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IDENTIFICATION OF PROGNOSTIC AND PREDICTIVE
BIOMARKERS IN HIGH-DIMENSIONAL DATA WITH PPLASSO

WENCAN ZHU, CÉLINE LÉVY-LEDUC, AND NILS TERNÈS

Abstract. In clinical trials, identification of prognostic and predictive biomarkers is es-
sential to precision medicine. Prognostic biomarkers can be useful for the prevention of the
occurrence of the disease, and predictive biomarkers can be used to identify patients with
potential benefit from the treatment. Previous researches were mainly focused on clinical
characteristics, and the use of genomic data in such an area is hardly studied. A new
method is required to simultaneously select prognostic and predictive biomarkers in high
dimensional genomic data where biomarkers are highly correlated. We propose a novel ap-
proach called PPLasso (Prognostic Predictive Lasso) integrating prognostic and predictive
effects into one statistical model. PPLasso also takes into account the correlations be-
tween biomarkers that can alter the biomarker selection accuracy. Our method consists in
transforming the design matrix to remove the correlations between the biomarkers before
applying the generalized Lasso. In a comprehensive numerical evaluation, we show that
PPLasso outperforms the traditional Lasso approach on both prognostic and predictive
biomarker identification in various scenarios. Finally, our method is applied to publicly
available transcriptomic data from clinical trial RV144. Our method is implemented in
the PPLasso R package which will be soon available from the Comprehensive R Archive
Network (CRAN).

1. Introduction

With the advancement of precision medicine, there has been an increasing interest in
identifying prognostic or predictive biomarkers. A prognostic biomarker is linked to a
clinical outcome (disease recurrence, progression of the disease etc.) in the presence or
in the absence of a therapy while a predictive biomarker is associated with a response
or a lack of response to a specific therapy. Ballman (2015) and Clark (2008) provided a
comprehensive explanation and concrete examples to distinguish prognostic from predictive
biomarkers, respectively.

Concerning the biomarker selection, the high dimensionality of genomic data is one of
the main challenges as explained in Fan and Li (2006). To identify effective biomarkers
in high-dimensional settings, several approaches can be considered including hypothesis-
based tests described in McDonald (2009), wrapper approaches proposed in Saeys et al.
(2007), and penalized approaches such as Lasso designed by Tibshirani (1996) among
others. Hypothesis-based tests consider each biomarker independently and thus ignore po-
tential correlations between them. Wrapper approaches often show high risk of overfitting
and are computationally expensive for high-dimensional data as explained in Smith (2018).

Key words and phrases. variable selection; highly correlated predictors; genomic data.
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More efforts have been devoted to penalized methods given their ability to automatically
perform variable selection and coefficient estimation simultaneously as highlighted in Fan
and Lv (2009). However, Lasso showed some potential drawbacks when biomarkers are
highly correlated. Particularly, when the Irrepresentable Condition (IC) proposed by Zhao
and Yu (2006) is violated, Lasso can not guarantee to correctly identify true effective
biomarkers. In genomic data, biomarkers are usually highly correlated such that this con-
dition can hardly be satisfied, see Wang et al. (2019). Several methods have been proposed
to adress this issue. For example, Wang and Leng (2016) proposed the HOLP approach
which consists in removing the correlation between the columns of the design matrix; Wang
et al. (2019) proposed to handle the correlation by assigning similar weights to correlated
variables in their approach called Precision Lasso; Zhu et al. (2021) proposed to remove
the correlations by applying a whitening transformation to the data before using the gen-
eralized Lasso criterion designed by Tibshirani and Taylor (2011).

The challenge of finding prognostic biomarkers has been extensively explored with previ-
ously introduced methods, however, the discovery of predictive biomarkers has seen much
less attention. Limited to binary endpoint, Foster et al. (2011) proposed to first predict re-
sponse probabilities for treatment and use this probability as the response in a classification
problem to find effective biomarkers. Tian et al. (2012) proposed a new method to detect
interaction between the treatment and the biomarkers by modifying the covariates. This
method can be implemented on continuous/binary/time-to-event endpoint. Lipkovich et al.
(2011) proposed a method called SIDES, which adopts a recursive partitioning algorithm
for screening treatment-by-biomarker interactions. This method was further improved in
Lipkovich and Dmitrienko (2014) by adding another step of preselection on predictive
biomarkers based on variable importance. The method was demonstrated with continuous
endpoint. More recently, Sechidis et al. (2018) applied approaches coming from informa-
tion theory for ranking biomarkers on their prognostic/predictive strength. Their method
is applicable only for binary or time-to-event endpoint. Moreover, all of these methods
were assessed under the situation where the sample size is relatively large and the number
of biomarkers is limited, which is hardly the case for genomic data.

In the literature mentioned above, the authors focused on one of the problematic of
identifying prognostic or predictive biomarkers, but rarely on both. In this paper, we
propose a novel approach called PPLasso (Predictive Prognostic Lasso) to simultaneously
identify prognostic and predictive biomarkers in a high dimensional setting with continuous
endpoints, as presented in Section 2. Extensive numerical experiments are given in Section
3 to assess the performance of our approach and to compare it to other methods. PPLasso
is also applied to the clinical trial RV144 in Section 4. Finally, we give concluding remarks
in Section 5.
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2. Methods

In this section, we propose a novel approach called PPLasso (Predictive Prognostic
Lasso) which consists in writing the identification of predictive and prognostic biomark-
ers as a variable selection problem in an ANCOVA (Analysis of Covariance) type model
mentioned for instance in Faraway (2002).
2.1. Statistical modeling. Let y be a continuous response or endpoint and t1, t2 two
treatments. Let also X1 (resp. X2) denote the design matrix for the n1 (resp. n2) patients
with treatment t1 (resp. t2), each containing measurements on p candidate biomarkers:

(1) X1 =


X1

11 X2
11 . . . Xp

11
X1

12 X2
12 . . . Xp

12
...

X1
1n1

X2
1n1

. . . Xp
1n1

 ,X2 =


X1

21 X2
21 . . . Xp

21
X1

22 X2
22 . . . Xp

22
...

X1
2n2

X2
2n2

. . . Xp
2n2

 .

To take into account the potential correlation that may exist between the biomarkers in
the different treatments, we shall assume that the rows of X1 (resp. X2) are independent
centered Gaussian random vectors with a covariance matrice equal to Σ1 (resp. Σ2).

To model the link that exists between y and the different types of biomarkers we propose
using the following model:

(2) y =



y11
y12
...

y1n1

y21
y22
...

y2n2


= X



α1

α2

β11
β12
...
β1p
β21
β22
...
β2p


+



ε11
ε12
...

ε1n1

ε21
ε22
...

ε2n2


,

where (yi1, . . . , yini
) corresponds to the response of patients with treatment ti, i being equal

to 1 or 2,

X =



1 0 X1
11 X2

11 . . . Xp
11 0 0 . . . 0

1 0 X1
12 X2

12 . . . Xp
12 0 0 . . . 0

...
...

...
...

...
1 0 X1

1n1
X2

1n1
. . . Xp

1n1
0 0 . . . 0

0 1 0 0 . . . 0 X1
21 X2

21 . . . Xp
21

0 1 0 0 . . . 0 X1
22 X2

22 . . . Xp
22

...
...

...
...

...
...

...
...

0 1 0 0 . . . 0 X1
2n2

X2
2n2

. . . Xp
2n2


,

with α1 (resp. α2) corresponding to the effects of treatment t1 (resp. t2). Moreover, β1 =
(β11, β12, . . . , β1p)

′ (resp. β2 = (β21, β22, . . . , β2p)
′) are the coefficients associated to each of

the p biomarkers in treatment t1 (resp. t2) group, ′ denoting the matrix transposition and
ε11, . . . , ε2n2 are standard independent Gaussian random variables independent of X1 and
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X2. When t1 stands for the standard treatment or placebo, prognostic (resp. predictive)
biomarkers are defined as those having non-zero coefficients in β1 (resp. in β2 − β1) and
non prognostic (resp. non predictive) biomarkers correspond to the indices having null
coefficients in β1 (resp. in β2 − β1). Model (2) can be written as:

(3) y = Xγ + ε,

with γ = (α1, α2,β
′
1,β

′
2)
′. The Lasso penalty is a well-known approach to estimate coeffi-

cients with a sparsity enforcing constraint allowing variable selection by estimating some
coefficients by zero. It consists in minimizing the following penalized least-squares criterion
(Tibshirani (1996)):

(4)
1

2
‖y −Xγ‖22 + λ ‖γ‖1 ,

where ‖u‖22 =
∑n

i=1 u
2
i and ‖u‖1 =

∑n
i=1 |ui| for u = (u1, . . . , un). A different sparsity

constraint was applied to β1 and β2 − β1 to allow different sparsity levels. Hence we
propose to replace the penalty λ ‖γ‖1 in (4) by

(5) λ1 ‖β1‖1 + λ2 ‖β2 − β1‖1 .

Thus, a first estimator of γ could be found by minimizing the following criterion with
respect to γ:

(6)
1

2
‖y −Xγ‖22 + λ1

∥∥∥∥[0p,1 0p,1 D1

0p,1 0p,1
λ2
λ1
D2

]
γ

∥∥∥∥
1

,

where D1 = [Idp,0p,p] and D2 = [−Idp, Idp], with Idp denoting the identity matrix of size p
and 0i,j denoting a matrix having i rows and j columns and containing only zeros. However,
since the inconsistency of Lasso biomarker selection is originated from the correlations
between the biomarkers, we propose to remove the correlation by “whitening” the matrix

X. More precisely, we consider X̃ = XΣ−1/2, where

(7) Σ =


1 0 0 0
0 1 0 0
0 0 Σ1 0
0 0 0 Σ2


and define Σ−1/2 by replacing in (7) Σi by Σ

−1/2
i , where Σ

−1/2
i = UiD

−1/2
i UT

i , Ui and
Di being the matrices involved in the spectral decomposition of Σi for i = 1 or 2. With

such a transformation the columns of X̃ are decorrelated and Model (3) can be rewritten
as follows:

(8) y = X̃γ̃ + ε

where γ̃ = Σ1/2γ. The objective function (6) thus becomes:

(9) LPPLasso
λ1,λ2

(γ̃) =
1

2

∥∥∥y − X̃γ̃
∥∥∥2
2

+ λ1

∥∥∥∥[0p,1 0p,1 D1

0p,1 0p,1
λ2
λ1
D2

]
Σ−1/2γ̃

∥∥∥∥
1

.
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2.2. Estimation of γ̃. Let us define a first estimator of γ̃ = (α̃1, α̃2, β̃
′
1, β̃

′
2) as follows:

(10) ̂̃γ0(λ1, λ2) = (̂̃α1, ̂̃α2,
̂̃
β
′

10,
̂̃
β
′

20) = Argminγ̃ L
PPLasso
λ1,λ2

(γ̃),

for each fixed λ1 and λ2. To better estimate β̃1 and β̃2, a thresholding was applied

to
̂̃
β0(λ1, λ2) = (

̂̃
β10(λ1, λ2)

′,
̂̃
β20(λ1, λ2)

′)′. For K1 (resp. K2) in {1, . . . , p}, let TopK1

(resp. TopK2
) be the set of indices corresponding to the K1 (resp. K2) largest values of

the components of |̂̃β10(λ1, λ2)| (resp. |̂̃β20(λ1, λ2)|), then the estimator of β̃ = (β̃
′
1, β̃

′
2)

after the correction is denoted by
̂̃
β(λ1, λ2) = (

̂̃
β

(K̂1)

1 (λ1, λ2),
̂̃
β

(K̂2)

2 (λ1, λ2)) where the jth

component of
̂̃
β

(Ki)

i (λ1, λ2), for i = 1 or 2, is defined by:

(11)
̂̃
β

(Ki)

ij (λ1, λ2) =


̂̃
βi0j(λ1, λ2), j ∈ TopKi

K1th largest value of |̂̃βi0j(λ1, λ2)|, j 6∈ TopKi
.

Note that the corrections are only performed on
̂̃
β0, the estimators ̂̃α1 and ̂̃α2 were not

modified.
To illustrate the interest of using a thresholding step, we generated a dataset based on

Model 3 with parameters described in Section 3.1 and p = 500. Moreover, to simplify the
graphical illustrations, we focus on the case where λ1 = λ2 = λ. Figure 1 displays the

estimation error associated to the estimators of β̃(λ) before and after the thresholding.

We can see from this figure that the estimation of β̃(λ) is less biased after the correction.
The choice of K1 and K2 will be explained in Section 2.4.

Figure 1. Estimation error

∥∥∥∥̂̃β0(λ)− β̃

∥∥∥∥
2

(gray) and

∥∥∥∥̂̃β(λ)− β̃

∥∥∥∥
2

(red) for

all λ.
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2.3. Estimation of γ. With
̂̃
β = (

̂̃
β
′

1,
̂̃
β
′

2), the estimators of β1 and β2 − β1 can be

obtained by β̂10 = Σ
−1/2
1

̂̃
β1 and (β̂20− β̂10) = Σ

−1/2
2

̂̃
β2−Σ

−1/2
1

̂̃
β1. As previously, another

thresholding was applied to β̂10 and β̂20: for i = 1 or 2,

(12) β̂
(Mi)

ij (λ1, λ2) =

{
β̂i0j(λ1, λ2), j ∈ TopMi

0, j 6∈ TopMi
,

for each fixed λ1 and λ2. The biomarkers with non-zero coefficients in β̂1 = β̂
(M1)

1 (resp.

β̂
(M2)

2 − β̂
(M1)

1 ) are considered as prognostic (resp. predictive) biomarkers, where the choice
of M1 and M2 is explained in Section 2.4.

To illustrate the benefits of using an additional thresholding step, we used the dataset
described in Section 2.2. Moreover, to simplify the graphical illustrations, we also focus on
the case where λ1 = λ2 = λ. Figure 8 in the Supplementary material displays the number
of True Positive (TP) and False Positive (FP) in prognostic and predictive biomarker
identification with and without the second thresholding. We can see from this figure
that the thresholding stage limits the number of false positives. Note that α1 and α2 are

estimated by ̂̃α1 and ̂̃α2 defined in (10).

2.4. Choice of the parameters K1, K2, M1 and M2. For each (λ1, λ2) and each K1, we
computed:

(13) M̃SEK1,K2(λ1, λ2) = ‖y − X̃̂̃γ(K1,K2)
(λ1, λ2)‖22,

where ̂̃γ(K1,K2)
(λ1, λ2) = (̂̃α1, ̂̃α2,

̂̃
β

(K1)′

1 ,
̂̃
β

(K2)′

2 ) defined in (10) and in (11). It is displayed
in the left part of Figure 2.

Figure 2. Illustration of how to choose K1 and K2 (δ = 0.95), final choice
is marked with ’*’.
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For each λ1, λ2 and a given δ ∈ (0, 1), the parameter K̂2 is then chosen as follows for
each K1:

K̂2(λ1, λ2) = Argmin

{
K2 ≥ 1 s.t.

M̃SE(K1,K2+1)(λ1, λ2)

M̃SE(K1,K2)(λ1, λ2)
≥ δ

}
.

The K̂2 associated to each K1 are displayed with ’*’ in the left part of Figure 2. Then K̂1

is chosen by using a similar criterion:

K̂1(λ1, λ2) = Argmin

{
K1 ≥ 1 s.t.

M̃SE(K1+1,K̂2
)(λ1, λ2)

M̃SE(K1,K̂2)
(λ1, λ2)

≥ δ

}
.

The values of M̃SE(K1,K̂2)
(λ1, λ2) are displayed in the right part of Figure 2 in the particular

case where λ1 = λ2 = λ, δ = 0.95 and with the same dataset as the one used in Section

2.2. K̂1 is displayed with a red star.

The parameters M̂1 and M̂2 are chosen in a similar way except that M̃SEK1,K2(λ1, λ2) is

replaced by M̂SEM1,M2(λ1, λ2) where:

M̂SEM1,M2(λ1, λ2) = ‖y −Xγ̂(M1,M2)(λ1, λ2)‖22,

with γ̂(M1,M2)(λ1, λ2) = (̂̃α1, ̂̃α2, β̂
(M1)′

1 , β̂
(M2)′

2 ) defined in (10) and (12). In the following,

γ̂(λ1, λ2) = γ̂(M̂1,M̂2)(λ1, λ2).

2.5. Estimation of Σ1 and Σ2. As the empirical correlation matrix is known to be a non
accurate estimator of Σ when p is larger than n, a new estimator has to be used. Thus,
for estimating Σ we adopted a cross-validation based method designed by Boileau et al.
(2021) and implemented in the cvCovEst R package. This method chooses the estimator
having the smallest estimation error among several compared methods (sample correlation
matrix, POET (Fan et al. (2013)) and Tapering (Cai et al. (2010)) as examples). Since
the samples in treatments t1 and t2 are assumed to be collected from the same population,
Σ1 and Σ2 are assumed to be equal.

2.6. Choice of the parameters λ1 and λ2. For the sake of simplicity, we limit ourselves
to the case where λ1 = λ2 = λ. For choosing λ we used BIC (Bayesian Information Crite-
rion) which is widely used in the variable selection field and which consists in minimizing
the following criterion with respect to λ:

BIC(λ) = n log(MSE(λ)/n) + k(λ) log(n),

where n is the total number of samples, MSE(λ) = ‖y−Xγ̂(λ)‖22 and k(λ) is the number
of non null coefficients in the OLS estimator γ̂ obtained by re-estimating only the non null

components of β̂1 and β̂2 − β̂1. The values of the BIC criterion as well as those of the
MSE obtained from the dataset described in Section 2.2 are displayed in Figure 3.
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Figure 3. MSE and BIC for all λ. The λ minimizing each criterion is
displayed with a vertical line.

Table 2 in the supplementary material provides the True Positive Rate (TPR) and False
Positive Rate (FPR) when λ is chosen either by minimizing the MSE or the BIC criterion
for this dataset. We can see from this table that both of them have TPR=1 (all true
positives are identified). However, the FPR based on the BIC criterion is smaller than the
one obtained by using the MSE.

3. Numerical experiments

This section presents a comprehensive numerical study by comparing the performance
of our method with the Lasso criterion in terms of prognostic and predictive biomarker
selection. For the Lasso criterion, in order to directly estimate prognostic and predictive
effects, X and γ in Model (3) were replaced by

X∗ =

[
1n1,1 0n1,1 X1 0n1,p

0n2,1 1n2,1 X2 X2

]
,

and γ∗ = (α1, α2,β
∗
1,β

∗
2), respectively, where X1 and X2 are defined in (1), 0i,j (resp. 1i,j)

denotes a matrix having i rows and j columns and containing only zeros (resp. ones).
Note that this is the modeling proposed by Lipkovich et al. (2017). The sparsity enforcing
constraint was put on the coefficients β∗1 and β∗2 which boils down to putting a sparsity
enforcing constraint on β1 and β2 − β1.

3.1. Simulation setting. All simulated datasets were generated from Model (3) where
the n1 (n2) rows of X1 (X2) are assumed to be independent Gaussian random vectors
with a covariance matrix Σ1 = Σ2 = Σbm, and ε is a standard Gaussian random vector
independent of X1 and X2. We defined Σbm as:

(14) Σbm =

[
Σ11 Σ12

ΣT
12 Σ22

]
where Σ11 (resp. Σ22) are the correlation matrix of prognostic (resp. non-prognostic)
biomarkers with off-diagonal entries equal to a1 (resp. a3). Morever, Σ12 is the correlation
matrix between prognostic and non-prognostic variables with entries equal to a2. In our
simulations (a1, a2, a3) = (0.3, 0.5, 0.7), which is a framework proposed by Xue and Qu
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(2017). We checked that the Irrepresentable Condition (IC) of Zhao and Yu (2006) is
violated and thus the standard Lasso cannot recover the positions of the null and non null
variables. For each dataset we assumed randomized treatment allocation between standard
and experimental arm with a 1:1 ratio, i.e. n1 = n2 = 50. We further assume a relative
treatment effect of 1 (α1 = 0 and α2 = 1). The number of biomarkers p varies from 200 to
2000. The number of active biomarkers was set to 10 (i.e. 5 purely prognostic biomarkers
with β1j = β2j = b1 = 1 (j = 1, ..., 5) and 5 biomarkers both prognostic and predictive
with β1j = b1 and β2j = b2 = 2 (j = 6, ..., 10)).

3.2. Evaluation criteria. We considered several evaluation criteria to assess the perfor-
mance of the methods in selecting the prognostic and predictive biomarkers: the TPRprog

as the true positive rate (i.e. rate of active biomarkers selected) and FPRprog the false posi-
tive rate (i.e. rate of inactive biomarkers selected) of the selection of prognostic biomarkers,
and similarly for predictive biomarkers with TPRpred and FPRpred. We further note TPRall

and FPRall the criterion of overall selection among all candidate biomarkers regardless their
prognostic or predictive effect. The objective of the selection is to maximize the TPRall

and minimize the FPRall. All metrics were calculated by averaging the results of 100
replications for each scenario.

3.3. Biomarker selection results. For the proposed method, different results were pre-
sented. PPLassooracle (resp. PPLassoest) corresponds to the results of the method by con-
sidering the true (resp. estimated) matrix Σbm. For estimating Σbm, we used the approach
explained in Section 2.5. Two choices of λ are also prensented: “optimal” and “min(bic)”.
The former gives the optimal selection that maximizes (TPRall−FPRall) which is also the
choice used for Lasso in these simulations. The latter minimizes the BIC criterion defined
in Section 2.6.

Figure 4 shows the selection performance of PPLasso and Lasso in the simulation sce-
nario presented in Section 3.1. PPLasso achieved to select all prognostic factors (TPRprog

almost 1) even for large p, with limited false positive prognostic biomarkers selected. As
compared to the optimal λ maximizing (TPRall − FPRall), the one selected with the BIC
tends to select some false positives (average: 32.87 (FPRprog = 0.173) for p = 200 and 10.39
(FPRprog = 0.005) for p = 2000). The results obtained from the oracle and estimated Σbm

are comparable. Selection performance of predictive biomarkers is slightly lowered as com-
pared to prognostic biomarkers. Even if the false positive selection is quite similar between
prognostic and predictive biomarkers, PPLasso missed some true predictive biomarkers
when λ is selected with the BIC criterion (average TPRpred = 0.982 and 0.798 for oracle
and estimated Σbm, respectively, with p = 2000). In this scenario where the IC is violated,
PPLasso globally outperforms Lasso. The Lasso approach failed in selecting all truly prog-
nostic and predictive biomarkers, and the number of missed active biomarkers increased
with the dimension p (TPRprog = 0.825 and 0.448, TPRpred = 0.810 and 0.454 for p = 200
and 2000, respectively).
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Figure 4. (TPR-FPR) and the corresponding True Positive Rate (TPR)
and False Positive Rate (FPR) for prognostic (left) and predictive (right)
biomarkers.

3.3.1. Impact of the correlation matrix Σ. To evaluate the impact of the correlation matrix
on the selection performance of the methods, additional scenarios are presented where the
IC is satisfied:

(1) Compound symmetry structure where all biomarkers are equally correlated with a
correlation ρ = 0.5;

(2) Independent setting where Σbm is the identity matrix.

For the scenario with compound symmetry structure displayed in Figure 5, Lasso suc-
cessfully identified the true prognostic biomarkers (TPRprog close to 1 even for large p)
with limited false positive selection. On the other hand, Lasso missed some predictive
biomarkers especially when p increases (TPRpred = 0.934 and 0.502 for p = 200 and
2000 respectively). On the contrary, PPLasso successfully identified almost all predictive
biomarkers with the optimal choice of λ. Moreover, even when λ is selected by minimiz-
ing the BIC criterion (min(bic)), PPLassoest outperformed the Lasso when p > 500 with
relatively stable TPRpred and FPRpred as p increases.

For the independent setting, as displayed in Figure 6, prognostic biomarkers were globally
well identified by all the compared methods with a slightly higher TPRprog for Lasso as
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Figure 5. (TPR-FPR) and the corresponding True Positive Rate (TPR)
and False Positive Rate (FPR) for prognostic (left) and predictive (right)
biomarkers for the compound symmetry correlation structure.

compared to PPLasso but also with a slightly higher FPRprog. With regards to predictive
biomarkers, PPLasso using Σbm (oracle) performed also similarly to the Lasso, which is
reasonable since no transformation has been used in PPLasso. On the other hand, even if
PPLasso with λ selected with “min(bic)” performed similarly with PPLasso with optimal
λ for relatively small p, the selection performance is altered for large p and is close to the
performance of Lasso with optimal λ selected.

3.3.2. Impact of the effect size of active biomarkers. To evaluate the impact of the ef-
fect size on biomarker selection performance, the scenario presented in Section 3.1 was
considered with different values of b2: 1.5, 2 and 2.5.

Since the effect size of prognostic biomarkers did not change the comparison focused on
predictive biomarkers. As expected, the reduction of the effect size makes the biomarker
selection harder, especially for the Lasso where the predictive biomarker selection is limited
when b2 = 1.5: for p = 2000, TPRpred = 0.454 (resp. 0.218) for b2 = 2 (resp. 1.5),
see Figure 4 and Figure 9 of the supplementary material. The selection performance of
PPLasso when λ is selected with min(bic) is also reduced by decreasing b2, especially when
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Figure 6. (TPR-FPR) and the corresponding True Positive Rate (TPR)
and False Positive Rate (FPR) for prognostic (left) and predictive (right)
biomarkers (independent setting).

Σbm is also estimated. Nevertheless, the selection performance remains better than for
the Lasso for which the performance displayed are associated to the optimal value of λ.
On the other hand, even with limited effect size, PPLasso with optimal λ identified all
predictive biomarkers with very limited false positive selection. When b2 was increased
to 2.5, the selection performance for all methods is improved and the results for PPLasso
with estimated λ was close to the ones with the optimal λ as displayed in Figure 10 of the
supplementary material. As compared with PPLasso, for which the selection performance
remains stable as p increases, Lasso is more impacted by the value of p since the true
positive selection decreased as p increased (TPRpred =0.950 (resp. 0.646) for p = 200
(resp. 2000)).

3.3.3. Impact of the number of predictive biomarkers. The impact of the number of true
predictive biomarkers was assessed by increasing the number of predictive biomarkers from
5 to 10 in the scenario presented in Section 3.1. When the number of predictive biomarkers
increased, the impact on PPLasso is almost negligible. However, for Lasso, we can see
from Figure 11 of the supplementary material that it became even harder to identify
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predictive biomarkers. TPRpred decreased compared to Figure 4, especially for large p (e.g.
TPRpred = 0.124 for p = 2000).

3.3.4. Impact of the dimension of the dataset. In this section, we studied a different sample
size: n=50 with n1 = n2 = 25 and a different number of biomarkers: p=5000.

We can see from Figure 12 of the supplementary material that for p = 5000, the selection
performance of PPLasso is not altered as compared with p = 2000 while the Lasso has
more difficulties to identify both prognostic and predictive biomarkers.

When the sample size is smaller (n=50), we can see from Figure 13 of the supplementary
material that the ability to identify prognostic and predictive biomarkers decreased for all
the methods. However, PPLasso still outperformed the Lasso with higher TPRprog and
TPRpred and lower FPRprog and FPRpred.

4. Application to gene expression data in breast cancer

We applied the previously described methods to publicly available transcriptomic data
from the RV144 vaccine trial (Rerks-Ngarm et al. (2009)). This trial showed reduced risk
of HIV-1 acquisition by 31.2% with vaccination with ALVAC and AIDSVAX as compared
to placebo. Transcriptomic profiles of in vitro HIV-1 Env-stimulated peripheral blood
mononuclear cells (PBMCs) obtained pre-immunization and 15 days after the immuniza-
tion (D15) from both 40 vaccinees and 10 placebo recipients were generated to better
understand underlying biological mechanisms (Fourati et al. (2019), Gene Expression Om-
nibus accession code: GSE103671).

For illustration purpose, the absolute change at D15 in gene mTOR was considered as
the continuous endpoint (response). mTOR plays a key role in mTORC1 signaling path-
way which has been shown to be associated with risk of HIV-1 acquisition (Fourati et al.
(2019), Akbay et al. (2020)). The gene expression has been normalized as in the original
publication of Fourati et al. (2019). After removing non-annotated genes (LOCxxxx and
HS.xxxx), the top 2000 genes with the highest empirical variances were included as can-
didate biomarkers for prognostic and predictive identification from PPLasso and Lasso.
The penalty parameter λ for the Lasso was selected through the classical cross-validation
approach. For PPLasso, λ was selected based on the criterion described in Section 2.6.

Figure 7. Heatmaps of the correlation matrix estimated by the cvCovEst

R package.



14 WENCAN ZHU, CÉLINE LÉVY-LEDUC, AND NILS TERNÈS

The estimation of Σ was obtained by comparing several candidate estimators from the
cvCovEst R package and by selecting the estimator having the smallest estimation error.
In this application, the combination of the sample covariance matrix and a dense target
matrix (denseLinearShrinkEst) derived by Ledoit and Wolf (2020) provides the smallest
estimation error. Figure 7 displays the estimated Σ and highlights the strong correlation
between the genes. Table 3 of the Supplementary material gives details on the compared
estimators.

Prognostic and predictive genes selected by PPLasso and Lasso are listed in Table 1.
PPLasso selected a slightly higher number of genes as compared to the Lasso (9 vs. 10
and 15 vs. 7 for prognostic and predictive genes, respectively). The intersection between
the two methods is moderate (3 prognostic genes, 3 predictive genes, and 1 gene selected
as prognostic for Lasso and predictive for PPLasso). Interestingly, some genes selected
by both methods such as SLAMF7, TNFRSF6B, TNFRSF18 or NUCKS1 have already
been discussed in the HIV-1 field. Moreover, among the predictive genes selected by the
PPLasso, some are linked to pathways that have been highlighted as possible target for
HIV-1 such as BIRC3 and TLR8.

5. Conclusion

We propose a new method named PPLasso to simultaneously identify prognostic and
predictive biomarkers. PPLasso is particularly interesting for dealing with high dimensional
omics data when the biomarkers are highly correlated, which is a framework that has not
been thoroughly investigated yet. From various numerical studies with or whithout strong
correlation between biomarkers, we highlighted the strength of PPLasso in well identifying
both prognostic and predictive biomarkers with limited false positive selection. The current
method is only dedicated to the analysis of continuous responses through ANCOVA type
models. However, it will be the subject of a future work to extend it to other challenging
contexts, such as classification or survival analysis.
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Table 1. Selected genes from Lasso and PPLasso.

prognostic genes predictive genes

PPLasso
HAPLN3, SLAMF7, GTF3C5,

FAM46A, SH3PXD2B, TM4SF1,
TNFRSF6B, TNFRSF18, TRPM2

TLR8, YTHDC1, NUCKS1,
BIRC3, SLAMF7, NFATC2IP,

BOK, MGRN1, KIAA0492,
SLC25A36, HMGN2, P2RY5,

RPL21, MS4A7, RPL12P6

Lasso

DKFZp434K191, NUCKS1, MAFF,
SLAMF7, HIST2H2AC, HIST1H4C,

IL8, TNFRSF6B,
TNFRSF18, SCAND1

DKFZp434K191, YTHDC1,
VMO1, BOLA2, HIST1H4C,

RPL21, MS4A7
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Supplementary material

This supplementary material provides additional numerical experiments, figures and
tables for the paper: “Identification of prognostic and predictive biomarkers in high-
dimensional data with PPLasso”.
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Figure 8. Number of True Positives and True Negatives for β̂ and β̂0 on
prognostic/predictive biomarkers.

MSE BIC
TPR(prognostic) 1.000 1.000
FPR(prognostic) 0.038 0.024
TPR(predictive) 1.000 1.000
FPR(predctive) 0.008 0.006

Table 2. TPR and FPR associated to prognostic and predictive biomarker
identification with the λ chosen in Figure 3.
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Figure 9. (TPR-FPR) and the corresponding True Positive Rate (TPR)
and False Positive Rate (FPR) for prognostic (left) and predictive (right)
biomarkers (b2 = 1.5).
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Figure 10. (TPR-FPR) and the corresponding True Positive Rate (TPR)
and False Positive Rate (FPR) for prognostic (left) and predictive (right)
biomarkers (b2 = 2.5).
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Figure 11. (TPR-FPR) and the corresponding True Positive Rate (TPR)
and False Positive Rate (FPR) for prognostic (left) and predictive (right)
biomarkers (10 predictive biomarkers).
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Figure 12. (TPR-FPR) and the corresponding True Positive Rate (TPR)
and False Positive Rate (FPR) for prognostic (left) and predictive (right)
biomarkers (with p = 5000).
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Figure 13. (TPR-FPR) and the corresponding True Positive Rate (TPR)
and False Positive Rate (FPR) for prognostic (left) and predictive (right)
biomarkers (n1 = n2 = 25).
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Estimator Hyperparameters Empirical risk
denseLinearShrinkEst - 102546
sampleCovEst - 102547
linearShrinkLWEst - 103496
poetEst lambda=0.1, k=2 104522
poetEst lambda=0.2, k=2 105358
poetEst lambda=0.1, k=1 105972
poetEst lambda=0.2, k=1 108222
thresholdingEst gamma=0.2 137798
thresholdingEst gamma=0.4 186844

Table 3. Empirical risk of tested methods with different hyperparameters.
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