the risk by classically bounding the approximation error (the estimation error is 0 in the noiseless
setting). We follow the sketch of proof given by [14] when bounding the risk of a centered random forest. First
note that as the Xis are uniform and i.i.d., by symmetry, after averaging w.r.t the data, the probability to choose
a given feature j for any node is always 1/d as no feature has more chance to produce an empty leaf than others.

Let mn(X) be the infinite adaptive centered RF and m̄n(X) = E [mn(X)|X,X1, ..., Xn]. We denote kn(X) the
effective depth of the leaf containing X and kn the maximum depth of each tree. We choose kn ≥ n as we want
to interpolate. We begin by bounding the approximation error (which ends the proof of consistency in a noiseless
setting). We define

Wi :=
1Xi∈An(x,Θj)1Nn(x,Θj)>0

Nn(x,Θj)
.

The new estimator writes

mM,n(x,ΘM ) =
1Nn(x,ΘM )>0

Nn(x,ΘM )

M∑
j=1

n∑
i=1

Yi
1x∈An(Xi,Θj)

Nn(x,Θj)
1Nn(x,Θj)>0 (58)

=
1Nn(x,ΘM )>0

Nn(x,ΘM )

M∑
j=1

n∑
i=1

YiWij (59)

where Wij =
1x∈An(Xi,Θj)

Nn(x,Θj)
1Nn(x,Θj)>0. We have

E
[
(m̄n(X)− f?(X))

2
]

(60)

= E


1Nn(X,ΘM )>0

Nn(X,ΘM )

M∑
j=1

n∑
i=1

YiWij − f?(X)

2
 (61)

= E


1Nn(X,ΘM )>0

Nn(X,ΘM )

M∑
j=1

n∑
i=1

YiWij −
(
1Nn(X,ΘM )>0 + 1Nn(X,ΘM )=0

)
f?(X)

2
 (62)

≤ 2E

1Nn(X,ΘM )>0

 1

Nn(X,ΘM )

M∑
j=1

n∑
i=1

YiWij − f?(X)

2
 (63)

+ 2E
[
1Nn(X,ΘM )=0f

?(X)2
]
. (64)

The right-hand term of the above sum verifies

E
[
1Nn(X,ΘM )=0f

?(X)2
]
≤ ‖f?‖2∞P (Nn(X,ΘM ) = 0) . (65)

It can be controlled by applying Lemma 5.3 stating that

P (Nn(X,ΘM ) = 0) ≤ 4M

2n− 1
+

(
1− 1

d

)M
,
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from which we immediately deduce that

E
[
1Nn(X,ΘM )=0f

?(X)2
]
≤ ‖f?‖2∞

(
4M

2n− 1
+

(
1− 1

d

)M)
.

Regarding the left-hand term of Line (64),

E

1Nn(X,ΘM )>0

 1

Nn(X,ΘM )

M∑
j=1

n∑
i=1

YiWij − f?(X)

2
 (66)

= E

1Nn(X,ΘM )>0

 1

Nn(X,ΘM )

M∑
j=1

n∑
i=1

(Yi − f?(X))Wij

2
 (67)

≤ E


 1

Nn(X,ΘM )

M∑
j=1

n∑
i=1

(Yi − f?(X))Wij

2
 (68)

≤
M∑
j=1

E

 1

Nn(X,ΘM )

(
n∑
i=1

(Yi − f?(X))Wij

)2
 (69)

= E

 M

Nn(X,ΘM )

(
n∑
i=1

(Yi − f?(X))Wi1

)2
 (70)

where the penultimate line comes from the application of Cauchy-Schwarz inequality. As we are in a noiseless
setting, Yi = f?(Xi) for all i. To upper bound the above term, note that

|f(Xi)− f?(X)| ≤
d∑
j=1

||∂jf?||∞|X(j)
i −X

(j)| (71)

and therefore

Wi1|f(Xi)− f?(X)| ≤Wi1

d∑
j=1

||∂jf?||∞|bj − aj | (72)

where the cell An(X,Θj) =
∏
j [aj , bj ]. Thus,

n∑
i=1

Wi1|f(Xi)− f?(X)| ≤
n∑
i=1

Wi1

d∑
j=1

||∂jf?||∞|bj − aj | (73)

≤
d∑
j=1

||∂jf?||∞|bj − aj |. (74)

Consequently,

E

 M

Nn(X,ΘM )

(
n∑
i=1

(Yi − f?(X))Wi1

)2
 (75)

≤ E

 M

Nn(X,ΘM )

 d∑
j=1

||∂jf?||∞|bj − aj |

2
 (76)

≤Md||∂f?||2∞
d∑
j=1

E
[
(bj − aj)2

]
, (77)
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where ||∂f?||∞ = maxj ||∂jf?||∞. For al j ∈ {1, . . . , d}, let Kj(X) be the number of splits made on feature j to
produce the cell containing X. Note that, by definition of AdaCRF,

E
[
(bj − aj)2

]
= E

[
2−2Kj(X)

]
(78)

= E
[
E
[
2−2Kj(X)|X

]]
(79)

≤ E
[
E
[
2−2Kj(X)1kn(X)≥(1−εn) log2(n)+1|X

]]
+ P (kn(X) < (1− εn) log2(n) + 1) , (80)

where εn is a positive sequence to be chosen later. The behavior of kn is controlled in Lemma 5.1, which leads to

P (kn(X) ≥ (1− εn) log2(n) + 1) ≥ 1−
(

1− 1

n1−εn

)n
− n

n1−εn

(
1− 1

n1−εn

)n−1

(81)

≥ 1− pn, (82)

with pn = e−n
εn

+ nεne−n
εn

. The last inequality is obtained from the fact that en log(1−1/x) ≤ e−n/x for all
x > 0. Besides, the random variable Kj(X) is conditionally distributed as a binomial distribution of parameters
(kn(X), 1/d). Consequently,

E
[
(bj − aj)2

]
≤ E

[
E
[
2−2Kj(X)1kn(X)≥(1−εn) log2(n)+1|X

]]
+ pn (83)

≤
(

1− 3

4d

)(1−εn) log2(n)+1

+ pn (84)

≤ n(1−εn) log(1−3/4d)/ log 2 + e−n
εn

+ nεne−n
εn
, (85)

where the penultimate inequality comes from the moment-generating function of the binomial distribution. A
proper choice of εn = (log(n))−α for α ∈ (−1, 0], leads to, for all n large enough,

E
[
(bj − aj)2

]
≤ 3nlog(1−3/4d)/ log 2. (86)

Finally, the approximation error satisfies, for all n large enough,

E
[
(m̄n(X)− f?(X))

2
]
≤ 3Md2||∂f?||2∞nlog(1−3/4d)/ log 2 + ‖f?‖2∞

(
4M

2n− 1
+

(
1− 1

d

)M)
.

Now, choosing

M =
log(1− 3/4d)

log
(
1− 1

d

) log2(n), (87)

we obtain, for all n large enough,

E
[
(m̄n(X)− f?(X))

2
]
≤ Cd log(n)nlog(1−3/4d)/ log 2.

In the noiseless setting, the estimation error equals 0, which ends the proof.

A.3.4 Proof of Proposition 5.5

The computation is similar to the computation of the volume of the minimal interpolation zone of Breiman RF
in A.4. The main difference lies on the fact that the volume of each leaf is entirely determined by the depth of
the leaf. We begin with a one-dimensional analysis. Let Z1, ..., Zn be i.i.d. according to a uniform distribution on
[0, 1]. Then, we can apply the reasoning of Lemma 5.1 in one dimension to write

P (kn(Z1) ≤ k) =

(
1− 1

2k−1

)n−1

(88)
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and therefore

E [µ(An(Z1))] = E
[

1

2kn(Z1)

]
. (89)

Let ζ be a random variable with CDF defined as

Fζ(x) : x ∈ R→
(

1− 1

2x

)n−1

1x≥1.

We immediately obtain that for all x, Fζ(x) ≥ Fkn(X1)(x). As the function x→ 2−x is non-increasing, for all x,

F2−ζ (x) ≤ F2−kn(X1)(x).

Writing E[Z1] =
∫

(1− Fζ1), we see that Fζ1 ≤ Fζ2 implies

E[ζ1] ≥ E[ζ2].

Therefore,

E
[
2−kn(X1)

]
≤ E

[
2−Z

]
. (90)

We use the definition of Riemann-Stieltjes integrals and an integration by parts to write the following:

E
[
2−kn(X1)

]
≤ E

[
2−Z

]
(91)

=

∫ ∞
−∞

2−xdFZ(x) (92)

=

∫ ∞
−∞

log 2 · 2−xFZ(x)dx (93)

≤ 2

∫ ∞
1

2−x
(

1− 1

2x

)n−1

dx (94)

Applying the change of variable u = 2−x immediately yields

E
[
2−kn(X1)

]
≤ 2

log 2

∫ 1/2

0

u(1− u)n−1du (95)

=
2

log 2

1− 2−(n+1) (n− 2)

n(n+ 1)
. (96)

Finally we obtain

E [µ(An(Z1))] = E
[

1

2kn(Z1)

]
(97)

≤ 2

log 2

1− 2−n

n
. (98)

Applying the cartesian product along all dimensions yields the result.

A.4 Proofs of section 6

Proof of 6.1. Before diving into the computations, let us recall two facts about Breiman RF construction. First,
when a CART cuts between two points, the cut is made at the middle of these two points. Second, assume
that all the cuts are possible, i.e. that the probability of cutting between all pairs of successive points along all
dimensions is strictly positive. Therefore, for a given point Xi, one can define the minimal interpolation zone
Amin,Xi :=

⋂
M∈N,ΘM

(.,ΘM )AXi,ΘM
around Xi. The boundaries of this area are given for each direction by

the cuts between Xi and its neighbor points respectively to the considered direction, as illustrated on Figure 7.
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Figure 7: Different interpolation zones of a data point (in red).

1. The interpolation zone is the union of n interpolation zones, each one containing a single Xi. We denote
A(mM,n(.,ΘM )) = AX1,ΘM

∪...∪AXn,ΘM
with AXi,ΘM = {x ∈ [0, 1]d,mM,n(x,ΘM ) = Yi}. We begin with

a one-dimensional analysis. We denote X
(j)
i the j-th feature of Xi, for all j ∈ {1, . . . , d} and i ∈ {1, . . . , n}

and we focus on the first variable X(1). As X1, . . . , Xn are i.i.d. and follow a uniform distribution over

[0, 1]d, X
(1)
1 , ..., X

(1)
n are i.i.d. and uniformly distributed on [0, 1]. For the ease of notation, we define

Z1 := X
(1)
1 , ..., Zn := X

(1)
n . Let x = Zn. The length (volume) of Amin,Zn restricted to the first dimension

is simply given by the sum of the distance from x to its closest point on the left side and to its closest point
on the right side (divided by 2 as the cut are made in the middle of two points). Therefore,

µ(Amin,x) =
1

2

(
x− max

{Zi,Zi≤x}∪{0}
Zi + min

{Zi,Zi≥x}∪{1}
Zi − x

)
(99)

All computations are made conditionally on x. Denoting Nx the cardinal of the set {Zi : Zi ≤ x with 1 ≤
i < n}, we have for any t ∈ [0, x/2),

P
(

1

2

(
x− max

{Zi,Zi≤x}∪{0}
Zi

)
≤ t

∣∣x)
= 1− P

(
max

{Zi,Zi≤x}∪{0}
Zi < x− 2t

∣∣x)
= 1− E

[
E
[
P
(
(Zi1 < x− 2t) ∩ ... ∩ (ZiNx < x− 2t)|Nx, Zi1 ≤ x, ..., ZiNx |x ≤ x

)]
|x
]

= 1− E
[
(Z1 < x− 2t|Z1 ≤ x)Nx |x

]
= 1−

n−1∑
k=0

P (Nx = k|x)P (Z1 < x− 2t|Z1 ≤ x|x)
k

= 1−
n−1∑
k=0

P (Nx = k|x)

(
x− 2t

x

)k
= 1−

(
(1− x) + x

(
x− 2t

x

))n−1

= 1− (1− 2t)n−1

where the penultimate equality is obtained by noticing that Nx is a binomial of parameters (n− 1, x) and
computing its probability-generating function.

So for all t ≥ 0,

P
(

1

2

(
x− max

{Zi,Zi≤x}∪{0}
Zi

)
≤ t|x

)
= 1− (1− 2t)n−11t<x/2
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By symmetry,

P
(

1

2

(
min

{Zi,Zi≥x}∪{1}
Zi − x

)
≤ t|x

)
= 1− (1− 2t)n−11t>(1−x)/2

Overall, using the fact that for any variable Z with cumulative function FZ , E [Z] =
∫

(1− FZ), we have

E [µ(Amin,x)|x] =

∫ x/2

0

(1− 2u)n−1du+

∫ (1−x)/2

0

(1− 2u)n−1du

=
1

2n
(2− (1− x)n − xn)

≤ 1

n

(
1− 1

2n

)

Now, as X1, ..., Xn are i.i.d. and uniformly distributed over [0, 1]d, for any data point x ∈ [0, 1]d we simply
have that

Amin,x =
d×
j=1

Amin,x(j) .

Therefore,

E [µ(Amin,x)] ≤ 1

nd
(
1− 2−n

)d
.

Finally, since by definition all interpolation zones are disjoint, we have

E [µ(Amin)] ≤ 1

nd−1

(
1− 2−n

)d
.

2. It is enough to notice that the minimal interpolation zone is the intersection of all the potential interpolation
zones. It is reached when the forest contains all the possible cuts. Then, as the probability of any given cut
appearing is strictly greater than 0 by hypothesis, the probability of its appearance in the infinite forest is
one. Therefore almost surely, when M grows to infinity, the interpolation zone of the forest reaches the
minimal interpolation zone.
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B Experiment supplementary

For all experiments, we introduce the following regression models.

• Model 1: d = 2, Y = 2X2
1 + exp(−X2

2 )

• Model 2: d = 8, Y = X1X2 +X2
3 −X4X5 +X6X7 −X2

8 +N (0, 0.5)

• Model 3: d = 6, Y = X2
1 +X2

2X3e
−|X4| +X5 −X6 +N (0, 0.5)

• Model 4: d = 5, Y = 1/(1 + exp(−10 ∗ (
∑d
i=1Xi − 1/2))) +N (0, 0.05)

All the experiments are conducted using Python3. We use Scikit-learn RandomForestRegressor class to implement
the Breiman RF model. We coded CRF, KeRF and AdaCRF models ourselves, mainly relying on numpy and
joblib libraries for computation optimisation.

B.1 Consistency experiments

For all consistency experiments, the dataset was divided into a train dataset (80% of the data) and a test dataset
(20%) of the data.

The parameters of the estimators were set as follows:

• all RF estimators have 500 trees to mimic the behavior of the infinite RF.

• the max depth parameter is set to None for all RF estimators, which corresponds to growing each tree until
pure leaves.

• parameter bootstrap is set to False for all estimators in order preserve the interpolation property, or set to
True when specified.

• all other parameters are set to default value for Breiman RF.

B.1.1 Consistency of Breiman RF with max-feature= 1

On Figure 8, we see that the excess risk of a Breiman RF with the max-features parameter set to 1 is decreasing
towards 0 as n increases. This RF seems consistent for all models.

B.2 Interpolation experiments

B.2.1 Volume of the interpolation zone w.r.t sample size n

We plot on Figure 9 the log-volume of the interpolation zone of a Breiman RF with the max-features parameter
set to dd/3e (the default value proposed in R randomForest package). The volume decreases polynomially in n
but slower than when max-features= 1 (Figure 3) which is to be expected: choosing max-features= 1 should
increase the diversity of the splits and therefore reduce the volume of the interpolation zone.
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Figure 8: Consistency of Breiman RF: excess risk w.r.t sample size. RF parameters: 500 trees, max-depth set to
None, max-features= 1, no bootstrap. Mean over 30 tries(doted line) and std (filled zone).
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Figure 9: Log volume of Breiman RF interpolation zone w.r.t. sample size n. RF parameters: 500 trees, no
bootstrap, max features = dd/3e. Mean over 10 tries (bold line) and std (filled zone).

B.2.2 Volume of the interpolation zone w.r.t number of trees M

In this section, we empirically measure how fast decreases the volume of the interpolation zone of a Breiman RF
when its number of trees M increases, and how close the interpolation zone gets from the minimal interpolation
zone.

To this end, for a fixed sample size n = 500, we numerically evaluate the volume of the interpolation area when
the number M of trees in the forest grows. This volume is anticipated to be a non-increasing function of M (for
M = 1, note that the interpolation volume is 1, the volume of [0, 1]d), but its decrease rate highly depends on
the data geometry, making its theoretical evaluation difficult. The numerical results in Figure 10 show a fast
decay towards zero of the interpolation volume for all models, already tiny from M = 500 trees. Furthermore, it
seems to converge to the theoretical bound (dotted line) derived in Proposition 6.1 for an infinite RF with a
max-feature parameter equal to 1.

B.2.3 Analysis of the interpolation property of Breiman RF with bootstrap

In this experiment, we try to measure how close a Breiman RF with bootstrap on is from exactly interpolating
(with other parameters being 500 trees, max-depth set to None, max-features= d). To this end, we measure the
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Figure 10: Log volume of Breiman RF interpolation zone w.r.t. the number M of trees. RF parameters: no
bootstrap, max features = 1. Mean over 10 tries (bold line) and std (filled zone). Sample size n = 500.

difference between the true train labels (the Yis) and the predicted ones (the Ŷis) by computing

Iloss :=
1

n

n∑
i=1

|Yi − Ŷi|
Yi

.

The closer is this quantity to 0, the closer is the forest from interpolating. On Figure 11, we plot different
quantiles of the above quantity as n varies.
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Figure 11: Iloss of a Breiman RF w.r.t sample size n. RF parameters: 500 trees, bootstrap on, max-features= d,
max-depth set to None. Mean over 30 tries (doted lines) and std (filled zones).

For instance, if we take the 0.8-quantile in red on Figure 11 and look at the upper-right plot (model 2), we read
that the Iloss roughly equals 0.6 for 80% of the points. This quantity seems globally constant in n. Finally, the
quantiles are smaller in the case of a strong signal-to-noise ratio (models 1 and 4) than in the case of a bigger
one (models 2 and 3).

On Figure 12, we also plot the quantiles of the Iloss for the four different models while the number of trees varies.
Adding trees does not significantly change the value of the different quantiles.
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Figure 12: Iloss of a Breiman RF w.r.t number of trees. Parameters: bootstrap on, max-features= d, max-depth
set to None. Sample size n = 1000. Mean over 30 tries (doted lines) and std (filled zones).
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