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The linear dynamics of perturbations developing in a channel with compliant walls is8
investigated for pulsatile base flows. It is found that the flow dynamics is mainly governed by9
four control parameters: the Reynolds number Re, the reduced velocity +', the Womersley10
number Wo and the amplitude of the base flow modulation &̃. Linear stability analyses are11
carried out within the framework of Floquet theory, implementing an efficient approach for12
removing spurious eigenmodes. The characteristics of flow-based (Tollmien–Schlichting)13
and wall-based (both travelling-wave flutter and divergence) modes are investigated over14
a large control-parameter space. It is shown that travelling-wave flutter (TWF) modes are15
predominantly influenced by the reduced velocity and that the Reynolds number has only a16
marginal effect. The critical reduced velocity (corresponding to onset of linear instability)17
is demonstrated to depend both on the Womersley number and modulation amplitude for a18
given set of wall parameters. The Tollmien–Schlichting (TS) mode is only weakly affected19
by the flexibility of the wall. Finally, the classification given by Benjamin (J. Fluid Mech. 1620
436–450, 1963) is found to be too restrictive in the case of pulsatile base flows. In particular,21
a new type of transition mode is identified that results from the coalescence of two Floquet22
eigenmodes: interaction between TS and TWFmodes due to coupling of the different Floquet23
harmonics, a phenomenon specific to time-periodic base flows.24

Key words: Fluid–structure interactions, instability, Floquet theory25

1. Introduction26

Pulsating flows in pipe or channel flows are laminar provided that Reynolds numbers are27
sufficiently low as is largely the case for vast parts of the caridovascular system. In the main28
arteries, however, blood flow may experience instability waves, generating large fluctuating29
shear stresses, which are a possible cause for cardiovascular diseases (Chiu & Chien 2011).30
The compliance of arteries plays a major role in blood transport, such as maintaining blood31
pressure and regularizing the flow rate (Ku 1997). The flexibility of the aorta is also a32
key element in minimizing pressure fluctuations of blood provided by the left ventricle33

† Email address for correspondence: benoit.pier@cnrs.fr.
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and distributing oxygen-rich blood through capillaries (O’Rourke & Hashimoto 2007). For34
these reasons, both flexible walls and pulsatile flow are ubiquitous in the physiological35
context. When a pulsatile flow interacts with compliant walls, a better understanding of the36
development of instabilities is therefore required in order to improve the analysis of the link37
between wall-shear stress distributions and flow dynamics.38
The theory of viscous flow interactingwith compliant walls has come a longway fromGray39

(1936)’s initial observations of the outstanding performance of dolphin skins in delaying40
turbulence, to the recent review of Kumaran (2021) enlightening the various instability41
mechanisms. In the 50s, Kramer conducted pioneering tests in water by towing a dolphin-42
shaped object covered with viscoelastic materials of varying compliance (Kramer 1957). The43
author shows that the compliant coating leads to a significant drag reduction and suggests44
that the dolphin’s secret originates in the laminarisation of the flow due to its skin material.45
On one hand, several researchers tried and failed to replicate Kramer’s experiments; see46

Gad-el-Hak (1986, 1996) for reviews. On the other hand, theoretical results of Carpenter47
& Garrad (1985) extend the first analytical studies developed by Benjamin (1959, 1960,48
1963) and Landahl (1962) and demonstrate that a suitable choice of wall properties could49
control the onset of the primary instability mode of a flat-plate boundary layer, the so-called50
Tollmien–Schlichting (TS) mode. However, it is also suggested that the emergence of solid-51
based instability modes due to fluid–structure interactions (also referenced as flow–structure52
instabilities, FSI) can limit the potential of laminarisation of the flow (Carpenter & Garrad53
1986). The FSI modes can be divided into two categories: the travelling-wave flutter (TWF)54
modes and the (almost static) divergence (DIV) modes. While the physics of TWF modes55
is fairly well understood using an analogy with the onset of water-waves (Miles 1957),56
scientists are still arguing about the physical mechanism behind the divergence mode. The57
first successful experimental attempt to reproduce Kramer’s findings was given by Gaster58
(1988). In particular, he found that the measured growth rates of TS waves developing along59
a simple compliant coating match those obtained by Carpenter & Garrad (1985).60
Several attempts to classify instability modes in the presence of fluid–structure interactions61

weremade since the seminal study of Benjamin (1963). In particular, three types of instability62
mechanisms have been considered: TS modes belong to class A, TWF modes are associated63
with class B and class C modes correspond to almost steady waves, i.e. the divergence mode64
(see Davies & Carpenter (1997a,b) for the channel flow case). Apart from these modes, a65
transition mode is also found by Sen &Arora (1988), resulting from the coalescence between66
a TS mode and a TWF mode. For instance, Davies & Carpenter (1997a) have shown that the67
transition mode could develop inside a flow between a compliant channel for a sufficiently68
high level of wall damping. For the same flow case, we have recently shown that while69
class B modes are mainly driven by the reduced velocity, which corresponds to the ratio70
of characteristic wall and advection time scales, class C mode is influenced by both the71
Reynolds number and the reduced velocity (Lebbal et al. 2022).72
Independently of studies assessing optimal properties of wall coating to delay transition to73

turbulence in wall-bounded flows, the stability of pulsatile flow with respect to viscous shear74
instabilitymodes has been theoretically addressed since themiddle of the 70s (Davis 1976). In75
comparison with steady flows, pulsatile flows are governed by additional control parameters:76
the pulsation amplitudes and the pulsating frequency, of which the Womersley number Wo77
is a non-dimensional measure (see its definition in (3.6) below). In physiological situations,78
typical Womersley numbers for large blood vessels are in the range 5–15 (Ku 1997). Within79
a Floquet theory framework, von Kerczek (1982) shows that the sinusoidally pulsating flow80
developing between two flat plates is more stable than the steady plane Poiseuille flow for81
Womersley numbers in excess of Wo = 12. This result was confirmed by direct numerical82
simulations carried out by Singer et al. (1989). Using linear Floquet stability analyses and83
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nonlinear numerical simulations, Pier & Schmid (2017) explored a large parameter space84
for the same flow configuration, confirming and extending the earlier results given by von85
Kerczek (1982).86
On the other hand, several authors (Straatman et al. 2002; Blennerhassett & Bassom87

2006) have found that the perturbations may experience a strong increase in kinetic energy88
during the deceleration phase of the pulsatile base flow. This suggests that transient growth89
mechanisms and nonlinear effects come likely into play during this part of the pulsation90
cycle and that the flow could possibly break down to turbulence. Recently such a scenario91
has been further supported by nonmodal stability analyses, experiments and direct numerical92
simulations for both pipe and channel flows (Xu et al. 2020, 2021; Pier & Schmid 2021).93
In spite of major successes achieved so far in the understanding of the dynamics prevailing94

for either pulsatile base flows or wall flexibility, only few studies address these two effects in95
combination. For the channel flow case, using Floquet stability analyses, Tsigklifis & Lucey96
(2017) show that wall flexibility has a stabilising effect for some range of the Womersley97
number. The combined effect of wall damping and Womersley number is also illustrated by98
these authors. However, the influence of the reduced velocity on travelling-wave flutter modes99
is not considered when the pulsatile base-flow component comes into play. Furthermore, it is100
not completely clear if the classification made by Benjamin (1963) still holds for the pulsatile101
flow case. Finally, the transition mode that emerges due to an increase in wall damping is not102
investigated when considering a pulsatile flow component.103
To provide further understanding to the above points, the present study addresses the linear104

stability properties of small-amplitude perturbations developing in pulsatile flows through105
compliant channels. This paper is organized as follows. In the section 2, we introduce the106
coupled fluid–structure system, and the base flow and non-dimensional control parameters are107
given in section 3. The mathematical formulation of the linear stability problem is presented108
in section 4. The numerical methods to solve and reduce the generalised eigenvalue problem109
are explainted in section 5. Section 6 devoted to the results constitutes the main contribution110
of the paper: discussion of the spectra, influence of the control parameters, spatio-temporal111
structure of the eigenmodes, and a variety of critical curves associated with onset of linear112
instability.113

2. Fluid–structure interaction model and interface conditions.114

In the present study, the analysis is restricted to the two-dimensional case. We introduce the115
Cartesian coordinate system (G, H) with unit vectors (

ex, ey
)
and consider an incompressible116

Newtonian fluid with dynamic viscosity ` and density d between two spring-backed117
deformable plates located at H = Z± (G, C) which are allowed to move only in the wall-118
normal direction (see figure 1). The flow between the walls is governed by the Navier–Stokes119
equations120

d
mu
mC
+ d(u · ∇)u = −∇? + `Δu, (2.1)121

0 = ∇ · u, (2.2)122

where u = (D, E) is the velocity field, with streamwise (D) and wall-normal (E) velocity123
components, respectively, and ? the pressure field.124
The movement of the flexible plates obeys the following equations:125

<
m2Z±

mC2
+ 3 mZ

±

mC
+

(
�
m4

mG4 − )
m2

mG2 +  
)
Z± = 5 ±, (2.3)126

where < denotes the mass per unit area of the plates, 3 their damping coefficient, � the127
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Figure 1: Channel flow with infinite spring-backed flexible walls.

flexural rigidity,) the wall tension,  the spring stiffness and 5 ± represents the H-component128
of the hydrodynamic forces acting on the plates. These forces are obtained as129

5 ± = ey · f± with f± =
(
g
± − X?±I

)
· n±. (2.4)130

Here g
±
denotes the viscous stress tensor at the walls, X?± the transmural surface pressure131

and n± =
(
=±G , =±H

)
is the unit vector normal to the walls pointing towards the fluid. The132

H-component of the normal forces acting on the plate then reads133

5 ± = `

(
mD

mH

����
H=Z ±
+ mE
mG

����
H=Z ±

)
=±G + 2`

mE

mH

����
H=Z ±

=±H − X?±=±H , (2.5)134

with135

=±G = ±
mZ±

mG

1√
1 +

(
mZ ±
mG

)2
and =±H = ∓

1√
1 +

(
mZ ±
mG

)2
. (2.6)136

Finally, the no-slip conditions on both walls lead to the kinematic conditions:137

D = 0 and E =
mZ±

mC
for H = Z±. (2.7)138

The fluid–structure interaction problem is thus fully defined by the coupling of the fluid139
equations (2.1,2.2), the wall equations (2.3,2.5) and the boundary conditions (2.7).140

3. Base flows and non-dimensional control parameters141

A pulsatile base flow, of frequency Ω, is considered. Such a flow is driven by a spatially142
uniform and temporally periodic streamwise pressure gradient and is obtained as an exact143
solution of the Navier–Stokes equations. The solution consists of a velocity field in the144
streamwise direction with profiles that only depend on the wall-normal coordinate and time.145

Focus on Fluids articles must not exceed this page length
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It can be expanded as a temporal Fourier series146

U(H, C) = * (H, C)ex with * (H, C) =
∑
=

* (=) (H) exp(8=ΩC). (3.1)147

Similarly, the pressure gradient that drives the flow is expanded as148

� (C) =
∑
=

� (=) exp(8=ΩC) (3.2)149

and is associated with a pulsatile flow rate150

&(C) =
∑
=

& (=) exp(8=ΩC). (3.3)151

The velocity profile is analytically obtained for each harmonic component. The mean-flow152
component* (0) (H) corresponds to a parabolic steady Poiseuille flow solution. For = ≠ 0, the153
profiles* (=) (H) are obtained in terms of exponential functions (Womersley 1955). Analytical154
expressions are detailed in the appendix of Pier & Schmid (2021). In this work, we focus on155
pulsatile base flows with a single oscillating component. We can thus write the flow rate as:156

&(C) = & (0)
(
1 + &̃ cosΩC

)
, (3.4)157

with the relative pulsating amplitude &̃ defined as158

&̃ = 2
& (1)

& (0)
. (3.5)159

The problem is then characterized by 11 dimensional parameters: the mean flow rate160
[& (0) ] = m3s−1, the half-channel width [ℎ] = m, the fluid density [d] = kgm−3, the161
viscosity [`] = kg s−1 m−1, the mass of the plate per unit area [<] = kgm−2, the damping162
coefficient of the wall [3] = kgm−2s−1, the bending stiffness of the plate [�] = kgm2s−2,163
the wall tension [)] = kg s−2, the spring stiffness [ ] = kgm−2s−2, the pulsation frequency164
[Ω] = s−1 and the amplitude of the oscillating flow component [& (1) ] = m3s−1. Hence, the165
present configuration may be described by 8 non-dimensional control parameters.166
The base flow is characterized by three non-dimensional parameters:167

Re =
& (0)

a
, Wo = ℎ

√
Ω

a
and &̃ = 2

& (1)

& (0)
. (3.6)168

Here, the Reynolds number Re is based on the average fluid velocity, the channel diameter169
and the kinematic viscosity a = `/d; theWomersley numberWo is ameasure of the pulsation170
frequency and can be interpreted as the ratio of the channel half-diameter to the thickness171

X =
√
a/Ω of the oscillating Stokes boundary layers.172

The parameters associated with the walls are non-dimensionalised with respect to the173
spring stiffness  , which leads to174

�∗ =
�

 ℎ4 , )∗ =
)

 ℎ2 and 3∗ =
3√
< 

. (3.7)175

Finally, two non-dimensional parameters account for the coupling between the fluid and176
the compliant walls177

+' =
& (0)

4ℎ2

√
<

 
and Γ =

<

dℎ
. (3.8)178

The reduced velocity +' represents the ratio of the wall characteristic time scale g =
√
<
 ,179
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associated with the spring stiffness, to the characteristic flow advection time scale g& = 4ℎ2

& (0)180

(de Langre 2000). The parameter Γ is the mass ratio between the walls and the fluid.181
Unperturbed base configurations are thus completely specified by the 8 non-dimensional182

control parameters (3.6–3.8).We further use d = 1, ℎ = 1 and& (0) = 1 to uniquely determine183
dimensional quantities. Hereafter, to reduce the dimensionality of control-parameter space,184
the mass ratio is kept constant at Γ = 2 and we consider walls without tension ) = 0.185

4. Linear stability analysis186

For the stability analysis, the total flow fields are decomposed as the superposition of base187
and small-amplitude perturbation fields:188

u(G, H, C) = U(H, C) + u′(G, H, C), (4.1)189

?(G, H, C) = � (C)G + ?′ (G, H, C) . (4.2)190

The wall displacement is similarly written as191

Z±(G, C) = ±ℎ + [±′(G, C). (4.3)192

Since the base configuration is homogeneous in G, perturbation fields may be expressed as193
spatial normal modes194

u′(G, H, C) = ũ(H, C)48UG + 2.2., (4.4)195

?′(G, H, C) = ?̃(H, C)48UG + 2.2., (4.5)196

[±′(G, C) = [̃±(C)48UG + 2.2., (4.6)197

where U denotes the streamwise wave number and 2.2. stands for the complex conjugate.198
Introducing this decomposition into the governing equations (2.1–2.3) and neglecting the199
quadratic terms leads to the following system of coupled linear partial differential equations:200

mD̃

mC
= −8U* (H, C) D̃ − m*

mH
(H, C) Ẽ − 1

d
8U?̃ + a

(
m2

mH2 − U
2
)
D̃, (4.7)201

mẼ

mC
= −8U* (H, C) Ẽ − 1

d

m ?̃

mH
+ a

(
m2

mH2 − U
2
)
Ẽ, (4.8)202

0 = 8UD̃ + mẼ
mH
, (4.9)203

<
mW̃±

mC
= −3W̃± −

(
�U4 + )U2 +  

)
[̃± ± ?̃(H, C)

����
±ℎ
∓ ` 3Ẽ

3H

����
±ℎ
, (4.10)204

where we have introduced the additional functions W̃± = mC [̃± in order to reduce the system205
to first-order differential equations in time. Note that the wall equations (4.10) assume a206
pressure outside the channel walls always equal to the unperturbed pressure� (C)G prevailing207
inside (see Lebbal et al. (2022) for further details). The boundary conditions at the perturbed208
interface are expanded in a Taylor series about their equilibrium values at H = ±ℎ (Shankar209
& Kumaran 2002). At linear order, the flow velocities at the walls are obtained as210

u
(
G, H = Z±, C

)
= u′ (G, H = ±ℎ, C) + [±′(G, C) 3*

3H

����
(H=±ℎ,C)

ex. (4.11)211

Thus, the kinematic boundary conditions (2.7) become212

D̃(H = ±ℎ, C) + [̃±(C) 3*
3H

����
(H=±ℎ,C)

= 0 and Ẽ(H = ±ℎ, C) = W̃±(C). (4.12)213
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Since the base flow is time-periodic, the linear stability analysis proceeds by following214
Floquet theory, where the eigenfunctions are assumed to have the same temporal periodicity215
as the base flow. The perturbations are therefore further decomposed as216

ũ(H, C) =
[∑
=

û(=) (H) exp (8=ΩC)
]

exp (−8lC), (4.13)217

?̃(H, C) =
[∑
=

?̂ (=) (H) exp (8=ΩC)
]

exp (−8lC), (4.14)218

[̃±(C) =
[∑
=

[̂±(=) exp (8=ΩC)
]

exp (−8lC), (4.15)219

W̃±(C) =
[∑
=

Ŵ±(=) exp (8=ΩC)
]

exp (−8lC), (4.16)220

where the complex frequency l = lA + 8l8 is the eigenvalue, with l8 the growth rate and221
lA the circular frequency. After substitution of these expansions, the linearized equations222
governing the dynamics of small perturbations take the following form, for each integer =,223

lD̂ (=) (H) =
[
=Ω + 8a

(
mHH − U2

)]
D̂ (=) (H) + U

d
?̂ (=) (H)224

+
∑
:

[
U* (:) (H)D̂ (=−:) (H) − 8 3*

(:)

3H
Ê (=−:) (H)

]
, (4.17)225

lÊ (=) (H) =
[
=Ω + 8a

(
mHH − U2

)]
Ê (=) (H) + 1

d

3 ?̂ (=)

3H
226

+
∑
:

[
U* (:) (H)Ê (=−:) (H)

]
, (4.18)227

0 = 8UD̂ (=) (H) + mÊ
(=)

mH
, (4.19)228

l[̂±(=) = =Ω[̂±(=) + 8Ŵ±(=) , (4.20)229

lŴ±(=) = =ΩŴ±(=) − 8 3
<
Ŵ±(=) − 8

<

(
�U4 + )U2 +  

)
[̂±(=)230

± 8
<

(
?̂ (=) (±ℎ) − ` 3Ê

(=)

3H

����
±ℎ

)
, (4.21)231

together with the kinematic wall conditions232

D̂ (=) (±ℎ) = −
∑
:

3* (:)

3H

����
±ℎ
[̂±(=−:) , (4.22)233

Ê (=) (±ℎ) = Ŵ±(=) . (4.23)234

The system of coupled linear differential equations (4.17–4.21) with boundary condi-235
tions (4.22,4.23) forms the generalised eigenvalue problem that governs the dynamics of236
small-amplitude perturbations developing in this time-periodic fluid–structure interaction237
system.238
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5. Numerical methods239

In this section, we outline the numerical strategy that has been implemented for solving the240
generalised Floquet eigenvalue problem derived in the previous section. The main objectives241
in this implementation are the elimination of spurious (nonphysical) eigenvalues and the242
reduction of the required computational efforts. To that purpose, we follow the general243
framework described by Manning et al. (2007).244
The velocity and pressure components are discretized in the wall-normal direction using245

a Chebyshev collocation method. To suppress spurious pressure modes, we consider the246
(P# , P#−2)-formulation where the pressure is approximated with a polynomial of degree247
# −2 while the velocity is discretized with a polynomial of degree # (Schumack et al. 1991;248
Boyd 2001; Peyret 2002). In classical fashion, velocity fields are therefore represented by249
their values over # Gauss–Lobatto collocation points spanning the entire channel diameter250
and including the boundary points, while the pressure fields use only the #−2 interior points.251
We note the vectors containing the unkown velocity and pressure components at the interior252
points for each Fourier mode:253

VI
(=) =

(
D̂ (=)2 , . . . , D̂ (=)#−1, Ê

(=)
2 , . . . , Ê (=)#−1

)
, (5.1)254

PI
(=) =

(
?̂ (=)2 , . . . , ?̂ (=)#−1

)
. (5.2)255

Similary, wall displacements and wall velocities are denoted by256

W(=) =
(
[̂ (=)1 , [̂ (=)# , Ŵ (=)1 , Ŵ (=)#

)
. (5.3)257

The kinematic conditions (4.22,4.23) may be used to express the velocity values at the258

boundaries in terms of the wall variables. As a consequence, the variables D̂ (=)1 , Ê (=)1 , D̂ (=)#259

and Ê (=)# may be directly eliminated from the problem together with the boundary conditions.260
Then, using261

X̂(=) =
(
VI
(=) ,PI

(=) ,W(=)
)

(5.4)262

for each harmonic of the Floquet eigenvector, the system (4.17–4.21) is recast as a generalised263
algebraic eigenvalue problem of the form264

Â(=)X̂(=) +
∑
:

Ŝ(:)X̂(=−:) = 8lB̂(=)X̂(=) . (5.5)265

Here, the square matrices Â(=) , Ŝ(:) and B̂(=) are of size (3# − 2)2 and may be written in266
bloc structure as267

Â(=) =
©­­«
Â(=)VV ĜV ÂVW
D̂V 0 D̂W

ÂWV ĜW Â(=)WW

ª®®¬
, Ŝ(:) = ©­«

Ŝ(:)VV 0 Ŝ(:)VW
0 0 0
0 0 0

ª®¬
and B̂(=) = ©­«

IVV 0 0
0 0 0
0 0 IWW

ª®¬
.

(5.6)268
Their decomposition in terms of square blocs along the diagonal and rectangular blocs off269
diagonal reflects the structure of the vectors X̂(=) (5.4), with 2# − 4 variables for VI

(=) ,270
# −2 variables for PI

(=) , and 4 variables for W(=) . In the above expressions, =may in theory271
take all integer values (positive and negative) but in practice the Fourier series are truncated272
at |=| 6 # 5 for some cut-off value # 5 . Note also that the blocs for which the superscript273

(=) is not indicated in (5.6) do not depend on a specific harmonic and that the matrix B̂(=)274
only consists of two identity blocs. The matrices Ŝ(:) account for the advection terms due275
to the pulsating base flow component * (:) (H) and are responsible for the coupling of the276
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different Fourier components of the Floquet eigenfunctions. Since we consider pulsating277
flows with only a single oscillating component* (±1) (H), only the matrices Ŝ(:) with |: | 6 1278
are here non zero. As a result, the eigenvalue problem (5.5) has bloc-tridiagonal structure,279
which allows the use of efficient solution methods such as a generalised form of the Thomas280
algorithm.281
The next step consists in eliminating the pressure by using the discrete version of the282

divergence-free condition283

D̂VVI
(=) + D̂WW(=) = 0. (5.7)284

Hence, applying this divergence operator to the parts of the algebraic system (5.5) corre-285
sponding to the momentum equations yields:286

−
(
D̂VĜV + D̂WĜW

)
P(=)I =

(
D̂V ĜV

) (
Â(=)VV ÂVW

ÂWV Â(=)WW

) (
V(=)I
W(=)

)
287

+ D̂V
∑
:

(
Ŝ(:)VVV(=−:)I + Ŝ(:)VWW(=−:)

)
. (5.8)288

The operator (D̂VĜV + D̂WĜW) is a square matrix of size (# − 2)2, independent of the289

harmonic = and non singular. By inverting it, the pressure components P(=)I are obtained as290

the result of linear operators acting on the components V(:)I and W(:) .291
Thus eliminating the pressure, the system (5.5) is recast as292

A(=)X(=) +
∑
:

S(:)X(=−:) = 8lX(=) . (5.9)293

Now, the components of the eigenvector294

X(=) =
(
VI
(=) ,W(=)

)
(5.10)295

contain 2# variables and the new matrices A(=) and S(:) are of size (2#)2. Note also296
that, through the elimination of the pressure, the generalised eigenproblem (5.5) has been297
transformed into a regular eigenproblem.298
The system (5.9) may be further reduced when U ≠ 0. Indeed, using the discretized299

version of the divergence-free condition D̃ = 8
UmH Ẽ, allows to eliminate the longitudinal300

velocity components by expressing them in terms of the wall-normal velocities. This leads301
to an eigenvalue problem of the same form as (5.9) where the components of the eigenvector302
are of size # + 2, with # − 2 wall-normal velocity values and 4 wall variables. In practice,303
this system is solved using an Arnoldi algorithm that exploits the bloc-tridiagonal structure304
of the matrices.305
The transformations that have led from the initial generalised eigenvalue problem of size306

3# + 2 to a regular eigenproblem of size # + 2 may appear tedious. However, it is largely307
worth the effort: the final formulation is not only free of spurious eigenmodes, it is also308
drastically more efficient in terms of numerical computations. Finally, the method may be309
further improved by considering separately perturbations of sinuous or varicose symmetries310
and using only half of the channel together with derivative operators appropriate for the311
symmetry of each component of the different flow fields. Thus the complete problem may312
be addressed by carrying out two eigenvalue computations (sinuous and varicose) of half313
size, which further speeds up the process and directly provides the information about the314
symmetry of the different modes.315
The numerical method has been validated using the results given by Pier & Schmid (2017)316
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for the pulsatile flow inside a rigid channel and those provided by Davies & Carpenter317
(1997a) for the steady base flow between compliant walls.318

6. Stability analysis319

In fluid–structure interaction problems, perturbations are classically identified as either fluid-320
based or solid-based instabilities, depending on the nature of the main driving mechanism.321
For steady flows in compliant channels, Tollmien–Schlichting (TS) modes are known as322
the prevailing fluid-based instabilities: they are driven by a viscous instability within the323
bulk of the flow and only weakly affected by wall compliance. On the other hand, solid-324
based instabilities are due to the interaction between a compliant wall and the fluid flow325
and are often labelled as fluid–structure interaction (FSI) modes since their dynamics is326
predominantly governed by the wall parameters. Among these FSI modes, one may further327
distinguish between travelling-wave flutter (TWF) and divergence (DIV) modes: while DIV328
modes are almost stationary, TWF modes display phase velocities of the same order as those329
of elastic waves due to the wall only. However, such a mode classification is not always330
possible since one type may continuously transform into another. For example, when the331
phase speed of TWF modes approaches that of TS modes, merging may occur to form a332
transition instability mode.333
The purpose of the present study is to identify the main instability modes in the presence334

of a pulsating base flow and to document their dynamics for a wide range of flow and wall335
parameters. We first discuss how the eigenvalue spectra are modified due to the time-periodic336
flow component. Then, the influence of the main control parameters on the dominant modes337
is investigated, with special attention given to possible cross over between different mode338
types. Close monitoring of the spatial and temporal structure of the eigenfunctions reveals339
the rich dynamics of perturbations interacting with the pulsating flow and the compliant340
wall. Finally, the multi-dimensional parameter space is mapped out using a variety of critical341
curves for instability onset.342

6.1. The Floquet eigenspectrum343

The linear stability properties of time-periodic flow configurations is addressed by resorting344
to Floquet theory, as explained in section §4. In order to introduce the specific features of345
Floquet eigenspectra that are essential to this entire investigation, we illustrate them for a346
situation with small pulsation amplitude &̃, and compare themwith the corresponding steady347
case.348
Figure 2 shows the eigenvalue spectrum computed with U = 1 for a pulsating base349

configuration characterized by +' = 1, Wo = 10, &̃ = 0.02, Re = 10000, �∗ = 4 and 3∗ = 0.350
This plot reveals the characterisic feature of any Floquet spectrum: multiple eigenvalues351
of same growth rate l8 and frequencies lA separated by integer multiples of the base352
frequency Ω. This is due to the fact that if l is a complex eigenvalue associated with an353
eigenfunction of the form (4.13–4.16), then all frequencies l★ = l + :Ω (for any positive or354
negative integer :) are also among the eigenvalues and their associated eigenfunctions are355
simply obtained by similarly shifting the Fourier components in the Floquet expansion as,356

for example, û(=)★ (H) = û(=−:) (H). In theory, the Fourier expansions (4.13–4.16) are infinite357
series, and the infinite number of eigenvaluesl+ :Ω correspond thus all to the same physical358
perturbation. In practice, however, the Fourier expansions are truncated to a finite number of359
components, leading to a finite set of eigenvalues l★. These are then no longer exactly equal360
to l + :Ω and the associated normal modes also differ since they correspond to different361
truncations of the Fourier series.362

Rapids articles must not exceed this page length
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Figure 2: Spectrum for &̃ = 0.02, Wo = 10, +' = 1, Re = 10000, U = 1, �∗ = 4 and
3∗ = 0. The steady case corresponds to &̃ = 0.

In figure 2, the Floquet eigenspectrum for &̃ = 0.02 is shown together with the eigenspec-363
trum of the corresponding steady configuration (at &̃ = 0). This superposition illustrates the364
close similarity of both spectra and reveals that each of the steady eigenvalues is located very365
near one of the Floquet eigenvalues (see insets). Here, the Floquet spectrum corresponds to366
a weakly modulated base flow, for which the oscillating base-flow component * (±1) (H) is367
much smaller than the Poiseuille component* (0) (H). Thus, themagnitude of the off-diagonal368
blocs S(±1) in the Floquet eigenproblem (5.9) is small in comparison with the diagonal blocs369
and the adjacent Fourier components in the Floquet eigenfunction are therefore only weakly370
coupled.As a result, the growth rates in the eigenspectrumhere closely follow those prevailing371
for the equivalent steady flow. For weakly modulated base flows, as is the case in figure 2,372
it seems thus natural to choose the eigenvalue l + :Ω nearest its steady counterpart as the373
most representative frequency of the Floquet normal mode.374
For larger pulsation amplitudes &̃, however, this similarity with the steady spectrum no375

longer holds and amore robust criterion is required to lift the formal degeneracy of the Floquet376
eigenspectrum. In order to identify the most representative frequency among the multiple377
Floquet eigenvalues for each normalmode, we consider themagnitude of the different Fourier378
components of the Floquet eigenfunctions, defined as379

�= = d

∫ +ℎ

−ℎ
|û(=) (H) |23H380

+ <
(
|Ŵ+(=) |2 + |Ŵ−(=) |2

)
+

(
�U4 + )U2 +  

) (
|[̂+(=) |2 + |[̂−(=) |2

)
. (6.1)381

By using this energy-based norm, it is possible to single out the dominant component in382
the eigenfunction Fourier expansion and also to check if the truncation contains enough383
harmonics for an accurate representation of the normal mode. This process is illustrated in384
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Figure 3: Fourier density for FSI varicose mode associated with U = 0.8, Re = 10000, &̃ =

0.2, Wo = 10, +' = 1, �∗ = 4 and 3∗ = 0.

figure 3, where the magnitudes �= are plotted for five consecutive eigenvalues corresponding385
to the varicose TWF mode associated with U = 0.8, Re = 10000, &̃ = 0.2, Wo = 10, +' = 1,386
�∗ = 4 and 3∗ = 0. It is observed that the �=-distribution peaks at = = 0 for the eigenvalue387
l = 0.415+0.046i, while the distributions associated with the surrounding eigenfrequencies388
l + :Ω peak at = = : since they correspond to similarly shifted Fourier components. It389
follows that l = 0.415+0.046i is the dominant frequency of this eigenmode. Throughout this390
paper we will therefore always consider that, for a given mode, the dominant frequency is391
derived by this energy-based criterion and choose the eigenvalue for which the Fourier series392
is centered on the = = 0 component, i.e. for wich �0 is largest. For the rigid wall case, this393
method has been proven to be effective in recovering the TS mode frequency obtained using394
linearized direct numerical simulation (results are given in Pier & Schmid (2017)). Note also395
that the plots in figure (3) demonstrate that we are using more than enough harmonics to396
fully resolve the Floquet eigenfunctions.397
The Floquet eigenfunctions correspond to either sinuous or varicose modes, depending398

on the symmetry or antisymmetry of the different flow fields with respect to the mid-plane399
H = 0. As explained in section §5, they may be efficiently computed by taking advantage400
of these symmetry properties. In the spectrum of figure 2, the sinuous eigenfrequencies are401
given in blue and the varicose frequencies in red. Despite the multiplicity of the eigenvalues402
due to the time-periodic base flow, the spectrum still displays the familiar structure made of a403
large number of Orr–Sommerfeld modes (as A, P and S branches) together with two isolated404
TWF modes (one sinuous and one varicose). Note that the two DIV modes are here out of405
the range of this plot.406
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Figure 4: Spectra with +' = 1, Re = 10000, U = 1, �∗ = 4 and 3∗ = 0.

6.2. Influence of some parameters on the spectrum407

The figure 4a displays spectra for +' = 1, Wo = 10, 3∗ = 0 and &̃ varying from 0 (i.e. the408
steady flow case) to &̃ = 0.2. The figure 4b illustrates the effect of the base-flow frequency409
by varying Wo from 10 to 20. As discussed in the previous section, the figure shows modes410
that exhibit equispaced eigenfrequencies where the gap between two successive frequencies411
corresponds to the base frequency Ω, which scales as the square root of the Wormersley412
number. In the figure 4, the bold eigenvalues are associated with the dominant frequency for413
each mode, obtained by considering the magnitude of the Floquet harmonics as explained in414
the previous subsection. Concentrating on FSI modes, dominant frequencies for both sinuous415
and varicose symmetries have finite lA values. These FSI modes are thus connected to TWF416
instability waves. They are referenced hereafter as sTWF (sinuous TWF) or vTWF (varicose417
TWF) depending on their symmetry with respect to the midplane H = 0.418
For flow and wall parameters that are considered and &̃ = 0, the most amplified TWF419

mode is of varicose type (see figure 4a). For this steady base flow case, the sTWF is seen to420
be marginally stable and the temporal growth rate of the TS mode is damped. For Wo = 10,421
an increase of &̃ tends to destabilise TS wave (see figure 4a). This is reminiscent of the422
results of Pier & Schmid (2017) where TS modes for a pulsatile base flow between rigid423
walls have been computed. By contrast, the TWF modes exhibit distinct behaviours whether424
the sinuous or varicose symmetry is considered. While an increase of &̃ leads to a reduction425
of the temporal amplification rate for the varicose type, the opposite behaviour is observed426
for the sinuous TWF mode. Figure 4b shows the effect of the Womersley number Wo onto427
TS and TWF modes for the same case. An increase of Wo has a stabilising effect on TWF428
modes for both symmetries. The opposite role of Wo is seen for the TS mode. This reflects429
the richness of physical processes that are involved, in comparison to the rigid wall case.430
Finally, figure 5 shows the effect of wall compliance on TS and TWF modes for &̃ =431

0.2, Wo = 10, Re = 10000, �∗ = 4 and U = 1. Only Floquet modes that match the432
dominant frequency for each mode are shown. As +' is approaching zero, the phase speed433
of TWF modes tends to infinity which is consistent with the rigid wall case. An increase of434
+' has a stabilising effect on the TS mode. The opposite behaviour is observed for TWF435
modes whatever the symmetry considered. However, the figure suggests a preferred varicose436
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Figure 5: Spectra with &̃ = 0.2, Wo = 10, Re = 10000, U = 1 and �∗ = 4.

symmetry for large +'. Parenthetically, one can see in figure 5a that the phase speed tends437
to a finite value (≈ 0.5) for both sTWF and vTWF as wall compliance is increasing. The438
influence of the wall dissipation is illustrated in figure 5b for small values of 3∗. The figure439
shows that the temporal amplification rate of the TS mode is slightly enhanced by increasing440
3∗. In contrast, growth rates of both sTWF and vTWF modes are significantly reduced by441
wall dissipation.442
These behaviours suggest similarities between the steady case and our results. Especially,443

for the parameters that have been considered, the distinction made between class A and B444
modes by Benjamin (1963), Landahl (1962) and Carpenter & Garrad (1985) still holds for445
our pulsatile flow case. However, we will see in the next section that this classification is446
clearly too restrictive for pulsatile base flows.447

6.3. Waves superposition for sinuous Floquet mode448

The Fourier density distributions for a sinuous Floquet mode associated with +' = 1, Wo =449
10, Re = 10000, U = 1, �∗ = 4 and 3∗ = 0 are shown in figure 6 together with the associated450
eigenvalues for &̃ = 0.349 and 0.350. Both series of eigenvalues have positive growth rates.451
The figure shows the existence of two distinct peaks in the Fourier density distribution. It452
suggests that two different mechanisms influence thismode. To further illustrate this scenario,453
the different contributions of the total energy per Fourier mode are also reported in figure 6.454
For the �=-distribution at &̃ = 0.349 (left curves), the main peak is due to the fluid kinetic455
energy contribution, associated with a dominant frequency of lA ' 0.26. In contrast, for &̃ =456
0.350, the wall contributions take over, leading to a dominant frequency of lA ' 0.52. For457
both cases, the �=-distributions are very similar, but the exchange in dominant peaks due458
to a continuous modification of the distribution results in a sudden jump of the dominant459
frequency. This behaviour indicates that the intracyclic mechanism involves the interference460
between fluid-based (TS) and solid-based (TWF) modes. By contrast with the steady base461
flow case, we can therefore no longer distinguish here between class A and class B modes.462
Moreover, figure 6 also shows that for &̃ < 0.35, the Floquet mode is mainly driven by its463
TS component. When &̃ is increased up to 0.35, the intracyclic growth is mainly due to its464
sTWF part. This new type of mode will be called hereafter a two-waves mode.465
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green for the wall potential and kinetic energy) at &̃ = 0.349 (left) and &̃ = 0.350 (right)
with +' = 1, Wo = 10, Re = 10000, U = 1, �∗ = 4 and 3∗ = 0. The frequency associated

with the dominant peak is indicated by •.
For the same set of parameters, the influence of &̃ on the stability of the system is shown466

in figure 7. For comparison purposes, the rigid case is also reported. We restrict our analysis467
to the sinuous symmetry. For the compliant wall case, the evolution of both temporal growth468
rates and circular frequencies are displayed for the first and second most amplified Floquet469
modes. The dominant Floquet frequency for each mode is selected using the methodology470
mentioned in the previous section. The TS mode distribution is seen to closely follow its471
rigid wall counterpart up to &̃ = 0.3. When &̃ exceeds this value, however, its �=-distribution472
exhibits two peaks and the mode consists of the superposition of TS and TWF waves (as473
illustrated in figure 6). For &̃ greater than 0.35 the energy peak is connected to the TWF474
wave. At this point, the dominant frequency for this mode is associated with wall dynamics as475
shown by the energy contributions in figure 6. For &̃ up to 0.5, we observe the co-existence476
of TWF and two-waves modes. For 0.5 < &̃ < 0.6, the two-waves modes is seen to be477
temporally damped. By contrast, the growth rate of TWF mode is increased for this range478
of &̃.479
For larger values of &̃, the spectrum features a single unstable mode that shares the main480

characteristics of TWF modes.481
In the next section, we will describe the spatio-temporal behaviour of Floquet eigenfunc-482

tions, for TWF, TS and two-waves modes.483

6.4. Spatial structure of eigenmodes484

The structure of TS and FSI Floquet modes are investigated in more detail by monitoring485
the wall-normal distribution of their flow kinetic energy. To that purpose we define the fluid486
kinetic energy of the Floquet mode (4.13–4.16) as487

�̂ (H, C) = 1
2
d

�����
∑
=

û(=) (H) exp (8=ΩC)
�����
2

, (6.2)488

which is periodic in time and may be used to characterize the intracyclic dynamics, since it489
does not contain the long-term exponential growth (or decay) part.490
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Figure 8: The wall-normal distribution �̄ (H) of averaged kinetic energy for the TS
perturbations with &̃ = 0, 0.2, Wo = 10, Re = 10000, U = 1, �∗ = 4 and 3∗ = 0. The

critical layer position is indicated by blue dashed lines.

First, we will discuss the temporally averaged energy distribution, obtained as491

�̄ (H) = 1
)

∫ )

0
�̂ (C, H) 3C. (6.3)492

In figure 8b, �̄ (H) is shown for the TS mode for Wo = 10, &̃ = 0.2, Re = 10000, U = 1,493
�∗ = 4, 3∗ = 0 and +' = 1. For comparison purposes, the rigid wall and steady base flow494
cases are also reported in figure 8a.495
We recall that for the case of a Poiseuille flow between flat rigid walls, �̄ (H) should496

peak around the critical layer, i.e. the wall-normal position where the phase speed equals497
the base-flow velocity (Drazin & Reid 1981), as shown in figure 8a. For compliant walls498
and the steady flow case, a similar behaviour is observed (Davies & Carpenter 1997a), see499
figure 8b. However, a slight shift near the wall is observed for the peak in kinetic energy as500
a consequence of the stabilising effect of the compliant wall onto TS modes.501
The distribution of �̄ (H) for the time-periodic base flow exhibits a double peak structure502
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Figure 9: The wall-normal distribution of energy for TWF modes are shown for &̃ = 0 and
0.2, +' = 1, Wo = 10, Re = 10000, U = 1, �∗ = 4 and 3∗ = 0.

for both the rigid wall and compliant wall cases (see red curves in figure 8). This behaviour503
has also been observed by Singer et al. (1989) for the same flow case by using linearized504
direct numerical simulations and assuming rigid walls. They have shown that in a certain505
moment of the cycle, the mean flow profile exhibits an inflection point. These authors came506
to the conclusion that this second peak is a consequence of changes in the base flow profile507
during the cycle. Interestingly, figure 8 shows that the wall compliance enhances the first508
peak. More recently, Tsigklifis & Lucey (2017) also noticed this tendency for a similar case.509
The inner peak is also shifted closer to the wall due to wall compliance. It suggests that the510
stabilising effect of elastic walls onto TS modes still holds for pulsatile base flows.511
The wall-normal distributions of �̄ (H) for both varicose and sinuous TWF modes are512

shown in figure 9 for the same set of parameters. While for the sinuous symmetry, the TWF513
mode exhibits no significant changes in comparison with the steady flow case, the varicose514
TWF mode displays clearly a different structure near the walls. Indeed, the amplitude of515
vTWF mode peaks near H = 0.9 for the pulsatile base flow case, while it exhibits its516
maximum at the wall for the steady case. The consequences onto stability properties will be517
discussed in the next sections.518

6.5. Temporal dynamics of Floquet eigenmodes519

In this section, we investigate the intracyclic dynamics of the perturbations for the same520
configurations as in the previous section. For that purpose, we consider the instantaneous521
total perturbation energy, defined as522

�̃ (C) = 1
2ℎ

∫ ℎ

−ℎ
�̂ (H, C) 3H + �̃, (C) + �̃,% (C). (6.4)523

This quantity �̃ (C) is the sum of the instantaneous fluid kinetic energy and the kinetic and524
potential energies of the walls:525

�̃, (C) = <
�����
∑
=

Ŵ±(=) exp (8=ΩC)
�����
2

, (6.5)526

�̃,% (C) = (�U4 + )U2 +  )
�����
∑
=

[̂±(=) exp (8=ΩC)
�����
2

. (6.6)527
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Figure 10: The intracyclic modulation of energy for the TS perturbations with &̃ = 0.2,
Wo = 10, Re = 10000 and U = 1. Color : blue for the fluid kinetic energy, green for the
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0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

t/T
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Figure 11: The intracyclic modulations of energy for the TWF perturbations with &̃ = 0.2,
+' = 1, Wo = 10, Re = 10000, U = 1, �∗ = 4 and 3∗ = 0.

Recall that all these quantities are temporally periodic (with period Ω) since the complex528
exponential term exp(−8lC) has been removed.529
We first consider the TS mode. Figure 10 shows the different contributions to �̃ (C) for530

Wo = 10, &̃ = 0.2, Re = 10000, �∗ = 4, 3∗ = 0 and U = 1 for both the rigid case and531
compliant walls with +' = 1. As noted by Pier & Schmid (2017) for the rigid case, the532
growth of �̃ (C) occurs in the deceleration phase of the base flow (indicated by regions533
hatched in red along the C-axis), while decay occurs during the acceleration phase (hatched534
in blue). This remains true for the compliant wall configuration (figure 10b). In particular,535
the dynamics of the perturbation is mainly driven by the flow kinetic energy while the wall536
energy is almost negligible. A similar behaviour has also been observed by Tsigklifis &537
Lucey (2017).538
The intracyclic dynamics associated with TWF disturbances exhibits a markedly different539

behaviour as shown in figure 11. In contrast with the TS mode, the growth in total energy540
occurs during the acceleration phase of the base flow for both symmetries. Especially, walls541
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mainly contribute to the total energy growth whatever the symmetry that is considered.542
However, the fluid kinetic energy is less significant for the varicose case than the sinuous543
one.544

6.6. Interaction between TS and sTWF waves545

As mentioned earlier, a two-waves mode (i.e. where both FSI and TS waves interact) may546
emerge for a given of set of parameters.547
Here we will further investigate the occurence of this Floquet mode. To that purpose, the548

parameters Wo = 10, �∗ = 4, 3∗ = 0, +' = 1 and U = 1 are considered. Two Reynolds549
numbers will be studied Re = 2000 and Re = 10000 (i.e. corresponding to either subcritical550
or supercritical regime with respect to TS mode associated with the rigid case.)551
In figure 12, the variation with &̃ of the temporal growth rates for both two-waves mode552

and sTWF mode are shown. For Re = 10000, the figure shows that these modes merge at553
&̃ ≈ 0.46. Beyond this value, we observe that both modes diverge away from one other. Then,554
one mode exhibits a strong increase in temporal growth rate. This behaviour is similar to555
modes coalescence found in the steady case between TS and sTWF modes when increasing556
wall dissipation, giving rise to the so-called transition mode. Interestingly, for pulsatile flow,557
this phenomenon also appears for 3∗ = 0. Then, for &̃ ≈ 0.46, we can associate this mode558
to a transition mode. For comparison purpose, the case for Re = 2000 is also reported in559
figure 12. The merging is not observed here because TS wave is temporally damped for this560
Reynolds number.561
To better illustrate the temporal dynamics associated with the two-waves mode and562

transition mode, we show in figure 13 the intracyclic evolution of the total perturbation563
energy �̃ (C) for different pulsation amplitudes &̃ and the sinuous symmetry. On one hand,564
the TWF mode exhibits almost no effect as &̃ is increased in the range 0.38–0.48 for both565
Reynolds numbers. On the other hand, the two-waves mode presents an interesting intracylic566
dynamics.567
At &̃ = 0.38, growth occurs for both the acceleration and deceleration phases of the base568

flow. It is consistent with the fact that this Floquet mode shares common features with both569
TS and TWF waves. When increasing &̃, the growth associated with the acceleration phase570
is increasing. On the contrary, figure 13 shows that the energy peak in the deceleration571
phase is damped with &̃. It means that the two-waves mode is mainly driven by its TWF572
contribution as &̃ is increased from 0.38 to 0.48. In particuler, beyond &̃ = 0.46, the TS wave573
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Wo = 10, Re = 10000, U = 1, �∗ = 4 and 3∗ = 0 (Cyan for sTWF, Fuchsia for TS and

orange for sTWF at Re = 2000).

contribution is negligible. As a consequence, at &̃ = 0.46, the variation of �̃ (C) for TWF574
and two-waves modes are almost undistinguishable. This corresponds to the coalescence575
observed in figure 12. Beyond &̃ = 0.46, this transition mode shows the same characteristics576
as the TWF instabilities, namely, a growth of energy in the acceleration phase of the base577
flow.578
The intracyclic behaviour associated with the two-waves mode displays a low-frequency579

beating during the deceleration phase of the base flow for 0.38 6 &̃ 6 0.46 (see figure 13).580
This phenomenon results from an interference between two waves of slightly different581
frequencies. Especially, for this range of &̃, TS and sTWFmodes merge to form a wavepacket582
whose frequency is the difference of the two frequency peaks. The Fourier density distribution583
of the two-waves mode for &̃ = 0.38 is shown in figure 14a. The difference between the two584
peaks indeed corresponds exactly to the frequency beating observed in figure 14b.585
To further illustrate this point, �̃ (C) has been computed by filtering the Fourier components586

in the neighbourhood of either the TS wave or the sTWF wave, using components from the587
ranges hatched respectively in fuchsia or orange in figure 14a. The plots of figure 14b show588
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Figure 14: (a) Fourier density distribution and (b) filtered intracyclic total energy for the
two-waves mode with &̃ = 0.38, +' = 1, Wo = 10, Re = 10000, U = 1, �∗ = 4 and 3∗ = 0.
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Figure 15: (a) Fourier density distribution and (b) intracyclic energy variation for the
sTWF mode with &̃ = 0.38, +' = 1, Wo = 10, Re = 2000, U = 1, �∗ = 4 and 3∗ = 0.

that intracyclic dynamics pertaining to either the TS wave or the sTWF wave is recovered589
and the beating phenomenon is then suppressed.590
To conclude this section, we show in figure 15 the case of the sinuous TWF mode at591

Re = 2000. As noted earlier, at this subcritical Reynolds number, the TS wave is damped.592
Therefore, the interference appears only as small amplitude oscillations (see figure 15b). The593
harmonics of the two waves are hard to distinguish in figure 15a, which results in a greater594
period for the secondary oscillations.595

6.7. Neutral curves596

The purpose of this section is to identify the critical parameters for the onset of instabilities597
over a wide parameter space. To this end, we first compute the neutral boundaries (i.e.598
corresponding to l8 = 0). For the rigid case, the neutral stability curves are commonly599
presented in the (Re, U) plane within a temporal framework. However, it has been shown by600
Lebbal et al. (2022) that the Reynolds number has only a weak effect onto the TWF instability601
modes for a steady base flow. Hence, neutral stability curves associated with TWF Floquet602
modes will be displayed in the (+', U)-plane hereafter.603
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Figure 16 shows neutral boundaries associated with the TS Floquet mode for &̃ = 0, 0.1604
and 0.2, Wo = 10, 12, 14 and +' = 0.2, 0.4, 0.6 and 0.8. One may recall that for the rigid605
case the oscillating component reduces instability for Wo > 13, while it has a destabilising606
effect at lower frequencies (Pier & Schmid 2017). The effect of wall compliance is therefore607
here investigated in a neighbourhood of Wo = 13.608
Increasing the wall compliance (i.e. increasing +') leads to a reduction of the range of609

unstable streamwise wave numbers and an increase of the critical Reynolds numbers for all610
flow parameters. Similar behaviour is also observed for the steady base flow (Lebbal et al.611
2022). In addition, the stabilising effect of &̃ onto TS Floquet modes for Wo > 13 is also612
recovered for the compliant walls case. Finally, for moderate pulsation amplitudes &̃, the613
stabilisation mechanism caused by wall flexibility seems not to be affected by the base flow614
modulation.615
For Wo = 20, neutral boundaries in the (+', U)-plane for the TWF Floquet modes are616

shown in figure 17 for both symmetries. On one hand, the upper bound of the unstable wave617
number range grows lineary with the amplitude of the pulsation. On the other hand, the lower618
bound is almost unchanged by the pulsatile base flow components.619
Near the critical reduced velocity, referenced as +2' hereafter (i.e. the value of +' that620

corresponds to the onset of instability), the varicose TWF is weakly stabilised for &̃ < 0.4.621
For larger values of &̃, a destabilisation effect is observed. For the sinuous symmetry, a622
decrease in +2' is observed when the amplitude of the base flow modulation is increased, for623

all values of &̃ that are considered.624
Neutral stability curves are also displayed in figure 18 for the same parameters except that625

Wo is fixed to 10. Comparison of figures 17 and 18 shows that the Womersley number has a626
weak effect onto the neutral boundaries for these TWF Floquet modes.627

6.8. Influence of &̃ andWo onto temporal growth rates628

In this section, we investigate the combined effect of wall flexibility and pulsatile base flow629
parameters (&̃ and Wo) onto the temporal growth rates of TWF and TS Floquet modes.630
Results are conveniently summarized by monitoring the growth rate lmax

8 associated with631
the most unstable streamwise instability (i.e. lmax

8 = maxU l8) for a given set of fluid and632
wall parameters. For illustration purposes, �∗ = 4 and 3∗ = 0 are fixed.633
Figures 19a and 19b show the variation of the maximum temporal growth rates with &̃634

and Wo of the TS mode for both the rigid case in (a) and compliant walls (+' = 0.2) in (b).635
The TS Floquet modes exhibit similar dynamics whatever the case considered (either rigid636

or compliant walls). For Wo > 14, the temporal growth rate decays with &̃ for both rigid637
and flexible cases while it increases for Wo 6 13. One may recall that a similar behaviour is638
observed for the rigid case (Pier & Schmid 2017).639
Figure 20 illustrates the effect of Wo and &̃ onto travelling-wave flutter Floquet modes for640

+' = 1. The temporal growth rate for the varicose vTWF mode presents two distinguishable641
phases (figure 20a). For small and moderate values of &̃, lmax

8 is damped. Then, one may642

observe a growth of lmax
8 as &̃ is increasing. The turning point depends on the Womersley643

number. Especially, the corresponding &̃ is seen to increase with Wo.644
The distribution of lmax

8 for the sinuous symmetry exhibits a different behaviour. For645

weakly pulsatile base flows (&̃ < 0.2), the sTWF mode is destabilised whatever the Wo646
number that is considered. In particular, this instability is strongly enhanced for the small647
frequencies of modulation Wo. For moderate values of &̃ (0.2 < &̃ < 0.5), a more complex648
behaviour is observed. For this range of amplitudes, the sTWF mode interacts with TS649
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Figure 16: Neutral curves in the (U,Re)-plane for TS mode with �∗ = 4 and 3∗ = 0 for
different amplitudes &̃ = 0, 0.1, 0.2 and frequencies Wo = 10, 12, 13, 14, with +' varying
from 0. to 0.8. The associated colors are respectively black, green, blue, red and brown.

Floquet mode, and we can no longer distinguish between these two waves. Beyond this point,650
lmax
8 strongly increases and reaches similar values as its varicose counterpart.651
An intracyclic modulation amplitude �max

min , defined as the ratio of the maximum to the652
minimum of �̃ (C), is computed for the same parameter range as in figure 20, for travelling-653
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Figure 17: Neutral curves in the (U,+')-plane for TWF modes with Wo = 20,
Re = 10000, �∗ = 4 and 3∗ = 0.
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Figure 18: Neutral curve in the (U,+')-plane for TWF modes with Wo = 10, Re = 10000,
�∗ = 4 and 3∗ = 0.

wave flutter Floquet modes only. For the varicose symmetry, the plots in figure 21a show654
that �max

min increases for all Wo under consideration. The evolution of �max
min for the sinuous655

symmetry is displayed in figure 21b. The figure shows that the sinuous TWF Floquet modes656
exhibit smaller amplitude variations than their varicose counterparts. In addition, for &̃ >657
0.5, a saturation of �max

min is observed. Such a behaviour occurs beyond the collapse of TWF658
and TS Floquet modes. One may thus suggest that it is a consequence of the emergence of a659
transition mode. Comparison with figure 11 also reveals that the very large values of �max

min660
observed for the vTWF modes (figure 21a) are mainly due to the fact that �̃ (C) drops to661
extremely low levels during the accelation phase of the pulsating cycle (figure 11b).662
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Figure 19: TS Floquet mode. Maximum temporal growth rates lmax
8 for different

amplitudes &̃ = 0, . . . , 0.1 and frequencies Wo = 10, . . . , 20, with Re = 10000, �∗ = 4
and 3∗ = 0.
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Figure 20: Maximal temporal growth rates lmax
8 for different amplitudes &̃ = 0, . . . , 0.7

and frequencies Wo = 10, . . . , 20, with Re = 10000, �∗ = 4 and 3∗ = 0.

6.9. Critical parameters for onset of instability663

A complete two-dimensional instability analysis is now performed by exploring a wide range664
of wall and flow parameters. In a effort to summarize the different results only critical665
Reynolds numbers (Re2) and critical reduced velocities (V2') are monitored (corresponding666
to the onset of TS or TWF Floquet modes, respectively).667
The variations of Re2 for the TSmode are computed for+' = 0.2 and+' = 0.6 for different668

pulsatile flow parameters in figure 22. Beyond Wo = 13, the TS Floquet modes are stabilised669
by the pulsatile flow component. For lower frequencies, the opposite behaviour is observed.670
For example, at Wo = 20, the critical Reynolds number for &̃ = 0.10 is already about 50%671
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Figure 22: Critical Reynolds number Re2 for TS mode with �∗ = 4 and 3∗ = 0.

larger than the value found for the Poiseuille flow case (&̃ = 0). The dynamics including672
compliant walls is thus found to be very similar to the rigid walls case (see Pier & Schmid673
(2017)).674
The critical reduced velocity V2' for the TWF modes are shown in figure 23. The varicose675

travelling-wave flutter displays two phases. For moderate pulsation amplitudes (&̃ < 0.4),676
the instability is weakly stabilised. For higher pulsation amplitudes, the vTWF mode is677
destabilised for all the frequencies studied. Unlike the vTWF, the sinuous TWF mode shows678
a monotonic destabilisation as the pulsation amplitude is increased. TheWomersley numbers679
considered here have almost no effect on the critical curves. Note that even for highly pulsatile680
flows, onset of TWF instability is always due to the varicose symmetry.681
In order to systematically study the linear stability over the entire parameter space, the682
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Figure 23: Critical reduced velocities V2' for TWF modes and different Wo numbers. The
other parameters are: Re = 10000, �∗ = 4 and 3∗ = 0.
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Figure 24: Critical reduced velocities +2' for TWF modes for different 3∗. The other
parameters are: Wo = 20, Re = 10000 and �∗ = 4.

critical reduced velocity V2' is also computed for various wall dissipations 3∗ (figure 24),683
flexural rigidities �∗ (figure 25) and Reynolds numbers Re (figure 26).684
According to the energy classification of Benjamin (1963) and Landahl (1962), the685

dissipation has a stabilising effect on the travelling-wave flutter instabilities. The plots in686
figure 24 show the variation of the critical reduced velocity with wall dissipation 3∗. For a687
Poiseuille base flow (&̃ = 0), the critical V2' is almost multiplied by a factor 2 when 3∗ is688
varied from 0 to 0.02.689
An increase in &̃ leads to stabilise the flow for all values of 3∗ that have been considered690

(see figure 24). In particular, the overall behaviour is quite similar for 3∗ varying from 0.005691
to 0.04. The critical V2' is nearly constant for &̃ up to 0.05. Beyond this value, V2' decreases692
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Figure 25: Critical V2' for TWF modes for different �∗. The other parameters are:
Wo = 20, Re = 10000 and 3∗ = 0.
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Figure 26: Critical V2' for TWF modes for different Re numbers. The other parameters
are: Wo = 20, �∗ = 4 and 3∗ = 0.

almost linearly with &̃ at a similar rate of change. Interestingly, the symmetry of the Floquet693
mode appears to have a negligible effect onto V2' for this range of parameters.694
The effect of flexural rigidity is illustrated in figure 25. Increasing �∗ results in stabilising695

the TWF Floquet modes for all &̃ that are considered. However, the overall shape of these696
curves is almost unaffected by �∗ for both sinuous and varicose cases. For the varicose case,697
a nearly constant value of V2' is observed up to &̃ = 0.3. Beyond &̃ = 0.4, the critical V2' is698

seen to decrease almost linearly with &̃ for all flexural rigidities that have been investigated.699
In particular, the slope seems to be independent of �∗.700
The sinuous case appears to bemore stable than its varicose counterpart. As for the varicose701
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symmetry, the overall tendency is not affected by �∗. A slight decrease in V2' is observed for702

&̃ up to 0.1. Beyond &̃ = 0.4, V2' exhibits an almost linear behaviour with &̃.703
Finally, the influence of the Reynolds number onto V2' is shown in figure 26. The onset704

of Floquet TWF modes are almost unchanged by the Reynolds number for both the varicose705
and sinuous TWFmodes. The insensitivity to Re is more pronounced when &̃ is increased to706
large amplitudes. This weak influence has already been reported for the steady case (Lebbal707
et al. 2022).708

7. Conclusions709

In this paper, we have systematically investigated the rich dynamics resulting from perturba-710
tions developing in harmonically pulsating flows between two compliant walls. The stability711
analysis is restricted to the time-asymptotic behaviour of the flow perturbation and to the712
two-dimensional case within the framework of Floquet theory. A numerical solution strategy713
has been implemented that is free of spurious modes and greatly reduces the computational714
effort.715
When accounting for wall compliance, we show that the most relevant control parameter is716

the reduced velocity +' for travelling-wave flutter Floquet modes. Especially, the Reynolds717
number appears to have a negligible influence on these modes. As already observed for the718
steady case (Lebbal et al. 2022), the most unstable modes are associated with the varicose719
symmetry. For the pulsatile flow configurations, we show that the instability onset for these720
modes is mainly driven by the amplitude of the pulsation rather than its frequency. For &̃ in721
the range 0−0.4 and varicose perturbations, the pulsatile base flow is seen to weakly stabilise722
the TWF Floquet modes (i.e. the critical reduced velocity increases) with respect to the723
steady flow case. The opposite behaviour is observed for &̃ larger than 0.4. For the sinuous724
symmetry, we always observe a flow destabilisation with an increase of &̃. When accounting725
for the wall dissipation, we show that an increase of 3∗ tends to stabilise the travelling-726
wave flutter Floquet modes for both symmetries whatever the value of &̃ in agreement with727
Benjamin’s classification (Benjamin 1963). For the Tollmien–Schlichting Floquet modes, the728
intracyclic dynamics exhibits strong similarities with the pulsatile flow case in a rigid channel729
(Pier & Schmid 2017). However, a stronger stabilisation is observed when wall flexibility730
comes into play.731
On one hand, it has been shown that Benjamin’s classification still holds for a wide range732

of parameters. Especially, for fluid-structure interaction modes, similar general trends are733
observed for steady and pulsatile flow configurations. But on the other hand, this study734
has also revealed a more complex flow dynamics that is not found when wall flexibility or735
pulsating base flow are studied independently. In particular, a new type of transition mode736
has been discovered that emerges due to the coalescence of two Floquet modes, even in the737
absence of wall dissipation. The first Floquet mode combines properties of both Tollmien–738
Schlichting modes and travelling-wave flutter modes. This coupling leads to interference that739
generates a low-frequency beating during the intracyclic dynamics. The second Floquet mode740
shares the main properties of a travelling-wave flutter mode. When increasing the pulsation741
amplitude, these two modes merge into a more unstable Floquet mode.742
Extension of the present study to nonmodal stability analyses can be considered in a future743

work, continuing the investigations of Tsigklifis & Lucey (2017) and Pier & Schmid (2021).744
Finally, it would also be interesting to generalise our analyses to pipe geometries which cover745
more biologically significant phenomena. The theoretical developments and numerical tools746
that have been used in the present investigation can be easily adapted to a formulation in747
cylindrical coordinates, following the same approach used by Pier & Schmid (2021).748
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