

Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments?

A. Gorlas, T. Mariotte, L. Morey, C. Truong, S. Bernard, J.-m. Guigner, J. Oberto, F. Baudin, G. Landrot, C. Baya, et al.

▶ To cite this version:

A. Gorlas, T. Mariotte, L. Morey, C. Truong, S. Bernard, et al.. Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments?. Environmental Microbiology, 2022, 24 (2), pp.626-642. 10.1111/1462-2920.15915 . hal-03560043v1

HAL Id: hal-03560043 https://hal.science/hal-03560043v1

Submitted on 16 Nov 2022 (v1), last revised 7 Feb 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Precipitation of greigite and pyrite by Thermococcales: Ensuring survival in Fe- and S-rich
2	environments
3	
4	A. Gorlas ^{1*} , L. Morey ¹ , T. Mariotte ¹ , C. Truong ² , S. Bernard ² , J-M Guigner ² , J. Oberto ¹ , F.
5	Baudin ³ , G. Landrot ⁴ , C. Baya ² , P. Le Pape ² , G. Morin ² , P. Forterre ¹ and F. Guyot ^{2, 5} .
6	
7	
8	
9	¹ Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),
10	91198, Gif-sur-Yvette, France.
11	² Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS,
12	Sorbonne Université, Museum National d'Histoire Naturelle, IRD, 75252 Paris Cedex 05,
13	France.
14	³ Institut des Sciences de la Terre de Paris, UMR 7193 – Sorbonne Université - CNRS, 75252
15	Paris Cedex 05, France.
16	⁴ Synchrotron SOLEIL - SAMBA beamline – 91190 Saint-Aubin, France.
17	⁵ Institut Universitaire de France (IUF).
18	
19	
20	Correspondence: Aurore Gorlas
21	aurore.gorlas@i2bc.paris-saclay.fr
22	Phone number: +33-(0)1-69-15-30-59 Fax: +33-(0)1-69-15-78-08
23	
24	
25	Abstract
26	

Hydrothermal deep-sea vents, one of the most extreme environments for life on Earth, are 27 iron- and sulfur-rich anaerobic systems. Whereas FeS₂ pyrite is abiotically formed in the 28 interior of active sulfide chimneys at high temperatures (> 250°C), a major stock of FeS₂ 29 pyrite is also produced in the cooler middle layers of the chimneys at lower temperatures (< 30 150°C) by a still unknown mechanism. Thermococcales, a major family of archaea inhabiting 31 these extreme environments, have been shown to rapidly produce abundant quantities of FeS₂ 32 from the hydrothermal fluid at 85°C, suggesting that they may contribute to the formation of 33 "low temperature" FeS₂ pyrite in their ecosystem. In this study, we show that this mechanism, 34 which induces a massive cell mortality, operates in Thermococcus kodakarensis only when 35 zero-valent sulfur is directly available as sulfur vesicles. Significant amounts of Fe₃S₄ greigite 36 nanocrystals are then formed extracellularly nucleating on iron-phosphate-bearing 37 extracellular materials presumably resulting from cell lysis. Those pyrite and greigite 38 mineralizations allow the formation of a 3D structure composed of pyrite-mineralized cells 39 and vesicles remnants within a matrix consisting mostly of greigite nanocrystals. Starting 40 from this state, we observe that a new generation of cells grew in this medium a priori not 41 adapted to cell growth. We propose that greigite precipitation on phosphate-loaded former cell 42 materials induces the release of phosphates and organic compounds thus making them 43 available to a few surviving non-mineralized cells hence allowing production of new alive 44 cells. This suggests that biologically induced iron-sulfides mineralization could be part of a 45 survival strategy employed by Thermococcales to cope in strongly mineralizing high-46 temperature hydrothermal environments. 47

48

49 Keywords

50 Biomineralization, Pyrite, Greigite, Hyperthermophiles, *Thermococcales*, Adaptation

51