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In clinical trials, identification of prognostic and predictive biomarkers is essential to precision medicine. Prognostic biomarkers can be useful for the prevention of the occurrence of the disease, and predictive biomarkers can be used to identify patients with potential benefit from the treatment. Previous researches were mainly focused on clinical characteristics, and the use of genomic data in such an area is hardly studied. A new method is required to simultaneously select prognostic and predictive biomarkers in high dimensional genomic data where biomarkers are highly correlated. We propose a novel approach called PPLasso (Prognostic Predictive Lasso) integrating prognostic and predictive effects into one statistical model. PPLasso also takes into account the correlations between biomarkers that can alter the biomarker selection accuracy. Our method consists in transforming the design matrix to remove the correlations between the biomarkers before applying the generalized Lasso. In a comprehensive numerical evaluation, we show that PPLasso outperforms the traditional Lasso approach on both prognostic and predictive biomarker identification in various scenarios. Finally, our method is applied to publicly available transcriptomic data from clinical trial RV144. Our method is implemented in the PPLasso R package which will be soon available from the Comprehensive R Archive Network (CRAN).

Introduction

With the advancement of precision medicine, there has been an increasing interest in identifying prognostic or predictive biomarkers. A prognostic biomarker is linked to a clinical outcome (disease recurrence, progression of the disease etc.) in the presence or in the absence of a therapy while a predictive biomarker is associated with a response or a lack of response to a specific therapy. [START_REF] Ballman | Biomarker: Predictive or prognostic[END_REF] and [START_REF] Clark | Prognostic factors versus predictive factors: Examples from a clinical trial of erlotinib[END_REF] provided a comprehensive explanation and concrete examples to distinguish prognostic from predictive biomarkers, respectively.

Concerning the biomarker selection, the high dimensionality of genomic data is one of the main challenges as explained in [START_REF] Fan | Statistical challenges with high dimensionality: Feature selection in knowledge discovery[END_REF]. To identify effective biomarkers in high-dimensional settings, several approaches can be considered including hypothesisbased tests described in [START_REF] Mcdonald | Handbook of Biological Statistics 2nd Edition[END_REF], wrapper approaches proposed in [START_REF] Saeys | A review of feature selection techniques in bioinformatics[END_REF], and penalized approaches such as Lasso designed by [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] among others. Hypothesis-based tests consider each biomarker independently and thus ignore potential correlations between them. Wrapper approaches often show high risk of overfitting and are computationally expensive for high-dimensional data as explained in [START_REF] Smith | Step away from stepwise[END_REF].

More efforts have been devoted to penalized methods given their ability to automatically perform variable selection and coefficient estimation simultaneously as highlighted in [START_REF] Fan | A selective overview of variable selection in high dimensional feature space[END_REF]. However, Lasso showed some potential drawbacks when biomarkers are highly correlated. Particularly, when the Irrepresentable Condition (IC) proposed by [START_REF] Xue | Variable selection for highly correlated predictors[END_REF] is violated, Lasso can not guarantee to correctly identify true effective biomarkers. In genomic data, biomarkers are usually highly correlated such that this condition can hardly be satisfied, see [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF]. Several methods have been proposed to adress this issue. For example, [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] proposed the HOLP approach which consists in removing the correlation between the columns of the design matrix; [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF] proposed to handle the correlation by assigning similar weights to correlated variables in their approach called Precision Lasso; [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF] proposed to remove the correlations by applying a whitening transformation to the data before using the generalized Lasso criterion designed by [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF].

The challenge of finding prognostic biomarkers has been extensively explored with previously introduced methods, however, the discovery of predictive biomarkers has seen much less attention. Limited to binary endpoint, [START_REF] Foster | Subgroup identification from randomized clinical trial data[END_REF] proposed to first predict response probabilities for treatment and use this probability as the response in a classification problem to find effective biomarkers. [START_REF] Tian | A simple method for estimating interactions between a treatment and a large number of covariates[END_REF] proposed a new method to detect interaction between the treatment and the biomarkers by modifying the covariates. This method can be implemented on continuous/binary/time-to-event endpoint. [START_REF] Lipkovich | Subgroup identification based on differential effect search (sides) -a recursive partitioning method for establishing response to treatment in patient subpopulations[END_REF] proposed a method called SIDES, which adopts a recursive partitioning algorithm for screening treatment-by-biomarker interactions. This method was further improved in [START_REF] Lipkovich | Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using sides[END_REF] by adding another step of preselection on predictive biomarkers based on variable importance. The method was demonstrated with continuous endpoint. More recently, [START_REF] Sechidis | Distinguishing prognostic and predictive biomarkers: an information theoretic approach[END_REF] applied approaches coming from information theory for ranking biomarkers on their prognostic/predictive strength. Their method is applicable only for binary or time-to-event endpoint. Moreover, all of these methods were assessed under the situation where the sample size is relatively large and the number of biomarkers is limited, which is hardly the case for genomic data.

In the literature mentioned above, the authors focused on one of the problematic of identifying prognostic or predictive biomarkers, but rarely on both. In this paper, we propose a novel approach called PPLasso (Predictive Prognostic Lasso) to simultaneously identify prognostic and predictive biomarkers in a high dimensional setting with continuous endpoints, as presented in Section 2. Extensive numerical experiments are given in Section 3 to assess the performance of our approach and to compare it to other methods. PPLasso is also applied to the clinical trial RV144 in Section 4. Finally, we give concluding remarks in Section 5.

Methods

In this section, we propose a novel approach called PPLasso (Predictive Prognostic Lasso) which consists in writing the identification of predictive and prognostic biomarkers as a variable selection problem in an ANCOVA (Analysis of Covariance) type model mentioned for instance in [START_REF] Faraway | Practical regression and ANOVA using R[END_REF]. 2.1. Statistical modeling. Let y be a continuous response or endpoint and t 1 , t 2 two treatments. Let also X 1 (resp. X 2 ) denote the design matrix for the n 1 (resp. n 2 ) patients with treatment t 1 (resp. t 2 ), each containing measurements on p candidate biomarkers:

(1)

X 1 =     X 1 11 X 2 11 . . . X p 11 X 1 12 X 2 12 . . . X p 12 ... X 1 1n 1 X 2 1n 1 . . . X p 1n 1     , X 2 =     X 1 21 X 2 21 . . . X p 21 X 1 22 X 2 22 . . . X p 22 ... X 1 2n 2 X 2 2n 2 . . . X p 2n 2     .
To take into account the potential correlation that may exist between the biomarkers in the different treatments, we shall assume that the rows of X 1 (resp. X 2 ) are independent centered Gaussian random vectors with a covariance matrice equal to Σ 1 (resp. Σ 2 ).

To model the link that exists between y and the different types of biomarkers we propose using the following model:

(2) y =              y 11 y 12             11 12
. . . . . .

2n 2             
, where (y i1 , . . . , y in i ) corresponds to the response of patients with treatment t i , i being equal to 1 or 2, (3)

X =              1 0 X 1 11 X 2 11 . . . X p 11 0 0 . . . 0 1 0 X 1 12 X 2 12 . . . X p 12 0 0 . . . 0 . . . . . . . . . . . . . . . 1 0 X 1 1n 1 X 2 1n 1 . . . X p 1n 1 0 0 . . . 0 0 1 0 0 . . . 0 X 1 21 X 2 21 . . . X p 21 0 1 0 0 . . . 0 X 1 22 X 2 22 . . . X p 22 . . . . . . . . . . . . . . . . . . . . . . . . 0 1 0 0 . . . 0 X 1 2n 2 X 2 2n 2 . . . X p 2n 2              , with α 1 (resp. α 2 )
y = Xγ + , with γ = (α 1 , α 2 , β 1 , β 2 ) .
The Lasso penalty is a well-known approach to estimate coefficients with a sparsity enforcing constraint allowing variable selection by estimating some coefficients by zero. It consists in minimizing the following penalized least-squares criterion [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]):

(4) 1 2 y -Xγ 2 2 + λ γ 1 ,
where

u 2 2 = n i=1 u 2 i and u 1 = n i=1 |u i | for u = (u 1 , . . . , u n ).
A different sparsity constraint was applied to β 1 and β 2 -β 1 to allow different sparsity levels. Hence we propose to replace the penalty λ γ 1 in (4) by ( 5)

λ 1 β 1 1 + λ 2 β 2 -β 1 1 .
Thus, a first estimator of γ could be found by minimizing the following criterion with respect to γ:

(6) 1 2 y -Xγ 2 2 + λ 1 0 p,1 0 p,1 D 1 0 p,1 0 p,1 λ 2 λ 1 D 2 γ 1 ,
where

D 1 = [Id p , 0 p,p ] and D 2 = [-Id p , Id p ]
, with Id p denoting the identity matrix of size p and 0 i,j denoting a matrix having i rows and j columns and containing only zeros. However, since the inconsistency of Lasso biomarker selection is originated from the correlations between the biomarkers, we propose to remove the correlation by "whitening" the matrix X. More precisely, we consider X = XΣ -1/2 , where

(7) Σ =     1 0 0 0 0 1 0 0 0 0 Σ 1 0 0 0 0 Σ 2     and define Σ -1/2 by replacing in (7) Σ i by Σ -1/2 i , where Σ -1/2 i = U i D -1/2 i U T
i , U i and D i being the matrices involved in the spectral decomposition of Σ i for i = 1 or 2. With such a transformation the columns of X are decorrelated and Model (3) can be rewritten as follows:

(8) y = X γ + where γ = Σ 1/2 γ. The objective function (6) thus becomes:

(9) L PPLasso λ 1 ,λ 2 ( γ) = 1 2 y -X γ 2 2 + λ 1 0 p,1 0 p,1 D 1 0 p,1 0 p,1 λ 2 λ 1 D 2 Σ -1/2 γ 1 . 2.2. Estimation of γ. Let us define a first estimator of γ = ( α 1 , α 2 , β 1 , β 2 ) as follows: (10) γ 0 (λ 1 , λ 2 ) = ( α 1 , α 2 , β 10 , β 20 ) = Argmin γ L PPLasso λ 1 ,λ 2 ( γ),
for each fixed λ 1 and λ 2 . To better estimate β 1 and β 2 , a thresholding was applied

to β 0 (λ 1 , λ 2 ) = ( β 10 (λ 1 , λ 2 ) , β 20 (λ 1 , λ 2 ) ) . For K 1 (resp. K 2 ) in {1, . . . , p}, let Top K 1 (resp. Top K 2 ) be the set of indices corresponding to the K 1 (resp. K 2 ) largest values of the components of | β 10 (λ 1 , λ 2 )| (resp. | β 20 (λ 1 , λ 2 )|), then the estimator of β = ( β 1 , β 2 )
after the correction is denoted by β(λ 1 , λ 2 ) = ( β

( K 1 ) 1 (λ 1 , λ 2 ), β ( K 2 ) 2 (λ 1 , λ 2 ))
where the jth component of β

(K i ) i (λ 1 , λ 2 ), for i = 1 or 2, is defined by: (11) β (K i ) ij (λ 1 , λ 2 ) =    β i0j (λ 1 , λ 2 ), j ∈ Top K i K 1 th largest value of | β i0j (λ 1 , λ 2 )|, j ∈ Top K i .
Note that the corrections are only performed on β 0 , the estimators α 1 and α 2 were not modified.

To illustrate the interest of using a thresholding step, we generated a dataset based on Model 3 with parameters described in Section 3.1 and p = 500. Moreover, to simplify the graphical illustrations, we focus on the case where λ 1 = λ 2 = λ. Figure 1 displays the estimation error associated to the estimators of β(λ) before and after the thresholding. We can see from this figure that the estimation of β(λ) is less biased after the correction. The choice of K 1 and K 2 will be explained in Section 2.4. 2.3. Estimation of γ. With β = ( β 1 , β 2 ), the estimators of β 1 and β 2 -β 1 can be obtained by

β 10 = Σ -1/2 1 β 1 and ( β 20 -β 10 ) = Σ -1/2 2 β 2 -Σ -1/2 1 β 1 .
As previously, another thresholding was applied to β 10 and β 20 : for i = 1 or 2, ( 12)

β (M i ) ij (λ 1 , λ 2 ) = β i0j (λ 1 , λ 2 ), j ∈ Top M i 0, j ∈ Top M i ,
for each fixed λ 1 and λ 2 . The biomarkers with non-zero coefficients in

β 1 = β (M 1 ) 1 (resp. β (M 2 ) 2 -β (M 1 ) 1
) are considered as prognostic (resp. predictive) biomarkers, where the choice of M 1 and M 2 is explained in Section 2.4.

To illustrate the benefits of using an additional thresholding step, we used the dataset described in Section 2.2. Moreover, to simplify the graphical illustrations, we also focus on the case where λ 1 = λ 2 = λ. Figure 8 in the Supplementary material displays the number of True Positive (TP) and False Positive (FP) in prognostic and predictive biomarker identification with and without the second thresholding. We can see from this figure that the thresholding stage limits the number of false positives. Note that α 1 and α 2 are estimated by α 1 and α 2 defined in (10).

2.4. Choice of the parameters K 1 , K 2 , M 1 and M 2 . For each (λ 1 , λ 2 ) and each K 1 , we computed:

(13) MSE K 1 ,K 2 (λ 1 , λ 2 ) = y -X γ (K1,K2) (λ 1 , λ 2 ) 2 2 ,
where γ

(K1,K2) (λ 1 , λ 2 ) = ( α 1 , α 2 , β (K 1 ) 1 , β (K 2 ) 2
) defined in (10) and in (11). It is displayed in the left part of Figure 2. For each λ 1 , λ 2 and a given δ ∈ (0, 1), the parameter K 2 is then chosen as follows for each K 1 :

K 2 (λ 1 , λ 2 ) = Argmin K 2 ≥ 1 s.t. MSE (K 1 ,K 2 +1 )(λ 1 , λ 2 ) MSE (K 1 ,K 2 ) (λ 1 , λ 2 ) ≥ δ .
The K 2 associated to each K 1 are displayed with '*' in the left part of Figure 2. Then K 1 is chosen by using a similar criterion:

K 1 (λ 1 , λ 2 ) = Argmin K 1 ≥ 1 s.t. MSE (K 1 +1, K 2 )(λ 1 , λ 2 ) MSE (K 1 , K 2 ) (λ 1 , λ 2 ) ≥ δ .
The values of MSE (K 1 , K 2 ) (λ 1 , λ 2 ) are displayed in the right part of Figure 2 in the particular case where λ 1 = λ 2 = λ, δ = 0.95 and with the same dataset as the one used in Section 2.2. K 1 is displayed with a red star.

The parameters M 1 and M 2 are chosen in a similar way except that MSE

K 1 ,K 2 (λ 1 , λ 2 ) is replaced by MSE M 1 ,M 2 (λ 1 , λ 2 ) where: MSE M 1 ,M 2 (λ 1 , λ 2 ) = y -X γ (M 1 ,M 2 ) (λ 1 , λ 2 ) 2 2 , with γ (M 1 ,M 2 ) (λ 1 , λ 2 ) = ( α 1 , α 2 , β (M 1 ) 1 , β (M 2 ) 2
) defined in ( 10) and ( 12). In the following,

γ(λ 1 , λ 2 ) = γ ( M 1 , M 2 ) (λ 1 , λ 2 ).
2.5. Estimation of Σ 1 and Σ 2 . As the empirical correlation matrix is known to be a non accurate estimator of Σ when p is larger than n, a new estimator has to be used. Thus, for estimating Σ we adopted a cross-validation based method designed by [START_REF] Boileau | Cross-validated loss-based covariance matrix estimator selection in high dimensions[END_REF] and implemented in the cvCovEst R package. This method chooses the estimator having the smallest estimation error among several compared methods (sample correlation matrix, POET [START_REF] Fan | Large covariance estimation by thresholding principal orthogonal complements[END_REF]) and Tapering [START_REF] Boileau | Cross-validated loss-based covariance matrix estimator selection in high dimensions[END_REF]) as examples). Since the samples in treatments t 1 and t 2 are assumed to be collected from the same population, Σ 1 and Σ 2 are assumed to be equal. 2.6. Choice of the parameters λ 1 and λ 2 . For the sake of simplicity, we limit ourselves to the case where λ 1 = λ 2 = λ. For choosing λ we used BIC (Bayesian Information Criterion) which is widely used in the variable selection field and which consists in minimizing the following criterion with respect to λ:

BIC(λ) = n log(MSE(λ)/n) + k(λ) log(n),
where n is the total number of samples, MSE(λ) = y -X γ(λ) 2 2 and k(λ) is the number of non null coefficients in the OLS estimator γ obtained by re-estimating only the non null components of β 1 and β 2 -β 1 . The values of the BIC criterion as well as those of the MSE obtained from the dataset described in Section 2.2 are displayed in Figure 3. Table 2 in the supplementary material provides the True Positive Rate (TPR) and False Positive Rate (FPR) when λ is chosen either by minimizing the MSE or the BIC criterion for this dataset. We can see from this table that both of them have TPR=1 (all true positives are identified). However, the FPR based on the BIC criterion is smaller than the one obtained by using the MSE.

Numerical experiments

This section presents a comprehensive numerical study by comparing the performance of our method with the Lasso criterion in terms of prognostic and predictive biomarker selection. For the Lasso criterion, in order to directly estimate prognostic and predictive effects, X and γ in Model (3) were replaced by

X * = 1 n 1 ,1 0 n 1 ,1 X 1 0 n 1 ,p 0 n 2 ,1 1 n 2 ,1 X 2 X 2 ,
and γ * = (α 1 , α 2 , β * 1 , β * 2 ), respectively, where X 1 and X 2 are defined in (1), 0 i,j (resp. 1 i,j ) denotes a matrix having i rows and j columns and containing only zeros (resp. ones). Note that this is the modeling proposed by [START_REF] Lipkovich | Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials[END_REF]. The sparsity enforcing constraint was put on the coefficients β * 1 and β * 2 which boils down to putting a sparsity enforcing constraint on β 1 and β 2 -β 1 .

3.1. Simulation setting. All simulated datasets were generated from Model (3) where the n 1 (n 2 ) rows of X 1 (X 2 ) are assumed to be independent Gaussian random vectors with a covariance matrix Σ 1 = Σ 2 = Σ bm , and is a standard Gaussian random vector independent of X 1 and X 2 . We defined Σ bm as: ( 14)

Σ bm = Σ 11 Σ 12 Σ T
12 Σ 22 where Σ 11 (resp. Σ 22 ) are the correlation matrix of prognostic (resp. non-prognostic) biomarkers with off-diagonal entries equal to a 1 (resp. a 3 ). Morever, Σ 12 is the correlation matrix between prognostic and non-prognostic variables with entries equal to a 2 . In our simulations (a 1 , a 2 , a 3 ) = (0.3, 0.5, 0.7), which is a framework proposed by [START_REF] Xue | Variable selection for highly correlated predictors[END_REF]. We checked that the Irrepresentable Condition (IC) of Zhao and Yu ( 2006) is violated and thus the standard Lasso cannot recover the positions of the null and non null variables. For each dataset we assumed randomized treatment allocation between standard and experimental arm with a 1:1 ratio, i.e. n 1 = n 2 = 50. We further assume a relative treatment effect of 1 (α 1 = 0 and α 2 = 1). The number of biomarkers p varies from 200 to 2000. The number of active biomarkers was set to 10 (i.e. 5 purely prognostic biomarkers with β 1j = β 2j = b 1 = 1 (j = 1, ..., 5) and 5 biomarkers both prognostic and predictive with β 1j = b 1 and β 2j = b 2 = 2 (j = 6, ..., 10)).

Evaluation criteria.

We considered several evaluation criteria to assess the performance of the methods in selecting the prognostic and predictive biomarkers: the TPR prog as the true positive rate (i.e. rate of active biomarkers selected) and FPR prog the false positive rate (i.e. rate of inactive biomarkers selected) of the selection of prognostic biomarkers, and similarly for predictive biomarkers with TPR pred and FPR pred . We further note TPR all and FPR all the criterion of overall selection among all candidate biomarkers regardless their prognostic or predictive effect. The objective of the selection is to maximize the TPR all and minimize the FPR all . All metrics were calculated by averaging the results of 100 replications for each scenario.

Biomarker selection results.

For the proposed method, different results were presented. PPLasso oracle (resp. PPLasso est ) corresponds to the results of the method by considering the true (resp. estimated) matrix Σ bm . For estimating Σ bm , we used the approach explained in Section 2.5. Two choices of λ are also prensented: "optimal" and "min(bic)". The former gives the optimal selection that maximizes (TPR all -FPR all ) which is also the choice used for Lasso in these simulations. The latter minimizes the BIC criterion defined in Section 2.6.

Figure 4 shows the selection performance of PPLasso and Lasso in the simulation scenario presented in Section 3.1. PPLasso achieved to select all prognostic factors (TPR prog almost 1) even for large p, with limited false positive prognostic biomarkers selected. As compared to the optimal λ maximizing (TPR all -FPR all ), the one selected with the BIC tends to select some false positives (average: 32.87 (FPR prog = 0.173) for p = 200 and 10.39 (FPR prog = 0.005) for p = 2000). The results obtained from the oracle and estimated Σ bm are comparable. Selection performance of predictive biomarkers is slightly lowered as compared to prognostic biomarkers. Even if the false positive selection is quite similar between prognostic and predictive biomarkers, PPLasso missed some true predictive biomarkers when λ is selected with the BIC criterion (average TPR pred = 0.982 and 0.798 for oracle and estimated Σ bm , respectively, with p = 2000). In this scenario where the IC is violated, PPLasso globally outperforms Lasso. The Lasso approach failed in selecting all truly prognostic and predictive biomarkers, and the number of missed active biomarkers increased with the dimension p (TPR prog = 0.825 and 0.448, TPR pred = 0.810 and 0.454 for p = 200 and 2000, respectively). 3.3.1. Impact of the correlation matrix Σ. To evaluate the impact of the correlation matrix on the selection performance of the methods, additional scenarios are presented where the IC is satisfied:

(1) Compound symmetry structure where all biomarkers are equally correlated with a correlation ρ = 0.5; (2) Independent setting where Σ bm is the identity matrix. For the scenario with compound symmetry structure displayed in Figure 5, Lasso successfully identified the true prognostic biomarkers (TPR prog close to 1 even for large p) with limited false positive selection. On the other hand, Lasso missed some predictive biomarkers especially when p increases (TPR pred = 0.934 and 0.502 for p = 200 and 2000 respectively). On the contrary, PPLasso successfully identified almost all predictive biomarkers with the optimal choice of λ. Moreover, even when λ is selected by minimizing the BIC criterion (min(bic)), PPLasso est outperformed the Lasso when p > 500 with relatively stable TPR pred and FPR pred as p increases.

For the independent setting, as displayed in Figure 6, prognostic biomarkers were globally well identified by all the compared methods with a slightly higher TPR prog for Lasso as compared to PPLasso but also with a slightly higher FPR prog . With regards to predictive biomarkers, PPLasso using Σ bm (oracle) performed also similarly to the Lasso, which is reasonable since no transformation has been used in PPLasso. On the other hand, even if PPLasso with λ selected with "min(bic)" performed similarly with PPLasso with optimal λ for relatively small p, the selection performance is altered for large p and is close to the performance of Lasso with optimal λ selected.

3.3.2. Impact of the effect size of active biomarkers. To evaluate the impact of the effect size on biomarker selection performance, the scenario presented in Section 3.1 was considered with different values of b 2 : 1.5, 2 and 2.5.

Since the effect size of prognostic biomarkers did not change the comparison focused on predictive biomarkers. As expected, the reduction of the effect size makes the biomarker selection harder, especially for the Lasso where the predictive biomarker selection is limited when b 2 = 1.5: for p = 2000, TPR pred = 0.454 (resp. 0.218) for b 2 = 2 (resp. 1.5), see Figure 4 and Figure 9 of the supplementary material. The selection performance of PPLasso when λ is selected with min(bic) is also reduced by decreasing b 2 , especially when Σ bm is also estimated. Nevertheless, the selection performance remains better than for the Lasso for which the performance displayed are associated to the optimal value of λ. On the other hand, even with limited effect size, PPLasso with optimal λ identified all predictive biomarkers with very limited false positive selection. When b 2 was increased to 2.5, the selection performance for all methods is improved and the results for PPLasso with estimated λ was close to the ones with the optimal λ as displayed in Figure 10 of the supplementary material. As compared with PPLasso, for which the selection performance remains stable as p increases, Lasso is more impacted by the value of p since the true positive selection decreased as p increased (TPR pred =0.950 (resp. 0.646) for p = 200 (resp. 2000)).

3.3.3. Impact of the number of predictive biomarkers. The impact of the number of true predictive biomarkers was assessed by increasing the number of predictive biomarkers from 5 to 10 in the scenario presented in Section 3.1. When the number of predictive biomarkers increased, the impact on PPLasso is almost negligible. However, for Lasso, we can see from Figure 11 of the supplementary material that it became even harder to identify predictive biomarkers. TPR pred decreased compared to Figure 4, especially for large p (e.g. TPR pred = 0.124 for p = 2000).

3.3.4. Impact of the dimension of the dataset. In this section, we studied a different sample size: n=50 with n 1 = n 2 = 25 and a different number of biomarkers: p=5000.

We can see from Figure 12 of the supplementary material that for p = 5000, the selection performance of PPLasso is not altered as compared with p = 2000 while the Lasso has more difficulties to identify both prognostic and predictive biomarkers.

When the sample size is smaller (n=50), we can see from Figure 13 of the supplementary material that the ability to identify prognostic and predictive biomarkers decreased for all the methods. However, PPLasso still outperformed the Lasso with higher TPR prog and TPR pred and lower FPR prog and FPR pred .

Application to gene expression data in breast cancer

We applied the previously described methods to publicly available transcriptomic data from the RV144 vaccine trial [START_REF] Rerks-Ngarm | Vaccination with alvac and aidsvax to prevent hiv-1 infection in thailand[END_REF]). This trial showed reduced risk of HIV-1 acquisition by 31.2% with vaccination with ALVAC and AIDSVAX as compared to placebo. Transcriptomic profiles of in vitro HIV-1 Env-stimulated peripheral blood mononuclear cells (PBMCs) obtained pre-immunization and 15 days after the immunization (D15) from both 40 vaccinees and 10 placebo recipients were generated to better understand underlying biological mechanisms [START_REF] Fourati | Integrated systems approach defines the antiviral pathways conferring protection by the rv144 hiv vaccine[END_REF], Gene Expression Omnibus accession code: GSE103671).

For illustration purpose, the absolute change at D15 in gene mTOR was considered as the continuous endpoint (response). mTOR plays a key role in mTORC1 signaling pathway which has been shown to be associated with risk of HIV-1 acquisition [START_REF] Fourati | Integrated systems approach defines the antiviral pathways conferring protection by the rv144 hiv vaccine[END_REF], [START_REF] Akbay | Modulation of mtorc1 signaling pathway by hiv-1[END_REF]). The gene expression has been normalized as in the original publication of [START_REF] Fourati | Integrated systems approach defines the antiviral pathways conferring protection by the rv144 hiv vaccine[END_REF]. After removing non-annotated genes (LOCxxxx and HS.xxxx), the top 2000 genes with the highest empirical variances were included as candidate biomarkers for prognostic and predictive identification from PPLasso and Lasso. The penalty parameter λ for the Lasso was selected through the classical cross-validation approach. For PPLasso, λ was selected based on the criterion described in Section 2.6. The estimation of Σ was obtained by comparing several candidate estimators from the cvCovEst R package and by selecting the estimator having the smallest estimation error. In this application, the combination of the sample covariance matrix and a dense target matrix (denseLinearShrinkEst) derived by [START_REF] Ledoit | The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation[END_REF] provides the smallest estimation error. Figure 7 displays the estimated Σ and highlights the strong correlation between the genes. Table 3 of the Supplementary material gives details on the compared estimators.

Prognostic and predictive genes selected by PPLasso and Lasso are listed in Table 1. PPLasso selected a slightly higher number of genes as compared to the Lasso (9 vs. 10 and 15 vs. 7 for prognostic and predictive genes, respectively). The intersection between the two methods is moderate (3 prognostic genes, 3 predictive genes, and 1 gene selected as prognostic for Lasso and predictive for PPLasso). Interestingly, some genes selected by both methods such as SLAMF7, TNFRSF6B, TNFRSF18 or NUCKS1 have already been discussed in the HIV-1 field. Moreover, among the predictive genes selected by the PPLasso, some are linked to pathways that have been highlighted as possible target for HIV-1 such as BIRC3 and TLR8.

Conclusion

We propose a new method named PPLasso to simultaneously identify prognostic and predictive biomarkers. PPLasso is particularly interesting for dealing with high dimensional omics data when the biomarkers are highly correlated, which is a framework that has not been thoroughly investigated yet. From various numerical studies with or whithout strong correlation between biomarkers, we highlighted the strength of PPLasso in well identifying both prognostic and predictive biomarkers with limited false positive selection. The current method is only dedicated to the analysis of continuous responses through ANCOVA type models. However, it will be the subject of a future work to extend it to other challenging contexts, such as classification or survival analysis.
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Table 1. Selected genes from Lasso and PPLasso. 
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 5 Figure 5. (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers for the compound symmetry correlation structure.

Figure 6 .

 6 Figure 6. (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (independent setting).

Figure 7 .

 7 Figure 7. Heatmaps of the correlation matrix estimated by the cvCovEst R package.

Figure 9 .

 9 Figure 9. (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (b 2 = 1.5).

Figure 10 .

 10 Figure 10. (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (b 2 = 2.5).

Figure 11 .

 11 Figure 11. (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (10 predictive biomarkers).

Figure 12 .

 12 Figure 12. (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (with p = 5000).

Figure 13 .

 13 Figure 13. (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (n 1 = n 2 = 25).

  

  

  corresponding to the effects of treatment t 1 (resp. t 2 ). Moreover, β 1 = (β 11 , β 12 , . . . , β 1p ) (resp. β 2 = (β 21 , β 22 , . . . , β 2p ) ) are the coefficients associated to each of the p biomarkers in treatment t 1 (resp. t 2 ) group, denoting the matrix transposition and X 2 . When t 1 stands for the standard treatment or placebo, prognostic (resp. predictive) biomarkers are defined as those having non-zero coefficients in β 1 (resp. in β 2 -β 1 ) and non prognostic (resp. non predictive) biomarkers correspond to the indices having null coefficients in β 1 (resp. in β 2 -β 1 ). Model (2) can be written as:

Table 3 .

 3 Empirical risk of tested methods with different hyperparameters.

	Estimator	Hyperparameters Empirical risk
	denseLinearShrinkEst	-	102546
	sampleCovEst	-	102547
	linearShrinkLWEst	-	103496
	poetEst	lambda=0.1, k=2	104522
	poetEst	lambda=0.2, k=2	105358
	poetEst	lambda=0.1, k=1	105972
	poetEst	lambda=0.2, k=1	108222
	thresholdingEst	gamma=0.2	137798
	thresholdingEst	gamma=0.4	186844

, . . . , 2n 2 are standard independent Gaussian random variables independent of X 1 and

Supplementary material

This supplementary material provides additional numerical experiments, figures and tables for the paper: "Identification of prognostic and predictive biomarkers in highdimensional data with PPLasso". MSE BIC TPR(prognostic) 1.000 1.000 FPR(prognostic) 0.038 0.024 TPR(predictive) 1.000 1.000 FPR(predctive) 0.008 0.006 Table 2. TPR and FPR associated to prognostic and predictive biomarker identification with the λ chosen in Figure 3.