
HAL Id: hal-03559979
https://hal.science/hal-03559979

Submitted on 7 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control design via Bayesian Optimization with safety
constraints

Xavier Bombois, Marco Forgione

To cite this version:
Xavier Bombois, Marco Forgione. Control design via Bayesian Optimization with safety con-
straints. 6th IEEE Conference on Control Technology and Applications, Aug 2022, Trieste, Italy.
�10.1109/CCTA49430.2022.9966099�. �hal-03559979�

https://hal.science/hal-03559979
https://hal.archives-ouvertes.fr


Control design via Bayesian Optimization with safety constraints

Xavier Bombois1 and Marco Forgione2

Abstract— Bayesian Optimization is a powerful machine-
learning tool enabling automated design of fixed-structure
controllers. A sequence of closed-loop calibration experiments
is performed, and the next configuration to be tested is selected
by the optimization algorithm in order to minimize an objective
function measured directly on the real system. While the
approach has been shown to be effective, its applicability is
limited in certain domains by safety considerations, as the
algorithm may suggest controller configurations which lead to
dangerous behaviours in some of the calibration experiments.
In this paper, we modify the standard Bayesian Optimization
algorithm by introducing explicit constraints for safe explo-
ration of the controller configuration space. The constraints
are derived based on a preliminary model of the process
dynamics, which is assumed to be available. Aspects for efficient
implementation of the proposed methodology are discussed.
Simulation examples highlight the advantage of the proposed
methodology for controller calibration over the plain Bayesian
Optimization algorithm.

I. INTRODUCTION

In recent years, data-driven controller calibration method-
ologies based on global derivative-free optimization algo-
rithms have been shown to be tremendously effective [1]. To
cite a few examples, optimal selection of position controllers
for quadrotor drones is shown in [2], while automatic tuning
of PID gains (along with feedback-linearization parameters)
for robotic manipulators is demonstrated in [3]. An automo-
tive application to the design of active disturbance rejection
controllers for throttle valve regulation is described in [4].

To apply these data-driven calibration methodologies, the
user must specify: (i) a control objective which can be
evaluated in terms of measured input/output data and (ii)
a search space where the calibration parameters are allowed
to vary. The optimization algorithm is then executed in an
interactive manner, where function evaluations correspond
to closed-loop experiments to be performed on the physical
set-up. This is in sharp contrast with standard numerical opti-
mization, where a simulated objective function is repeatedly
evaluated.

The need to perform real experiments as part of the opti-
mization loop entails specific challenges. To be of practical
interest, the algorithm should be sample-efficient, namely

*The activities of Marco Forgione have been supported by HASLER
STIFTUNG under the project DEALING: DEep learning for dynamicAL
systems and dynamical systems for deep learnING.

1Xavier Bombois is with Laboratoire Ampère, Ecole Centrale de
Lyon, Université de Lyon, 36 avenue Guy de Collongue, Ecully, France
and with Centre National de la Recherche Scientifique (CNRS), France
xavier.bombois@ec-lyon.fr

2Marco Forgione is with IDSIA Dalle Molle Institute for Artificial Intelli-
gence USI-SUPSI, Via la Santa 1, Lugano-Viganello CH-6962, Switzerland
marco.forgione@supsi.ch

it should be able to propose good candidate controllers
(although not necessarily optimal) within a limited number of
iterations. Furthermore, it should be tolerant to the presence
of noise in the objective function, as the latter is affected
by all sources of experimental variability. Finally, all the
configurations suggested by the algorithm should be safe,
in the sense that they should not lead to catastrophic failures
and/or damage of the experimental set-up.

For its sample-efficiency and noise-tolerance properties,
the Bayesian Optimization (BO) algorithms [5] is a common
choice in this context. In a nutshell, BO uses all the available
function evaluations to construct a probabilistic surrogate
description of the objective function. This probabilistic sur-
rogate is then used to choose the next point to be tested
according to a trade-off criterion which balances exploitation
(selection of a point close to the optimum of the surrogate
objective) and exploration (selection of a point with high un-
certainty). The explicit exploration goal is the distinguishing
feature of BO with respect to traditional surrogate function
optimization methods [6]. On the one hand, by exploring the
whole search space systematically, the algorithm is guaran-
teed not to get stuck in configurations which are only locally
optimal. On the other hand, all controller configurations—
including the ones that pose safety concerns—may eventually
be suggested by the algorithm for testing.

In this paper, we propose a modification of the standard
BO algorithm to ensure safe exploration of the controller
configuration space. Our approach is based on a model of
the underlying system, which is used to restrict the search
space for BO to safe configurations for experimentation. In
particular, we exclude from the search space those configu-
ration whose performance is below a certain threshold when
applied (in simulation) to the model. The rationale of this
approach is that a controller leading to poor performance on
the model (or even de-stabilizing this model) should not be
tested, as they are also likely to perform poorly on the real
system.

Safe exploration for BO is an active area of investigation
in the general Machine Learning community. For instance,
the SAFEOPT algorithm [7] introduces a safe exploration set
based on a priori regularity assumptions (i.e. bounded norm,
Lipschitz-continuity) on the unknown objective function. At
each iteration, it selects a new point according to the compet-
ing goals of expanding the safe set (by sampling points close
to its boundary) and optimizing the objective function (by
sampling points close to the optimum of the surrogate). The
SAFEOPT-MC algorithm [8] extends SAFEOPT by including
multiple constraint functions, all assumed to be sufficiently
regular. Finally, GOOSE [9] aims at improving the sample-



efficiency of the above methodologies, by expanding the safe
exploration region only in the directions where the objective
function is expected to decrease.

Compared to those methodologies, we do not rely on
regularity assumptions on the objective function and instead
exploit domain knowledge to define safe regions for con-
troller parameter selection.

The rest of this paper is organized as follows. The overall
control design framework is introduced in Section II and the
proposed Bayesian Optimization method with safe parameter
exploration is presented in Section III. In Section IV, exam-
ples showcasing the advantage of the proposed methodology
over plain BO are illustrated. Conclusions and directions for
further investigations are discussed in Section V.

II. FRAMEWORK

Let us consider an uncertain continuous-time dynamical
system S with a control input u and an output y. Our
objective is to tune the parameters θ ∈ Θ, Θ ⊆ Rnθ of
a controller K(θ) in such a way that a given closed-loop
performance objective is met (the search space Θ will be
discussed in more details in the next section). The objective
is quantified in terms of a given cost function V (θ) that we
wish to minimize. This cost function V (θ) can e.g., be the
energy of the difference between the desired output ydes(t)
and the output y(t, θ) of the system S when K(θ) is chosen
as controller. In any case, we suppose that, for any value
of θ ∈ Θ, the cost function V (θ) can be measured via
an experiment on the closed-loop system [K(θ) S] made
up of the system S and the controller K(θ) i.e., the cost
function V (θ) can be estimated/measured based of the input
and output samples generated during this experiment. We
will denote this measure by Ṽ (θ).

As an example, if V (θ) is chosen as proposed above
(i.e., the energy of y(t, θ) − ydes(t)), we can perform an
experiment of sufficient duration NTs (Ts is the sampling
rate) on the loop [K(θ) S] yielding a sampled version yn(θ)
(n = 1, ..., N ) of the continuous-time output y(t, θ) at
time instant t = nTs and we can then choose Ṽ (θ) =
Ts

∑N
n=1(yn(θ) − ydes,n)

2 where ydes,n is the sampled
version of the desired output ydes(t) at time instant t = nTs.

In our data-driven approach, the controller design task is
seen as a global optimization problem, to be solved in a
number nit of iterations. Each iteration is characterized by an
experiment on the system S with a different controller K(θk)
(θk is the value of θ that is tested at Iteration k). After this
experiment, we obtain the measurement Ṽ (θk) of V (θk) and
we determine a non-parametric probabilistic model1 (usually
a Gaussian process model [10]) of the cost function V (θ)
based on the measurements collected up to Iteration k. This
probabilistic model (together with its uncertainty) is then
used to suggest the next controller configuration θk+1 to be
tested in the next experiment, aiming at minimization of the
cost V (θ).

1A closed-form expression of the cost V as a function of the design
parameter vector θ is indeed not available due to the fact that the system
S is unknown/uncertain.

The global-optimization problem is generally tackled via
a so-called Bayesian Optimization (BO) algorithm [5]. As
mentioned above, this algorithm will entail nit experiments
on the system S with different controllers K(θ). In these
multiple experiments, certainly in the initial phase where
the probabilistic model of V (θ) is very uncertain, some of
these experiments could pertain to controllers that destabilize
the system or give a performance that is so bad that it
could harm the system. In this paper, we will provide
a modified Bayesian Optimization algorithm that excludes
such experiments using available prior knowledge. This prior
knowledge will here take the form of a (linear) model M of
the (possibly non-linear) system S. As we will see in the
sequel, the model M will be exploited to define a region
of safe exploration. The rationale of this approach is that a
controller leading to poor performance on the model M (or
even de-stabilizing this model) should not be tested, as they
are also likely to perform poorly on the real system S.

III. METHOD

In this section, the proposed algorithm for control design
with Bayesian Optimization is presented. First, the stan-
dard BO algorithm is described in Section III-A. Then, in
Section III-B, the algorithm is modified to ensure a safe
exploration.

As mentioned in the previous section, the BO algorithm
aims at approaching the solution θ⋆ of the following (gener-
ally non-convex) optimization problem:

θ⋆ = argmin
θ∈Θ

V (θ), (1)

where Θ represents the search space for the controller param-
eters θ, this search space is generally defined via intervals
in which each entry of θ may vary. It is important to stress
that Θ is generally chosen as a large set and that it may
therefore contain many parameter vectors θ leading to (very)
poor performance V (θ).

A. Bayesian Optimization for controller tuning

Probabilistic model of V (θ): The key idea behind BO is to
describe the (uncertain) relationship between the parameter
vector θ and the corresponding cost function V by means of
a surrogate probabilistic model of V (θ), and to iteratively
update this model through Bayesian inference when new
experiments are performed.

The most common probabilistic model used in BO is
the Gaussian Process (GP) [10]. Let us analyze how this
framework can be used for our BO algorithm and let us
suppose that we are after Iteration k in this BO algorithm.
After Iteration k, we have performed k experiments on
S with k different controllers parametrized with different
parameter values θ. Let us gather these k values in the set
Tk = {θ1, θ2, ..., θk} where θi (i = 1, ..., k) is the parameter
value tested at Iteration i. These k experiments have led to
k observations of the cost function. We also gather these
observations in the set T Ṽ

k = {Ṽ (θ1), Ṽ (θ2), ..., Ṽ (θk)}.
Like in every Bayesian estimation process, we have to



suppose a prior distribution for the probabilistic model of
V (θ) materializing the a-priori information on V (θ). In the
GP framework, this prior distribution is under the form of
a Gaussian distribution whose covariance matrix imposes a
higher degree of similitude for values of V (θ) with θ that
are close to each other in the parameter space. The GP
framework also supposes a distribution for the measurement
error Ṽ (θ) − V (θ) (this difference is often supposed to be
i.i.d. and to be Gaussian-distributed). This prior information
is optimized2 at each iteration based on the collected data
Tk and T Ṽ

k . Then, the posterior distribution of the model of
V (θ) given the data Tk and T Ṽ

k can be easily computed for
each value of θ ∈ Θ due to the Gaussian prior assumption.
This posterior distribution is a Gaussian distribution with
mean µk(θ) and variance σ2

k(θ). At Iteration k, the proba-
bilistic model Vk(θ) of V (θ) at an arbitrary value θ ∈ Θ
is thus N (µk(θ), σ

2
k(θ)). The quantity µk(θ) is therefore

the best estimate of V (θ) given the observed data Tk and
T Ṽ
k (and the prior information) and σ2

k(θ) determines the
uncertainty of this estimate.

After each iteration, we can update the solution of our
BO algorithm using the current probabilistic model of V (θ).
After Iteration k, the current solution θopt,k is the element
of Tk leading to the smallest value of µk(θ) i.e.,

θopt,k = arg min
θ∈Tk

µk(θ). (2)

This means that the (current) solution will always be a value
of θ that has been tested on the system S.

Acquisition function: The probabilistic model Vk(θ) will
also be used to determine the next value of θ that will
be tested on the system S . In Bayesian Optimization, the
model’s uncertainty information is explicitly taken into ac-
count to propose the most promising point to be tested in
the next iteration. The choice is done according to a trade-
off balancing exploration (namely, selecting a point where
the expected value µk(θ) of the cost is low) and exploration
(namely, selecting a point where the variance σ2

k(θ) of the
model is high). This trade-off criterion is formalized in
terms of an acquisition function Ak(θ) such as the expected
improvement

Ak(θ) = EI(θ) = E [max{0, µk(θopt,k)−Vk(θ)}] , (3)

which is the expected value of the improvement of the
objective function with respect to the best previously tested
points.

The Bayesian Optimization algorithm for controller tuning
is described in Algorithm 1. Note that, instead of just
considering one single parameter vector θ1, Step 1 can also
consider a small amount of parameter vectors randomly
chosen in Θ in order to better initialize the optimization.

2The parameters describing this prior information (the so-called hyperpa-
rameters) are re-estimated at each iteration to make the observed data the
most likely, by maximizing the marginal data likelihood, see [10].

Algorithm 1 Control design via Bayesian Optimization
1. choose an arbitrary value of θ as θ1 and perform an

experiment on the system S with K(θ1). Define T1 =

{θ1} and T Ṽ
1 = {Ṽ (θ1)} where Ṽ (θ1) is measured

based on the collected input-output data during this
experiment.

2. for k = 1, ..., nit do
2.1. update the mean µk(θ) and the variance σ2

k(θ) of the
probabilistic model Vk(θ) with the available data Tk
and T Ṽ

k

2.2. optimize the acquisition function to determine θk+1

θk+1 ← argmax
θ∈Θ
Ak(θ);

2.3. execute an experiment on S with K(θk+1) and
measure Ṽ (θk+1);

2.4. augment the dataset:

Tk+1 ← Tk ∪ θk+1

T Ṽ
k+1 ← T Ṽ

k ∪ Ṽ (θk+1)

3. exit when k = nit;
4. extract the optimal controller parameters θopt, with

θopt = θopt,nit
= arg min

θ∈Tnit

µnit
(θ);

Output: Controller parameters θopt

B. Safe experimentation with constraints

As mentioned in Section II, we suppose that a model M of
the uncertain dynamics S is available. Using this model M ,
let us define VM (θ) as the performance level obtained with
K(θ) when S = M . In other words, when V (θ) is defined
as the energy of the difference between the desired output
and the output of the loop [K(θ) S], VM (θ) is defined as
the energy of the difference between the desired output and
the output of the loop [K(θ) M ]. In addition, we could also
of course incorporate additional performance aspects in VM

(such as robustness conditions).
It is clear that, for a given θ, VM (θ) can be computed

either analytically or via simulation. This also means that this
evaluation does not require an experiment on S. If the model
M is not a too poor representation of the unknown system S,
we can also say that, if a given value of θ leads to a (very)
high value of VM (θ) (i.e., the controller K(θ) achieves a
(very) poor performance on M ), we should avoid to make an
experiment on the true system S with that controller K(θ).

This rationale has led us to the following modification of
the optimization problem (1):

argmin
θ∈Θ

V (θ) (4a)

s.t. VM (θ) < ε. (4b)

where the set of θ such that VM (θ) < ε represents the
set of θ where the performance of the loop [K(θ) M ] is
acceptable. By acceptable, we mean that the performance



is not necessarily good, but the safety is ensured. In other
words, VM (θ) < ε is a safety constraint and we will denote
Θsafe = {θ ∈ Θ | VM (θ) < ε} the implicit set containing all
parameter vectors θ leading to an a-priori safe experiment.

The constrained optimization problem (4) can also be
treated using a BO algorithm. Due to the deterministic nature
of the constraint in (4), one could use the BO formalism
for such constraints. However, this leads to a prohibitive
computing time due to the fact that the evaluation of the
constraint cannot be easily vectorized when evaluating it for
thousands of grid points. Consequently, we will here use a
BO algorithm with a so-called coupled constraint [11], [12].
Even though this approach could seem less straightforward,
it leads to satisfactory results as we will see in the next
section.

When the constraint in (4) is treated as a coupled con-
straint, we determine, besides the GP model for V (θ), also a
GP model for the computable quantity VM (θ). In the Matlab
implementation, the GP models of V (θ) and VM (θ) are
learned in a coupled manner. This means that, at Iteration k,
the GP model for V (θ) is based on the data Tk and T Ṽ

k and
the GP model for VM (θ) is based on the very same data Tk
and T Ṽ

k . Consequently, since the GP model of VM (θ) must
represent this function over the whole set Θ, this particular
coupled implementation will also require evaluations of V (θ)
outside of the safety zone Θsafe (and thus experiments on
S with controllers K(θ) outside of this safety zone). This
major drawback can however easily be avoided by slightly
modifying the constrained optimization problem (4) to:

argmin
θ∈Θ

J(θ) (5a)

s.t. VM (θ) < ε. (5b)

where the objective function J(θ) (that replaces V (θ)) is
defined as follows:

J(θ) =

{
V (θ) if VM (θ) < ε
VM (θ) if VM (θ) ≥ ε. (6)

It is clear that the optimization problem (5) has the same
solution as the optimization problem (4). In the sequel, the
optimization problem (5) will be the one that we will solve
using Bayesian Optimization to address our control design
problem in a safe manner.

To solve (5) with a BO algorithm requires GP models of
both J(θ) and VM (θ). In order to explain why replacing
V (θ) by J(θ) is useful in practice, let us first note
that a GP model of J(θ) can easily be determined. In
particular, at Iteration k, the GP model will be determined
based on the data Tk, T J̃

k = {J̃(θ1), ..., J̃(θk)} where,
for i = 1, ..., k, J̃(θi) = Ṽ (θi) when VM (θi) < ε and
J̃(θi) = VM (θi) when VM (θi) ≥ ε. In other words, in
order to deduce the GP model of J(θ), experiments on
the system S will only be performed for parameter vectors
θi ∈ Θsafe while, for the parameter vectors θi ̸∈ Θsafe, the
measurement Ṽ (θi) that would entail a possibly dangerous
experiment will be replaced by the performance VM (θi) of
the loop [K(θi) M ] (that can be evaluated via simulation).

This characteristic of the learning process of the GP model
of J(θ) (which is, in the safety zone, a model of V (θ))
allows us to learn the GP models of J(θ) and VM (θ) over
Θ without performing experiments on the system S for
parameter vectors outside the safety zone Θsafe.

Remark 1. With the GP models of J(θ) and VM (θ),
Algorithm 1 can also be used to solve (5) modulo two
adaptations. First, in Step 2.2, the maximized quantity is
changed to Ak(θ) multiplied by the probability that the
(current) GP model of VM (θ) is smaller than ε [11]. Second,
in Step 4, θopt is determined over the elements of Tnit

lying
in Θsafe.

Remark 2. In order to further simplify the optimization
process, the optimization problem (5) could also be replaced
by the unconstrained optimization problem argminθ∈Θ J(θ)
with J(θ) as in (6). This removes the need of one of the two
GP models (i.e., the one of VM (θ)). On the examples that
will be presented in the sequel, this simplified optimization
problem leads to very similar results as the ones with (5).

IV. CASE STUDIES

A. Linear example

We first consider a linear system S described by the
following continuous-time transfer function P (s) (s is the
Laplace variable):

P (s) =
10

(s+ 10)(s+ 1)
. (7)

For this linear system, we wish to determine a feedback
controller K(s, θ) having the following structure:

K(s, θ) =
k(s+ p1)(s+ p2)

s(s+ 4.2)
,

where the three tunable parameters are gathered in the
vector θ = (k, p1, p2)

T . The control objective is to track
a (unit) step reference with an overshoot of 5% and a
rise time of one second. We thus consider the following
reference model Mref (s) = 9/(s2 + 4.2s + 9) whose step
response determines the desired output ydes(t) of the closed-
loop system. It is clear that ydes(t) can be obtained with
a controller K(s, θdes,lin) where θdes,lin = (0.9, 10, 1)T .
However, this parameter vector θdes,lin cannot be determined
in practice since P (s) is unknown.

In order to determine an optimal controller, we will use
the BO approach presented in the previous sections. For this
purpose, it is necessary to determine a cost function V (θ)
whose minimization yields a parameter vector equal to (or
at least as close as possible to) to θdes,lin and to determine a
type of experiments that allows, for any given value of θ, to
collect input and output data with which an estimate Ṽ (θ)
of this cost function V (θ) can be computed. The chosen
experiment for a given θ here consists in applying, for
five seconds, a unit step reference c(t) to the closed loop



[K(s, θ) P (s)] and in collecting the corresponding (noisy)
output data y(t, θ) at a sampling rate Ts = 0.025 s:{

y(t, θ) = P (s)u(t, θ) + w(t)
u(t, θ) = K(s, θ)(c(t)− y(t)),

where w(t) is the measurement noise (chosen here as a white
noise of standard deviation 0.01). If we denote yn(θ) (n =
1, ..., 200) the sampled version of the continuous-time signal
y(t, θ) and ydes,n the one of ydes(t), we can define Ṽ (θ) =
Ts

∑200
n=1(yn(θ)−ydes,n)2. The corresponding cost function

V (θ) is the expected value of Ṽ (θ) (note that we do not
need to be able to compute V (θ), we only need to be able
to compute Ṽ (θ)).

As mentioned in the previous sections, we suppose that we
have a model of the system P (s). Here, this model M(s) of
P (s) is given by

M(s) =
12

(s+ 8)(s+ 2)
(8)

This model allows to determine the safety zone Θsafe by
choosing ε = 0.1 and by defining VM (θ) as follows:

VM (θ)=

Ts

200∑
n=1

(yM,n(θ)−ydes,n)
2 if [K(s, θ) M(s)] stable

100 ε otherwise.
(9)

with yM,n(θ) the sampled version of yM (t, θ) =
M(s)K(s,θ)

1+M(s)K(s,θ)c(t) .
The model M(s) of P (s) also allows to determine the

parameter vector θinit = (0.75, 8, 2)T defining the controller
K(s, θinit) which ensures that yM (t, θinit) is exactly equal
to ydes(t) (i.e., VM (θinit) = 0). Note that, when applied to
P (s), the performance of K(s, θinit) is nevertheless rather
poor (see Figure 1). A BO algorithm aiming at solving (5)
is thus useful to improve the performance.

Fig. 1. ydes(t) (red), y(t, θopt,lin) (black) and y(t, θinit) (blue) for the
linear case study.

With the above definitions, we perform nit = 300 itera-
tions of a BO algorithm aiming at solving (5). In order to
initialize this BO algorithm, the first iteration will be per-
formed with the parameter vector θ1 = θinit = (0.75, 8, 2)T

(see Algorithm 1). This means that the first experiment on
the system P (s) will be performed with K(s, θinit). We also

define the search space Θ based on θinit: the first entry of
θ can vary in [0.05 1.75], the second entry in [5 58] and the
third entry in [0.5 7].

These 300 iterations leads to θopt,lin =
(0.98, 9.139, 1.009)T which is clearly close to
θdes,lin = (0.9, 10, 1)T . As can be seen in Figure 1,
the optimal output y(t, θopt,lin) with that controller
K(s, θopt,lin) is very close to the desired ydes(t) and the
improvement with respect to y(t, θinit) is clear. The safe
operation implemented in the optimization problem (5) has
thus not prevented the determination of a good optimum.
Let us now analyze the advantage of the safe operation.
Among the 300 to-be-tested parameter vectors θ, only 269
lied in Θsafe and have therefore been tested on the system
P (s). The sum of the cost Ṽ (θ) over these 269 values is
equal to 5.83. Among the 31 parameter vectors θ for which
VM (θ) ≥ 0.1, five led to K(s, θ) destabilizing the model
M(s). If we would have applied the five controllers K(s, θ)
destabilizing the model M(s) on the true system P (s), the
sum of the cost Ṽ (θ) over these five experiments would
have been 253 (to be compared to 5.83 for the 269 good
parameter vectors θ ∈ Θsafe). Note that this sum is finite
because Ṽ (θ) is defined based on an experiment lasting
only five seconds. If we would have applied the controller
K(s, θ) with the 26 other parameter vectors θ such that
VM (θ) ≥ 0.1, the sum of Ṽ (θ) for these 26 experiments
would have been of 11. So, the safe operation leads to a
total cost of 5.83 and safes us a cost of 264. The total energy
of the input u(t) that is used during the 269 experiments
is 1884 and, by not performing the 31 experiments with
θ ̸∈ Θsafe, we save a total energy of 8750. The benefit of
the safe operation is thus clear.

B. Nonlinear example

The previous control design problem could have been
addressed using other techniques than a BO algorithm.
We therefore now consider a nonlinear system S i.e., an
Hammerstein system made up of an input saturation with
limit [−1.5, 1.5] and the transfer function P (s) given in (7).
Note that, if we apply either the initial controller K(s, θinit)
or the controller K(s, θopt,lin) determined in the previous
subsection to this Hammerstein system, the input saturation
will be activated (the control input indeed reaches 1.8 in the
linear setup with both controllers).

In this nonlinear setup, Ṽ (θ) will have the same expression
as in the previous subsection, but y(t, θ) will be determined
in a closed loop made up of K(s, θ) and the Hammerstein
system S. The model M of S remains the linear transfer
function M(s) given in (8) and VM (θ) also keeps the
same expression (9). The desired output ydes(t) is also kept
unchanged. The same holds for the other settings of the BO
algorithm aiming at solving (5).

After 300 iterations of this BO algorithm, we obtain
θopt,nl = (1.737, 7.892, 0.5991)T . As can be seen in Fig-
ure 2, the optimal output y(t, θopt,nl) with the controller
K(s, θopt,nl) is quite close to the desired ydes(t) (but ob-
viously less than in the linear case) and the improvement



with respect to θinit is here also clear. It is also to be noted
that K(s, θopt,nl) could not be determined in an obvious way
from the control specifications and that, as shown in Figure 2,
it clearly outperforms the controller K(s, θdes,lin) i.e., the
controller for which y(t, θdes,lin) = ydes(t) when S = P (s)
(and the noise w(t) = 0).

We have seen that the safe operation has thus here also
not prevented the determination of a good optimum. Let us
now analyze the advantage of the safe operation. Among the
300 to-be-tested parameter vectors θ, only 261 lied in Θsafe

and have therefore been really tested on the Hammerstein
system S. The sum of the cost Ṽ (θ) over these 261 values is
equal to 6.47. Among the 39 parameter vectors θ for which
VM (θ) ≥ 0.1, five led to K(s, θ) destabilizing the model
M(s). If we would have applied these 39 parameter vectors
to the Hammerstein system, the sum of Ṽ (θ) would have
been of 8.4. With respect to the linear case, this figure is here
smaller since the parameter vectors θ leading to controllers
destabilizing M(s) do not lead to a fast divergence of y(t, θ)
when applied to the Hammerstein system (we obtain a sort
of limit cycle; see Figure 3). The total energy of the input
u(t) that is used during the 261 experiments with θ ∈ Θsafe

is 1701 and, by not performing the 39 experiments with θ ̸∈
Θsafe, we save a total energy of 290. The benefit of the safe
operation is thus still there.

As mentioned in the previous paragraph, five values of θ
have been disregarded because K(s, θ) destabilizes M(s).
One of these values is θuns = (0.16, 48.5, 4.2)T . The
output y(t, θuns) obtained by applying K(s, θuns) on the
Hammerstein system S is represented in Figure 3 for a
simulation of 30 seconds. The output y(t, θuns) seems to
reach a sort of limit cycle and thus does not diverge, but it
is clear that this experiment is better not done in practice
(as allowed by our safe operation). We observe a similar
behaviour for the other four values of θ that have been
disregarded because K(s, θ) destabilizes M(s).

Fig. 2. ydes(t) (red), y(t, θopt,nl) (black), y(t, θinit) (blue) and
y(t, θdes,lin) (green) for the nonlinear case study.

V. CONCLUSIONS

We have presented a controller calibration procedure based
on Bayesian Optimization, where repeated experiments are
performed on the true system aiming at minimization of a

Fig. 3. ydes(t) (red), y(t, θuns) (black).

given closed-loop control objective. Compared to existing
techniques, we introduce explicit constraints for safe explo-
ration of the controller parameter space, exploiting knowl-
edge from an available process model. Numerical exam-
ples showcase the advantage of the proposed methodology.
Current and future research is aimed at the use of robust
control analysis and design tools to further improve the safety
constraint imposed to the BO algorithm.

REFERENCES

[1] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, vol. 3, pp. 269–296, 2020.

[2] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with gaussian processes,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 491–496.

[3] L. Roveda, M. Forgione, and D. Piga, “Robot control parameters
auto-tuning in trajectory tracking applications,” Control Engineering
Practice, vol. 101, p. 104488, 2020.

[4] M. Neumann-Brosig, A. Marco, D. Schwarzmann, and S. Trimpe,
“Data-efficient autotuning with bayesian optimization: An industrial
control study,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 730–740, 2019.

[5] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[6] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global optimization,
vol. 13, no. 4, pp. 455–492, 1998.

[7] Y. Sui, A. Gotovos, J. Burdick, and A. Krause, “Safe exploration for
optimization with gaussian processes,” in International conference on
machine learning. PMLR, 2015, pp. 997–1005.

[8] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimiza-
tion with safety constraints: safe and automatic parameter tuning in
robotics,” Machine Learning, pp. 1–35, 2021.

[9] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration
for interactive machine learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[10] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning. MIT Press Cambridge, MA, 2006, vol. 2, no. 3.

[11] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. P.
Cunningham, “Bayesian optimization with inequality constraints.” in
ICML, vol. 2014, 2014, pp. 937–945.

[12] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization
with unknown constraints,” arXiv preprint arXiv:1403.5607, 2014.


