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We propose an unsupervised machine learning method for the autonomous structural analysis of materials based on original topological descriptors of local atomic structures computed from persistent homology [1, 2]. From this protocol, a
model is learned in course of nucleation in order to identify, without a priori on a system, clusters of atomic structures which arise in the process. This method has been applied to investigate the homogeneous nucleation of elemental
Tantalum (Ta), on several molecular dynamics configurations of 10 million atoms at the nose of the time-temperature-transformation curve. A general behavior for all the nuclei (even the precritical ones) shows a concurrent emergence of the
translational and orientational orderings in this pure metal.

Abstract

Molecular dynamics simulations

 Large-scale simulations with LAMMPS [3]:
• (N,P,T)
• N = 107

• Δt = 2 fs
• Verlet’s algorithm
• EAM potential

 Train set of local atomic structures 
up to the second neighbor shell

 Minimization of the energy by means of a 
conjugate gradient algorithm

Model in course of nucleation

Inherent structures

 Encode local atomic structures using persistence diagrams
from topological data analysis (TDA) [1, 2]

 Subsampling approach to remove noises [4]

 Topological vector [5] 
to construct a descriptor
space of the train set

Unsupervised learning approach

 Integrated completed likelihood (ICL) [7]
to initialize the number of Gaussian
components (i.e. the number of clusters)

Analysis on an isotherm at the nose of the 
time-temperature transformation curve

Autonomous description of the homogeneous crystal nucleation

Translational and orientational orderings arise simultaneously

B. Identification of the growing nucleiA. Building the model

C. Orderings analysis

Principal component analysis of the clusters

Isotherm analysis of crystal nucleation
Snapshot of the simulation with atoms 

coloured to according clusters

GMM clustering

This unsupervised TDA-GMM approach opens the way to
autonomous application in the studies of structural
dependant phenomena at the atomic scale. Extension of the
nucleation analysis on multicomponent systems is especially
relevant for a deeper inspection and control of such
mechanisms to enhance materials design. As a perspective, it
would be interesting to extend the method to learn the time
evolution, e.g., through recent generalization of the
persistent homology to time series [8].
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 Gaussian mixture model (GMM) clustering
with expectation-maximization algorithm [6]


