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A promising algorithm to find the first positive root of a univariate polynomials?

We present a new algorithm that searches for the first positive root of a univariate polynomial 𝑃 . It produces a non decreasing sequence that seems to converge very fast to the first positive root of 𝑃 . Unfortunately, we are not able to study the complexity of our algorithm or even its convergence. But our experiments using 64 bits floating point arithmetic seems promising. The paper presents the algorithm and our experiments.

Introduction

The question of finding all real roots of a univariate polynomial is of major importance. We present a new algorithm that searches for the first positive root of such a polynomial. We will see that our algorithm can produce all roots and isolate each of them in an interval.

Among possible applications is the drawing of algebraic surface on computer where we only need the first intersection of a line and the surface. This is actually our original motivation to start this work: we wanted an algorithm that could be implemented on modern GPUs to render and animate algebraic surfaces in real time. This requires an algorithm that is both fast and simple (because programming for GPUs presents some limitation due to the GLSL language).

The two parts book [START_REF] Mcnamee | Numerical Methods for Roots of Polynomials -Part I[END_REF][START_REF] Mcnamee | Numerical Methods for Roots of Polynomials -Part II[END_REF] gives a survey of the main algorithm in this domain. Many more recent works exist like [START_REF] Sagraloff | Computing real roots of real polynomials[END_REF] and [START_REF] Sharma | Near optimal subdivision algorithms for real root isolation[END_REF]. In [START_REF] Sagraloff | Computing real roots of real polynomials[END_REF], algorithms are classed in three groups:

1. Iterative algorithms that approximates all roots like Weierstrass-Durand-Kerner method.

2. Iterative algorithms that refines the value of a single root when a sufficiently good approximation is known.

3. Subdivision algorithms like Pan's method.

Our algorithm is in the second category, but does not require a sufficiently good approximation at start. It seems to produce a non decreasing sequence that converges toward the first real root in all cases. We could not compute the complexity nor prove the convergence of our algorithm (we discuss the difficulty below). However, it is very simple and seems to have very good convergence property: we could not find any example where it failed to converge and it seems to converge quadratically near simple roots and linearly to multiple roots.

Given a univariate polynomial 𝑃 of degree 𝑑 with 𝑃 (0) > 0, our algorithm produces a sequence (𝑥 𝑛 , 𝑤 𝑛 ) 𝑛∈ℕ with (𝑥 0 , 𝑤 0 ) = (0, 1) and 0 < 𝑥 𝑛 < 𝑥 𝑛+1 , 0 < 𝑤 𝑛 ≤ 1 and 𝑃 (𝑥) > 0 on [0, 𝑥 𝑛 ].

To compute 𝑥 𝑛+1 we compute the coefficient of 𝑄 𝑛 (𝑥) = (𝑐𝑥 + 𝑒) 𝑑 [ or [𝑥 𝑛 , +∞[ when 𝑤 𝑛 = 1. Then, using the Bezier representation of 𝑄 𝑛 (𝑥) in two different ways, we computes two intervals [0, 𝑡 1 ] and [0, 𝑡 2 ] on which 𝑄 remains positive. In some cases, 𝑡 2 corresponds exactly to Newton's method. Using 𝑡 0 = max(𝑡 1 , 𝑡 2 ), we find 𝑥 𝑛+1 such that 𝑃 (𝑥) is positive on [0, 𝑥 𝑛+1 ]. If 𝑄 was positive on [0, 1] (if 𝑡 0 = 1), either we terminates reporting that no positive root exists (when 𝑤 𝑛 = 1) or we enlarge 𝑤 𝑛 by some constant factor. Otherwise we take 𝑤 𝑛+1 = 𝑡 0 𝑤 𝑛 .

This dynamical adaptation of the rescaling factor 𝑤 𝑛 is essential but makes it difficult to analyze the complexity of the algorithm.

We stop when Descartes' rule of sign tells us that 𝑄 𝑛 as a single root in [0, 1], which tells us that [𝑥 𝑛 , 𝑥 𝑛+1 ] only contains the first positive root of 𝑃 . We could restart the algorithm from 𝑥 𝑛+1 to search for the next root or continue the algorithm from 𝑥 𝑛 to have a better approximation of the first root. We can actually to both in parallel.

The stopping condition works if we know that there are only simple roots. In case of multiple roots, we have no simple stopping condition that isolates the root other than dividing 𝑃 by gcd(𝑃 , 𝑃 ′ ). In this case, our algorithm can only be used to compute the first real root.

Our algorithm seems numerically very stable: when we use 64 bits floating point arithmetics, we can compute roots of polynomials of rather large degree (200 and more), even when they are near to have double roots between 0 and the first positive root. Some difficult polynomials like Chebishef's (works up to degree 40) or Mignote's (only degree 6!) fail because they demand greater precision than 64 bits to have a correct sign for the rescaled polynomial 𝑄 ℎ .

The main operation in our algorithm is the computation of the coefficients of 𝑄 𝑛 . It can be performed in 𝑂(𝑑 ln(𝑑)) arithmetic operations using discrete Fourier transformation (DFT) or 𝑂(𝑑 2 ) arithmetic operations using Horner's method. Unfortunately our experiments using DFT seems to indicate that the numerical stability is lost. Therefore we only report experiments using the 𝑂(𝑑 2 ) implementation. We are even wondering if the gain of using DFT is not compensated by the need for more precision in the computation?

The number of iterations seems linear in the degree of the polynomial in the worst case, which suggest a complexity of 𝑂(𝑑 2 ln(𝑑)) arithmetic operations (or 𝑂(𝑑 3 ) if we do not use DFT). Unfortunately, this ignores the number of bits. Nevertheless, our experiments are promising and we decided to publish this work in the hope that the simplicity of the algorithm will allow someone to study it further.

The experiments at the end of this paper lack an implementation using good interval arithmetic library such as RS, and may be a better stopping condition to isolate the roots. Using interval arithmetic would give certified results. This would also allow for a comparison with the state of the art root finding algorithms as the one reported in [START_REF] Kobel | Computing real roots of real polynomials[END_REF]. Indeed, for chebyshef polynomials, our algorithm using floating point arithmetic fails to isolate all roots at degree 38, because of numerical errors. Using some extrapolation of the running time, we expect a running time comparable to the results mentionned in [START_REF] Kobel | Computing real roots of real polynomials[END_REF].

Notations

When 𝑄(𝑥) is a univariate polynomials of degree 𝑑, we denote by 𝑄 ℎ (𝑡, 𝑢) the homogeneous polynomial defined by

𝑄 ℎ (𝑡, 𝑢) = 𝑄 ( 𝑡 𝑢 ) 𝑢 𝑑 .
In our two main lemmas we will use the representation of the polynomial as a Bezier curve. This is very well described in [START_REF] Gallier | Curves and surfaces in geometric modeling: Theory and algorithms[END_REF].

Two lemmas

Algorithm 1 Algorithm for the lemma 1 Require: 𝑄(𝑥) = ∑ 0≤𝑖≤𝑑 𝑞 𝑖 𝑥 𝑖 a univariate polynomial of degree 𝑑 Require: 𝑄(0) > 0 Require:

𝑞 𝑖 < 0 for some 1 ≤ 𝑖 ≤ 𝑑 𝑀 ← 0 𝑘 ← undefined for 1 ≤ 𝑖 ≤ 𝑑 do if 𝑞 𝑖 < 0 then if 𝑘 = undefined then 𝑘 ← 𝑖 end if 𝑀 ← min (𝑀 , 𝑞 𝑖 ( 𝑑-𝑘 𝑖-𝑘 )
)

end if end for 𝑡 1 ← solve(𝑞 0 (1 -𝑡) 𝑑 + 𝑀 𝑡 𝑘 = 0) for 𝑡 ∈]0, 1[ return 𝑡 1
The main idea of the algorithm is the following two lemmas that allow to progress at each step. Both lemmas find an interval [0, 𝑡 0 [ on which a polynomial 𝑄 with 𝑄(0) > 0 is positive. The first lemma corresponds to the algorithm 1.

Lemma 1. Let 𝑄(𝑥) = ∑ 0≤𝑖≤𝑑 𝑞 𝑖 𝑥 𝑖 be a real univariate polynomial of degree 𝑑 with 𝑄(0) > 0. If all the coefficients of 𝑄 are non negative, we have 𝑄(𝑥) > 0 on ℝ + . Assume the contrary and let 𝑘 be the least integer with 𝑞 𝑘 < 0. We define 𝑀 ∈ ℝ - * by

𝑀 = min 0≤𝑖≤𝑑 𝑞 𝑖 ( 𝑑-𝑘 𝑖-𝑘 )
.

Consider the equation,

𝑓(𝑡) = 𝑄(0)(1 -𝑡) 𝑑 + 𝑀 𝑡 𝑘 = 0.
As 𝑄(0) > 0 and 𝑀 < 0, it is easy to see that 𝑓(𝑡) has a negative derivative on ]0, 1[, 𝑓(0) = 𝑄(0) > 0 and 𝑓(1) = 𝑀 < 0. Hence it has a unique solution 𝑡 1 ∈]0, 1[. Using this solution 𝑡 1 , we have Second, we define 𝑄 - ℎ (𝑡, 𝑢) the polynomial with only the monomials with negative coefficients in 𝑄 ℎ . For 0 ≤ 𝑡 ≤ 1, we have:

𝑄 ℎ (𝑡, 1 -𝑡) ≥ 𝑞 0 (1 -𝑡) 𝑑 + 𝑄 - ℎ (𝑡, 1 -𝑡).

Let us write in the Berstein basis the polynomial

𝑅 ℎ (𝑡, 1 -𝑡) = 1 𝑡 𝑘 𝑄 - ℎ (𝑡, 1 -𝑡).
This divides the original coefficient of degree 𝑖 in the standard basis by a factor ( 𝑑-𝑘 𝑖-𝑘 ). Now, we can see the graph of 𝑅 ℎ on [0, 1] as a Bezier curve which remains inside the convex-hull of its control points which have coordinates ( 𝑖-𝑘 𝑑-𝑘 , 𝑞 𝑖 ( 𝑑-𝑘 𝑖-𝑘 )

) if 𝑞 𝑖 < 0 or ( 𝑖-𝑘 𝑑-𝑘 , 0) otherwise. This gives:

𝑅 ℎ (𝑡, 1 -𝑡) ≥ 𝑀 and 𝑄 - ℎ (𝑡, 1 -𝑡) ≥ 𝑀 𝑡 𝑘 .

which gives (see figure 1):

𝑄 ℎ (𝑡, 1 -𝑡) ≥ 𝑞 0 (1 -𝑡) 𝑑 + 𝑀 𝑡 𝑘 .
If we use 𝑡 1 as defined in the lemma, we find As in the first lemma, we assume that 𝑄 has some negative coefficients and we define 𝑁 ∈ ℝ - * by

𝑄 ℎ (𝑡, 1 -𝑡) > 0 for 𝑡 ∈ [0, 𝑡 1 [.
𝑁 = min 0≤𝑖≤𝑑 𝑞 𝑖 ( 𝑑 𝑖 ) -𝑞 0 (1 -𝑖 𝑑 )
𝑖 𝑑 and 𝑡 2 = -𝑞 0 𝑁 -𝑞 0 .

We have

𝑄 ℎ (𝑡, 1 -𝑡) > 0 for 𝑡 ∈ [0, 𝑡 2 [.
Proof. This time for each coefficient 𝑞 𝑖 , we will consider the linear polynomial 𝐿 𝑖 (𝑡, 𝑢) = 𝑢𝑞 0 + 𝑡𝑠 𝑖 with 𝑠 𝑖 chosen to have

𝐿 𝑖 ( 𝑖 𝑑 , 1 - 𝑖 𝑑 ) = 𝑞 𝑖 ( 𝑑 𝑖 )
This means that we require 𝐿 𝑖 (𝑡, 𝑢) = 0 to be the projective line joining the 0-th and 𝑖-th control points of 𝑄 ℎ (𝑡, 1 -𝑡).

We easily get

𝑠 𝑖 = 𝑞 𝑖 ( 𝑑 𝑖 ) -𝑞 0 (1 -𝑖 𝑑 ) 𝑖 𝑑 .
We only need to consider 𝑠 𝑖 when 𝑞 𝑖 ( 𝑑 𝑖 )

< 𝑞 0 and in particular negative 𝑞 𝑖 because the others have 𝑠 𝑖 ≥ 0. We take the minimum:

𝑁 = min 1≤𝑖≤𝑑 (𝑠 𝑖 ).
and we know that the convex hull of the control points of 𝑄 ℎ (𝑡, 1 -𝑡) and therefore its graph is above the line corresponding to 𝑁 . Hence, we have (see figure 1):

𝑄 ℎ (𝑡, 1 -𝑡) ≥ 𝑞 0 (1 -𝑡) + 𝑁 𝑡
We consider 𝑡 2 = -𝑞 0 𝑁-𝑞 0 the solution of 𝑞 0 (1 -𝑡) + 𝑁 𝑡 = 0 and we have

𝑄 ℎ (𝑡, 1 -𝑡) > 0 for 𝑡 ∈ [0, 𝑡 2 [
Remark, when the minimum to compute 𝑁 is reached for 𝑖 = 1, 𝑡 2 is exactly the increment given by Newton's method. Indeed, the line we consider for 𝑖 = 1 is the tangent of 𝑄 ℎ (𝑡, 1 -𝑡) = 0 at 𝑡 = 0. Moreover, when the rescaling factor is small, the first control points of the Bezier curve for 𝑄 are near to aligned, and therefore, we have also something near to Newton's iteration when the minimum to compute 𝑁 is reached for small value of 𝑖 with a small scaling factor 𝑤 𝑛 . This is why our algorithm seems to converge quadratically near a simple root.

The algorithm

The idea of the algorithm is to start from 𝑥 = 0 and at each step increment 𝑥 by

𝑡 𝑖 1-𝑡 𝑖
given by the previous lemmas (we take the maximum). Unfortunatly this is not enough to converge. We use an homogeneous rescaling of the polynomial leads to algorithm 3 which we will now comment.

Remark: we do not need to use lemma 2 to ensure convergence and we can always use 𝑡 1 from lemma 1. However, using only lemma 2 does not work. Nevertheless, it is when we use both lemmas that we get what seems to be very good performances.

The algorithm is given as an unbounded loop, we will discuss stopping condition in section 5. Here are some explanations of the code:

First, we translate 𝑃 and compute the polynomial 𝑆(𝑥) = 𝑃 (𝑥 + 𝑥 𝑛 ). Next, the definition of 𝑄 ℎ is an homogeneous rescaling of 𝑆 ℎ , sending the interval [0, 𝑤 𝑛 ] to [0, 1]. Hence if a point has homogeneous coordinates (𝑡 ∶ 𝑢) in [0, 1], it corresponds to the point (𝑡𝑤 𝑛 ∶ 𝑢 + (1 -𝑤 𝑛 )𝑡) in the frame of 𝑆 ℎ .

The failure condition is correct because if 𝑤 𝑛 = 1, this means that we do not perform any rescaling. 𝑆 ℎ (𝑡, 1 -𝑡) is therefore positive for 𝑡 ∈ [0, 1] and 𝑆(𝑥) is positive on ℝ + , because 𝑡 = 1 corresponds to +∞.

The definition of 𝑤 𝑛+1 follows the following idea: if 𝑡 0 = 1, it means that 𝑄 ℎ has only positive coefficients and 𝑄 ℎ (𝑡, 1 -𝑡) is positive on [0, 1]. Therefore, we will do a larger rescaling at the next iteration. The factor 4 is a good value from our experiments. On the contrary, it 𝑡 0 < 1, 𝑄 ℎ (𝑡, 1 -𝑡) is only positive on [0, 𝑡 0 [ and therefore 𝑆 ℎ (𝑡, 1 -𝑡) is only positive on [0, 𝑡 0 𝑤 𝑛 [. We will use 𝑡 0 𝑤 𝑛 as the next rescaling factor, because if we are probably approaching a root or a local minima, we expect to find a smaller increment. Finally, we translate 𝑥 𝑛 . The coefficient (1 -𝜖) is here to ensure that 𝑃 (𝑥 𝑛+1 ) > 0 which is not ensured by our lemmas.

This definition of 𝑤 𝑛+1 allows for slowing down when we approach a region where 𝑃 is very small and accelerate when 𝑃 increase again. This is well illustrated by figure 2. Proof. From the definition of the algorithm, lemmas 1 and 2 and the discussion above we immediately get that the sequence (𝑥 𝑛 ) is non decreasing and 𝑃 (𝑥) > 0 for 𝑥 ∈ [0, 𝑥 𝑛 ] thanks to the coefficient (1 -𝜖).

Stopping condition

The first natural stopping condition is to look at the following interval For the latter, one very low degree works.

𝐼 𝑛 = [𝑥 𝑛 , 𝑥 𝑛 + 𝑤 𝑛 1 -𝑤 𝑛 ] 𝑥 𝑦 0 1 2 3 -1 0 1 2 3 4 × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

Experiments

Our implementation is written in OCaml and the experiments were conducted on a AMD Ryzen 4500U laptop. First, let us consider the following polynomial:

𝑃 (𝑥) = 5(𝑥 -1) 2 (𝑥 -2) 2 (3 -𝑥) + 10 -10
It has almost two double roots. The real root is computed in 43 steps. It is worth noticing that only the three last iterations use Newton. The figure 2 shows the graph of the polynomial and each iteration, marked (on the curve when possible). We see the slow down to pass below the two local minima and the acceleration just after.

Next we tested with four families of polynomials up to degree 200. We also give the color we use on the graph below: random hard (black color) Random polynomials of degree 𝑑 = 2𝑘 + 𝑟 with 0 ≤ 𝑟 ≤ 1. These are a product of factors of degree 2, chosen randomly to have near to zero discriminant. In even degree, we multiply by a random factor of degree 1.

Number of iterations is show in figure 3. For the random families, we give the maximum number of iterations (square points) and the average number of iterations (round points). For the 𝑃 2 and 𝑃 4 families, the exact number of iterations.

We measured with the two stopping conditions mentioned above:

• Descartes' rule of signs in light color.

• Stopping at no progress or negative values in dark colors.

We also computed a logarithmic regression for these test case which gave the following complexity: Remark: for all family but the random easy one, the complexity of finding the first root is the same as the complexity to find all roots as all the feature of the polynomials allowed by the degree lies between 0 and the first root.

For the random easy family, we see that they require a constant number of iterations! We should expect a multiplication by 𝑑 to compute all roots as these polynomials have 𝑑 roots.

These results make plausible a worst case complexity for the number of iteration in 𝑂(𝑑) may be with some logarithmic factor (except if we missed a hard situation).

Computing time (in ms) is show in figure 4.

We used the same convention of colors in this figure as for the previous one. As we use floating point arithmetic, the running time is roughly proportional to the number of arithmetic operations.

Here is the A surprising point when we compare the family 𝑃 2 and 𝑃 4 is that the most difficult barrier to pass are due to factor of the form (𝑥 -𝑟) 𝑘 + 𝜖 with 𝑘 = 2 and not factor of higher even degree. This is quite surprising as a higher degree gives a flatter curve roughly parallel to the 𝑥 axis.

Conclusion

These empirical results are compatible with a number of arithmetic operations in 𝑂(𝑑 3 ) and may be even less when not using DFT. With DFT, it could be 𝑂(𝑑 2 ln(𝑑)) : random hard: max iterations, stop no progress : random hard: max iterations, stop isolation : random hard: average iterations, stop no progress : random hard: average iterations, stop isolation : random easy: max iterations, stop no progress : random easy: max iterations, stop isolation : random easy: average iterations, stop no progress : random easy: average iterations, stop isolation : 𝑃 2 family: nb iterations, stop no progress : 𝑃 2 family: nb iterations, stop isolation : 𝑃 4 family: nb iterations, stop no progress : 𝑃 4 family: nb iterations, stop isolation Figure 3: Number of iterations for our families of polynomials but it seems to be numerically less stable and could not be tested with floating point numbers.

We are planning to do an implementation with interval arithmetic to be able to give certified results and use GMP to dynamically increase the precision when floating point numbers are not enough.

We are also considering a GLSL implementation to draw and animate algebraic surfaces in real time. Our timing are below the millisecond for reasonnable degree and using the parallelism of the GPU, and the fact that most intersections will be easy, this should allow real time animation of algebraic surfaces.
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 1 Figure 1: Illustration for lemma 1 and 2
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 3 The sequence (𝑥 𝑛 ) is non decreasing and 𝑃 (𝑥) > 0 for 𝑥 ∈ [0, 𝑥 𝑛 ].

Figure 2 :

 2 Figure 2: Iterations with almost 2 double roots

𝑃 2

 2 family (red color) with 𝑑 = 2𝑘 + 𝑟 + 1, 0 ≤ 𝑟 ≤ 1 and 𝜖 = 10 -13 𝑃 2,𝑑 = (Π 𝑖=𝑘 𝑖=1 (𝑥 -𝑖) 2 + 𝜖)(𝑥 -𝑘 -1)(𝑥 + 𝜖) 𝑟 𝑃 4 family (blue color) with 𝑑 = 4𝑘 + 𝑟 + 1, 0 ≤ 𝑟 ≤ 3 and 𝜖 = 10 -13 𝑃 4,𝑑 = (Π 𝑖=𝑘 𝑖=1 (𝑥 -𝑖) 4 + 𝜖)(𝑥 -𝑘 -1)(𝑥 + 𝜖) 𝑟 random easy (green color) Random polynomials of degree 𝑑 with 𝑑 roots chosen uniformly in [-5,5].

Algorithm 2

 2 Algorithm for the lemma 2 Require: 𝑄(𝑥) = ∑ 0≤𝑖≤𝑑 𝑞 𝑖 𝑥 𝑖 a univariate polynomial of degree 𝑑 Lemma 2. Let 𝑄(𝑥) = ∑ 0≤𝑖≤𝑑 𝑞 𝑖 𝑥 𝑖 be a real univariate polynomial of degree 𝑑 with 𝑄(0) > 0.

	Require: 𝑄(0) > 0
	Require: 𝑞 𝑖 < 0 for some 1 ≤ 𝑖 ≤ 𝑑
	𝑁 ← 0
	for 1 ≤ 𝑖 ≤ 𝑑 do 𝐴 ← 𝑞 𝑖 ( 𝑑 𝑖 ) if 𝐴 < 𝑞 0 then 𝑅 ← 𝑖 𝑑 𝑃 ← 𝑥-𝑞 0 (1-𝑟) 𝑟 𝑁 ← min(𝑁 , 𝑃 )
	end if
	end for 𝑡 2 ← -𝑞 0 𝑁-𝑞 0 return 𝑡 2

  table for the logarithmic regression:

	Family	Descartes rules	No progress
		complexity correlation complexity correlation
	𝑃 2 family 𝑃 4 family random easy max	𝑂(𝑑 2.09 ) 𝑂(𝑑 1.86 ) 𝑂(𝑑 1.29 )	0.97 0.98 0.95	𝑂(𝑑 2.34 ) 𝑂(𝑑 2.16 ) 𝑂(𝑑 1.34 )	0.98 0.99 0.97
	random easy average	𝑂(𝑑 1.51 )	0.99	𝑂(𝑑 1.34 )	0.96
	random hard max	𝑂(𝑑 2.07 )	0.98	𝑂(𝑑 2.16 )	0.98
	random hard average	𝑂(𝑑 2.48 )	0.99	𝑂(𝑑 2.48 )	0.98

If this interval only contains one root, we could stop and give as output the interval 𝐼 𝑛 which only contains one root. This could be ensured using Descartes rule of signs applied to 𝑄.

However, this only works for simple roots, while our algorithm seems to converge well in case of multiple roots too. This is not really a problem as we can replace 𝑃 by 𝑃 𝑔𝑐𝑑(𝑃 ,𝑃 ′ ) . Unfortunately, this can be problematic if do not use exact arithmetic.

We found a second stopping condition "No progress" well suited for floating point arithmetic: we stop if 𝑥 𝑛+1 = 𝑥 𝑛 or 𝑃 (𝑥 𝑛+1 ) ≤ 0. Normally, none of them should be possible. If we reach any of these two situations, it means numerical errors are now dominant and it is not necessary to continue the computation. In this case we only returns the last value of the sequence as an approximation of the first positive root and we are not able to compute an interval isolating this root.

This stopping condition gives very few errors on our tests (see below for a description of the tests) and the "No progress" stopping condition is rarely used before we found an isolation interval. When we are almost in presence of a double root, the algorithm may miss a root or see one that does not exist. There is no way to avoid this with limited precision. Still we think our algorithm is surprisingly quite reliable on our test cases:

• We observe no error on the easy cases (up to degree 200)

• Sometimes (very rarely) a reduced precision is observed for the harder cases for the best approximation of the root.

• The difficult cases like ((𝑥 -1) 2𝑘 + 𝜖)(𝑥 -2) can only be handled with floating point arithmetic up to degree 12 with 𝜖 = 10 -13 , degree 18 for 𝜖 = 10 -10 , degree 24 for 𝜖 = 10 -7 and degree 30 for 𝜖 = 10 -4 . But, this is normal, these polynomials do evaluate with the wrong sign, using Horner's method. The