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Abstract

The electric potential plays a key role in the confinement properties of tokamak
plasmas, with the subsequent impact on the performances of fusion reactors. Un-
derstanding its structure in the peripheral plasma – interacting with solid mate-
rials – is of crucial importance, since it governs the boundary conditions for the
burning core plasma. This paper aims at highlighting the dedicated impact of the
plasma-wall boundary layer on this peripheral region. Especially, the physics of
plasma-wall interactions leads to non-linear constraints along the magnetic field.
In this framework, the existence and uniqueness of the electric potential profile
are mathematically investigated. The working model is two-dimensional in space
and time evolving.

Keywords : Plasma, Controlled fusion, Fluid model, nonlinear boundary conditions,
Existence, Uniqueness, Energy estimate.

1 Introduction

The growing need for new sources of energy is one of the drives of the ITER project [13].
The latter is an experiment dedicated to operate a plasma in conditions close to ignition,
namely a state where the energy injected to maintain the fusion reactions is negligible
compared to the fusion energy production. To our present knowledge, tokamaks are the
best candidates permitting the nuclear reactions to take place, in particular allowing to
confine high temperature plasmas. These toroidal devices are characterised by two peri-
odic directions, the toroidal angle – around the main symmetry axis – and the poloidal
angle – around the interior cross-section. The confinement properties in the third –
radial – direction are achieved thanks to strong magnetic fields. Good confinement is
mandatory since thermonuclear reactions impose temperatures in the range of 100 mil-
lion Kelvins in the core. Strong gradients build-up between the plasma and the plasma
facing components. Although the strong magnetic field used in the experiments is suf-
ficient to balance the losses associated to particle Coulomb collisions, it is found that
the level of transport is much larger and, as a consequence, confinement performance
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reduced. There is now a consensus to attribute this loss of confinement to turbulent
activity and in particular to that driven by electric field fluctuations, the so-called elec-
trostatic turbulence.
The understanding of turbulent transport is a matter of active research [6]. In particular
the peripheral plasma is widely studied, due to its crucial role to control the interaction
of the plasma with the surrounding wall material, but also to define the boundary con-
ditions of the core plasma.

The present paper is dedicated to the mathematical analysis of the slowly vary-
ing electric potential that leads to poloidal flows in the edge plasma. These radially
sheared flows play an essential role in the saturation of turbulence [16]. Besides, they
are suspected to the essential ingredient in the triggering of the so-called H-mode, where
the plasma spontaneously develops an edge transport barrier characterised by reduced
turbulence and associated transport [4]. These poloidal flows are basically driven by
equilibrium constraints, including boundary conditions in the SOL, and by the turbu-
lence itself via non linear interactions [5]. We restrict our analysis to the equilibrium
part of this flow. In particular, one investigates the existence and uniqueness of a slowly
evolving solution to the key equation of electrostatic turbulence, namely the equation
that governs the evolution of the electric potential for such a turbulence. Since the
large scale radial structure of the electric potential leads to the large scale poloidal flows
associated to the electric drift effects, we focus on the analysis of the mean potential
depending only on the radial direction and the parallel one, which introduces nonlinear
boundary conditions. Furthermore, assuming that the magnitude of the fluctuations
are small compared to the mean value, one can average the evolution equation of the
electric potential on all the small scale effects. For small amplitudes of the fluctuations,
one can also neglect the mean electric potential generation via the Reynolds stress. The
linear part of the equation is then readily averaged. The average of the boundary con-
ditions on the electric current shifts the sheath steady state potential, while conserving
the structure of such a term.

The paper is organized as follows. In Section 2 are presented the physics and the
equation that governs the evolution of the electric potential. One examines the spe-
cific conditions introduced by the contact to the wall material and their impact on the
system of equations. The reduction of the 3D electrostatic potential equation to a 2D
equation is analyzed as well as the linearization procedure that allows one to cast the
problem in a variational framework. Section 3 summarizes the mathematical nonlinear
evolution problem for the electric potential φ. Section 4 is concerned with the proof of
the existence/uniqueness of a solution of the linearized problem (Theorem 4.5). Finally,
Section 5 is dedicated to the mathematical proof of the existence and uniqueness of a
solution to the original nonlinear evolution equation. The essential result is stated in
Theorem 5.1.
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2 Generation of the fluctuating electric field

Two descriptions of the plasma evolution are considered in order to investigate plasma
turbulence. The most demanding description is the kinetic description where one com-
putes the probability, or so-called distribution function, to find a particle at a given
point of the phase space, namely the 6D space of the position and velocity of the par-
ticles [3]. A more convenient representation is given by the moments of this kinetic
equation, yielding the so-called fluid equations [1]: the particle balance equation for
the zeroth moment, the momentum balance equation for the first moment, the energy
balance equation for the second moment, etc. A closure of this infinite series of fluid
equations is required to reduce the system to the first fluid moments. The standard
closure is that leading to the Navier-Stokes set of equations where the fluid is described
in terms of the density, momentum and temperature together with a Fourier law that
relates the heat conduction to the temperature gradient. However, the main drive of
the turbulence development appears to be a plasma pressure gradient that can be sus-
tained by the density at constant temperature. Therefore, a convenient closure, that
still captures the turbulent plasma behavior, is the isothermal closure where the plasma
temperature, for all plasma species, is assumed to be constant. The fluid equations are
then restricted to the two first balance equations, namely the particle and momentum
balance for each plasma species. For simplicity we shall restrict the plasma species to
the electrons and to a single ion species. In this case, the two balance equations are

∂tnα + ~∇ · (nα~vα) = Sα , (2.1)

∂t (mαnα~vα) + ~∇ ·
(

mαnα~vα ⊗ ~vα + pαI + Πα

)

= qαnα

(

~E + ~vα × ~B
)

. (2.2)

The subscript α stands for the various species of the plasma, in practice e for electrons
and i for the hydrogen ions. In the momentum balance, one finds the driving Laplace
force on the right hand side, where

−→
B is the given magnetic field, and the pressure con-

tribution on the left hand side with the standard scalar contribution pα, the stress tensor

Πα and the pressure tensor nα−→v α ⊗−→v α where ⊗ is the tensorial product. One should
then introduce the Maxwell-Gauss equation, or Poisson equation in the electrostatic
limit, to relate the electric field to the charge density

λ2
D ∆

(

eΦ

Te

)

=
ne − ni
n0

; ~E = −~∇Φ . (2.3)

In this equation, the dimensionless quantity eΦ/Te (e the proton charge, Te the electron
temperature) measures the ratio of the electrostatic energy normalized by the electron
kinetic energy Te. As far as electrostatic turbulence is concerned, this ratio is much less
than unity in core tokamak plasmas, and can reach several tens of percents at the edge.
The Debye length scale reads λ2

D = (ǫ0Te)/(n0e
2). As a consequence, when one addresses

the behaviour of the electrostatic potential on a scale L ≫ λD, one is led to consider a
quasi-neutral plasma ne ≈ ni that can be polarized and where the electric potential will
be determined by a constraint that stems from the quasineutrality condition.
Without loss of generality the two particle balance equations (2.1) can be replaced by a
charge balance equation and a particle balance equation for either species

∂tρc +
−→∇ · −→j = 0 , (2.4)
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∂tne +
−→∇ · (ne−→v e) = Se . (2.5)

The charge density ρc is defined by ρc = e(ni − ne) and the electric current density by−→
j = e(ni−→v i−ne−→v e). In the quasineutral limit, the charge balance equation is reduced

to
−→∇ · −→j = 0 since ρc = 0. The plasma current can be split into a parallel and a

transverse component with respect to the magnetic field lines, both depending on the
electrostatic potential. From the physical point of view, the electrostatic potential will
evolve in order to maintain a divergence free electric current since any departure from
this condition will govern a short scale and rapid restoring electric field. The aim now
is to determine the electrostatic potential Φ satisfying

−→∇ · −→j (Φ) = 0, as well as the
electron density ne satisfying the balance equation (2.5).
The dependence of the current (resp. fluid velocity −→v α) on the electrostatic potential is
obtained by modifying equations (2.2) in order to obtain “the” Navier-Stokes equation

(
d

dt
− ν∆⊥ + −→ω α × )−→v α = − 1

mαnα

−→∇(pαI + Πα) +
qα
mα

−→
E − Sα

−→v α

nα
. (2.6)

In the latter equation −→ω α is the Larmor rotation vector proportional to the Larmor
frequency and aligned along the magnetic field −→ω α = qα

mα

−→
B . In this expression, a

viscous term has been introduced. Unlike in standard fluids, in the case of plasmas
the effect of collisions is negligible. For plasmas, the viscous diffusion term is induced
by small scale turbulent fluctuations in the plane transverse to the magnetic field and
can be computed in the quasilinear framework. Such a term plays an important role
in simulations to damp the small scale fluctuations. The Lagrangian time derivative is
defined by

d

dt
= ∂t + −→v α ·

−→∇ . (2.7)

The transverse velocity is obtained now by expanding the projection of (2.6) (perpen-
dicular to the magnetic field lines) with respect to 1/ωα, where the Larmor frequency
ωα = qαB

mα
is large compared to all other frequencies that are considered in the present

analysis. Such a so-called adiabatic limit is well fulfilled in tokamak plasma turbulence,
where turbulence evolves on frequencies typically below 105s−1, while ωi ≈ 5.108s−1.
This gives rise at the first order to the so called drift velocities, the electric drift −→v E

and the diamagnetic drift −→v ∗α

~vE =
~E × ~B

B2
; ~v∗α =

~B × ~∇pα
qαnαB2

.

At the second order this procedure then leads to the polarization drift [7, 11, 12]

−→v pol,α = − mα

qαB2

(

∂t − ν∆⊥ + (−→v E + −→v ∗α) ·
−→∇

)−→∇⊥Φ . (2.8)

Inserting these drift velocities into the charge balance equation, yields

−→∇ || · −→j || +
−→∇⊥ · −→j ⊥ =

−→∇ || · −→j || −
min

B2

(

∂t − ν∆⊥

)

∆⊥Φ − min

B3
[Φ,∆⊥Φ] − S , (2.9)
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where the S-term essentially accounts for the spatial inhomogeneity of the equilibrium
magnetic field B and of the density n. It will be discussed later on. Since there is
no source of charges injected into the system, the contributions of the particle source
terms Se and Si cancel out in the charge balance equation. The leading contribution of
the polarization current is that of the ions due to the explicit dependence in the mass.

Poisson brackets are defined by [Φ, f ] = B(~vE · ~∇f) =
~B
B
· (~∇Φ × ~∇f).

Finally, the parallel contribution to the divergence of the current is obtained by
considering the parallel Ohm’s law that takes the standard form ηj‖ = −∇‖Φ, where η
is the parallel resistivity induced by the collisions. The divergence of the plasma current
then takes the form of a differential equation for the electric potential

−min

B2

(

(∂t − ν∆⊥)∆⊥Φ +
1

B
[Φ,∆⊥Φ]

)

−∇‖ ·
(1

η
∇‖Φ

)

− S = 0 . (2.10)

This equation determines the electric potential, given the source term S and is coupled
through n to the electron balance equation (2.5). Both the mean value and the fluctu-
ating contribution of Φ are governed by this equation.

Regarding the physics of the poloidal flows, we are interested in the large scale
contribution of the

−→
E × −→

B flow that is governed by the radial structure of the mean
electric potential. More precisely, the present paper aims at investigating the impact
of the plasma-wall boundary conditions on the structure and magnitude of the poloidal
flows. As discussed in the following, these boundary conditions act in the parallel
direction, where the field lines intercept plasma facing components. Therefore, one
focuses on the impact of the parallel divergence in the charge balance equation (2.10).
In this framework, the sole radial r and parallel z directions need being retained. The
radial profile of Φ governs the poloidal ~E × ~B flow, while the direction parallel to the
magnetic field lines enforces the boundary conditions. One is then left with the two-
dimensional mean electric potential Φ → Φ(r, z), such that the nonlinear term [Φ,∆⊥Φ]
vanishes. Especially, we do not account for the part of the poloidal flow self generated
by turbulence via the Reynolds stress tensor. This component would especially require
to deal with the second transverse direction, namely the poloidal angle.

Consistently with the neglect of the small scale turbulent fluctuations, the source
term is assumed to behave smoothly in space. Let’s call S this small contribution
standing for radial current effects that act as a source for the mean electric potential.
As already stated, such a source will mainly be governed by curvature effects combined
to large scale density structures. Consequently, this large scale source remains small
since governed by polarisation effects only. Indeed, strong electric field can only emerge
at sub-Debye scales, for which charge separation – governed by Poisson equation – is
effective.
As a result, the mean electric potential is governed by the following reduction of (2.10)

(

∂t − ν∂2
r

)

∂2
rφ+

1

η
∂2
zφ = −S . (2.11)

Here, all variables are dimensionless, with the following normalisations: φ = eΦ/Te,
(r, z) → (r, z)/ρs, t → ωit, ν → ν/(ρ2

sωi), η = νcoll/ωe, and finally S → S/(enωi),
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with ρs = (miTe)
1/2/eB the hybrid Larmor radius and νcoll the electron-ion collision

frequency. The electron density n will be considered as given in the rest of the paper.

In the here investigated peripheral plasma, plasma-wall interactions constrain the
parallel dynamics. The boundary conditions for the electric potential are in fact gov-
erned by the parallel current that is adjusted by a boundary layer, the sheath, to min-
imise the current outflow [15]. This current is the sum of the ion and electron parallel
current. At the sheath boundary, it can be shown that the ion flow reaches Mach = 1
so that the ion current writes j‖,i = jsat = encs, where cs is the sound speed. The
electrons are adiabatic and the electron current is governed by the sheath potential so
that j‖,e = −jsat exp(Λsheath−Φ). In this expression, Λsheath is the floating potential and
is given by the ratio of the electron mobility to the ion mobility, Λsheath ∝ 1

2
log(mi/me).

The sheath physics that leads to these expressions ensures that the electron current
matches the ion current at equilibrium, so that Λsheath = Φ. Here, Φ stands for the
entire electric potential, including small scale fluctuations. Therefore, the large scale
component of the here considered electric potential fulfills the modified sheath equi-
librium condition Λ = φ, where the dimensionless effective potential Λ includes the
modification of the sheath potential by small scale turbulent fluctuations. It is taken
constant in the following. Experiments have shown that Λ < 0. In summary, the bound-
ary current leaving the plasma to the wall is given by 〈j‖〉 = jsat (1 − exp(Λ − φ)), the
brackets indicating the average over small scales. This condition completes the equation
(2.11).

3 The mathematical problem

The objective of this paper is to study from a mathematical point of view the following
nonlinear evolution problem, given on the domain Ω (represented in Figure 1)

−∂t∂2
rφ− 1

η
∂2
zφ+ ν∂4

rφ = S , t ≥ 0 , (r, z) ∈ Ω , (3.1)

and completed with the initial condition

∂rφ(0, r, z) = ∂rφ0(r, z) , (r, z) ∈ Ω , (3.2)

for some given function φ0. The imposed boundary conditions are the no-slip boundary
conditions on Σ := Σ0 ∪ Σl ∪ ΣL

∂rφ(t, r, z) = ∂3
rφ(t, r, z) = 0 , t ≥ 0 , (r, z) ∈ Σ , (3.3)

periodic boundary conditions on Γ0 ∪Γ1, that means in the core of the plasma, and the
nonlinear sheath boundary conditions on the limiters Γa ∪ Γb

{

∂zφ(t, r, a) = η(1 − eΛ−φ(t,r,a)) , t ≥ 0 , (r, z) ∈ Γa ,

∂zφ(t, r, b) = −η(1 − eΛ−φ(t,r,b)) , t ≥ 0 , (r, z) ∈ Γb .
(3.4)

Here Σi and Γj are parts of the boundary ∂Ω and stand for

Σi := {(r = i, z) ∈ ∂Ω} ; Γj := {(r, z = j) ∈ ∂Ω} .
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The source term is denoted by S and η, ν and Λ are some given constants. The aim is
to prove the existence and uniqueness of a solution φ of this problem.

z=az=0 z=b z=1

r=L

r=l

r=0

r

z

radial

longitudinal

limiter limiter

ΣL

Σ
l

Γ1

Σ0

Γa Γ
b

Γ0

Ω

Figure 1: The 2D domain.

4 Existence and uniqueness of the linear problem

We shall start by proving the existence and uniqueness of a weak solution of the linear
evolution problem (3.1)-(3.3), completed with the linearized boundary conditions on
Γa ∪ Γb

{

∂zφ(t, r, a) = ga(t, r) + ha(t, r)φ(t, r, a) , t ≥ 0 , (r, z) ∈ Γa ,

∂zφ(t, r, b) = gb(t, r) − hb(t, r)φ(t, r, b) , t ≥ 0 , (r, z) ∈ Γb .
(4.1)

This problem is obtained by a linearization of the previous nonlinear evolution problem.
Let Qt := (0, t) × Ω be the time-space cylinder. In the rest of this section the following
hypothesis is made.

Hypothesis A :The given functions ha, hb ∈ L∞((0, T ) × (0, l)) satisfy

ha(t, r) ≥ ca > 0 and hb(t, r) ≥ cb > 0 , f.a.a. t ≥ 0 , 0 ≤ r ≤ l .

Moreover, ga, gb ∈ L2((0, T ) × (0, l)), S ∈ L2(QT ), φ0 ∈ H1(Ω), η > 0, ν > 0, Λ < 0.

Before considering the existence/uniqueness theorem of the linear case, let us prove the
following Poincaré-like inequality, which will be used all along the paper.

Proposition 4.1 There exists a constant CΩ > 0, depending only on the domain Ω,
such that for every φ ∈ H := {φ ∈ H1(Ω) / ∂2

rφ ∈ L2(Ω) , ∂rφ = 0 on Σ} the following
inequality holds

||φ||L2(Ω) ≤ CΩ(||φ|Γa||L1(Γa) + ||∂zφ||L2(Ω) + ||∂2
rφ||L2(Ω)) . (4.2)
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Proof: The proof follows by contradiction. Let us suppose that inequality (4.2) is
not satisfied. This means, that there exists a sequence φn ∈ H with ||φn||L2(Ω) = 1 and
satisfying

1 = ||φn||L2(Ω) ≥ n(||φn|Γa
||L1(Γa) + ||∂zφn||L2(Ω) + ||∂2

rφ
n||L2(Ω)) . (4.3)

Thus, φn is bounded in H1(Ω) as well as ∂2
rφ

n in L2(Ω), implying the existence of a
weak limit φ, such that

φn ⇀ φ weak in H1(Ω) , ∂2
rφ

n ⇀ ∂2
rφ weak in L2(Ω) , φn|Γa

⇀ φ|Γa weak in L2(Γa) .

Inequality (4.3) implies then ∂zφ ≡ 0, ∂2
rφ ≡ 0 and φ|Γa ≡ 0, which tells us immediately

that φ ≡ 0. Moreover, due to the compact embedding H1(Ω) ⊂ L2(Ω), we have

φn → φ strongly in L2(Ω) .

which yields that ||φ||L2(Ω) = 1. This is in contradiction with the fact that φ ≡ 0.

Let us now introduce the mathematical framework of the problem (3.1)-(3.3),(4.1) and
clarify what we mean by a weak solution. For this, let V denote the Hilbert space

V := {f ∈ H1(Ω) / ∂2
rf ∈ L2(Ω) , f periodic onΓ0 ∪ Γ1 , ∂rf = 0 on Σ} ,

with the scalar product

((f, g))V :=

∫

Ω

∂zf ∂zg drdz +

∫

Ω

∂2
rf ∂

2
r g drdz +

∫ l

0

fa ga dr +

∫ l

0

fb gb dr , (4.4)

where fa (resp. fb) denotes the trace function f(r, z = a) (resp. f(r, z = b)). Moreover,
let the Hilbert space H := {f ∈ L2(Ω) / ∂rf ∈ L2(Ω)} be associated with the scalar
product

(f, g)H :=

∫

Ω

fg drdz +

∫

Ω

∂rf∂rg drdz . (4.5)

It can be shown that V is densely and continuously embedded in H , such that we get
by identifying H with H∗ the evolution triple

V ⊂ H = H∗ ⊂ V ∗ .

In order to write down a weak formulation of the problem (3.1)-(3.3),(4.1) we introduce
the following operators and bilinear forms. Let m : H × H → R be the bilinear,
continuous, symmetric and non-negative form

m(φ, ϑ) :=

∫

Ω

∂rφ ∂rϑ drdz .

It is important to remark, that m is not a coercive form on H . The equation (3.1) is
degenerate. Furthermore let the continuous, coercive, bilinear form l(t) : V × V → R

be given by

l(t, φ, ϑ) :=
1

η

∫

Ω

∂zφ(r, z)∂zϑ(r, z) drdz + ν

∫

Ω

∂2
rφ(r, z)∂2

rϑ(r, z) drdz

+
1

η

∫ l

0

hb(t, r)φ(r, b)ϑ(r, b) dr +
1

η

∫ l

0

ha(t, r)φ(r, a)ϑ(r, a) dr ,
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and the corresponding isomorphism L(t) : V → V ∗. Finally, the operator S(t) ∈ V ∗ is
defined by

S(t)(ϑ) :=

∫

Ω

S(t, ·)ϑ(·) drdz +
1

η

∫ l

0

gb(t, r)ϑ(r, b) dr − 1

η

∫ l

0

ga(t, r)ϑ(r, a) dr .

Definition 4.2 A function φ ∈ WV , where

WV := {φ ∈ L2(0, T ;V ) / ∂rφ ∈ L∞(0, T ;L2(Ω)) } ,

is called a weak solution of the linear problem (3.1)-(3.3),(4.1) if it satisfies in a distri-
butional sens (D′(0, T )) the equation







d

dt
m(φ(·), ϑ) + l(·, φ(·), ϑ) = S(·)(ϑ) , for all ϑ ∈ V ,

∂rφ(0) = ∂rφ0 .

(4.6)

Remark 4.3 The weak solution φ satisfies (4.6) in a distributional sense if and only if
for every test function ξ ∈ H1(0, T ) with ξ(T ) = 0, the following equation holds for all
ϑ ∈ V

−
∫ T

0

m(φ(t), ϑ)ξ′(t)dt+

∫ T

0

l(t, φ(t), ϑ)ξ(t)dt =

∫ T

0

S(t)(ϑ)ξ(t)dt+m(φ0, ϑ)ξ(0) . (4.7)

Due to the fact that l(·, φ(·), ϑ) ∈ L2(0, T ) and S(·)(ϑ) ∈ L2(0, T ) for all ϑ ∈ V ,
equation (4.7) means that m(φ(·), ϑ) ∈ H1(0, T ), thus implying m(φ(·), ϑ) ∈ C([0, T ])
for all ϑ ∈ V .

Remark 4.4 The initial condition in (4.6) is well defined in H−1/2(Ω). Indeed, a func-
tion φ ∈ WV satisfying the equation (4.6) in a distributional sens, satisfies ∂rφ ∈
L2(0, T ;L2(Ω)), ∂t∂rφ ∈ L2(0, T ;H−1(Ω)). Interpolation arguments imply then ∂rφ ∈
C([0, T ];H−1/2(Ω)) [10].

Theorem 4.5 (Existence/Uniqueness)
Let Hypothesis A be satisfied. Then problem (3.1)-(3.3),(4.1) admits a unique weak
solution φ ∈ WV , satisfying the energy estimate

||∂rφ||2L∞(0,T ;L2(Ω)) + ||φ||2L2(0,T ;V ) ≤

C(||∂rφ0||2L2(Ω) + ||S||2L2(QT ) + ||ga||2L2((0,T )×Γa) + ||gb||2L2((0,T )×Γb)
) ,

(4.8)

for a constant C > 0.

The existence and uniqueness of a weak solution of problem (3.1)-(3.3),(4.1) is based on
the standard Galerkin method, applied on the equation

Mφ′ + Lφ = S . (4.9)
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In order to circumvent the fact that the bilinear form m is not coercive (or equivalently
that the operator M is degenerate), we introduce an additional term in the equation
(3.1)

ǫ∂tφ− ∂t∂
2
rφ− 1

η
∂2
zφ+ ν∂4

rφ = S ,

the passage to the limit ǫ → 0 leading then to the desired result. Another possible
way to obtain a regular problem is to factor the equation (4.9) by the kernel of M, as
presented in [14].
We shall first of all analyze the modified problem







d

dt
mǫ(φ(·), ϑ) + l(·, φ(·), ϑ) = S(·)(ϑ) , for all ϑ ∈ V ,

φ(0) = φ0 ∈ H ,

(4.10)

where

mǫ(φ, ϑ) := ǫ

∫

Ω

φϑdrdz +

∫

Ω

∂rφ∂rϑdrdz .

In the following we shall consider this bilinear form mǫ(·, ·) as scalar product on the
Hilbert space H , instead of the standard one (·, ·)H given in (4.5), and the corresponding
evolution triple V ⊂ H = H∗ ⊂ V ∗.

Proposition 4.6 Under Hypothesis A, the modified linear problem (4.10) admits a
unique weak solution φǫ ∈ W (0, T ;V, V ∗) := {φ ∈ L2(0, T ;V ) / ∂tφ ∈ L2(0, T ;V ∗)},
satisfying the following energy estimate for all t ∈ [0, T ]

ǫ||φǫ(t)||2L2(Ω) + ||∂rφǫ(t)||2L2(Ω) +
1

η
||∂zφǫ||2L2(Qt)

+ ν||∂2
rφ

ǫ||2L2(Qt)

+||φǫb||2L2((0,t)×Γb)
+ ||φǫa||2L2((0,t)×Γa)

≤ c(ǫ||φ0||2L2(Ω) + ||∂rφ0||2L2(Ω) + ||S||2L2(QT ) + ||ga||2L2((0,T )×Γa) + ||gb||2L2((0,T )×Γb)
) ,

(4.11)
with c > 0 a constant independent on ǫ and T , but depending on η and ν.

Remark 4.7 We would like to observe here, that a function φ belongs to W (0, T ;V, V ∗)
if and only if φ ∈ L2(0, T ;V ) and if there exists a function ψ ∈ L2(0, T ;V ∗), denoted by
∂tφ and satisfying for every ξ ∈ C∞

0 (0, T )

∫ T

0

mǫ(φ(t), ϑ)ξ′(t)dt = −
∫ T

0

< ψ(t), ϑ >V ∗,V ξ(t)dt , for all ϑ ∈ V .

This definition depends on the evolution triple V ⊂ H = H∗ ⊂ V ∗ and thus on the
ǫ-dependent scalar product on H .

Proposition 4.6 is a standard result of the theory of variational methods (Galerkin
method) or semigroup methods, so that we refer to [2, 8, 17] for the proof. The solu-
tion satisfies for all test functions ϑ ∈ V and ξ ∈ H1(0, T ) the following variational
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formulation

−ǫ
∫ t

0

∫

Ω

φǫ ϑ ξ′ drdzdτ + ǫ

∫

Ω

φǫ(t)ϑ ξ(t) drdz −
∫ t

0

∫

Ω

∂rφ
ǫ ∂rϑ ξ

′ +

∫

Ω

∂rφ
ǫ(T ) ∂rϑ ξ(T )+

1

η

∫ t

0

∫

Ω

∂zφ
ǫ ∂zϑ ξ + ν

∫ t

0

∫

Ω

∂2
rφ

ǫ ∂2
rϑ ξ +

1

η

∫ t

0

∫ l

0

hb φ
ǫ
b ϑb ξ +

1

η

∫ t

0

∫ l

0

ha φ
ǫ
a ϑa ξ

=

∫ t

0

∫

Ω

S ϑ ξ +
1

η

∫ t

0

∫ l

0

gb ϑb ξ −
1

η

∫ t

0

∫ l

0

ga ϑa ξ + ǫ

∫

Ω

φ0ϑ ξ(0) +

∫

Ω

∂rφ0 ∂rϑ ξ(0) ,

(4.12)
or in a simplier way

∫ t

0

d

dt
mǫ(φ

ǫ(τ), ϑ)ξ(τ)dτ +

∫ t

0

l(τ, φǫ(τ), ϑ)ξ(τ)dτ =

∫ t

0

S(τ)(ϑ)ξ(τ)dτ .

Density arguments as well as the Green equality

∫ t

0

< ∂tφ
ǫ(τ), φǫ(τ) >V ∗,V dτ =

1

2
mǫ(φ

ǫ(t), φǫ(t)) − 1

2
mǫ(φ0, φ0) ,

lead thus to the energy bound (4.11).

Proof of Theorem 4.5 : The energy estimate in the previous proposition implies
that φǫ, ∂zφ

ǫ, ∂2
rφ

ǫ are bounded in L2(QT ) independently on ǫ, thus weakly convergent
in L2(QT ) towards some functions φ, ∂zφ, ∂2

rφ respectively. Besides φǫa (resp. φǫb) is
bounded in L2((0, T ) × (0, l)) and ∂rφ

ǫ bounded in L∞(0, T ;L2(Ω)), allowing to pass
to the limit in all terms of (4.12). This proves the existence of a weak solution φ ∈
L2(0, T ;V ) of (4.6) satisfying ∂rφ ∈ L∞(0, T ;L2(Ω)). Moreover, the energy estimate
(4.8) is deduced immediately from (4.11), due to the fact that xǫ ⇀ x in some Banach
space implies ||x|| ≤ lim infǫ>0 ||xǫ||. And finally the uniqueness of the solution is an
immediate consequence of the energy estimate as well as the linearity of the problem.

5 Existence and uniqueness of the nonlinear prob-

lem

In this section the existence and uniqueness of a solution of the initially introduced
nonlinear problem is proven















































−∂t∂2
rφ− 1

η
∂2
zφ+ ν∂4

rφ = S , t ≥ 0 , (r, z) ∈ Ω ,

∂rφ(0, r, z) = ∂rφ0(r, z) , (r, z) ∈ Ω ,

∂rφ(t, r, z) = ∂3
rφ(t, r, z) = 0 , t ≥ 0 , (r, z) ∈ Σ ,

∂zφ(t, r, a) = η(1 − eΛ−φ(t,r,a)) , t ≥ 0 , (r, z) ∈ Γa ,

∂zφ(t, r, b) = −η(1 − eΛ−φ(t,r,b)) , t ≥ 0 , (r, z) ∈ Γb .

(5.1)
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Hypothesis B : Assume that S, ∂rS, ∂tS, ∂ttS ∈ L2(QT ), satisfy ||S||L∞(QT ) ≤ CS and

||S(T )||L∞(Ω) ≤ CS, where CS > 0 is a constant to be precised later on and depending
on the domain Ω. Moreover let φ0 ∈ H2(Ω) with ∂4

rφ0 ∈ L2(Ω).

Let us introduce the Hilbert space U

U := {f ∈ H1(Ω) / ∂2
rf ∈ L2(Ω) , f periodic onΓ0 ∪ Γ1 , f = 0 on Σ} ,

differing from the Hilbert space V only in the imposed boundary conditions on Σ and
being associated with the same scalar product (4.4) as on V .
The main result of this paper is then the following theorem.

Theorem 5.1 Let Hypothesis B be satisfied. Then the nonlinear problem (5.1) admits
a unique weak solution φ ∈ X , where

X := {φ ∈ WV / ∂rφ ∈ WU , ∂tφ ∈ WV }.

Moreover this solution satisfies the following energy estimate

||∂rφ||L∞(0,T ;L2(Ω)) + ||φ||L2(0,T ;V ) ≤ c(1 + ||∂rφ0||L2(Ω) + ||S||L∞(QT )). (5.2)

Definition 5.2 A function φ ∈ WV is called a weak solution of the nonlinear problem
(5.1) if eΛ−φ(t,r,a), eΛ−φ(t,r,b) ∈ L1((0, T )× (0, l)) and if φ satisfies for every test function
ϑ ∈ V ∩H2(Ω) and ξ ∈ H1(0, T ) the variational formulation

−
∫ T

0

∫

Ω

∂rφ ∂rϑ ξ
′ drdzdt+

∫

Ω

∂rφ(T ) ∂rϑ ξ(T ) drdz +
1

η

∫ T

0

∫

Ω

∂zφ ∂zϑ ξ drdzdt

+ν

∫ T

0

∫

Ω

∂2
rφ ∂

2
rϑ ξ drdzdt+

∫ T

0

∫ l

0

(1 − eΛ−φ(t,r,b))ϑ(r, b) ξ(t) drdt

+

∫ T

0

∫ l

0

(1 − eΛ−φ(t,r,a))ϑ(r, a) ξ(t) drdt =

∫ T

0

∫

Ω

S ϑ ξ drdzdt+

∫

Ω

∂rφ0 ∂rϑ ξ(0) drdz .

(5.3)

Remark 5.3 For φ ∈ X , the trace φ(t, r, a) (resp. φ(t, r, b)) belongs to H1((0, T ) ×
(0, l)). This does not imply φ(t, r, a) ∈ L∞((0, T )×(0, l)). But by means of the Trudinger
inequality [2], we have

∫ T

0

∫ l

0

e|φ(t,r,a)|2drdt <∞ ,

which infers eΛ−φ(t,r,a) ∈ L2((0, T ) × (0, l)), such that the variational formulation (5.3)
is well defined for ϑ ∈ V and ξ ∈ H1(0, T ).

Before we start with the existence proof of a weak solution, let us establish an a priori
estimate of the unknown φ, in order to clarify where the restrictive condition demanded

12



by the theorem, ||S||L∞(QT ) ≤ CS, comes from. Taking in the weak formulation (5.3) φ
as test function, we get

1

2

∫

Ω

|∂rφ(T, r, z)|2drdz +
1

η

∫ T

0

∫

Ω

|∂zφ|2drdzdt+ ν

∫ T

0

∫

Ω

|∂2
rφ|2drdzdt+

+

∫ T

0

∫ l

0

(1 − eΛ−φ(t,r,b))φ(t, r, b)drdt+

∫ T

0

∫ l

0

(1 − eΛ−φ(t,r,a))φ(t, r, a)drdt =

1

2

∫

Ω

|∂rφ0(r, z)|2drdz +

∫ T

0

∫

Ω

Sφdrdzdt .

Due to the fact that the function f(x) = x(1 − eΛ−x) behaves at infinity as

f(x) ∼ |x|eΛ+|x| for x→ −∞ and f(x) ∼ x for x→ ∞ , (5.4)

yields for some constants c1, c2, c3 > 0

f(x) ≥ c1|x|eΛ+|x| for x < Λ − 1 ; f(x) ≥ c2|x| for x > 1 ; |f(x)| ≤ c3 else ,

implying with cΛ = 1 − Λ > 0

1

2

∫

Ω

|∂rφ(T, r, z)|2drdz +
1

η

∫ T

0

∫

Ω

|∂zφ|2drdzdt+ ν

∫ T

0

∫

Ω

|∂2
rφ|2drdzdt+

+c1

∫ T

0

∫ l

0 φb<−cΛ

|φ(t, r, b)|eΛ+|φ(t,r,b)|drdt+ c2

∫ T

0

∫ l

0 φb≥−cΛ

|φ(t, r, b)|drdt+

+c1

∫ T

0

∫ l

0 φa<−cΛ

|φ(t, r, a)|eΛ+|φ(t,r,a)|drdt+ c2

∫ T

0

∫ l

0 φa≥−cΛ

|φ(t, r, a)|drdt

≤ c+
1

2
||∂rφ0||2L2(Ω) +

∫ T

0

∫

Ω

Sφdrdzdt ≤ c+
1

2
||∂rφ0||2L2(Ω) + ||S||L∞(QT )||φ||L1(QT ) .

As one can observe, on the left hand side of the previous inequality only the L1-norm
of φa (resp. φb) occurs. This is rather restrictive and will constrain us to assume a
bound on the source term S, in order to get an a priori estimate for φ. Indeed, using
the Poincaré-like inequality (4.2), we can deduce with c4 := min{c1, c2} > 0

1

2

∫

Ω

|∂rφ(T, r, z)|2drdz +
1

η

∫ T

0

∫

Ω

|∂zφ|2drdzdt+ ν

∫ T

0

∫

Ω

|∂2
rφ|2drdzdt+

+c4

∫ T

0

∫ l

0

|φ(t, r, b)|drdt+ c4

∫ T

0

∫ l

0

|φ(t, r, a)|drdt

≤ c+
1

2
||∂rφ0||2L2(Ω) + CΩ||S||L∞(QT )

[

||φa||L1((0,T )×Γa) +
√
T (||∂zφ||L2(QT ) + ||∂2

rφ||L2(QT ))
]

.

Using the Young inequality, the term
√
T ||S||L∞(QT )(||∂zφ||L2(QT ) + ||∂2

rφ||L2(QT )) can be
introduced without any problem on the left hand side, whereas the problematic term
is ||S||L∞(QT )||φa||L1((0,T )×(0,l)), which can only be introduced on the left hand side by
assuming that the source term S satisfies the following bound

||S||L∞(QT ) ≤
c4

2CΩ

:= CS .
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Assuming this, allows to get the a priori energy estimate (5.2). Indeed

∫

Ω

|∂rφ(T, r, z)|2drdz +
1

η

∫ T

0

∫

Ω

|∂zφ|2drdzdt+ ν

∫ T

0

∫

Ω

|∂2
rφ|2drdzdt+

+

∫ T

0

∫ l

0

|φ(t, r, b)|drdt+
∫ T

0

∫ l

0

|φ(t, r, a)|drdt ≤ C(Ω, ν, η, T )[1 + ||∂rφ0||2L2(Ω) + ||S||L∞(QT )].

Let us now pass to the existence part of the proof of Theorem 5.1, which involves
several steps. The idea is to construct a fixed point setting T : X → X by linearizing
the problem (5.1). To ϕ ∈ X we associate φ := T (ϕ) ∈ X, solution of problem (5.1)
with the modified linearized boundary condition on Γa ∪ Γb

∂zφa,b = ±η(1 − eΛ−ϕa,b − ϕa,b + φa,b) .

This allows to use the linear theory presented in Section 4. Here we denote by φa,b the
trace functions φ(t, r, z = a) or φ(t, r, z = b) and the sign ′′+′′ (resp. ′′−′′) is associated
to the boundary Γa (resp. Γb). In order to prove the existence of a fixed point of T , the
boundary condition is truncated in the following way

∂zφ
n
a,b = ±η(1 − eΛ−ϕ̃a,b − ϕ̃a,b + φna,b) ,

where for fixed n ∈ N

ϕ̃a,b(t, r) :=
ϕa,b(t, r)

1 + |ϕa,b(t, r)|/n
.

To circumvent as in the linear case the degeneracy of the problem, the regularization
term ǫ∂tφ is introduced. Thus we shall first prove the existence and uniqueness of a
weak solution φǫ,n to the modified nonlinear problem











ǫ∂tφ
ǫ,n − ∂t∂

2
rφ

ǫ,n − 1

η
∂2
zφ

ǫ,n + ν∂4
rφ

ǫ,n = S , in Ω ,

∂zφ
ǫ,n
a,b = ±η(1 − eΛ−φ̃ǫ,n

a,b − φ̃ǫ,na,b + φǫ,na,b) , on Γa ∪ Γb ,

(5.5)

completed with the remaining initial/boundary conditions. This will be done with a
fixed point argument. Afterwards we shall pass to the limit n → ∞ and prove the
existence of a solution of







ǫ∂tφ
ǫ − ∂t∂

2
rφ

ǫ − 1

η
∂2
zφ

ǫ + ν∂4
rφ

ǫ = S , in Ω ,

∂zφ
ǫ
a,b = ±η(1 − eΛ−φǫ

a,b) , on Γa ∪ Γb ,

(5.6)

completed again with the remaining initial/boundary conditions. Finally, the limit
ǫ→ 0 will be performed.

Lemma 5.4 Let n be an integer bigger than 5 and ǫ > 0 be fixed. For φ0 ∈ H1(Ω) and
S ∈ L2(QT ) with ||S||L∞(QT ) ≤ CS, the modified nonlinear problem (5.5) admits a weak
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solution φǫ,n ∈W (0, T ;V, V ∗), which satisfies the following estimate for all t ∈ [0, T ]

ǫ||φǫ,n(t)||2L2(Ω) + ||∂rφǫ,n(t)||2L2(Ω) +
1

η
||∂zφǫ,n||2L2(Qt) + ν||∂2

rφ
ǫ,n||2L2(Qt)

+

∫ t

0

∫ l

0 φǫ,n
b <−cΛ

|φǫ,nb |eΛ+
|φ

ǫ,n
b

|

1+|φ
ǫ,n
b

|/ndrdτ +

∫ t

0

∫ l

0 φǫ,n
b ≥−cΛ

|φǫ,n(τ, r, b)|drdτ+

+

∫ t

0

∫ l

0 φǫ,n
a <−cΛ

|φǫ,na |eΛ+
|φ

ǫ,n
a |

1+|φ
ǫ,n
a |/ndrdτ +

∫ t

0

∫ l

0 φǫ,n
a ≥−cΛ

|φǫ,n(τ, r, a)|drdτ ≤ c ,

(5.7)

for a constant c > 0 independent on n, ǫ and cΛ > 0 depending only on Λ. In particular,

||φǫ,n||2L2(0,T ;V )+||∂tφǫ,n||2L2(0,T ;V ∗) ≤ C(1+ǫ||φ0||2L2(Ω)+||∂rφ0||2L2(Ω)+||S||2L∞(QT )) , (5.8)

for a constant C(η, ν, T,Λ) > 0 independent on n and ǫ.

Proof: Let n ≥ 5 and ǫ > 0 be fixed. For notational simplicity, we omit the indices n
and ǫ in the rest of this proof. To prove the existence of a solution, we shall use a fixed
point argument. Let us define the application T : X → X with

X := {φ ∈W (0, T ;V, V ∗) / ||φ||L2(0,T ;V ) + ||∂tφ||L2(0,T ;V ∗) ≤M} ,
and M > 0 a constant to be defined later. For ϕ ∈ X the image φ := T (ϕ) is defined
as the solution of the problem (5.5) with the linearized boundary conditions

∂zφa,b = ±η(1 − eΛ−ϕ̃a,b − ϕ̃a,b + φa,b) .

The existence of such a solution is assured by the linear case. Moreover, the image φ
belongs to X, if M is well chosen. Indeed, the energy estimate from Theorem 4.5 yields
for all t ∈ [0, T ]

ǫ||φ(t)||2L2(Ω) + ||∂rφ(t)||2L2(Ω) + ||φ||2L2(0,T ;V ) ≤ C
(

ǫ||φ0||2L2(Ω) + ||∂rφ0||2L2(Ω)

+||S||2L2(QT ) + ||1 − eΛ−ϕ̃b − ϕ̃b||2L2((0,T )×Γb)
+ ||1 − eΛ−ϕ̃a − ϕ̃a||2L2((0,T )×Γa)

)

≤ C
(

ǫ||φ0||2L2(Ω) + ||∂rφ0||2L2(Ω) + ||S||2L2(QT ) + 2(1 + n+ eΛ+n)2lT
)

:= M .

Moreover T : X → X is a continuous map (with respect to the L2-norm) on the
bounded, closed, convex space X, compactly embedded in L2(QT ) (Aubin theorem).
The continuity of the application T is a straightforward consequence of the fact, that
W (0, T ;V, V ∗) is compactly embedded in L2(0, T ;L2(Γa,b)). Indeed, W (0, T ;V, V ∗) ⊂
L2(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) and interpolation arguments imply thatW (0, T ;V, V ∗)
is compactly embedded in L2(0, T ;H1−δ(Ω)) for 0 < δ < 1. Further, this latter space
is continuously embedded in L2(0, T ;L2(Γa,b)). Thus we can pass to the limit in the
exponential term of the variational formulation

−ǫ
∫ T

0

∫

Ω

φϑ ξ′ drdzdt+ ǫ

∫

Ω

φ(T )ϑ ξ(T ) drdz−
∫ T

0

∫

Ω

∂rφ ∂rϑ ξ
′ +

∫

Ω

∂rφ(T ) ∂rϑ ξ(T )

+
1

η

∫ T

0

∫

Ω

∂zφ ∂zϑ ξ + ν

∫ T

0

∫

Ω

∂2
rφ ∂

2
rϑ ξ +

∫ T

0

∫ l

0

(1 − eΛ−ϕ̃b − ϕ̃b + φb)ϑ(r, b) ξ(t)

+

∫ T

0

∫ l

0

(1 − eΛ−ϕ̃a − ϕ̃a + φa)ϑ(r, a) ξ(t) =

∫ T

0

∫

Ω

S ϑ ξ + ǫ

∫

Ω

φ0 ϑ ξ0 +

∫

Ω

∂rφ0 ∂rϑ ξ0 ,
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establishing the continuity of the map T . The Schauder fixed point theorem then implies
the existence of a fixed point T (φ) = φ, solution of the modified problem (5.5). Finally,
the proof of the estimate (5.7) is straightforward by taking as test function φǫ,n in the
variational formulation. We observe only that

∫ t

0

∫ l

0

(φǫ,na,b − φ̃ǫ,na,b)φ
ǫ,n
a,bdrdτ ≥ 0 ,

and

1 − eΛ−x ≥ 1 − eΛ , for x ≥ 0 ;
(

1 − eΛ+ |x|
1+|x|/n

)

x ≥ 1

2
|x|eΛ+ |x|

1+|x|/n , for x ≤ −cΛ ,

for a constant cΛ > 0.

The next step concerns the passage to the limit n→ ∞, for fixed ǫ > 0.

Lemma 5.5 Let ǫ > 0 be fixed and let φ0 ∈ H1(Ω), S ∈ L2(QT ) with ||S||L∞(QT ) ≤ CS.
Then problem (5.6) admits a unique weak solution φǫ ∈ W (0, T ;V ;V ∗), satisfying the
bound

ǫ||φǫ(t)||2L2(Ω)+||∂rφǫ(t)||2L2(Ω)+||φǫ||2L2(0,T ;V ) ≤ C(1+ǫ||φ0||2L2(Ω)+||∂rφ0||2L2(Ω)+||S||2L∞(QT )) ,
(5.9)

for a constant C > 0 independent on ǫ, but depending on T .

Proof: Let ǫ > 0 be fixed. The existence of a solution φǫ is proven by passing to the
limit n→ ∞ in the variational formulation of the problem (5.5). Denote by {φǫ,n}n∈N a
sequence of solutions of (5.5) determined in Lemma 5.4. Since this sequence is bounded
in W (0, T ;V, V ∗), there exists a subsequence {φǫ,nk}k∈N, such that

φǫ,nk → φǫ , ∂zφ
ǫ,nk ⇀ ∂zφ

ǫ , ∂rφ
ǫ,nk ⇀ ∂rφ

ǫ , ∂2
rφ

ǫ,nk ⇀ ∂2
rφ

ǫ in L2(QT ) ,

as well as
∂rφ

ǫ,nk(t, ·, ·) ⇀ ∂rφ
ǫ(t, ·, ·) in L2(Ω) , ∀t ∈ [0, T ] .

For the sake of simplicity, the index ǫ is omitted in the rest of the proof and the subse-
quence {φnk}k∈N is denoted again by {φn}n∈N. The passage to the limit n → ∞ in the
variational formulation is straightforward, except for the limit

∫ T

0

∫ l

0

(1−eΛ−φ̃n
a,b −φ̃na,b+φna,b)ϑa,b ξ(t) drdt→

∫ T

0

∫ l

0

(1−eΛ−φa,b)ϑa,b ξ(t) drdt . (5.10)

Due to the compact embedding W (0, T ;V, V ∗) ⊂ L2(0, T ;L2(Γa,b)), we know that

φna,b → φa,b strongly in L2((0, T ) × (0, l)) ,

implying immediately

∫ T

0

∫ l

0

(−φ̃na,b + φna,b)ϑa,bξ(t)drdt→ 0 .
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To prove the convergence of the exponential part, we shall use

∫ T

0

∫ l

0 φn
b <−cΛ

|φnb |e
Λ+

|φn
b |

1+|φn
b
|/ndrdt+

∫ T

0

∫ l

0 φn
a<−cΛ

|φna |e
Λ+

|φn
a |

1+|φn
a |/ndrdt ≤ C . (5.11)

First we observe that eΛ−φ̃n
a,b is bounded in L1((0, T ) × (0, l)), so that Fatou’s lemma

implies eΛ−φa,b ∈ L1((0, T ) × (0, l)). Choosing now regular enough test functions ϑ and
ξ (for example ϑ ∈ H2(Ω) ∩ V and ξ ∈ H1(0, T )) and fixing δ > 0, we have for K > 0

∣

∣

∣

∣

∫ T

0

∫ l

0

(

eΛ−φ̃n
b − eΛ−φb

)

ϑb ξ drdt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ T

0

∫ l

0 φǫ
b<−K

(eΛ−φ̃n
b − eΛ−φb)ϑb ξ drdt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T

0

∫ l

0 φǫ
b≥−K

(eΛ−φ̃n
b − eΛ−φb)ϑb ξ drdt

∣

∣

∣

∣

∣

.

(5.12)
The first term on the right hand side is estimated as follows
∣

∣

∣

∣

∣

∫ T

0

∫ l

0 φn
b<−K

(eΛ−φ̃n
b − eΛ−φb)ϑbξ

∣

∣

∣

∣

∣

≤ 1

K

∫ T

0

∫ l

0 φn
b<−K

eΛ−φ̃n
b |φnb | |ϑbξ|+

∫ T

0

∫ l

0 φn
b <−K

eΛ−φb |ϑbξ| .

Due to (5.11) we can choose K in such a manner that this term is smaller than δ
2
. For

this fixed K, the second term on the right hand side of (5.12) will be smaller than δ
2

for sufficiently large n, due to the Lebesgue dominated convergence theorem. Thus the
convergence of the exponential term in (5.10) holds. The uniqueness of the just found
weak solution φǫ ∈ W (0, T ;V, V ∗) is a straightforward consequence of the fact that the
function −e−x is monoton. Moreover, the energy bound (5.9) follows immediately by
passing to the limit in (5.8). This ends the proof of Lemma 5.5.

And finally, let ǫ tend to zero.

Proof of theorem 5.1 :
The reasoning of the proof of Lemma 5.5 cannot be followed for passing to the limit
ǫ→ 0 in the variational formulation of problem (5.6), because the ǫ-independent bound
of φǫ in W (0, T ;V, V ∗) has no more sense. Indeed, the definition of ∂tφ

ǫ is based on the
evolution triple V ⊂ H = H∗ ⊂ V ∗ and thus ǫ-dependent. However, the ǫ-independent
bound of the sequence {φǫ}ǫ>0 in L2(0, T ;V ) can be used, such that we will only have
φǫa,b ⇀ φa,b weak in L2(QT ) instead of the strong convergence. The difficult point is to
prove that

∫ T

0

∫ l

0

(1 − eΛ−φǫ
a,b)ϑa,bξ(t)drdt→

∫ T

0

∫ l

0

(1 − eΛ−φa,b)ϑa,bξ(t)drdt , (5.13)

when ǫ → 0, the convergence of the other terms of the variational formulation being
straigtforward. To prove (5.13) we shall show, by strengthening the assumptions on
S and φ0, that the functions gǫa,b(t, r) := eΛ−φǫ

a,b are bounded in W 1,1((0, T ) × (0, l))
and thus up to a subsequence strongly convergent in L1((0, T ) × (0, l)) towards some
function ga,b. Due to the fact, that φǫa,b ⇀ φa,b in L2((0, T ) × (0, l)) we can identify
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ga,b(t, r) = eΛ−φa,b, which ends the proof. Let thus prove the boundedness of gǫa,b in
W 1,1((0, T ) × (0, l)), independently on ǫ. First of all, taking φǫ as test function in the
variational formulation of (5.6) and using the fact that φǫ is bounded in L2(QT ), gives
rise to the estimate

∫ T

0

∫ l

0

(1 − eΛ−φǫ
a)φǫa drdt+

∫ T

0

∫ l

0

(1 − eΛ−φǫ
b)φǫb drdt ≤ C ,

independently on ǫ. These integrals are well-defined due to Fatou’s Lemma. Hence
∫ T

0

∫ l

0 φǫ
a,b≤−cΛ

|φǫa,b|eΛ−φǫ
a,bdrdt+

∫ T

0

∫ l

0 φǫ
a,b>−cΛ

|φǫa,b|drdt ≤ C ,

which implies the ǫ-independent bound of gǫa,b in L1((0, T ) × (0, l)).
Denote now by ψǫ := ∂rφ

ǫ. Deriving “formally” the equation (5.6) with respect to r
yields the system























ǫ∂tψ
ǫ − ∂t∂

2
rψ

ǫ − 1

η
∂2
zψ

ǫ + ν∂4
rψ

ǫ = ∂rS , in QT ,

∂zψ
ǫ
a,b = ±ηψǫa,beΛ−

∫ r
R
ψǫ

a,bdr
′−φǫ

a,b(t,R) , on Γa ∪ Γb ,

ψǫ = ∂2
rψ

ǫ = 0 , on Σ ,

(5.14)

completed with the residual initial-boundary conditions. Here R ∈ (0, l) is fixed. A
similar fixed point argument as in the proof of Lemma 5.4 implies for every ǫ > 0 the
existence of a weak solution ψǫ ∈ W (0, T ;U,U∗) of (5.14). Moreover it can be shown
rigorously that ψǫ = ∂rφ

ǫ, where φǫ is solution of (5.6), yielding thus the regularity of
φǫ. Furthermore, the solution ψǫ of (5.14) satisfies

ǫ

2
||ψǫ(T )||2L2(Ω) +

1

2
||∂rψǫ(T )||2L2(Ω) +

1

η
||∂zψǫ||2L2(QT ) + ν||∂2

rψ
ǫ||2L2(QT )

+

∫ T

0

∫ l

0

eΛ−φǫ
a |ψǫa|2drdt+

∫ T

0

∫ l

0

eΛ−φǫ
b |ψǫb|2drdt

=
ǫ

2
||ψ0||2L2(Ω) +

1

2
||∂rψ0||2L2(Ω) +

∫ T

0

∫

Ω

∂rSψ
ǫdrdzdt .

(5.15)

Due to the uniform bound of ψǫ = ∂rφ
ǫ in L2(QT ), we get the estimate

∫ T

0

∫ l

0

|∂rφǫa|2eΛ−φǫ
adrdt+

∫ T

0

∫ l

0

|∂rφǫb|2eΛ−φǫ
bdrdt ≤ C ,

independent on ǫ, giving rise to the bound of ∂rg
ǫ
a,b = ∂rφ

ǫ
a,be

Λ−φǫ
a,b in L1((0, T )× (0, l)).

To do the same for the variable t, we have to be much more precise. Denote µǫ :=
∂tφ

ǫ. Derivating the problem (5.6) with respect to t yields a similar system as (5.14),
completed with a slightly changed initial condition































ǫ∂tµ
ǫ − ∂t∂

2
rµ

ǫ − 1

η
∂2
zµ

ǫ + ν∂4
rµ

ǫ = ∂tS , in QT ,

∂zµ
ǫ
a,b = ±ηµǫa,beΛ−

∫ t
0
µǫ

a,bdτ−φa,b(t=0,r) , on Γa ∪ Γb ,

ǫµǫt=0 − ∂2
rµ

ǫ
t=0 =

1

η
∂2
zφ0 − ν∂4

rφ0 + St=0 , in Ω .

(5.16)
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The initial condition for µǫ is deduced from equation (5.6) at t = 0. Similar arguments
as for the regularity in r yield the existence of a solution µǫ = ∂tφ

ǫ ∈ W (0, T ;V, V ∗),
satisfying the estimate

ǫ

2
||µǫ(T )||2L2(Ω) +

1

2
||∂rµǫ(T )||2L2(Ω) +

1

η
||∂zµǫ||2L2(QT ) + ν||∂2

rµ
ǫ||2L2(QT ) +

∫ T

0

∫ l

0

eΛ−φǫ
a |µǫa|2

+

∫ T

0

∫ l

0

eΛ−φǫ
b |µǫb|2drdt =

∫ T

0

∫

Ω

∂tSµ
ǫdrdzdt+

ǫ

2
||µǫt=0||2L2(Ω) +

1

2
||∂rµǫt=0||2L2(Ω) .

(5.17)
The right hand side is controlled in the following manner. First we have

∫ T

0

∫

Ω

∂tS∂tφ
ǫdrdzdt = −

∫ T

0

∫

Ω

∂2
t Sφ

ǫdrdzdt+

∫

Ω

∂tSt=Tφ
ǫ
t=Tdrdz −

∫

Ω

∂tS0φ0drdz .

Taking ∂tφ
ǫ ∈ L2(0, T ;V ) as test function in the variational formulation of (5.6), enables

to estimate ||φǫt=T ||L2(Ω). Indeed,

ǫ||∂tφǫ||2L2(QT ) + ||∂t∂rφǫ||2L2(QT ) +
1

2η
||∂zφǫt=T ||2L2(Ω) +

ν

2
||∂2

rφ
ǫ
t=T ||2L2(Ω)+

∫ T

0

∫ l

0

∂tφ
ǫ
a(1 − eΛ−φǫ

a) drdt+

∫ T

0

∫ l

0

∂tφ
ǫ
b(1 − eΛ−φǫ

b) drdt

=

∫ T

0

∫

Ω

S∂tφ
ǫ drdzdt+

1

2η
||∂zφ0||2L2(Ω) +

ν

2
||∂2

rφ0||2L2(Ω)

= −
∫ T

0

∫

Ω

∂tSφ
ǫ drdzdt+

∫

Ω

St=Tφ
ǫ
t=T drdz −

∫

Ω

S(0)φ0 drdz +
1

2η
||∂zφ0||2L2(Ω) +

ν

2
||∂2

rφ0||2L2(Ω) .

(5.18)
Then

∫ T

0

∫ l

0

∂tφ
ǫ
a,b(1 − eΛ−φǫ

a,b)drdt =

∫ l

0

[

φǫa,b(T ) + eΛ−φǫ
a,b(T )

]

dr −
∫ l

0

[

φa,b(0) + eΛ−φa,b(0)
]

dr .

Assuming like in the case for the energy estimate (5.2) that the term St=T is sufficiently
small, i.e. ||St=T ||L∞(Ω) ≤ CS and since x+ eΛ−x ≥ |x| for all |x| ≥ cΛ, it holds that

ǫ||∂tφǫ||2L2(QT )+ ||∂t∂rφǫ||2L2(QT )+
1

η
||∂zφǫt=T ||2L2(Ω)+ν||∂2

rφ
ǫ
t=T ||2L2(Ω)+

∫ l

0

|φǫa,b(T )|dr ≤ C ,

with a constant C > 0 independent on ǫ. Thus ||φǫt=T ||V ≤ C, independently on ǫ.

It remains to show that the term ǫ||∂tφǫt=0||2L2(Ω) + ||∂t∂rφǫt=0||2L2(Ω) on the right hand

side of (5.17) is bounded independently on ǫ. First it follows from (5.6), that ζǫ(r, z) :=
∂tφ

ǫ
t=0(r, z) satisfies the following system







ǫζǫ(r, z) − ∂2
r ζ

ǫ(r, z) = f(r, z) , (r, z) ∈ Ω

∂rζ
ǫ = 0 , on Σ ,

(5.19)
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where the right hand side f(r, z) = S0 + 1
η
∂2
zφ0 − ν∂4

rφ0 satisfies

∫ L

0/l

f(r, z)dr = 0 , f.a.a. z ∈ [0, 1] .

Indeed, the initial condition φ0 satisfies equation (5.1) at t = 0. The integration limits

of
∫ L

0/l
depend on z, taking for z ∈ [a, b] the integration interval r ∈ [0, L] and for

z ∈ [0, 1]\[a, b] the interval r ∈ [l, L]. For every z ∈ [0, 1], the system (5.19) has a unique
weak solution ζǫ(·, z) ∈ H2

r satisfying the energy estimate

ǫ

∫ L

0/l

|ζǫ(r, z)|2dr +

∫ L

0/l

|∂rζǫ(r, z)|2dr =

∫ L

0/l

f(r, z)ζǫ(r, z)dr ≤ ||f(·, z)||L2
r
||ζǫ(·, z)||L2

r
.

(5.20)

Integrating (5.19) with respect to r gives rise to
∫ L

0/l
ζǫ(r, z)dr = 0. Consequently, the

Poincaré-Wirtinger inequality yields from (5.20) the estimate

ǫ||ζǫ(·, z)||2L2
r
+ c||∂rζǫ(·, z)||2L2

r
≤ c||f(·, z)||2L2

r
.

Integrating this inequality with respect to z finally yields ||∂rζǫ||2L2(Ω) ≤ c and again by

the Poincaré-Wirtinger inequality ||ζǫ||2L2(Ω) ≤ c, independently on ǫ. This is nothing
else but

||∂tφǫt=0||2L2(Ω) ≤ c , ||∂t∂rφǫt=0||2L2(Ω) ≤ c .

Altogether we get from (5.17)

∫ T

0

∫ l

0

|∂tφǫa,b|2eΛ−φǫ
a,b ≤ C ,

with a constant C > 0 independent on ǫ. Hence ∂tg
ǫ
a,b = ∂tφ

ǫeΛ−φǫ
a,b is uniformly

bounded in L1((0, T )× (0, l)). We have thus shown that the functions gǫa,b are bounded
in W 1,1((0, T )× (0, l)) and conclude the existence proof. The uniqueness of this solution
φ ∈ X is a straightforward consequence of the monotonicity of the function −e−x.

6 Conclusion

Existence and uniqueness of a solution for the nonlinear equation describing the evolu-
tion of the electric potential of a turbulent plasma flow, was investigated. The results
are obtained under an appropriate smallness condition on the source term S as well as
by requiring more regularity of the source term and the initial condition φ0. An inter-
esting question is whether it is possible to avoid these hypothesis or at least to get them
weaker. Another open question concerns the numerical implementation of the here ana-
lyzed problem. Due to the fact that the parallel resistivity η is rather small, the problem
is strongly anisotropic, inducing thus numerical problems (it becomes degenerate in the
limit η → 0). All these open problems will be considered in a forthcoming work.
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