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Specification and Efficient Monitoring Beyond STL

Alexey Bakhirkin and Nicolas Basset

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France

Abstract. An appealing feature of Signal Temporal Logic (STL) is the existence
of efficient monitoring algorithms both for Boolean and real-valued robustness
semantics, which are based on computing an aggregate function (conjunction,
disjunction, min, or max) over a sliding window. On the other hand, there are
properties that can be monitored with the same algorithms, but that cannot be
directly expressed in STL due to syntactic restrictions. In this paper, we define
a new specification language that extends STL with the ability to produce and
manipulate real-valued output signals and with a new form of until operator.
The new language still admits efficient offline monitoring, but also allows to
express some properties that in the past motivated researchers to extend STL with
existential quantification, freeze quantification, and other features that increase
the complexity of monitoring.

1 Introduction

Signal Temporal Logic (STL [16,17]) is a temporal logic designed to specify properties
of real-valued dense-time signals. It gained popularity due to the rigour and the ability
to reason about analog and mixed signals; and it found use in such domains as analog
circuits, systems biology, cyber-physical control systems (see [3] for a survey). A major
use of STL is in monitoring: given a signal and an STL formula, an automated procedure
can decide whether the formula holds at a given time point.

Monitoring of STL is reliably efficient. A monitoring procedure typically traverses
the formula bottom up, and for every sub-formula computes a satisfaction signal, based
on satisfaction signals of its operands. Boolean monitoring is based on the computation
of conjunctions and disjunctions over a sliding window (“until” is implemented using
a specialized version of running conjunction), and robustness monitoring (computing
how well a signal satisfies a formula [10,9]) is based on the computation of minimum
and maximum over a sliding window. The complexity of both Boolean and robustness
monitoring is linear in the length of the signal and does not depend on the width of
temporal windows appearing in the formula. At the same time, for a range of applications,
pure STL is either not expressive enough or difficult to use, and specifying a desired
property often becomes a puzzle of its own. The existence of robustness and other
real-valued semantics does not always help, since a monitor can perform a limited set of
operations that the semantics assigns to Boolean operators. For example, for robustness
semantics, min and max are the only operations beyond the atomic proposition level.
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One way to work around the expressiveness issues of STL is pre-processing: a
computation that cannot be performed by an STL monitor can be performed by a pre-
processor and supplied as an extra input signal. For a number of reasons, this is not
always satisfactory. First, for monitoring of continuous-time signals, there is a big gap
between the logical definitions of properties and the implementation of monitors. In
continuous-time setting, properties are defined using quantification, upper and lower
bounds, and similar mathematical tools for dense sets, while a monitor works with a
finite piecewise representation of a signal and performs a computation that is based on
induction and other tools for discrete sets. Leaving this gap exposed to the user, who has
to implement the pre-processing step, is not very user-friendly. Second, monitoring of
some properties cannot be cleanly decomposed into a pre-processing step followed by
standard STL monitoring. Later, we give a concrete example using an extended “until”
operator, and for now, notice that “until” instructs the monitor to compute a conjunction
over thewindow that is not fixed in advance, but is defined by its second operand. Because
of that, multiple researches have been motivated to search for a more expressive superset
of STL that would allow to specify the properties they were interested in.

One direction for extension is to add to the original quantifier-free logic (MTL, STL)
a form of variable binding: a freeze quantifier as in STL* [6], a clock reset as in TPTL
[1], or even first order quantification [2]. Unfortunately, such extensions are detrimental
to complexity of monitoring. When monitoring logics with quantifiers using standard
bottom-up approach, subformulas containing free variables evaluate not to Boolean- or
real-valued signals, but to maps from time to non-convex sets, and they cannot in general
be efficiently manipulated (although for some classes of formulas monitoring of logics
with quantifiers works well [4,13]). Perhaps the most benign in this respect but also least
expressive extension is 1-TPTL (TPTL with one active clock), which is as expressive as
MITL, but is easier to use and admits a reasonably efficient monitoring procedure [11].

An alternative direction is to define a quantifier-free specification languagewithmore
flexible syntax and sliding window operations. For example, Signal Convolution Logic
(SCL [20]) allows to specify properties using convolution with a set of select kernels. In
particular, it can express properties of the form “statement ϕ holds on an interval for at
least X% of the time”. In SCL, every formula has a Boolean satisfaction signal, but some
works go further and allow a formula to produce a real-valued output signal based on
the real-valued signals of its subformulas. This already happens for robustness of STL
in a very limited way, and can be extended. For example, [19] presents temporal logic
monitoring as filtering, which allows to derive multiple different real-valued semantics.
Another work [7] focuses on the practical application of robustness in falsification
and allows to choose between different possible robust semantics for “eventually” and
“always”, in particular to replace min or max with integration where necessary.

This paper is our take on extending STL in the latter direction. We define a spec-
ification language that is more expressive than STL, but not less efficient to monitor
offline, i.e., the complexity of monitoring is linear in the length of the signal and does not
depend on the width of temporal windows in the formula (the latter property tends to be
missing from the STL extensions, even when the authors can achieve linear complexity
for a fixed formula). The most important features of the new language are as follows.
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1. We remove several syntactic constrains from STL: we allow a formula to have a
real-valued output signal; we allow these signals to be combined in a point-wise way
with arithmetic operations, comparisons, etc. This distinguishes us from the works
that use standard MTL or STL syntax and assign them new semantics [10,19].

2. We allow to apply an efficiently computable aggregate function over a sliding
window.We currently focus onmin andmax, which are enough to specify properties
that motivated the development of more expressive and hard to monitor logics.

3. We offer a version of “until” operator that performs aggregation over a sliding
window of dynamic width, that depends on satisfaction of some formula. This
distinguishes us from the works that focus on aggregation over a fixed window [20].

Finally, we focus our attention on continuous-time piecewise-constant and piecewise
linear signals; we describe the algorithms and prepare an implementation only for
piecewise-constant.

2 Motivating Examples

Before formally defining the new language, let us look at some examples of properties
that we would like to express. In particular, we look at properties that motivated the
development of more expressive and harder to monitor logics.
Example 1 (Stabilization) The first interesting property is stabilization around a value
that is not known in advance, e.g., “x stays within 0.05 units of some value for at least
200 time units”. It is tempting, to formalize this property using existential quantification
“there exists a threshold v, such that. . . ”, which is possible with first-order logic of
signals (and was one of its motivational properties [2]), but it is actually not necessary.
Instead, we can compute the minimum and maximum of x over the next 200 time units
and compare their distance to 0.1 = 2 · 0.05. In some imaginary language, we could
write max[0,200] x−min[0,200] x ≤ 0.1. At this point we propose to separate the aggregate
operators from the operator that defines the temporal window, which will be useful later,
when the “until” operator will define a window of variable width. We use the operator
On[a,b] to define the temporal window of constant width and the operators Min and Max
(capitalized) to denote the minimum and maximum over the previously defined window.
Signal x stabilizes within 0.05 units of an unknown value for 200 time units:

On[0,200]Max x − On[0,200]Min x ≤ 0.1

Fig. 1 shows an example of a signal x(t) (red) performing damped oscillation with the
period of 250 time units. Blue and green curves are the maximum and the minimum of
x over a siding window [t, t + 200]. Finally, the orange Boolean signal (its y scale is on
the right) evaluates to true (i.e., y = 1) when the maximum and minimum of x over the
next 200 time units are within 0.1.
Example 2 (Local Maximum) Consider the property: “the current value of x is a
minimum or maximum in some neighbourhood of current time point”. Previously, a
similar property became a motivation to extend STL with freeze quantifiers [6], but we
can also express it by comparing the value of a signal with some aggregate information
about its neighbourhood, which we can do similarly to the previous example.
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Fig. 2. Sine wave x(t), its maximum over
the window [t, t + 200], and whether x(t) is
a local maximum on the interval [t, t +200].

Current value of x is a local maximum on the interval [0, 85] relative to the current time.

x ≥ On[0,85]Max x

Fig. 2 shows an example of a sine wave x(t) (red) with the period of 250 time units. Blue
curve is the maximum x over a siding window [t, t + 85]. The orange Boolean signal
evaluates to true when the current value of x is a maximum for the next 85 time units.
Example 3 (Stabilization Contd.) We want to be able to assert that x becomes stable
around some value not for a fixed duration, but until some signal q becomes true. We
will be able to do this with our version of “until” operator.
Signal x is stable within 0.05 units of an unknown value until q becomes true:

(Max x U q) − (Min x U q) ≤ 0.1

Intuitively, for a given time point, we want the monitor to find the closest future time
point, where q holds and computeMin andMax of x over the resulting interval. Note that
this property cannot be easilymonitored in the framework of “STLwith pre-processing”,
since it requires the monitor to compute Min and Max over a sliding window of variable
width, which depends on the satisfaction signal of q.
Example 4 (Linear Increase) At this point, we can assert x to follow a more complex
shape, for example, to increase or decrease with a given slope. Let T denote an auxiliary
signal that linearly increases with rate 1 (like a clock of a timed automaton), i.e. we
define T(t) = t; this example works as well for T(t) = t + c, where c is a constant. To
specify that x increases with the rate 2.5, we assert that the distance from x to 2.5 · T
stays within some bounds.
Signal x increases approximately with slope 2.5 during the next 100 time units:

On[0,100]Max |x − 2.5T| − On[0,100]Min |x − 2.5T| ≤ 0.1

3 Syntax and Semantics

From the examples above we can foresee how the new language looks like. Formally,
an (input) signal is a function w : T → Rn, where the time domain T is a closed real
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interval [0, |w |] ⊆ R, and the number |w | is the duration of the signal. We refer to signal
components using their own letters: x, y, · · · ∈ T → R. We assume that every signal
component is piecewise-constant or piecewise-linear.

The semantics of a formula is a piecewise-constant or piecewise-linear function
from real time (thus, has real-valued switching points) to a dual number (rather than a
real). We defer the discussion of dual numbers until Section 3.2; for now we note that
they extend reals, and a dual number can be written in the form a + bε, which, when
b , 0, denotes a point infinitely close to a. We denote the set of dual numbers as Rε .
Our primary use of a dual number is to represent a time point strictly after an event
(switching point, threshold crossing, etc) but before any other event can happen; as a
result we have to allow an output signal to have a dual value, denoting a value that is
attained at this dual time point.
Syntax We can write the abstract syntax of our language as follows:

ϕ F c | x | f (ϕ1 · · · ϕn) | On[a,b] ψ | ψ Ud
[a,b] ϕ | ϕ1↓ Ud

[a,b]ϕ2

ψ F Min ϕ | Max ϕ
(1)

where c is a real-valued constant; x refers to an input signal; f is a real-valued function
symbol (e.g., sum, absolute value, etc); for the On-operator, a and b can be real numbers
or (with some abuse of notation) ±∞, i.e., the interval may refer to both past and future,
bounded or unbounded; for the U-operator, d is a real value, and a, b are non-negative,
and b can be∞, i.e., the interval refers to bounded or unbounded future. Let us go over
some of the features of the new language and then formally write down its semantics.
Point-wise Functions Function symbol f ranges over real-valued functions Rn → R
that preserve the chosen shape of signals (and can be lifted to dual numbers). In this
paper, we focus on piecewise-constant and piecewise-linear signals, so when f is applied
point-wise to a piecewise-constant input, we want the result to be piecewise-constant;
when f is applied point-wise to a piecewise-linear input, we want the result to be
piecewise-linear. Examples of such functions are addition, subtraction, min and max of
finitely many operands (we use lowercase min and max to denote a real-valued n-ary
function), multiplication by a constant, absolute value, etc.
BooleanOutput Signals Output signals of some formulas can informally be interpreted
as Boolean-valued. In Example 2, “x” and “On[0,85]Max x” are dual-valued, but the
result of their comparison, “x ≥ On[0,85]Max x” should be interpreted as Boolean.
Here, we take the more simple path and treat a Boolean signal as a special case of a
real-valued signal that can take the value of 0 or 1. We expect comparison operators to
produce a value in {0, 1}, e.g., ϕ1 ≤ ϕ2 is a shortcut for “if ϕ1 ≤ ϕ2 then 1 else 0”.
Standard Boolean connectives can then be defined as follows:

ϕ1 ∧ ϕ2 = min{ϕ1, ϕ2} ϕ1 ∨ ϕ2 = max{ϕ1, ϕ2} ¬ϕ = 1 − ϕ

Another option would be to distinguish Boolean-valued formulas on the syntactic level.
Temporal ϕ-Formulas Symbol ϕ denotes a temporal formula that has a dual-valued
output signal. In other words, it can be evaluated at a time point and produces a dual
value. A ϕ-formula may:
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1. refer to an input signal x;
2. apply a real-valued function f pointwise to the outputs its ϕ-subformulas;
3. apply an aggregate function over the sliding window [a, b] (with some abuse of

notation a can be be −∞, and b can be∞);
4. be an “until” formula, which is described in Section 3.3.
Interval ψ-Formulas A ψ-formula is evaluated on an interval and does not have an
output signal by itself. Instead, it supplies an aggregate operation that will be computed
when evaluating the containing On-formula or “until”-formula. It should be possible to
efficiently compute this aggregate operation over a slidingwindow, and it should preserve
the chosen shape of signals. Since we focus on piecewise-constant and piecewise-linear
signals, the two operations that we can immediately offer are Min and Max, which can
be efficiently computed over a sliding window using the algorithm of D. Lemire [15,9],
and preserve the piecewise-constant and piecewise-linear shapes. In discrete time or for
piecewise-polynomial signals, we could usemore aggregate operations, e.g., integration.
“Eventually” and “Always” Standard STL “eventually” and “always” operators can
be expressed in the new language as follows:

F[a,b] ϕ = On[a,b]Max ϕ G[a,b] ϕ = On[a,b]Min ϕ

3.1 Semantics of Until-Free Fragment

The semantics of the until-free fragment is straightforward. The semantics of a ϕ-formula
is a function JϕK : T→ Rε mapping real time to a dual value. We define it as:

JxK(t) = x(t) JOn[a,b] ψK(t) = JψK([t + a, t + b])

J f (ϕ1 . . . ϕn)K(t) = f (Jϕ1K(t) . . . JϕnK(t)
(2)

We abuse the notation so that x is both a symbol referring to a component of an input
signal and the corresponding real-valued function; similarly, f is both a function symbol
and the corresponding function.

The semantics of a ψ-formula is a function JψK : (R ∪ −∞) × (Rε ∪∞) → Rε from
an interval of time with real lower bound to a dual value. The upper bound of the interval
can be dual-valued, which will be used by the “until” operation (see Section 3.3).

JMin ϕK[a, b] = min
[a,b]

JϕK JMax ϕK[a, b] = max
[a,b]

JϕK (3)

The way we define min and max over an interval for a discontinuous piecewise-linear
function relies on dual numbers, which we explain just below.

3.2 Dual Numbers

Dual numbers extend reals with a new element ε that has a property ε2 = 0. A dual
number can bewritten in a form a+bε, where a, b ∈ R.We denote the set of dual numbers
as Rε . Dual numbers were proposed by the English mathematician W. Clifford in 1873
and later applied in geometry by the German mathematician E. Study. One of modern
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Fig. 4.Signals x and y for Examples 5 and 6.

applications of dual numbers and their extensions is in automatic differentiation [12]:
one can exactly compute the value of the first derivative at a given point using the identity
f (x + ε) = f (x) + f ′(x)ε. Intuitively, ε can be understood as an infinitesimal value,
and a + bε (for b , 0) is a point that is infinitely close to a. Polynomial functions can
be extended to dual numbers, and via Taylor expansion, so can exponents, logarithms,
and trigonometric functions. We work with piecewise-constant and piecewise-linear
functions with real switching points, and we only make use of basic arithmetic. For
example, if on the interval (b1, b2) the signal x is defined as x(t) = a1t + a0, then
x(b1 + ε) = a1b1 + a0 + a1ε and x(b2 − ε) = a1b2 + a0 − a1ε.

Our primary use of a dual number is to represent a time point strictly after an event
(a switching point, a threshold crossing, etc) but before any other event can happen, i.e.,
we use t ′ + ε to represent the time point that happens right after t ′. The coefficient 1
at ε denotes that time advances with the rate of 1 (although another consistently used
coefficient works as well). Consequently, we also allow an output signal to produce a
dual value, denoting a value that is attained at this dual time point. On the other hand,
we require that signals are defined over real time, switching points of piecewise signals
are reals, and time constants in formulas are reals. That is, dual-valued time is only used
internally by the temporal operators and cannot be directly observed.
Minimum and Maximum of a Discontunuous Function. We also use dual-valued
time to define the result of Min and Max for a discontinuous piecewise-linear function.
The standard way to compute minimum and maximum of a continuous piecewise-linear
function on a closed interval is based on the fact that they are attained at the endpoints of
the interval or at the endpoints of the segments on which the function is defined. Using
dual numbers, we extend it to dicontinuous functions: if for t ∈ (b1, b2), x(t) = a1t + a2
thenwe consider time points b1+ε and b2−ε as the candidates for reaching theminimum
or maximum. Let us demonstrate this with an example.
Example 5 Consider the signal x defined as: “x(t) = −0.5t + 1.5 if t ∈ [0, 1); x(t) =
0.5t + 1 if t ≥ 1”, as shown in Fig. 4. Let us find the minimum of x on the interval
[0, 2 + ε]. By our definition, mint∈[0,2+ε] x(t) = min{x(0), x(1 − ε), x(1), x(2 + ε)} =
x(1 − ε) = 1 + 0.5ε. This result should be understood as follows: x(t) approaches the
value of 1 from the above with derivative −0.5, but never reaches it.
Example 6Our definition ofminimumandmaximumallows to correctly compare values
of piecewise-linear functions around their discontinuity points. In Example 5, x never
reaches the value of its lower bound, and our definition of minimum produces a dual
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number that reflects this fact and also specifies the rate at which x appoaches its lower
bound. This information would be lost if we computed the infimum of x. Again consider
the signals in Fig. 4, with x defined as before, and “y(t) = t, if t ∈ [0, 1), y(t) = −0.5t +
1, if t ≥ 1”. Let us evaluate at time t = 0 the formula On[0,2]Min x > On[0,2]Max y,
which denotes the property ∀t, t ′ ∈ [0, 2]. x(t) > y(t ′). From the previous example, we
have that JOn[0,2]Min xK(0) = 1 + 0.5ε. By a similar argument, JOn[0,2]Max yK(0) =
y(1− ε) = 1− ε, which means that y approaches 1 from below with the rate of 1. Since,
1 + 0.5ε > 1 − ε, our property holds at time 0, as expected.

We want to emphasize that while an output signal can take a dual value, its domain
is considered to be a subset of reals. The semantics of temporal operators are allowed to
internally use dual-valued time points, but has to produce an output signal that is defined
over real time. This ensures that a piecewise signal always has real-valued switching
points and that no event can happen at a dual-valued time point.
Example 7 Consider a formula ϕ = F[0,2](x = On(− inf,inf)Min x), where x is as in Fig. 4.
The meaning of ϕ is that within 2 time units x reaches its global minimum. In our
semantics, this formula does not hold at time 0. By our definition, the global minimum
of x is 1 + 0.5ε, so the semantics of the formula at time 0 is equivalent to:

JϕK(0) = JF[0,2](x = 1 + 0.5ε)K(0)
= if ∃t ∈ T. t ∈ [0, 2] ∧ x(t) = 1 + 0.5ε then 1 else 0

where T = [0, |w |] ⊆ R. There is no real value of time, where x(t) yields a dual value,
so the formula does not hold.

3.3 Semantics of Until

The On-operator allowed us to compute minima and maxima over a sliding window of
fixed width. In this section, we introduce a new version of “until” operator that allows
the window to have variable width that depends on the output signal of some formula.
Reinterpreting the classical Until as “Find First” Let us explain how we extend
the “until” operator to work in the new setting. There already exists real-valued robust
semantics of “until”, but we do not believe it to be a good specification primitive. Instead,
re-state standard the Boolean semantics and based on the re-stated version introduce the
new real-(actually, dual-)valued semantics. Let us recall a possible semantics of untimed
until in STL. Informally, “until” computes a conjunction of the values of the first operand
over an interval that is not fixed, but defined by the second operand. Formally,

Jp USTL qK(t) = ∃t ′ ≥ t . q(t ′) ∧ ∀s ∈ [t, t ′]. p(s)

To denote the STL version of “until” wewrite it with the superscript: USTL, to distinguish
from the new version that we define for our language. The version of “until” that we use
in this paper is non-strict in the sense of [17]; it requites that p holds both at t and t ′.

Efficient monitoring of STL “until” relies on instantiating the existential quantifier.
The monitor scans the signal backwards and instantiates t ′ based on the earliest time
point where q is true. The monitor needs to consider three cases shown in Fig. 5–7.
1. Fig. 5: q is false for every t ′ ≥ t. Then the value of p USTL q at t is false.

8



t
0
1 q

Fig. 5. Case 1: q is never true
in the future.

t t ′
0
1 q

Fig. 6. Case 2: q there exists
the earliest time point, where
q becomes true.

t t ′
0
1 q

Fig. 7. Case 3: q becomes
true, but there is no earliest
time point.

2. Fig. 6: there exists the smallest t ′ ≥ t, where q is true (this includes the case, where
t ′ = t). Then the value of p USTL q at t is ∀s ∈ [t, t ′]. p(s) (predicate p is not shown
in the figure). The monitor needs not consider time points after t ′, since if “forall”
produces false on a smaller interval, it will produce false on a larger one.

3. Fig. 7: q becomes true in the future, but there is no earliest time point. In this case,
the monitor needs to take the universal quantification over an interval that ends
just after t ′ (the switching point of q), but before any other event occurs. We can
formalize this reasoning using dual numbers and say that the value of p USTL q at t
is ∀s ∈ [t, t ′ + ε]. p(s), where t ′ + ε can be intuitively understood as a time point
that happens after t ′, but before any other event can occur.

Below is the equivalent semantics of STL until that resolves the existential quantifier:

Jp USTL qK(t) =


∀s ∈ [t, t ′]. p(s), if there exists the smallest t ′ ≥ t, s.t. q(t ′)
∀s ∈ [t, t ′ + ε]. p(s), where t ′ = inf{t ′ |t ′ ≥ t ∧ q(t ′)},

if ∃t ′ ≥ t . q(t ′), but there is no smallest t ′

false, otherwise

Then, a monitor evaluates the universal quantifier via a finite conjunction, since in
practice the signal p has finite variability, i.e. every interval is intersected by a finite
number of constant segments.

Example 8 Let us consider two linear input signals: x(t) = t and y(t) = 2t − 1 (see
Fig. 3), and let us evaluate the formula (y ≤ x) USTL (x > 1) at time 0 using non-strict
“until” semantics. We define the earliest time point where x > 1 becomes true to be
1+ ε, thus we need to evaluate the expression ∀t ∈ [0, 1+ ε]. y(t) ≤ x(t). At time 1+ ε,
we get y(1 + ε) = 1 + 2ε > 1 + ε = x(1 + ε), thus the “until” formula does not hold.
Informally, we can interpret the result as follows: when x becomes greater than 1, y
becomes greater than x, while non-strict “until” requires that there exists a point, where
both its left- and right-hand operands hold at the same time.

New Until as “Find First” At this point, extending “until” to produce a dual value is
straightforward. With every time point, “until” possibly associates an interval, and we
can compute an arbitrary aggregate function over it, instead of just conjunction. In fact,
we introduce two flavors of “until”. The first version: ψ Ud

[a,b]
ϕ – works as follows. For

every time point t, we either associate an interval ending when ϕ becomes non-zero (i.e.,
starts holding); or we report that no suitable end point was found. When such interval
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exists, we evaluate ψ on it. When the interval does not exist, we produce d. Formally,

Jψ Ud
[a,b] ϕK(t) =


JψK[t, t ′], if ∃ the smallest t ′ ∈ [t + a, t + b], s.t. JϕK(t ′) , 0
JψK[t, t ′ + ε], where t ′ = inf{t ′ |t ′ ∈ [t + a, t + b] ∧ JϕK(t ′)},

if ∃t ′ ∈ [t + a, t + b]. JϕK(t ′) , 0, but there is no smallest t ′

d, otherwise

The second version: ϕ1↓ Ud
[a,b]

ϕ2 does not perform aggregation, but evaluates ϕ1 at the
time point where ϕ2 becomes non-zero, or produces d if such time point does not exist:

Jϕ1↓ Ud
[a,b]ϕ2K(t) =


Jϕ1K(t ′), if ∃ the smallest t ′ ∈ [t + a, t + b], s.t. Jϕ2K(t ′) , 0
Jϕ1K(t ′ + ε), where t ′ = inf{t ′ |t ′ ∈ [t + a, t + b] ∧ Jϕ2K(t ′)},

if ∃t ′ ∈ [t + a, t + b]. Jϕ2K(t ′) , 0, but there is no smallest t ′

d, otherwise

In a similar way, we could define past versions “until”, where the interval [a, b] refers to
the past; we do not discuss them here due to space constraints.
STL Until The standard STL “until” can be expressed in the new language as follows:

ϕ1 USTL
[a,b] ϕ2 = (Min ϕ1) U0

[a,b] ϕ2

Lookup Using “until”, we can express the “lookup” operator that queries the value of
a signal at a point in the future, or returns some default value if the point does not exist.

Dd
a ϕ = ϕ↓ Ud

[a,a]1

Example 9 (Spike) The ST-Lib library [14] uses the following formula to define a start
point of a spike: x ′ > m ∧ F[0,d](x ′ < −m), where x ′ is the approximation of the right
derivative x ′(t) = (x(t + δ)− x(t))/δ, m is the magnitude of the spike, and d is the width.
Using the lookup operator, we can include the definition of x ′ in the property itself:

(Dy
δ x − x)/δ ≥ m ∧ F[0,d]((D

y
δ x − x)/δ ≤ −m)
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where y gives the value of the signal outside of its original domain.
Example 10 (Spike ofGivenWidth andHeight) Our language offers several alternative
ways to define a spike. We can define a (start point of a) spike by composing two ramps:
an increasing one, where the signal x increases by at least m withing w time units, and
a decreasing one, where x decreases by at least m within w time units; the two ramps
should be at most w units apart. The parameter w is the half-width of the spike.

(On[0,w]Max x ≥ x + m) ∧ F[0,w](On[0,w]Min x ≤ x − m)

Fig. 9 shows an example of a series of spikes (blue) and a Boolean signal (red) that
marks the detected start times of spikes.
Example 11 (TPTL-like Assertion) The second form of “until” allows to reason
explicitly about time points and durations, somewhat similarly to TPTL. Consider the
property “within 2 time units, we should observe an event p followed by an event
q” (Fig. 8 shows an example of a satisfying signal). With some case analysis, this
property can be expressed in MTL [5], but probably the best way to express it is offered
by TPTL, that allows to assert “c. F(p ∧ F(q ∧ c ≤ 2))”, meaning “reset a clock c,
eventually, we should observe p and from that point, eventually we should observe q,
while the clock value will be at most 2”. To express the property in our language, we
introduce three auxiliary signals: T(t) = t (which we use in some other examples as
well), pdelay = (T ↓ U∞p) − T , which denotes the duration until the next occurrence of
p and similarly qdelay = (T ↓ U∞q) − T , the duration until the next occurrence of q.
Then, the property can be expressed as: pdelay + (qdelay↓ U∞p) ≤ 2

4 Monitoring

Similarly to other works on STL monitoring (e.g., [9]), we implement the algorithms
for a subset of the language, and support the remaining operators via rewriting rules.
Rewriting of Until Similarly to STL, the timed “until” operator in our language can
be expressed in terms of “eventually” (which is expressed using On) , “lookup”, and
untimed “until”.

(Min ϕ1) Ud
[a,b] ϕ2 = if ¬F[a,b] ϕ2 then d else On[0,a]Min((Min ϕ1) U ϕ2)

(Max ϕ1) Ud
[a,b] ϕ2 = if ¬F[a,b] ϕ2 then d else On[0,a]Max((Max ϕ1) U ϕ2)

ϕ1↓ Ud
[a,b]ϕ2 = if ¬F[a,b] ϕ2 then d else Da(ϕ1↓ Uϕ2)

Let us prove that the first equivalence is true, and for the other two the proof idea is
similar. Let t be the time point where we evaluate (Min ϕ1) Ud

[a,b]
ϕ2 and its rewriting.

If there is no time point s ∈ [t + a, t + b] where ϕ2 holds, both the original formula and
its rewriting evaluate to d. Otherwise, let s be the earliest time point in [t + a, t + b],
where ϕ2 holds, which can be a real or dual value, as explained in Section 3.3. Then
the original formula evaluates to min{Jϕ1K(t ′) | t ′ ∈ [t, s]}. The rewritten formula at t
evaluates to min{J(Min ϕ1)U ϕ2K | t ′ ∈ [t, t + a]}. Notice that for every t ′ there is a time
point in the future, which we denote g(t ′) where ϕ2 holds, which is at most s, and for
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t ′ = t + a it is exactly s. That is, the rewritten formula evaluates to min{min{Jϕ1K(t ′′) |
t ′′ ∈ [t ′, g(t ′)]} | t ′ ∈ [t, t + a]} = min{Jϕ1K(t ′′) | t ′′ ∈

⋃
{[t ′, g(t ′)] | t ′ ∈ [t, t + a]}}.

Notice that since g(t ′) ∈ [t ′, s] and g(t+a) = s, then
⋃
{[t ′, g(t ′)] | t ′ ∈ [t, t+a]} = [t, s],

and thus the rewritten formula evaluates to the same value as the original one.
Referring to Both Future and Past In the syntax, we allow the On[a,b] operator to
refer to both future and past, i.e, we allow the case when a < 0 and b > 0. Algorithms
for Min/Max over a running window typically cannot work with this situation directly,
and we need to apply the following rewriting: if a < 0 and b > 0,

On[a,b]Min ϕ = min{On[a,0]Min ϕ, On[0,b]Min ϕ}
On[a,b]Max ϕ = max{On[a,0]Max ϕ, On[0,b]Max ϕ}

Language of the Monitor The following subset of the language is equally expressive
as the full language presented in (1). We implement the monitoring algorithms for this
language, and the full syntax of (1) we support via rewriting.

ϕ F c | x | f (ϕ1 · · · ϕn) | On[a,b] ψ | ψ Ud ϕ | ϕ1↓ Udϕ2 | Dd
a ϕ

ψ F Min ϕ | Max ϕ

where either a ≥ 0 or b ≤ 0, i.e., the interval [a, b] cannot refer to both future and past.
All operators in the language of the monitor admit efficient offline monitoring.

Minimum and maximum over a sliding window required by the On-operator can be
computed using a variation of D. Lemire’s algorithm [15,9]; “lookup” operator D shifts
its input signal by a constant distance; and for untimed “until” we can scan the input
signal backwards and perform a special case of running minimum or maximum.

4.1 Monitoring Algorithms

In this section, we briefly describemonitoring algorithms for piecewise-constant signals.
Representation of Signals We represent a piecewise-constant function T → R or
T→ Rε as a sequence of segments: 〈s0, s1, . . . , sm−1〉, where every segment si = Ji 7→ vi
maps an interval Ji to a real or dual value vi . The intervals Ji form a partition the
domain of the signal and are ordered in ascending time order, i.e., sup Ji = inf Ji+1
and Ji ∩ Ji+1 = ∅. The domain of the signal signal corresponding to the sequence
u = 〈J0 7→ vo, . . . , Jm−1 7→ vm−1〉 is denoted by dom(u) = J0∪ . . .∪ Jm−1. For example,
if the function x(t) is defined as x(t) = 0, if t ∈ [0, 1), and x(t) = 1, if t ∈ [1, 2], then
x(t) is represented by the sequence ux = 〈[0, 1) 7→ 0, [1, 2] 7→ 1〉, and dom(ux) = [0, 2].

Empty brackets 〈〉 denote an empty sequence that does not represent a valid signal,
but can be used by algorithms as an intermediate value. We manipulate the sequences
with two main operations. The function append adds a segment to the end of a sequence:
append(〈s0, . . . , sm−1〉, s′) = 〈s0, . . . , sm−1, s′〉. The function prepend adds a segment
to the start of a sequence: prepend(〈s0, . . . , sm−1〉, s′) = 〈s′, s0, . . . , sm−1〉. This may
produce a sequence where the first segment does not start time at time 0. While such
a sequence does not represent a valid signal, it can be used by the algorithms as an
intermediate value. The function removeLast removes the last segment of a sequence,
assuming it was non-empty: removeLast(〈s0, . . . , sm−1〉) = 〈s0, . . . , sm−2〉.
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function until(u1, u2, f , d)
let u1 = 〈J1

0 7→ v1
0, . . . , J1

m−1 7→ v1
m−1〉

let u2 = 〈J2
0 7→ v2

0, . . . , J2
k−1 7→ v2

k−1〉

i ← m − 1, j ← k − 1
(ur, s, v′) ← (〈〉, 0, d)
while i ≥ 0 ∧ j ≥ 0 do

J ← J1
i ∩ J2

j

(ur, s, v′) ← untilAdd(ur, s, v′, J, v1
i , v

2
j )

if ∃t1 ∈ J1
i . ∀t2 ∈ J2

j . t1 > t2 then

j ← j + 1
else if ∃t2 ∈ J2

j . ∀t1 ∈ J1
i . t2 > t1

then
i ← i + 1

else
i ← i + 1, j ← j + 1

end
end
return ur

end

function untilAdd(ur, s, v′, J, v1, v2)
if v2 , 0 then

v′ ← v1
s← 1

else if s , 0 then
v′ ← f (v′, v1)

end
prepend(ur, J 7→ v′)

return (ur, s, v′)
end

Fig. 10. Algorithm for monitoring “until”-formulas.

An output signal of a formula is scalar-valued and is represented by one such
sequence. An input signal usually has multiple components, i.e., it is a function T→ Rn,
and is represented by a set of n sequences.

On-Formulas For On[a,b]Min ϕ and On[a,b]Max ϕ, a monitor needs to compute the
minimum or maximum of the output signal of ϕ over the sliding window. The corre-
sponding algorithm was developed for discrete time by D. Lemire [15] and later adapted
for continuous time [9].

Lookup-Formulas Computing the output signal for Dd
a ϕ is straightforward. We need

to shift every segment of uϕ (the representation of the output signal of ϕ) to the left by
a truncating at 0 and append a padding segment with the value of d.

Until-Formulas Informally, monitoring the “until”-formulas, Min ϕ1 Ud ϕ2, Max ϕ1 Ud

ϕ2, and ϕ1↓ Udϕ2, works as follows. The monitor scans the output signals of ϕ1 and ϕ2
backwards. While ϕ2 evaluates to a non-zero value, the monitor outputs the value of ϕ1.
When ϕ2 evaluates to 0, the monitor outputs either the default value (if the monitor did
not yet encounter a non-zero value of ϕ2), or the running minimum or maximum of ϕ1,
or the value that ϕ1 had at the last time point where ϕ2 was non-zero.

The function until and untilAnd in Fig. 10 implement this idea. The inputs to the
function until are: sequences u1 and u2 representing the output signals of ϕ1 and ϕ2 (with
dom(u1) = dom(u2)), default value d, and the function f used for aggregation; it can be
min, max, or the special function λx, y. x which returns the value of its first argument
and which we use to monitor the formula ϕ1↓ Udϕ2. The function until scans the input
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sequences backwards and iterates over intervals where both input signals maintain a
constant value (J) . Each such interval is passed to the function untilAdd, which updates
the state of the algorithm (v′, s) and constructs the output signal (ur ).

5 Implementation and Experiments

We implemented the monitoring algorithm in a prototype tool that is available at https:
//gitlab.com/abakhirkin/StlEval. The tool has a number of limitations, notably it
can only use piecewise-constant interpolation (so we cannot evaluate examples that use
the auxiliary signal T(t) = t) and does not support past-time operators. It is written in
C++ and uses double-precision floating point numbers for time points and signal values.
We evaluate the tool using a number of synthetic signals and a number of properties
based on the ones described earlier in the paper.
Signals We use the following signals discretized with time step 1.
– xsin – sine wave with amplitude 1 and period 250; see red curve in Fig. 2.
– xdecay – damped oscillation with period 250. For t ∈ [0, 1000), x defined as

xdecay(t) = 1
e sin(250t + 250)e− 1

250 x , see red curve in Fig. 1; for t ≥ 1000, the
pattern repeats;

– xspike – series of spikes; a single spike is defined for t ∈ [0, 125) as: xspike(t) = e
(t−50)2

2·102 ,
and after that the pattern repeats; see blue curve in Fig. 9.

Properties We use the following properties:
– ϕstab = G F

(
On[0,200]Max x−On[0,200]Min x ≤ 0.1

)
, x always eventually becomes

stable around some value for 200 time units.
– ϕstab−0 = G F G[0,200](|x | ≤ 0.05): x always eventually becomes stable around 0 for

200 time units.
– ϕuntil = G[0,20k] F

(
(Max x)U∞

[200,∞) (|x
′ | ≥ 0.1)

)
−

(
(Min x)U−∞

[200,∞) (|x
′ | ≥ 0.1)

)
≤

0.1, where x ′ = (D0
1 x − x), x always eventually becomes stable for at least 200 time

units and then starts changing with derivative of at least 0.1.
– ϕmax−min = G

(
(x ≥ On[0,85]Max x) ⇒ F(x ≤ On[0,85]Min x)

)
, every local maxi-

mum is followed by a local minimum.
– ϕabove−below = G

(
x ≥ 0.85⇒(F x ≤ −0.85)

)
, if x is above 0.85, it should eventually

become below −0.85.
– ϕspike = (On[0,16]Max x ≥ x + 0.5) ∧ F[0,16](On[0,16]Min x ≤ x − 0.5), spike of
half-width 16 and height at least 0.5.

– ϕspike−stlib = F
(
x ′ ≥ 0.04 ∧ F[0,25](x ′ ≤ −0.04)

)
, where x ′ = (D0

1 x − x), spike of
width at most 25 and magnitude 0.04.

Some properties are expressed in our language using On- and “until”-operators, and
some are STL properties. This allows us to see how much time it takes to monitor a
more complicated property in our language (e.g., ϕstab, stabilization around an unknown
value) compared to a similar but more simple STL property (e.g., ϕstab−0, stabilization
around a known value). In our experiments we see a constant factor between 2 and 5.

Table 1 shows the evaluation results. A row gives a formula and a signal shape; a
column gives the number of samples in the input signal, and a table cell gives two time
figures in seconds: the monitoring time excluding the time required to read the input
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Table 1.Monitoring time for different formulas and signals.

This paper AMT 2.0 Breach
100k 1M 100k 1M 100k 1M

ϕstab xdecay 0.004 0.05 0.048 0.39
ϕstab−0 xdecay 0.003 0.04 0.023 0.38 0.59 4.0 2.4 7.3 0.053 - 0.42 -
ϕuntil xdecay 0.01 0.05 0.097 0.43

ϕmax−min xsin 0.007 0.04 0.07 0.4
ϕabove−below xsin 0.002 0.04 0.02 0.36 0.6 3.1 2.4 7.5 0.05 - 0.4 -

ϕspike xspike 0.01 0.05 0.1 0.45
ϕspike−stlib xspike 0.006 0.05 0.05 0.43 1.0 4.0 5.0 13 0.058 - 0.47 -

data, and the total runtime of an executable. We note that for our tool, the total runtime
is dominated by the time required to read the input signal from a text file. For the three
STL properties we include the time it took AMT 2.0 (a monitoring tool written in Java
[18]) and Breach (a Matlab toolbox partially written in C++ [8]; Breach does not have
a standalone executable, so the we leave the corresponding columns empty) to evaluate
the formula. This way we show that our implementation of STL monitoring has good
enough performance to be used as a baseline when evaluating the cost of the added
expressiveness in the new language. Time figures were obtained using a PC with a Core
i3-2120 CPU and 8GB RAM running 64-bit Debian 8.

6 Conclusion and Future Work

We describe a new specification language that extends STL with the ability to produce
and manipulate real-valued output signals (while in STL, every formula has a Boolean
output signal). Properties in the new language are specified in terms of minima and
maxima over a sliding window, which can have fixed width, when using a generalization
of F- andG-operators, or variable width, when using a new version “until”.We show how
the new language can express properties that motivated the creation of more expressive
and harder to monitor logics. Offline monitoring for the new language is almost as
efficient as STL monitoring; the complexity is linear in the length of the input signal
and does not depend on the constants appearing in the formula.

There are multiple directions for future work; perhaps more interesting one is adding
integration over a sliding window (in addition to minimum and maximum). This is
already allowed by some formalisms [7], and when added to our language will allow to
assert that a signal approximates the behaviour of a system defined by a given differential
equation (since we will be able to assert y(t) ≈

∫ t

0 x(t)dt). Before making integration
available, we wish to investigate how to better deal in a specification language with
approximation errors. Finally, we wish to make our language usable in falsification,
which means that for every formula with Boolean output signal we wish to be able to
compute a real-valued robustness measure.
Acknowledgements The authors thank T. Ferrére, D. Nickovic, E. Asarin for comments
on the draft of this paper, and O. Lebeltel for providing a version of AMT for the
experiments.
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