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Hardy-Littlewood-Sobolev and related inequalities: stability

J. Dolbeault, M. J. Esteban

Abstract. The purpose of this chapter is twofold. We present a review of the existing stability
results for Sobolev, Hardy-Littlewood-Sobolev (HLS) and related inequalities. We also con-
tribute to the topic with some observations on constructive stability estimates for (HLS).

It is with great pleasure that we dedicate this paper to Elliott Lieb on the occasion of
his 90th birthday.

1 A short review of some functional inequalities

Functional inequalities play a very important role in various fields of mathematics,
ranging from geometry, analysis, and probability theory to mathematical physics.
For many problems, the precise value of the best constants matters and was actively
studied, often in relation with the explicit knowledge of the optimizers. A standard
scheme goes as follows: by rearrangement and symmetrisation, optimality is reduced
to a smaller class of functions, for instance, to radial functions. After proving that
the equality case is achieved, the Euler-Lagrange equations are solved by ODE tech-
niques, which allows to classify the optimal functions and compute the best constants.
This is the strategy of E.H. Lieb in [72] for the Hardy-Littlewood-Sobolev inequality
which can be written as∬

R𝑛×R𝑛
𝑓 (𝑥) |𝑥 − 𝑦 |−𝜆𝑔(𝑦) 𝑑𝑥 𝑑𝑦 ≤ 𝐶𝑝,𝜆,𝑛 ‖ 𝑓 ‖𝐿𝑝 (R𝑛) ‖𝑔‖𝐿𝑡 (R𝑛) , (HLS𝜆)
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for all 𝑓 ∈ 𝐿 𝑝 (R𝑛), 𝑔 ∈ 𝐿𝑡 (R𝑛), with 1 < 𝑝, 𝑡 < +∞ such that 1/𝑝 + 1/𝑡 + 𝜆/𝑛 = 2
and 0 < 𝜆 < 𝑛. By duality he also obtained a new and simple proof of the fractional
Sobolev inequality, which goes as follows. If 𝛼 ∈ (0, 𝑛/2) and 𝑞 = 2 𝑛/(𝑛 − 2𝛼), then

‖(−Δ)𝛼/2 𝑓 ‖2
𝐿2 (R𝑛) ≥ 𝑆𝑛,𝛼 ‖ 𝑓 ‖2

𝐿𝑞 (R𝑛) (S𝛼)

for any smooth and compactly supported function 𝑓 . Refer to [73, Chapter 5] for
considerations on the domain D𝛼 of (−Δ)𝛼/2 based on Fourier transforms: it is the
space of all tempered distributions 𝑢 which vanishes at infinity and such that (−Δ)𝛼/2𝑢
is in 𝐿2(R𝑛). According to [73, 5.9(1) and 5.10(2)], we have

‖(−Δ)−𝛼/2 𝑓 ‖2
𝐿2 (R𝑛) =

𝑐𝑛−2𝛼
𝑐2𝛼

∬
R𝑛×R𝑛

𝑓 (𝑥) 𝑓 (𝑦)
|𝑥 − 𝑦 |𝑛−2𝛼 𝑑𝑥 𝑑𝑦 with 𝑐𝛼 = Γ(𝛼)/𝜋𝛼/2

for any 𝑓 ∈ 𝐿 𝑝 (R𝑛), so that∬
R𝑛×R𝑛

𝑓 (𝑥) 𝑓 (𝑦)
|𝑥 − 𝑦 |𝑛−2𝛼 𝑑𝑥 𝑑𝑦 =

𝑐2𝛼
𝑐𝑛−2𝛼

∫
R𝑛
𝑓 (−Δ)−𝛼 𝑓 𝑑𝑥 .

Taking the Legendre transform of both sides of (HLS𝜆) written for 𝑝 = 2 𝑛/(𝑛 + 2𝛼)
and 𝜆 = 𝑛 − 2𝛼, we realize that inequalities (HLS𝜆) and (S𝛼) are equivalent because
𝑞 = 2 𝑛/(𝑛 − 2𝛼) is the Hölder conjugate of 𝑝. Moreover, the optimal constants are
such that

𝑆𝑛,𝛼 =
𝑐2𝛼
𝑐𝑛−2𝛼

1
𝐶𝑝,𝜆,𝑛

with 𝜆 = 𝑛 − 2𝛼 and 𝑝 =
2 𝑛

𝑛 + 2𝛼
.

See [72] and [16] for further details on duality issues. Both (S𝛼) and (HLS𝜆) inequal-
ities are invariant by scaling and conformally invariant.

The classical case of Sobolev’s inequality corresponds to (S𝛼) with 𝛼 = 1. If 𝑛 ≥ 3,
the inequality can be written with 𝑆𝑛 = 𝑆𝑛,1 as

‖∇ 𝑓 ‖2
𝐿2 (R𝑛) ≥ 𝑆𝑛 ‖ 𝑓 ‖2

𝐿
2𝑛
𝑛−2 (R𝑛)

(S)

for all functions 𝑓 ∈ 𝐿 2𝑛
𝑛−2 (R𝑛) such that ∇ 𝑓 ∈ 𝐿2(R𝑛). Inequality (S) has a long his-

tory. An early computation of the best constant and the optimizers for the Sobolev
inequality among radial functions can be found in [9] (also see [81] for the linear sta-
bility of the radial optimizers). Without symmetry, the inequality is proved in [83,84]
and the computation of the constant and the optimal functions is classically attributed
to T. Aubin [4] and G. Talenti [87], even if it seems that a first complete proof goes
back to E. Rodemich’s seminar [80] (see [61, p. 158] for a quote). The value of the
best constant 𝑆𝑛 was found to be

𝑆𝑛 = 𝜋 𝑛 (𝑛 − 2)
(
Γ(𝑛/2)
Γ(𝑛)

)2/𝑛
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and equality is achieved in (S) if and only if 𝑓 is in the (𝑑 + 2)-dimensional mani-
fold MS of the Aubin-Talenti functions

ℎ𝜇,𝑥0 ,𝜎 (𝑥) := 𝜇
(
1 + 𝜎 |𝑥 − 𝑥0 |2

)−(𝑛−2)/2
∀ 𝑥 ∈ R𝑑

parametrised by (𝜇, 𝑥0, 𝜎) ∈ R × R𝑑 × (0, +∞). In terms of duality, it is straight-
forward to check that the (HLS𝜆) inequality corresponding to (S) is given by the
particular choice 𝜆 = 𝑛 − 2 and 𝑝 = 𝑡 of the parameters, and can be written as∫

R𝑛
𝑓 (−Δ)−1 𝑓 𝑑𝑥 ≤ C𝑛 ‖ 𝑓 ‖2

𝐿
2𝑛
𝑛+2 (R𝑛)

(1.1)

with

C𝑛 =
1
𝑆𝑛

=
1

𝜋 𝑛 (𝑛 − 2)

(
Γ(𝑛)
Γ(𝑛/2)

) 2
𝑛

. (HLS)

This case is important as it encodes the 𝐿 𝑝 smoothing properties of (−Δ)−1 on R𝑛.
Inequality (HLS𝜆) was introduced by G.H. Hardy and J.E. Littlewood [64–66] on

R and generalised by S.L. Sobolev [83, 84] to R𝑁 . The proof of the sharp (HLS𝜆)
inequality is due to E.H. Lieb in [72] with a more detailed proof in [73]. This proof
uses rearrangement techniques. The first proof of existence of an optimal function
without symmetrisation is due to P.-L. Lions in [74, Theorem 2.1] and relies on the
concentration-compactness method. This proof is useful for generalizations involving
non-symmetric convolution kernels, but does not allow to identify the optimal func-
tions. Also see [86, Section II.4] for the application to sharp Sobolev inequalities. The
concentration-compactness method is currently used, see for instance [10,27,79,89],
although most papers on the topic focus on the fractional Sobolev inequality rather
than on the corresponding (HLS𝜆) inequalities. A new rearrangement-free proof was
provided by R.L. Frank and E.H. Lieb in [57–59].

For the sake of simplicity, we restrict this presentation to few results and give
sketches of the proofs only in the case of (S) and (1.1). Without pretending to any
exhaustivity, we also list some results for (S𝛼), (HLS𝜆) and some related inequalities.

Gagliardo-Nirenberg-Sobolev inequalities refer to the two famous papers [60,78].
Within this class of inequalities, the inequality

‖𝑢‖𝐿𝑞 (R𝑛) ≤ 𝐶 ‖𝑢‖1−𝜃
𝐿𝑝 (R𝑛) ‖∇𝑢‖

𝜃

𝐿2 (R𝑛) (GNS)

holds for all smooth compactly supported functions, and by density, for all functions
𝑢 ∈ 𝐿 𝑝 (R𝑛) such that ∇𝑢 ∈ 𝐿2(R𝑛). We shall assume here that the parameters 𝑝 and
𝑞 are such that 2 ≤ 𝑝 < 𝑞 < 2∗ where 2∗ = +∞ if 𝑛 = 1 or 2, and 2∗ = 2 𝑛/(𝑛 − 2) if
𝑛 ≥ 3. The exponent

𝜃 =
2 𝑛 (𝑞−𝑝)

𝑞 (2 𝑑−𝑝 (𝑑−2))
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is uniquely determined by the scaling properties of the inequalities. Optimality in
inequality (GNS) is achieved among radial functions but there are only few cases for
which the best constants and the minimizers are known, for instance if 𝑞 = 2 (𝑝 − 1)
(see [26, 28, 63]) or if 𝑑 = 1.

Optimality results for the logarithmic Sobolev (log-Sobolev) inequality, the log-
arithmic Hardy-Littlewood-Sobolev (log-HLS) inequality, the Onofri inequality or
the Caffarelli-Kohn-Nirenberg inequalities, among many other functional inequali-
ties, have attracted a lot of attention over the years and we may refer for instance
to [15, 36, 62] for some key papers and to [12, Chapter 1, bibliographical comments]
for a short review. Functional inequalities in bounded domains or on manifolds will
not be discussed here, except for a few results on the sphere S𝑛 which are related to
inequalities on R𝑛 by the stereographic projection.

Once optimal constants are known and the set of optimising functions has been
characterised, the next question is to understand stability: which kind of distance is
measured by the deficit, that is, the difference of the two terms in the functional in-
equality, written with the optimal constant. A variety of answers has been obtained
during the last 30 years and this is what we are now going to review, mostly in the
case of (S) and (1.1).

2 Quantitative stability results

In the celebrated paper [14], H. Brezis and E.H. Lieb raise the question of the quan-
titative stability for Sobolev inequalities and gave an answer in bounded domains. A
related result is proved by H. Egnell, F. Pacella, and M. Tricarico in [44]. In the case
of the Sobolev inequality in the whole Euclidean space, the first quantitative stability
result is obtained by G. Bianchi and H. Egnell in [7]. They prove that

‖∇ 𝑓 ‖2
𝐿2 (R𝑛) − 𝑆𝑛 ‖ 𝑓 ‖

2
𝐿

2𝑛
𝑛−2 (R𝑛)

≥ 𝜅S inf
ℎ∈MS

‖∇ 𝑓 − ∇ℎ‖2
𝐿2 (R𝑛) (2.1)

for some positive constant 𝜅S whose value is not known, as they argue by compactness
using the concentration-compactness method and by contradiction. Stability results
are of course not limited to (S). In recent years, the problem of proving stability
for various sharp inequalities related to (S) in analysis and geometry, such as the
isoperimetric inequality, the Brunn-Minkowski inequality, the logarithmic Sobolev
inequality, etc., has been widely studied: see for instance [49–52]. The stability of the
Sobolev inequality in the case of an 𝐿𝑞 norm of the gradient with 𝑞 ≠ 2 is proved by
A. Cianchi, N. Fusco, F. Maggi and A. Pratelli in [24] using mass transportation, and
improved recently by A. Figalli, R. Neumayer and Y. R.-Y. Zhang in [53, 54, 76].

The proof in [7] uses the Hilbertian nature of 𝐻1(R𝑑). When the Hilbertian nature
of the underlying spaces is lost, as this is the case for the Gagliardo-Nirenberg-
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Sobolev inequalities, the same argument cannot be used. To circumvent this diffi-
culty two approaches are used for (GNS). The first approach relies on a trick due to
D. Bakry, that can be found in [5] (see a detailed computation in [12, Section 1.3.1.2]):
the (GNS) inequality with 𝑞 = 2 (𝑝 − 1), whose optimal functions are generated by

u𝑞 (𝑥) :=
(
1 + |𝑥 |2

)−1/(𝑞−1) ∀ 𝑥 ∈ R𝑑 , (2.2)

is rewritten as a Sobolev inequality in a higher, artificial, dimension such that the op-
timal functions appear as Aubin-Talenti functions. This idea is used first by E. Carlen
and A. Figalli in [18] and later expanded by F. Seuffert in [82] and V.H. Nguyen
in [77]. Constants are anyway non-constructive as they rely on [7]. Starting with [85],
another approach (which will not be reviewed here) has been developed for studying
the stability of the critical points of (S𝛼) in 𝐻−1: see [3,25,30,48,56,88]. Results are
again non-constructive and we are not aware of any counterpart in the case of (HLS𝜆).

There is a different line of thought which relies on entropy methods: see [12,
Chapter 1] for results based on the calculus of variations. Notice here that stability
is measured in terms of a relative Fisher information, which is not the same notion
of distance as in (2.1) but via the Pinsker-Csiszár-Kullback inequality it controls a
distance equivalent to ‖| 𝑓 |𝑝 − |ℎ|𝑝 ‖𝐿1 (R𝑛) . Up to minor restrictions, these estimates
can be made constructive and will be listed in the next section.

The Bianchi-Egnell method is not limited to the case 𝛼 = 1 of (S𝛼). In [22,
Theorem 1] S. Chen, R.L. Frank and T. Weth prove a stability result for (S𝛼): for
all 𝑓 ∈ D𝛼 ⊂ 𝐿𝑞 (R𝑛) with 𝑞 = 2𝑛/(𝑛 − 2𝛼) and 𝛼 ∈ (0, 𝑛/2),

‖(−Δ)𝛼/2 𝑓 ‖2
𝐿2 (R𝑛) − 𝑆𝑛,𝛼 ‖ 𝑓 ‖2

𝐿𝑞 (R𝑛) ≥ 𝜅S,𝛼 inf
ℎ∈MS,𝛼

‖(−Δ)𝛼/2( 𝑓 − ℎ)‖2
𝐿2 (R𝑛) (S𝛼)

where the manifold MS,𝛼 of optimal functions is generated from

ℎ(𝑥) =
(
1 + |𝑥 |2

) 2𝛼−𝑛
2

by multiplications by a constant, translations and scalings. The computation of the
spectrum of the linearized problem uses a reformulation on the sphere which will be
illustrated in Section 5. The dual counterpart for (HLS𝜆) inequalities is [16, Theo-
rem 1.5] due to E. Carlen, which goes as follows.

Theorem 2.1. Let 𝑛 ≥ 2. For all 𝛼 ∈ (0, 𝑛/2), there is a constant 𝜅HLS,𝛼 > 0 depend-
ing only on 𝑛 and 𝛼 such that for all 𝑓 ∈ 𝐿2𝑛/(𝑛+2𝛼) (R𝑛),

‖ 𝑓 ‖2
𝐿

2𝑛
𝑛+2𝛼 (R𝑛)

− 𝑆𝑛,𝛼 ‖(−Δ)−𝛼/2 𝑓 ‖2
𝐿2 (R𝑛) ≥ 𝜅HLS,𝛼 inf

ℎ∈MHLS,𝛼
‖ 𝑓 − ℎ‖2

𝐿
2𝑛

𝑛+2𝛼 (R𝑛)
.

(2.3)

Here MHLS,𝛼 is the manifold of all optimal functions, which is generated from

ℎ(𝑥) =
(
1 + |𝑥 |2

)− 𝑛+2𝛼
2
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by multiplication by a constant, translations and scalings. Using a duality argument
to relate (2.1) with (2.3) is not as straightforward as proving the equivalence of (S𝛼)
with (HLS𝜆) when 𝑝 = 𝑡 and 𝜆 = 𝑛 − 2𝛼. The interplay between stability bounds and
quantitative convexity estimates is crucial. This is analysed in [16], with the addi-
tional motivation of giving theoretical grounds for the stability bound associated with
the Keller-Lieb-Thirring inequality. This inequality estimates the fundamental eigen-
value 𝜆(𝑉) of a Schrödinger operator −Δ +𝑉 (𝑥) with ‖𝑉 ‖𝐿𝑡 (R𝑛) for an appropriate 𝑡,
and can be seen as the Legendre transform of (GNS) written with 𝑝 = 2: see [19]
for further details. Coming back to Theorem 2.1, an interesting consequence of the
method is that 𝜅HLS,𝛼 is explicitly computable in terms of 𝜅S. However, none of the
two constants is known nor has been given an explicit estimate for them. Notice that
a scheme of a direct proof based on a result of M. Christ in [23] has been proposed
in [75] by H. Liu and A. Zhang in the case of the Heisenberg group.

We refer to [47] for consequences of stability results. The remainder term in (2.1)
is quadratic and as R. Frank points out in [55] (see also [7] for a comment on this),
the power two is optimal since it is not possible to bound it from below with terms
like ‖∇ 𝑓 ‖2−𝛼

𝐿2 (R𝑛) ‖∇ 𝑓 − ∇ℎ‖𝛼
𝐿2 (R𝑛) for some 𝛼 < 2. Similar issues are addressed for

instance in [24, 52–54, 76]. In the same spirit, on the sphere S𝑛 with uniform prob-
ability measure 𝑑𝜇, R.L. Frank shows in [55, Theorem 2] that the optimal value for
which there exists some 𝜅 > 0 for which

‖∇ 𝑓 ‖2
𝐿2 (S𝑛) −

𝑑
𝑞−2

(
‖ 𝑓 ‖2

𝐿𝑞 (S𝑛) − ‖ 𝑓 ‖2
𝐿2 (S𝑛)

)
≥ 𝜅

(
‖∇ 𝑓 ‖2

𝐿2 (S𝑛 )
− 𝑑

𝑞−2

(
‖ 𝑓 ‖2

𝐿2 (S𝑛 )
− 𝑓 2

)) 𝛼
2(

‖∇ 𝑓 ‖2
𝐿2 (S𝑛 )

+ 𝑑
𝑞−2 ‖ 𝑓 ‖2

𝐿2 (S𝑛 )

) 𝛼−2
2

with 𝑓 :=
∫
S𝑛
𝑓 𝑑𝜇, is 𝛼 = 4. Here we use the notation

‖ 𝑓 ‖𝐿𝑞 (S𝑛) =

(∫
S𝑛

| 𝑓 |𝑞 𝑑𝜇
) 2

𝑞

.

Optimal remainder terms are also found to be quartic on the non-trivial manifold
S1(1/√𝑛−2) × S𝑛−1 as the minimizer is degenerate in the sense that there is a zero mode
of the Hessian of the minimisation problem that does not come from symmetries of
the set of minimizers. Notice that other results can be obtained for different choices
of the distance on the sphere: see, e.g., [37].

Summarizing, in quantitative stability results obtained from methods à la Bianchi
and Egnell, the exponent in the distance term is at least partially understood. Essen-
tially nothing is known on the value of the constant 𝜅S and similar constants in related
stability inequalities, or even how to get such constructive estimates for strong notions
of distances. There are some results for weaker notions of distance and this is what
we shall expose in the next sections.
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3 Stability results for (1.1) by parabolic methods

E. Carlen, J.A. Carrillo and M. Loss prove in [17] that

C𝑛 ‖ 𝑓 ‖2
𝐿

2𝑛
𝑛+2 (R𝑛)

−
∫
R𝑛
𝑓 (𝑥) (−Δ)−1 𝑓 (𝑥) 𝑑𝑥 = 8

𝑛 + 2

∫ +∞

0
𝑒𝛽𝑡 D

[
𝑢

𝑛−1
𝑛+2

(
· , 𝑒𝛽𝑡

) ]
𝑑𝑡 ,

where 𝑢 = 𝑢(𝑡, 𝑥) is the solution of the fast diffusion equation

𝜕𝑢

𝜕𝑡
= Δ 𝑢𝑚 in R𝑛 , 𝑡 ≥ 0 ,

with exponent 𝑚 = 𝑛/(𝑛 + 2) and initial datum 𝑢(0, 𝑥) = 𝑓 (𝑥). The deficit is measured
by

D[𝑔] := C𝑛

𝑛 (𝑛 − 2)
(𝑛 − 1)2 ‖𝑔‖2

𝐿2 (R𝑛) ‖𝑔‖
2(𝑝−1)
𝐿𝑝+1 (R𝑛) − ‖𝑔‖2𝑝

𝐿2𝑝 (R𝑛)

for any function 𝑔 ∈ 𝐻1(R𝑛), where 𝑝 = (𝑛 + 1)/(𝑛 − 1). By [28], it turns out that
D[𝑔] ≥ 0 is a sharp form of (GNS) inequalities, with equality if and only if 𝑔(𝑥) =(
1 + |𝑥 |2

)1/(𝑝−1) up to a multiplication by a constant, a translation and a scaling. The
proof of the equality case can be achieved either by symmetrisation, variational meth-
ods and ODE techniques, or using the carré du champ method adapted to the fast
diffusion equation (see [70] for detailed justifications and references). This result pro-
vides us with a proof of the sharp (HLS𝜆) inequality, identifies the optimal function
in terms of a Barenblatt profile and provides an integral deficit term. Moreover, the
carré du champ method allows to bypass symmetrisation techniques.

Another fast diffusion equation, now with exponent 𝑚 = (𝑛 − 2)/(𝑛 + 2), provides
us with similar results. If 𝑛 ≥ 3, a formal computation shows that

𝑑

𝑑𝑡

(
C𝑛 ‖ 𝑓 ‖2

𝐿
2𝑛
𝑛+2 (R𝑛)

−
∫
R𝑛
𝑓 (𝑥) (−Δ)−1 𝑓 (𝑥) 𝑑𝑥

)
= 2 ‖ 𝑓 ‖

4
𝑛+2

𝐿
2𝑛
𝑛+2 (R𝑛)

D[𝑣]

where 𝑣 = 𝑢𝑚 and, for any 𝑔 ∈ 𝐿 2𝑛
𝑛−2 (R𝑛) such that ∇𝑔 ∈ 𝐿2(R𝑛),

D[𝑔] := ‖∇𝑔‖2
𝐿2 (R𝑛) − 𝑆𝑛 ‖𝑔‖

2
𝐿

2𝑛
𝑛−2 (R𝑛)

.

In the spirit of the carré du champ method, it can be shown that the inequality D[𝑔]
is monotone non-increasing with limit 0, so that D[𝑔] ≥ 0 is in fact the standard
Sobolev inequality, with optimal constant 𝑆𝑛 = 1/C𝑛. In practice the solution of the
fast diffusion equation with 𝑚 = (𝑛 − 2)/(𝑛 + 2) vanishes for some finite time 𝑇 > 0
and justifications require some additional care. For instance, it is convenient to use
the inverse stereographic projection and rewrite the evolution equation on the unit
sphere: see [31, 39, 69] for details. Altogether, we may conclude that

C𝑛 ‖ 𝑓 ‖2
𝐿

2𝑛
𝑛+2 (R𝑛)

−
∫
R𝑛
𝑓 (𝑥) (−Δ)−1 𝑓 (𝑥) 𝑑𝑥 = 2

∫ 𝑇

0
D

[
𝑢𝑚(𝑡, ·)

]
𝑑𝑡 .
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In both cases associated with 𝑚 = 𝑛/(𝑛 + 2) and 𝑚 = (𝑛 − 2)/(𝑛 + 2), it is not
known how to express the deficit of the inequality in terms of the initial datum of the
evolution equation.

4 Constructive stability results

Few constructive stability results are known so far. In [52], A. Figalli, F. Maggi and
A. Pratelli use mass transportation and rearrangements to prove constructive stability
results for the 1-Sobolev anisotropic inequalities for functions of bounded variation.
The initial idea to prove those results comes from a previous work of N. Fusco,
F. Maggi and A. Pratelli, who prove a non-constructive stability result for the isotropic
1-Sobolev inequality for functions of bounded variation.

As a straightforward consequence of the duality approach, an explicit stability
bound for (S𝛼) is easily obtained where the distance to the Aubin-Talenti manifold
MS,𝛼 is measured in terms of the deficit in (HLS𝜆) with 𝜆 = 𝑛 − 2𝛼. Let us give some
details. We consider the case of (HLS𝜆) with the particular choice 𝜆 = 𝑛 − 2𝛼 and
𝑝 = 𝑡 = 2 𝑛/(𝑛 + 2𝛼) of the parameters. The optimal function for (HLS𝜆) is, up to a
multiplication by a constant, a translation and a scaling, given by

𝑔★(𝑥) :=
(
1 + |𝑥 |2

) 𝜆
2 −𝑛 ∀ 𝑥 ∈ R𝑑 .

We know from [72] and [16, Theorem 1.2] that the optimal functions for (S𝛼) is 𝑔𝑟★
with 𝑟 = 𝑛−2𝛼

𝑛+2𝛼 , up to multiplications by a constant, translations and scalings. By a
standard trick used for instance in [31, Theorem 1.2], [69, Theorem 1.4] and [68,
Theorem 1, (i)], the expansion of the square in

0 ≤
∫
R𝑛

����‖ 𝑓 ‖ 4𝛼
𝑛−2𝛼
𝐿𝑞 (R𝑛)∇(−Δ)

𝛼−1
2 𝑓 − 𝑆𝑛,𝛼 ∇(−Δ)− 1+𝛼

2 𝑔

����2 𝑑𝑥 ,
with 𝑔𝑟 = 𝑓 so that ‖ 𝑓 ‖2

𝐿𝑞 (R𝑛) = ‖𝑔‖2𝑟
𝐿𝑝 (R𝑛) if 𝑞 = 2 𝑛/(𝑛 − 2𝛼), shows that

𝑆𝑛,𝛼

(
‖𝑔‖2

𝐿𝑝 (R𝑛) − 𝑆𝑛,𝛼 ‖(−Δ)−𝛼/2𝑔‖2
𝐿2 (R𝑛)

)
≤ ‖ 𝑓 ‖

8𝛼
𝑛−2𝛼
𝐿𝑞 (R𝑛)

(
‖(−Δ)𝛼/2 𝑓 ‖2

𝐿2 (R𝑛) − 𝑆𝑛,𝛼 ‖ 𝑓 ‖2
𝐿𝑞 (R𝑛)

)
.

Slightly better results are obtained using flow methods as in [31, 39, 68] which have
not been detailed in Section 3. Notice that the expansion of the square applies to
logarithmic inequalities corresponding to the limit cases as 𝛼 → 𝑛/2. See [38, Theo-
rem 10] for further considerations in the case 𝛼 = 1 and 𝑛 = 2. The main drawback is
that, in all these approaches, the stability is controlled only in a weaker norm.
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The situation is slightly better for subcritical (GNS) inequalities. Constructive re-
sults are obtained by M. Bonforte et al. in [8, 11] in a very small neighborhood of
the manifold of the Aubin-Talenti functions and were later improved in [40, 41]. The
global result of [41] is explicit but sub-optimal as the remainder term is of the order
of the square of the entropy while one expects a linear dependence in view of [11,40].
It is true also in the logarithmic case as explained in [43] through scaling properties.
Notice that stability results in logarithmic Sobolev inequalities is a widely studied
question, with various results in 𝐿1 and in Wasserstein distances: see [45, 46, 67, 71]
and references therein. The proof of [41] is based on the use of the remainder terms
in the carré du champ method and has an already long history in the framework of
entropy methods for linear diffusion equations: see [1, 2]. A remarkable property of
the carré du champ method is that it also applies to nonlinear flows of fast diffusion
type [20, 21, 35, 41, 42], eventually with a non-trivial metric (see [5] and references
therein), on the Euclidean space or on manifolds: see for instance [29, 34]. As a con-
sequence, let us give some examples on the sphere, which are taken from [32,33,37].
Using the uniform probability measure 𝑑𝜇 as in Section 2, for any 𝑞 ∈ (1, 2) ∪ (2, 2∗)
and any 𝑢 ∈ 𝐻1(S𝑑),

‖∇𝑢‖2
𝐿2 (S𝑛) −

𝑑
𝑞−2

(
‖𝑢‖2

𝐿𝑞 (S𝑛) − ‖𝑢‖2
𝐿2 (S𝑛)

)
≥ 𝑑 𝜓

(
‖𝑢 ‖2

𝐿𝑞 (S𝑛 )−‖𝑢 ‖
2
𝐿2 (S𝑛 )

(𝑞−2) ‖𝑢 ‖2
𝐿𝑞 (S𝑛 )

)
‖𝑢‖2

𝐿𝑞 (S𝑛)

holds for an explicit, strictly convex𝐶2 function 𝜓 such that 𝜓(0) =𝜓 ′(0) = 0 (see [32]
for details). Here equality is achieved only by constant functions, but optimality con-
stants are determined by perturbations involving the spherical harmonics associated
with the first eigenvalue of the Laplace-Beltrami operator on S𝑛. By requesting ad-
ditional orthogonality constraints, which discard these spherical harmonics, the con-
stant 𝑑 in the left-hand side can be improved (with 𝜓 = 0). See [37, Section 5] and [32].
The corresponding improved entropy – entropy production inequality can be reinter-
preted as a stability result. The constant 𝜅 in front of the distance term is obtained
through a classical minimisation problem. The value of the minimum is not explicitly
known, except in the limit case of the logarithmic Sobolev inequality as 𝑞 → 2 or if
additional symmetry assumptions are imposed.

Recent work by M. Bonforte et al. provides the first quantitative and construc-
tive stability result for (GNS) and Sobolev inequalities on the Euclidean space, under
some constraints. Using entropy methods and fast diffusion flows, the authors prove
in [12] (also see [13] for a scheme of the proof and further considerations on the
method) that stability for initial data can be deduced from improved decay rates of rel-
ative entropies in rescaled variables when the rescaling is chosen in order to match the
solution with the best matching Barenblatt profile among all Barenblatt self-similar
solutions: the stability is then measured by a relative Fisher information and takes the
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form
inf

𝜑∈MGNS

∫
R𝑛

��(𝑞 − 1) ∇𝑢 + 𝑢𝑞 ∇𝜑1−𝑞 ��2 𝑑𝑥 ,
where MGNS is the manifold generated from u𝑞 defined in (2.2) by multiplications by
a constant, translations and scalings. The result holds for any of the inequalities (GNS)
with 𝑞 = 2 (𝑞 − 1) ∈ (1, 2∗) and also for the Sobolev inequality (S) when 𝑞 = 2∗,
𝑑 ≥ 3. The method relies on regularisation properties of the fast diffusion flows which
introduce an integral decay condition on the initial data. Regularity and properties of
the entropy are then used to extend the asymptotic stability results into the initial
time layer, where nonlinear evolution takes place and the evolution of the entropy is
controlled using the nonlinear carré du champ method by backward in time estimates.
The core of the method is a constructive Harnack inequality based on J. Moser’s
methods and a fully quantitative global Harnack Principle for the nonlinear flow. This
quantifies the threshold time after which the solution is in the asymptotic regime and
the convergence is governed by an improved Hardy-Poincaré inequality, based on a
spectral analysis. Improved decay rates are then extended to the initial time layer, thus
proving an improved entropy – entropy production inequality for the solution, which is
also valid for the initial data. The improved inequality is rephrased as a stability result
while Barenblatt profiles are transformed into the Aubin-Talenti type functions u𝑞 .
The whole method relies on entropies, which requires to work with functions with a
finite second moment, and on a global Harnack Principle, which provides us with a
uniform threshold time if and only if the tails of the initial data have sufficient decay.
These limitations are the price to pay in order to get a constructive stability estimate
with an explicit constant.

Establishing constructive stability results for (1.1) is so far an open question.

5 Two local stability results for (1.1)

5.1 A local stability result in the norm of relative uniform convergence

In the spirit of [8, 39], we first establish a constructive stability result of (1.1) in a
neighbourhood of the optimal functions, with respect to the very strong topology
of relative uniform convergence. See [12] for an illustration of the interest of this
framework. The price to pay is that the result applies in a neighbourhood of M :=
MHLS1 in a topology stronger than the natural topology.

Equality in (1.1) is achieved by the function

𝑢★(𝑥) =
(
1 + |𝑥 |2

)−(𝑛+2)/2 ∀ 𝑥 ∈ R𝑑 .

Let us define the functions

𝑓0 := 𝑢
𝑛−2
𝑛+2
★ =

(
1 + |𝑥 |2

)− 𝑛−2
2 , 𝑓𝑖 :=

𝑥𝑖

1 + |𝑥 |2
𝑓0 , 𝑓𝑛+1 :=

1 − |𝑥 |2
1 + |𝑥 |2

𝑓0 ,
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and the norm

‖𝑣‖2
★ :=

∫
R𝑛
𝑢
− 4

𝑛+2
★ 𝑣(𝑥)2 𝑑𝑥 =

∫
R𝑛
𝑣(𝑥)2 (1 + |𝑥 |2

)2
𝑑𝑥 . (5.1)

For perturbations 𝑢★ + 𝜀 𝑢
4

𝑛+2
★ 𝑔 of 𝑢★ such that 𝑢− 𝑛−2

𝑛+2
★ 𝑔


𝐿∞ (R𝑛) ≤ 1 , (5.2)

there is a stability result for (1.1) which is uniform in 𝜀 > 0 small enough. Notice
that (5.2) can be rewritten as

(1 − 𝜀) 𝑢★ ≤ 𝑢𝜀 := 𝑢★ + 𝜀 𝑢
4

𝑛+2
★ 𝑔 ≤ (1 + 𝜀) 𝑢★ .

This means that 𝑢𝜀/𝑢★ is 𝜀-close to 1, i.e., 𝑢𝜀 is close to 𝑢★ in the topology of relative
uniform convergence (see [8, 12]) associated with the norm 𝑣 ↦→ ‖𝑣/𝑢★‖𝐿∞ (R𝑛) .

Theorem 5.1. Let 𝑛 ≥ 3. If 𝑔 fullfils (5.2) and the orthogonality conditions∫
R𝑛

𝑔 𝑓𝑖(
1 + |𝑥 |2

)2 𝑑𝑥 = 0 ∀ 𝑖 = 0, 1, . . . , 𝑛 + 1 , (5.3)

then for any 𝜀 ∈ (0, 1), the function 𝑢𝜀 = 𝑢★ + 𝜀 𝑢
4

𝑛+2
★ 𝑔 satisfies

C𝑛 ‖𝑢‖2
𝐿

2𝑛
𝑛+2 (R𝑛)

−
∫
R𝑛
𝑢 (−Δ)−1𝑢 𝑑𝑥 ≥ 𝜅𝑛 ‖𝑢 − 𝑢★‖2

★

with 𝜅𝑛 := 8 (𝑛+1)
3 𝑛 (𝑛+2)2 (𝑛+4) .

Proof. Let 𝑝 = 2 𝑛/(𝑛 + 2). By using the fact that 𝑢★ is optimal, inequality (1.1) can
be written as H [𝑢] ≥ 0 with

H [𝑢] := C𝑛

(
‖𝑢‖2

𝐿𝑝 (R𝑛) − ‖𝑢★‖2
𝐿𝑝 (R𝑛) − 2 ‖𝑢★‖

4
𝑛+2
𝐿𝑝 (R𝑛)

∫
R𝑛
𝑢

𝑛−2
𝑛+2
★ (𝑢 − 𝑢★) 𝑑𝑥

)
−

∫
R𝑛

(𝑢 − 𝑢★) (−Δ)−1(𝑢 − 𝑢★) 𝑑𝑥 .

Assume that 𝑔 satisfies (5.2) and (5.3). We notice that∫
R𝑛
𝑢

𝑛−2
𝑛+2
★ (𝑢 − 𝑢★) 𝑑𝑥 =

∫
R𝑛
𝑓0 (𝑢 − 𝑢★) 𝑑𝑥 = 0 ,

and as a consequence

H [𝑢] = C𝑛

(
‖𝑢‖2

𝐿𝑝 (R𝑛) − ‖𝑢★‖2
𝐿𝑝 (R𝑛)

)
−
∫
R𝑛

(𝑢 − 𝑢★) (−Δ)−1(𝑢 − 𝑢★) 𝑑𝑥 .
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By a Taylor-Lagrange expansion, we have

|𝑢 |𝑝 − 𝑢𝑝★ − 𝑝 𝑢𝑝−1
★ (𝑢 − 𝑢★) − 1

2 𝑝 (𝑝 − 1) 𝑢𝑝−2
★ (𝑢 − 𝑢★)2

= 1
6 𝑝 (𝑝 − 1) (𝑝 − 2) |𝜉 |𝑝−4 𝜉 (𝑢 − 𝑢★)3

for some intermediate value 𝜉 between 𝑢★ and 𝑢. With 𝑝 = 2𝑛/(𝑛 + 2) ∈ (1,2), 𝑢★ > 0
and |𝑢 − 𝑢★| < 𝜀 𝑢★ for some 𝜀 ∈ (0, 1), we know that 𝜉 is positive. In that case, either
𝑢 < 𝑢★ and the right-hand side is positive, or 𝑢 ≥ 𝑢★ and

|𝜉 |𝑝−4 𝜉 (𝑢 − 𝑢★)3 ≤ 𝑢𝑝−3
★ (𝑢 − 𝑢★)3 .

By using |𝑔 | ≤ 𝑢
𝑛−2
𝑛+2
★ by (5.2), the expansion applied with 𝑢 = 𝑢𝜀 shows that

1
6 𝑝 (𝑝 − 1) (𝑝 − 2) |𝜉 |𝑝−4 𝜉 (𝑢 − 𝑢★)3 ≥ −4 𝑛 (𝑛 − 2)

3 (𝑛 + 2)3 𝜀
3 𝑢

4
𝑛+2
★ 𝑔2 .

After taking into account (5.3) and 𝑢
4

𝑛+2
★ (𝑥) =

(
1 + |𝑥 |2

)−2, we obtain∫
R𝑛

|𝑢𝜀 |𝑝 𝑑𝑥 ≥
∫
R𝑛
𝑢
𝑝
★ 𝑑𝑥 +

𝑛 (𝑛 − 2)
(𝑛 + 2)2 𝜀

2
(
1 − 4 𝜀

3 (𝑛 + 2)

) ∫
R𝑛
𝑢

4
𝑛+2
★ 𝑔2 𝑑𝑥 .

By a Taylor-Lagrange expansion again, we know that 𝑠𝑞 ≥ 𝑠
𝑞
★ + 𝑞 𝑠★𝑞−1 (𝑠 − 𝑠★) if

𝑞 > 1 and 𝑠 > 𝑠★ > 0. Applied with 𝑞 = 1 + 2/𝑛, 𝑠 =
∫
R𝑛

|𝑢𝜀 |𝑝 𝑑𝑥 with 𝜀 ∈ (0, 1) so
that 4 𝜀

3 (𝑛+2) < 1, and 𝑠★ =
∫
R𝑛
𝑢
𝑝
★ 𝑑𝑥, we infer that

‖𝑢𝜀 ‖2
𝐿𝑝 (R𝑛) − ‖𝑢★‖2

𝐿𝑝 (R𝑛) ≥
(
1 − 4 𝜀

3 (𝑛 + 2)

)
𝜀2 M[𝑔]

where
M[𝑔] :=

𝑛 − 2
𝑛 + 2

‖𝑢★‖
4

𝑛+2
𝐿𝑝 (R𝑛)

∫
R𝑛

𝑔(𝑥)2(
1 + |𝑥 |2

)2 𝑑𝑥 .
With

D[𝑔] :=
∫
R𝑛

𝑔(𝑥)(
1 + |𝑥 |2

)2 (−Δ)−1 𝑔(𝑥)(
1 + |𝑥 |2

)2 𝑑𝑥 ,
we know that

H [𝑢𝜀] ≥ C𝑛 M[𝑔] 𝜀2
(
1 − 4 𝜀

3 (𝑛 + 2) −
D[𝑔]

C𝑛 M[𝑔]

)
.

Finally, we study the quotient D[𝑔]/M[𝑔] among functions which satisfy the or-
thogonality conditions (5.3). To this end, let us consider the orthonormal basis of
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functions of 𝐿2 (R𝑛, (1 + |𝑥 |2)−2𝑑𝑥
)

made of the spherical harmonics on S𝑛 mapped
into R𝑛 via the stereographic projection. They satisfy the equations

−Δ𝑔𝑘 = 𝜇𝑘
𝑔𝑘(

1 + |𝑥 |2
)2 , 𝜇𝑘 = 4 𝑘 (𝑘 + 𝑛 − 1) + 𝑛 (𝑛 − 2)

and as a consequence, we have

D[𝑔𝑘 ] =
1
𝜇𝑘

∫
R𝑛

|𝑔𝑘 (𝑥) |2(
1 + |𝑥 |2

)2 𝑑𝑥 .
Under condition (5.3), 𝑔 =

∑
𝑘≥2 𝑎𝑘 𝑔𝑘 is such that∫

R𝑛

𝑔(𝑥)2(
1 + |𝑥 |2

)2 𝑑𝑥 = ∑︁
𝑘≥2

|𝑎𝑘 |2 and D[𝑔] =
∑︁
𝑘≥2

|𝑎𝑘 |2
𝜇𝑘

.

Since (𝜇𝑘 )𝑘∈N is an increasing sequence, it follows that

D[𝑔]∫
R𝑛

𝑔 (𝑥)2(
1+|𝑥 |2

)2 𝑑𝑥
≤ 1
𝜇2

=
1

(𝑛 + 2) (𝑛 + 4) (5.4)

Taking into account the fact that

‖𝑢★‖ 𝑝𝐿𝑝 (R𝑛) =
21−𝑛 𝜋

𝑛+1
2

Γ( 𝑛+1
2 )

and the expression of C𝑛 in (1.1), we obtain

H [𝑢𝜀] ≥
4 𝜀2

𝑛 (𝑛 + 2)

(
1

𝑛 + 4
− 𝜀

3 (𝑛 + 2)

)
≥ 𝜅𝑛 𝜀

2
∫
R𝑛

𝑔(𝑥)2(
1 + |𝑥 |2

)2 𝑑𝑥 ,
because 𝜀 < 1. This completes the proof of Theorem 5.1.

A stability result similar to Theorem 5.1 can be established for (HLS𝜆) with the
particular choice 𝜆 = 𝑛 − 2𝛼 and 𝑝 = 𝑡 = 2𝑛/(𝑛 − 2𝛼) of the parameters, 𝛼 ∈ (0, 𝑛/2),
by adapting the computations of [68, Section 4].

Let us consider on 𝐻−1(R𝑛) the norm � 𝑓 � = ‖∇(−Δ)−1 𝑓 ‖𝐿2 (R𝑛) such that

� 𝑓 �2 =

∫
R𝑛
𝑓 (−Δ)−1 𝑓 𝑑𝑥 = 𝜋2− 𝑛

2 Γ(𝑛 − 2)
∬
R𝑛×R𝑛

𝑓 (𝑥) 𝑓 (𝑦)
|𝑥 − 𝑦 |𝑛−2 𝑑𝑥 𝑑𝑦 .

Here we consider again the case 𝜆 = 𝑛 − 2 of (HLS𝜆), with 𝑝 = 𝑡 = 2 𝑛/(𝑛 + 2), and
recall that 𝐿 𝑝 (R𝑛) ⊂ 𝐻−1(R𝑛). For any 𝑓 ∈ 𝐿 𝑝 (R𝑛) and any ℎ ∈ M := MHLS,1, let
us define the quotient

Q[ 𝑓 , ℎ] :=
‖ 𝑓 ‖2

𝐿𝑝 (R𝑛) − 𝑆𝑛 ‖(−Δ)
−1/2 𝑓 ‖2

𝐿2 (R𝑛)

� 𝑓 − ℎ�2 .
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Our goal is to prove that for some 𝜅 > 0

inf
ℎ∈M

Q[ 𝑓 , ℎ] ≥ 𝜅 (5.5)

for all functions in a small neighbourhood of M , to be defined. Theorem 5.1 is al-
ready a result of this type: if

𝑔 =
1
𝜀
( 𝑓 − 𝑢★) 𝑢

− 4
𝑛+2

★

satisfies (5.2) for some 𝜀 ∈ (0, 1), using (5.4), we obtain a first local stability result
with 𝜅 = (𝑛 + 2) (𝑛 + 4) 𝜅𝑛. An important drawback is that the topology of the relative
uniform convergence is very strong so that the eligible functions 𝑓 is a small set in
the natural function space.

5.2 A local stability result in a weighted norm

Here we want to work in the more natural framework of the norm defined by (5.1).
We recall that 𝑝 = 2 𝑛/(𝑛 + 2). By Hölder’s inequality, we can write

‖ 𝑓 ‖2
𝐿𝑝 (R𝑛) ≤ ‖𝑢★‖

4
𝑛+2
𝐿𝑝 (R𝑛) ‖ 𝑓 ‖

2
★ , (5.6)

which means that ‖ 𝑓 ‖2
★ is a stronger norm than ‖ 𝑓 ‖2

𝐿𝑝 (R𝑛) . Equality holds in (5.6) for
𝑓 > 0 such that ‖ 𝑓 ‖𝐿𝑝 (R𝑛) = ‖𝑢★‖𝐿𝑝 (R𝑛) if and only if 𝑓 = 𝑢★ so that

‖ 𝑓 ‖2
𝐿𝑝 (R𝑛) − ‖𝑢★‖

4
𝑛+2
𝐿𝑝 (R𝑛) ‖ 𝑓 ‖

2
★

measures the distance of 𝑓 to 𝑢★. This can be made precise using (1 + 𝑠)2/𝑝 ≥
1 + 2 𝑠/𝑝 for any 𝑠 ≥ 0 and, according to the generalised Pinsker-Csiszár-Kullback
inequality (see e.g., [6, Proposition 1.1]) as follows: for any function 𝑓 ∈ 𝐿 𝑝 (R𝑛),(

‖ 𝑓 ‖2
𝐿𝑝 (R𝑛) − ‖𝑢★‖2

𝐿𝑝 (R𝑛)

)
≥ 2
𝑝
‖𝑢★‖2−𝑝

𝐿𝑝 (R𝑛)

(∫
R𝑛

| 𝑓 |𝑝 𝑑𝑥 −
∫
R𝑛
𝑢
𝑝
★ 𝑑𝑥

)
≥ 21− 2

𝑝 (𝑝 − 1) ‖ | 𝑓 | − 𝑢★‖2
𝐿𝑝 (R𝑛) .

For simplicity, we shall assume again that 𝛼 = 1, so that 𝜆 = 𝑛 − 2 as in Section 5.1.
The extension to 𝛼 ≠ 1 is left to the reader. Since 𝑢★ is a critical point of H [ 𝑓 ], we
can write that

1 + Q[ 𝑓 , 𝑢★] = C𝑛

‖ 𝑓 ‖2
𝐿𝑝 (R𝑛) − ‖𝑢★‖2

𝐿𝑝 (R𝑛) − 2 ‖𝑢★‖
4

𝑛+2
𝐿𝑝 (R𝑛)

∫
R𝑛
𝑢

𝑛−2
𝑛+2
★ ( 𝑓 − 𝑢★) 𝑑𝑥

� 𝑓 − 𝑢★�2
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Theorem 5.2. Let 𝑛 ≥ 3. Let 𝑓 ∈ 𝐿 𝑝 (R𝑛) be a nonnegative function such that the
orthogonality conditions (5.3) are fullfiled by

𝑔 = ( 𝑓 − 𝑢★) 𝑢
− 4

𝑛+2
★ .

If one has

𝑛 + 4
3 (𝑛 + 2) (1 + 𝜂)

∫
R𝑛
𝑢
𝑝−3
★ | 𝑓 − 𝑢★|3 𝑑𝑥 ≤

∫
R𝑛
𝑢
𝑝−2
★ | 𝑓 − 𝑢★|2 𝑑𝑥 (5.7)

for some 𝜂 > 0, then (5.5) holds with 𝜅 = 4 𝜂

𝑛 (1+𝜂) .

Proof. Let us consider ℎ such that

𝑓 − 𝑢★ = 𝜀 ℎ with 𝜀 := � 𝑓 − 𝑢★�

and define

X := ‖ℎ‖2
★ =

∫
R𝑛
𝑢
𝑝−2
★ ℎ2 𝑑𝑥 and Y :=

∫
R𝑛
𝑢
𝑝−3
★ |ℎ|3 𝑑𝑥 .

A Taylor-Lagrange expansion shows that∫
R𝑛

| 𝑓 |𝑝 𝑑𝑥 ≥
∫
R𝑛
𝑢
𝑝
★ 𝑑𝑥 +

𝑛 (𝑛 − 2)
(𝑛 + 2)2 𝜀

2 X − 4 𝑛 (𝑛 − 2)
3 (𝑛 + 2)3 𝜀

3 Y .

Using

(1 + 𝑠)2/𝑝 ≥ 1 + 2 𝑠
𝑝

for any 𝑠 ≥ 0, we obtain

‖ 𝑓 ‖2
𝐿𝑝 (R𝑛) − ‖𝑢★‖2

𝐿𝑝 (R𝑛) ≥ 𝐾0 𝜀
2
(
𝑛 (𝑛 − 2)
(𝑛 + 2)2 X − 4 𝑛 (𝑛 − 2)

3 (𝑛 + 2)3 𝜀 Y
)

with

𝐾0 :=
2
𝑝
‖𝑢★‖2−𝑝

𝐿𝑝 (R𝑛) = 𝜋
𝑛 + 2
𝑛

(
Γ(𝑛/2)
Γ(𝑛)

) 2
𝑛

=
1
𝑛2

𝑛 + 2
𝑛 − 2

1
C𝑛

.

On the other hand, Inequality (5.4) applied to 𝑔 =
(
1 + |𝑥 |2

)2( 𝑓 − 𝑢★) shows that∫
R𝑛

( 𝑓 − 𝑢★) (−Δ)−1( 𝑓 − 𝑢★) 𝑑𝑥 ≤
‖ 𝑓 − 𝑢★‖2

★

(𝑛 + 2) (𝑛 + 4) =
𝜀2 X

(𝑛 + 2) (𝑛 + 4) . (5.8)
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Hence

H [ 𝑓 ] = C𝑛

(
‖ 𝑓 ‖2

𝐿𝑝 (R𝑛) − ‖𝑢★‖2
𝐿𝑝 (R𝑛)

)
−
∫
R𝑛

( 𝑓 − 𝑢★) (−Δ)−1( 𝑓 − 𝑢★) 𝑑𝑥

≥ 1
𝑛2

𝑛 + 2
𝑛 − 2

𝜀2
(
𝑛 (𝑛 − 2)
(𝑛 + 2)2 X − 4 𝑛 (𝑛 − 2)

3 (𝑛 + 2)3 𝜀 Y
)
− 𝜀2 X

(𝑛 + 2) (𝑛 + 4)

=
4 𝜀2

𝑛 (𝑛 + 2)

(
X

𝑛 + 4
− 𝜀 Y

3 (𝑛 + 2)

)
≥ 4 𝜀2

𝑛 (𝑛 + 2) (𝑛 + 4)
𝜂

1 + 𝜂 X .

By (5.8), we have X ≥ (𝑛 + 2) (𝑛 + 4), which concludes the proof.

With the notations of the proof of Theorem 5.2, Condition (5.7) can be rewritten
as X − K Y ≥ 0 with K = 𝑛+4

3 (𝑛+2) 𝜀 (1 + 𝜂). This somewhat unusual condition has
two implications:
(1) ℎ ∈ 𝐿 𝑝 (R𝑛) is bounded in the stronger norm

( ∫
R𝑛
𝑢
𝑝−3
★ |ℎ|3 𝑑𝑥

)1/3, which is
however a much weaker condition than (5.2),

(2) the function ℎ is limited to an explicit neighbourhood of 0, in strong norms.
A detailed statement goes as follows.

Proposition 5.3. If ℎ is a function in 𝐿 𝑝 (R𝑛) such that
∫
R𝑛
𝑢
𝑝−3
★ |ℎ|3 𝑑𝑥 < +∞, which

satisfies ∫
R𝑛
𝑢
𝑝−2
★ ℎ2 𝑑𝑥 − K

∫
R𝑛
𝑢
𝑝−3
★ |ℎ|3 𝑑𝑥 ≥ 0 (5.9)

for some K > 0, then ℎ also has the following properties:∫
R𝑛
𝑢
𝑝−2
★ ℎ2 𝑑𝑥 ≤

(
K −1 ‖ℎ‖

𝑝

2−𝑝
𝐿𝑝 (R𝑛)

)2−𝑝
, (5.10a)∫

R𝑛
𝑢
𝑝−3
★ |ℎ|3 𝑑𝑥 ≤ K −1

(
K −1 ‖ℎ‖

𝑝

2−𝑝
𝐿𝑝 (R𝑛)

)2−𝑝
, (5.10b)

‖ℎ‖
𝑝

2−𝑝
𝐿𝑝 (R𝑛) ≤

(
K −1 ‖𝑢★‖𝐿𝑝 (R𝑛)

) 𝑝

2−𝑝
. (5.10c)

Proof. With a =

(∫
R𝑛

|ℎ|𝑝 𝑑𝑥
) 1

2−𝑝 , X :=
∫
R𝑛
𝑢
𝑝−2
★ ℎ2 𝑑𝑥, Y :=

∫
R𝑛
𝑢
𝑝−3
★ |ℎ|3 𝑑𝑥 as in the

proof of Theorem 5.2, the inequality∫
R𝑛
𝑢
𝑝−2
★ ℎ2 𝑑𝑥 ≤

(∫
R𝑛
𝑢
𝑝−3
★ |ℎ|3 𝑑𝑥

) 2−𝑝
3−𝑝

(∫
R𝑛

|ℎ|𝑝 𝑑𝑥
) 1

3−𝑝
=

(
a
∫
R𝑛
𝑢
𝑝−3
★ |ℎ |3 𝑑𝑥

) 2−𝑝
3−𝑝

,

can be rephrased as

X ≤ (a Y)
2−𝑝
3−𝑝 or Y ≥ 1

a
X

3−𝑝
2−𝑝 .
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The stability assumption (5.9) means that

0 ≤ X − K Y ≤ X − K

a
X

3−𝑝
2−𝑝 = X

(
1 − K

a
X

1
2−𝑝

)
,

0 ≤ X − K Y ≤ (a Y)
2−𝑝
3−𝑝 − K Y = Y

2−𝑝
3−𝑝

(
a

2−𝑝
3−𝑝 − K Y

1
3−𝑝

)
,

which proves X ≤
(
a K −1)2−𝑝 and Y ≤ K −1 (a K −1)2−𝑝, i.e., (5.10a) and (5.10b).

By Hölder’s inequality, we obtain

a2−𝑝 =

∫
R𝑛

|ℎ|𝑝 𝑑𝑥 =
∫
R𝑛

(
𝑢

𝑝−2
2

★ |ℎ|
) 𝑝

𝑢
𝑝

2−𝑝
2

★ 𝑑𝑥 ≤
(∫
R𝑛
𝑢
𝑝−2
★ ℎ2 𝑑𝑥

) 𝑝

2
(∫
R𝑛
𝑢
𝑝
★ 𝑑𝑥

)1− 𝑝

2

with b := ‖𝑢★‖𝐿𝑝 (R𝑛) . After taking into account (5.10a), this amounts to a ≥
( b
K

) 𝑝

2−𝑝 ,
which concludes the proof of (5.10c).
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