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Abstract

Vector Quantized-Variational AutoEncoders (VQ-VAE) are generative models based on discrete latent
representations of the data, where inputs are mapped to a finite set of learned embeddings. To generate new
samples, an autoregressive prior distribution over the discrete states must be trained separately. This prior
is generally very complex and leads to slow generation. In this work, we propose a new model to train the
prior and the encoder/decoder networks simultaneously. We build a diffusion bridge between a continuous
coded vector and a non-informative prior distribution. The latent discrete states are then given as random
functions of these continuous vectors. We show that our model is competitive with the autoregressive prior
on the mini-Imagenet and CIFAR dataset and is efficient in both optimization and sampling. Our framework
also extends the standard VQ-VAE and enables end-to-end training.

1 Introduction
Variational AutoEncoders (VAE) have emerged as important generative models based on latent representa-
tions of the data. While the latent states are usually continuous vectors, Vector Quantized Variational Au-
toEncoders (VQ-VAE) have demonstrated the usefulness of discrete latent spaces and have been successfully
applied in image and speech generation [Oord et al., 2017, Esser et al., 2021, Ramesh et al., 2021].

In a VQ-VAE, the distribution of the inputs is assumed to depend on a hidden discrete state. Large
scale image generation VQ-VAEs use for instance multiple discrete latent states, typically organized as 2-
dimensional lattices. In the original VQ-VAE, the authors propose a variational approach to approximate
the posterior distribution of the discrete states given the observations. The variational distribution takes as
input the observation, which is passed through an encoder. The discrete latent variable is then computed by a
nearest neighbour procedure that maps the encoded vector to the nearest discrete embedding.

It has been argued that the success of VQ-VAEs lies in the fact that they do not suffer from the usual poste-
rior collapse of VAEs [Oord et al., 2017]. However, the implementation of VQ-VAE involves many practical
tricks and still suffers from several limitations. First, the quantization step leads the authors to propose a
rough approximation of the gradient of the loss function by copying gradients from the decoder input to the
encoder output. Second, the prior distribution of the discrete variables is initially assumed to be uniform when
training the VQ-VAE. In a second training step, high-dimensional autoregressive models such as PixelCNN
[van den Oord et al., 2016, Salimans et al., 2017, Chen et al., 2018] and WaveNet [Oord et al., 2016] are es-
timated to obtain a complex prior distribution. Joint training of the prior and the VQ-VAE is a challenging
task for which no satisfactory solutions exist yet. Our work addresses both problems by introducing a new

1



mathematical framework that extends and generalizes the standard VQ-VAE. Our method enables end-to-end
training and, in particular, bypasses the separate training of an autoregressive prior.

An autoregressive pixelCNN prior model has several drawbacks, which are the same in the pixel space or
in the latent space. The data is assumed to have a fixed sequential order, which forces the generation to start
at a certain point, typically in the upper left corner, and span the image or the 2-dimensional latent lattice
in an arbitrary way. At each step, a new latent variable is sampled using the previously sampled pixels or
latent variables. Inference may then accumulate prediction errors, while training provides ground truth at
each step. The runtime process, which depends mainly on the number of network evaluations, is sequential
and depends on the size of the image or the 2-dimensional latent lattice, which can become very large for
high-dimensional objects.

The influence of the prior is further explored in [Razavi et al., 2019], where VQ-VAE is used to sample
images on a larger scale, using two layers of discrete latent variables, and [Willetts et al., 2021] use hier-
archical discrete VAEs with numerous layers of latent variables. Other works such as [Esser et al., 2021,
Ramesh et al., 2021] have used Transformers to autoregressively model a sequence of latent variables: while
these works benefit from the recent advances of Transformers for large language models, their autoregressive
process still suffers from the same drawbacks as pixelCNN-like priors.

The main claim of our paper is that using diffusions in a continuous space, Rd×N in our setting, is a very
efficient way to learn complex discrete distributions, with support on a large space (here with cardinalityKN ).
We only require an embedded space, an uninformative target distribution (here a Gaussian law), and use a
continuous bridge process to learn the discrete target distribution. In that direction, our contribution is inspired
by the literature but also significantly different. Our procedure departs from the diffusion probabilistic model
approach of [Ho et al., 2020], which highlights the role of bridge processes in denoising continuous target
laws, and from [Hoogeboom et al., 2021], where multinomial diffusions are used to noise and denoise but
prevent the use of the expressiveness of continuous bridges, and also do not scale well with K as remarked
by its authors. Although we target a discrete distribution, our approach does not suffer from this limitation.

Our contributions are summarized as follows.

• We propose a new mathematical framework for VQ-VAEs. We introduce a two-stage prior distribution.
Following the diffusion probabilistic model approach of [Ho et al., 2020], we consider first a contin-
uous latent vector parameterized as a Markov chain. The discrete latent states are defined as random
functions of this Markov chain. The transition kernels of the continuous latent variables are trained
using diffusion bridges to gradually produce samples that match the data.

• To our best knowledge, this is the first probabilistic generative model to use denoising diffusion in
discrete latent space. This framework allows for end-to-end training of VQ-VAE.

• We focus on VQ-VAE as our framework enables simultaneous training of all components of those
popular discrete models which is not straightforward. However, our methodology is more general and
allows the use of continuous embeddings and diffusion bridges to sample form any discrete laws.

• We present our method on a toy dataset and then compare its efficiency to the pixelCNN prior of the
original VQ-VAE on the miniImagenet dataset.

Figure 1 describes the complete architecture of our model.

2 Related Works
Diffusion Probabilistic Models. A promising class of models that depart from autoregressive models
are Diffusion Probabilistic Models [Sohl-Dickstein et al., 2015, Ho et al., 2020] and closely related Score-
Matching Generative Models [Song and Ermon, 2019, De Bortoli et al., 2021]. The general idea is to apply
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Figure 1: Our proposed architecture, for a prior based on a Ornstein-Uhlenbeck bridge. The top pathway
from input image to z0

e, to z0
q , to reconstructed image resembles the original VQ-VAE model. The vertical

pathway from (z0
e, z

0
q) to (zTe , z

T
q ) and backwards is based on a denoising diffusion process. See Section 3.2

and Algorithm 2 for the corresponding sampling procedure.

a corrupting Markovian process on the data through T corrupting steps and learn a neural network that grad-
ually denoises or reconstructs the original samples from the noisy data. For example, when sampling images,
an initial sample is drawn from an uninformative distribution and reconstructed iteratively using the trained
Markov kernel. This process is applied to all pixels simultaneously, so no fixed order is required and the sam-
pling time does not depend on sequential predictions that depend on the number of pixels, but on the number
of steps T . While this number of steps can be large (T = 1000 is typical), simple improvements enable
to reduce it dramatically and obtain ×50 speedups [Song et al., 2021]. These properties have led diffusion
probability models to receive much attention in the context of continuous input modelling.

From Continuous to Discrete Generative denoising. In [Hoogeboom et al., 2021], the authors propose
multinomial diffusion to gradually add categorical noise to discrete samples for which the generative denois-
ing process is learned. Unlike alternatives such as normalizing flows, the diffusion proposed by the authors
for discrete variables does not require gradient approximations because the parameter of the diffusion is fixed.

Such diffusion models are optimized using variational inference to learn the denoising process, i.e., the
bridge that aims at inverting the multinomial diffusion. In [Hoogeboom et al., 2021], the authors propose a
variational distribution based on bridge sampling. In [Austin et al., 2021], the authors improve the idea by
modifying the transition matrices of the corruption scheme with several tricks. The main one is the addition
of absorbing states in the corruption scheme by replacing a discrete value with a MASK class, inspired by
recent Masked Language Models like BERT. In this way, the corrupted dimensions can be distinguished from
the original ones instead of being uniformly sampled. One drawback of their approach, mentioned by the
authors, is that the transition matrix does not scale well for a large number of embedding vectors, which is
typically the case in VQ-VAE.

Compared to discrete generative denoising, our approach takes advantage of the fact that the discrete
distribution depends solely on a continuous distribution in VQ-VAE. We derive a novel model based on
continuous-discrete diffusion that we believe is simpler and more scalable than the models mentioned in this
section.
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From Data to Latent Generative denoising. Instead of modelling the data directly, [Vahdat et al., 2021]
propose to perform score matching in a latent space. The authors propose a complete generative model and
are able to train the encoder/decoder and score matching end-to-end. Their method also achieve excellent
visual patterns and results but relies on a number of optimization heuristics necessary for stable training.
In [Mittal et al., 2021], the authors have also applied such an idea in a generative music model. Instead of
working in a continuous latent space, our method is specifically designed for a discrete latent space as in
VQ-VAEs.

Using Generative denoising in discrete latent space. In the model proposed by [Gu et al., 2021], the
autoregressive prior is replaced by a discrete generative denoising process, which is perhaps closer to our
idea. However, the authors focus more on a text-image synthesis task where the generative denoising model
is traine based on an input text: it generates a set of discrete visual tokens given a sequence of text tokens.
They also consider the VQ-VAE as a trained model and focus only on the generation of latent variables. This
work focuses instead on deriving a full generative model with a sound probabilistic interpretation that allows
it to be trained end-to-end.

3 Diffusion bridges VQ-VAE

3.1 Model and loss function
Assume that the distribution of the input x ∈ Rm depends on a hidden discrete state zq ∈ E = {e1, . . . , eK}
with ek ∈ Rd for all 1 6 k 6 K. Let pθ be the joint probability density of (zq, x)

(zq, x) 7→ pθ(zq, x) = pθ(zq)pθ(x|zq) ,

where θ ∈ Rp are unknown parameters. Consider first an encoding function fϕ and write ze(x) = fϕ(x)
the encoded data. In the original VQ-VAE, the authors proposed the following variational distribution to
approximate pθ(zq|x):

qϕ(zq|x) = δek∗
x
(zq) ,

where δ is the Dirac mass and

k∗x = argmin16k6K {‖ze(x)− ek‖2} ,

where ϕ ∈ Rr are all the variational parameters.
In this paper, we introduce a diffusion-based generative VQ-VAE. This model allows to propose a VAE

approach with an efficient joint training of the prior and the variational approximation. Assume that zq is a
sequence, i.e. zq = z0:T

q , where for all sequences (au)u>0 and all 0 6 s 6 t, as:t stands for (as, . . . , at).
Consider the following joint probability distribution

pθ(z
0:T
q , x) = p

zq
θ (z0:T

q )pxθ (x|z0
q) .

The latent discrete state z0
q used as input in the decoder is the final state of the chain (zTq , . . . , z

0
q). We further

assume that pzqθ (z0:T
q ) is the marginal distribution of

pθ(z
0:T
q , z0:T

e ) = pzeθ,T (zTe )p
zq
θ,T (zTq |zTe )

T−1∏
t=0

pzeθ,t|t+1(zte|zt+1
e )p

zq
θ,t(z

t
q|zte) .

In this setting, {zte}06t6T are continuous latent states in Rd×N and conditionally on {zte}06t6T the {ztq}06t6T
are independent with discrete distribution with support EN . This means that we model jointly N latent states
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as this is useful for many applications such as image generation. The continuous latent state is assumed to be
a Markov chain and at each time step t the discrete variable ztq is a random function of the corresponding zte.
Although the continuous states are modeled as a Markov chain, the discrete variables arising therefrom have
a more complex statistical structure (and in particular are not Markovian).

The prior distribution of zTe is assumed to be uninformative and this is the sequence of denoising transition
densities {pzeθ,t|t+1}06t6T−1 which provides the final latent state z0

e which is mapped to the embedding space
and used in the decoder, i.e. the conditional law of the data given the latent states. The final discrete z0

q

only depends the continuous latent variable z0
e, similar to the dependency between zq and ze in the original

VQ-VAE.
Since the conditional law pθ(z

0:T
q , z0:T

e |x) is not available explicitly, this work focuses on variational
approaches to provide an approximation. Then, consider the following variational family:

qϕ(z0:T
q , z0:T

e |x) = δze(x)(z
0
e)q

zq
ϕ,0(z0

q|z0
e)

T∏
t=1

{
qzeϕ,t|t−1(zte|zt−1

e )q
zq
ϕ,t(z

t
q|zte)

}
.

The family {qzeϕ,t|t−1}16t6T of forward ”noising” transition densities are chosen to be the transition densities

of a continuous-time process (Zt)t>0 with Z0 = ze(x). Sampling the diffusion bridge (Z̃t)t>0, i.e. the
law of the process (Zt)t>0 conditioned on Z0 = ze(x) and ZT = zTe is a challenging problem for general
diffusions, see for instance [Beskos et al., 2008, Lin et al., 2010, Bladt et al., 2016]. By the Markov property,
the marginal density at time t of this conditioned process is given by:

q̃zeϕ,t|0,T (zte|z0
e, z

T
e ) =

qzeϕ,t|0(zte|z0
e)q

ze
ϕ,T |t(z

T
e |zte)

qzeϕ,T |0(zTe |z0
e)

. (1)

The Evidence Lower BOund (ELBO) is then defined, for all (θ, ϕ), as

L(θ, ϕ) = Eqϕ

[
log

pθ(z
0:T
q , z0:T

e , x)

qϕ(z0:T
q , z0:T

e |x)

]
,

where Eqϕ is the expectation under qϕ(z0:T
q , z0:T

e |x).

Lemma 3.1. For all (θ, ϕ), the ELBO L(θ, ϕ) is:

L(θ, ϕ) = Eqϕ
[
log pxθ (x|z0

q)
]

+

T∑
t=0

Lt(θ, ϕ) +

T∑
t=0

Eqϕ

[
log

p
zq
θ,t(z

t
q|zte)

q
zq
ϕ,t(z

t
q|zte)

]
,

where, for 1 6 t 6 T − 1,

L0(θ, ϕ) = Eqϕ
[
log pzeθ,0|1(z0

e|z1
e)
]
,

Lt(θ, ϕ) = Eqϕ

[
log

pzeθ,t−1|t(z
t−1
e |zte)

qzeϕ,t−1|0,t(z
t−1
e |z0

e, z
t
e)

]
,

LT (θ, ϕ) = Eqϕ

[
log

pzeθ,T (zTe )

qzeϕ,T |0(zTe |z0
e)

]
.

Proof. The proof is standard and postponed to Appendix 6.
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The three terms of the objective function can be interpreted as follows:

L(θ, ϕ) = Lrec(θ, ϕ) +

T∑
t=0

Lt(θ, ϕ) +

T∑
t=0

Lregt (θ, ϕ)

with Lrec = Eqϕ [log pxθ (x|z0
q)] a reconstruction term, Lt the diffusion term, and an extra term

Lregt = Eqϕ

[
log

p
zq
θ,t(z

t
q|zte)

q
zq
ϕ,t(z

t
q|zte)

]
, (2)

which may be seen as a regularization term as discussed in next sections.

3.2 Application to Ornstein-Uhlenbeck processes
Consider for instance the following Stochastic Differential Equation (SDE) to add noise to the normalized
inputs:

dZt = −ϑ(Zt − z∗)dt+ ηdWt , (3)

where ϑ, η > 0, z∗ ∈ Rd×N is the target state at the end of the noising process and {Wt}06t6T is a standard
Brownian motion in Rd×N . We can define the variational density by integrating this SDE along small step-
sizes. Let δt be the time step between the two consecutive latent variables zt−1

e and zte. In this setting,
qzeϕ,t|t−1(zte|zt−1

e ) is a Gaussian probability density function with mean z∗ + (zt−1
e − z∗)e−ϑδt in Rd×N and

covariance matrix (2ϑ)−1η2(1− e−2ϑδt)IdN , where for all n > 1, In is the identity matrix with size n× n.
Asymptotically the process is a Gaussian with mean z∗ and variance η2(2ϑ)−1IdN .

The denoising process amounts then to sampling from the bridge associated with the SDE, i.e. sampling
zt−1
e given z0

e and zte. The law of this bridge is explicit for the Ornstein-Uhlenbeck diffusion (3). Using (1),

q̃zeϕ,s|0,t(z
s
e|zte, z0

e) ∝ q
ze
ϕ,s|0(zt−1

e |z0
e)q

ze
ϕ,t|s(z

t
e|zse) ,

where 0 6 s 6 t, so that q̃zeϕ,t−1|0,t(z
t−1
e |zte, z0

e) is a Gaussian probability density function with mean

µ̃ϕ,t−1|0,t(z
0
e, z

t
e) =

βt
1− ᾱt

(
z∗ +

√
ᾱt−1(z0

e − z∗)
)

+
1− ᾱt−1

1− ᾱt
√
αt
(
zte − (1−

√
αt)z∗

)
and covariance matrix

σ̃2
ϕ,t−1|0,t =

η2

2ϑ

1− ᾱt−1

1− ᾱt
βt IdN ,

where βt = 1 − exp(−2ϑδt), αt = 1 − βt and ᾱt =
∏t
s=1 αs. Note that the bridge sampler proposed in

[Ho et al., 2020] is a specific case of this setting with η =
√

2, z∗ = 0 and ϑ = 1.

Choice of denoising model pθ. Following [Ho et al., 2020], we propose a Gaussian distribution for pzeθ,t−1|t(z
t−1
e |zte)

with mean µθ,t−1|t(z
t
e, t) and variance σ2

θ,t|t−1 IdN . In the following, we choose

σ2
θ,t|t−1 =

η2

2ϑ

1− ᾱt−1

1− ᾱt
βt

so that the term Lt of Lemma 3.1 writes

2σ2
θ,t|t−1Lt(θ, ϕ) = −Eqϕ

[∥∥µθ,t−1|t(z
t
e, t)− µ̃ϕ,t−1|0,t(z

0
e, z

t
e)
∥∥2

2

]
.
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In addition, under qϕ, zte has the same distribution as

hte(z
0
e, εt) = z∗ +

√
ᾱt(z

0
e − z∗) +

√
η2

2ϑ
(1− ᾱt)εt ,

where εt ∼ N (0, IdN ). Then, for instance in the case z∗ = 0, µ̃ϕ,t−1|0,t can be reparameterised as follows:

µ̃ϕ,t−1|0,t(z
0
e, z

t
e) =

1
√
αt

(
hte(z

0
e, εt)−

√
η2

2ϑ(1− ᾱt)
βtεt

)
.

We therefore propose to use

µθ,t−1|t(z
t
e, t) =

1
√
αt

(
zte −

√
η2

2ϑ(1− ᾱt)
βtεθ(z

t
e, t)

)
,

which yields

Lt(θ, ϕ) =
−βt

2αt(1− ᾱt−1)
E
[∥∥εt − εθ(hte(z0

e, εt), t)
∥∥2

2

]
. (4)

Several choices can be proposed to model the function εθ. The deep learning architectures considered in
the numerical experiments are discussed in Appendix 9 and 10. Similarly to [Ho et al., 2020], we use a
stochastic version of our loss function: sample t uniformly in {0, . . . , T}, and consider Lt(θ, ϕ) instead of
the full sum over all t. The final training algorithm is described in Algorithm 1 and the sampling procedure
in Algorithm 2.

Connections with the VQ-VAE loss function. In the special case where T = 0, our loss function can
be reduced to a standard VQ-VAE loss function. In that case, write zq = z0

q and ze = z0
e, the ELBO then

becomes:

L(θ, ϕ) = Eqϕ [log pxθ (x|zq)] + Eqϕ
[
log

p
zq
θ (zq|ze)
q
zq
ϕ (zq|ze)

]
,

Then, if we assume that pzqθ (zq|ze) = Softmax{−‖ze−ek‖22}1≤k≤K and that qzqϕ (zq|ze) is as in [Oord et al., 2017],
i.e. a Dirac mass at ẑq = argmin1≤k≤K‖ze − ek‖22, up to an additive constant, this yields the following ran-
dom estimation of Eqϕ [log p

zq
θ (zq|ze)/q

zq
ϕ (zq|ze)],

L̂regzq (θ, ϕ) = ‖ze − ẑq‖2 + log

(
K∑
k=1

exp {−‖ze − ek‖2}

)
.

The first term of this loss is the loss proposed in [Oord et al., 2017] which is then split into two parts using
the stop gradient operator. The last term is simply the additional normalizing term of pzqθ (zq|ze).

Connecting diffusion and discretisation. Similar to the VQ-VAE case above, it is possible to consider
only the term Lreg0 (θ, ϕ) in the case T > 0. However, our framework allows for much flexible parame-
terisation of pzqθ,t(z

t
q|zte) and qzqϕ,t(z

t
q|zte). For instance, the Gumbel-Softmax trick provides an efficient and

differentiable parameterisation. A sample ztq ∼ p
zq
θ,t(z

t
q|zte) (resp. ztq ∼ q

zq
ϕ,t(z

t
q|zte)) can be obtained by sam-

pling with probabilities proportional to {exp{(−‖ze− ek‖22 +Gk)/τt}}1≤k≤K (resp. {exp{(−‖ze− ek‖22 +

G̃k)/τ}}1≤k≤K), where {(Gk, G̃k)}1≤k≤K are i.i.d. with distribution Gumbel(0, 1), τ > 0, and {τt}0≤t≤T
are positive time-dependent scaling parameters. In practice, the third part of the objective function can be
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repeat
Compute z0

e = fϕ(x)
Sample ẑq

0 ∼ qϕ(z0
q|z0

e)

Compute L̂rec(θ, ϕ) = log pxθ (x|ẑq0)
Sample t ∼ Uniform({0, . . . , T})
Sample εt ∼ N (0, IdN )
Sample zte ∼ qϕ,t(zte|z0

e) (using εt)
Compute L̂t(θ, ϕ) from εθ(z

t
e, t) and εt using (4)

Compute L̂regt (θ, ϕ) from zte (see text)
L̂(θ, ϕ) = L̂rec(θ, ϕ) + L̂t(θ, ϕ) + L̂regt (θ, ϕ)
Perform SGD step on −L̂(θ, ϕ)

until convergence
Algorithm 1: Training procedure

Sample zTe ∼ N (0, (2ϑ)−1η2IdN )
for t = T to 1 do

Set zt−1
e = α

−1/2
t

(
zte −

√
η2

2ϑ(1−ᾱt)
βtεθ(z

t
e, t)

)
end for
Sample z0

q ∼ p
zq
θ,0(z0

q|z0
e) {quantisation}

Sample x ∼ pxθ (x|z0
q) {decoder}

Algorithm 2: Sampling procedure (for z∗ = 0)

computed efficiently, by using a stochastic version of the ELBO, computing a single Lregt (θ, ϕ) instead of
the sum (we use the same t for both parts of the ELBO). The term reduces to:

Lregt (θ, ϕ) = −KL(qϕ(ztq|zte)‖pθ(ztq|zte)) . (5)

This terms connects the diffusion and quantisation parts as it creates a gradient pathway through a step t of
the diffusion process, acting as a regularisation on the codebooks and zte. Intuitively, maximizing Lregt (θ, ϕ)
accounts for pushing codebooks and zte together or apart depending on the choice of τ, τt. The final end-to-
end training algorithm is described in Algorithm 1, and further considerations are provided in Appendix 8.

4 Experiments

4.1 Toy Experiment
In order to understand the proposed denoising procedure for VQ-VAE, consider a simple toy setting in which
there is no encoder nor decoder, and the codebooks {ej}06j6K−1 are fixed. In this case, with d = 2 andN =
5, x = z0

e ∈ R2×5. We choose K = 8 and the codebooks ej = µj ∈ R2, 0 6 j 6 K − 1, are fixed centers
at regular angular intervals in R2 and shown in Figure 2; the latent states (ztq)1≤t≤T lie in {e0, . . . , e7}5.
Data generation proceeds as follows. First, sample a sequence of (q1, . . . , q5) in {0, . . . , 7}: q1 has a uniform
distribution, and, for s ∈ {0, 1, 2, 3}, qs+1 = qs + bs mod 8, where bs are independent Bernoulli samples
with parameter 1/2 taking values in {−1, 1}. Conditionally on (q1, . . . , q5), x is a Gaussian random vector
with mean (eq1 , . . . , eq5) and variance I2×5.

We train our bridge procedure with T = 50 timesteps, ϑ = 2, η = 0.1, other architecture details and the
neural network εθ(zte, t) are described in Appendix 10. Forward noise process and denoising using εθ(zte, t)

8



Figure 2: Toy dataset, with K = 8 centroids, and two samples x = (x1, x2, x3, x4, x5) in R2×5 each
displayed as 5 points in R2 (blue and red points), corresponding to the discrete sequences (red) (6, 5, 4, 3, 2)
and (blue) (7, 0, 1, 0, 1).

are showcased in Figure 3, and more illustrations and experiments can be found in Appendix 10.

Figure 3: (Left) Forward noise process for one sample. First, one data is drawn (z0
e(x) = x in the toy

example) and then {zte}1≤t≤T are sampled under qϕ and displayed. (Right) Reverse process for one sample
zTe ∼ N (0, (2ϑ)−1η2IdN ). As expected, the last sample z0

e reaches the neighborhood of 5 codebooks.

End-to-end training. Contrary to VQ-VAE procedures in which the encoder, decoder and codebooks are
trained separately from the prior, we can train the bridge prior alongside the codebooks. Consider a new
setup, in which the K = 8 codebooks are randomly initialized and considered as parameters of our model
(they are no longer fixed to the centers of the data generation process µj). The first part of our loss function,
in conjunction with the Gumbel-Softmax trick makes it possible to train all the parameters of the model
end-to-end. Details of the procedure and results are shown in Appendix 10.

4.2 Image Synthesis
In this section, we focus on image synthesis using CIFAR10 and miniImageNet datasets. The goal is to
evaluate the efficiency and properties of our model compared to the original PixelCNN. Note that for fair
comparisons, the encoder, decoder and codebooks are pretrained and fixed for all models, only the prior is
trained and evaluated here. As our goal is the comparison of priors, we did not focus on building the most
efficient VQ-VAE, but rather a reasonable model in terms of size and efficiency.
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CIFAR10. The CIFAR dataset consists of inputs x of dimensions 32 × 32 with 3 channels. The encoder
projects the input into a grid of continuous values z0

e of dimension 8×8×128. After discretisation, {ztq}06t6T
are in a discrete latent space induced by the VQ-VAE which consists of values in {1, . . . ,K}8×8 with K =
256. The pre-trained VQ-VAE reconstructions can be seen in Figure 13 in Appendix 11.

miniImageNet. miniImageNet was introduced by [Vinyals et al., 2016] to offer more complexity than
CIFAR10, while still fitting in memory of modern machines. 600 images were sampled for 100 different
classes from the original ImageNet dataset, then scaled down, to obtain 60,000 images of dimension 84× 84.
In our experiments, we trained a VQVAE model to project those input images into a grid of continuous values
z0
e of dimensions 21× 21× 32, see Figure 15 in Appendix 11. The associated codebook contains K = 128

vectors of dimension 32.

Prior models. Once the VQ-VAE is trained on the miniImageNet and CIFAR datasets, the 84 × 84 × 3
and 32 × 32 × 3 images respectively are passed to the encoder and result in 21 × 21 and 8 × 8 feature
maps respectively. From this model, we extract the discrete latent states from training samples to train a
PixelCNN prior and the continuous latent states for our diffusion. Concerning our diffusion prior, we choose
the Ornstein-Uhlenbeck process setting η =

√
2, z∗ = 0 and ϑ = 1, with T = 1000.

End-to-End Training. As an additional experiment, we propose an End-to-End training of the VQ-VAE
and the diffusion process. To speed up training, we first start by pretraining the VQ-VAE, then learn the
parameters of our diffusion prior alongside all the VQ-VAE parameters (encoder, decoder and codebooks).
Note that in this setup, we cannot directly compare the NLL to PixelCNN or our previous diffusion model as
the VQ-VAE has changed, but we can compare image generation metrics such as FID and sample quality.

4.3 Quantitative results
We benchmarked our model using three metrics, in order to highlight the performances of the proposed
prior, the quality of produced samples as well as the associated computation costs. Results are given as a
comparison to the original PixelCNN prior for both the miniImageNet (see Table 2) and the CIFAR10 (see
Table 3) datasets.

Negative Log Likelihood. Unlike most related papers, we are interested in computing the Negative Log
Likelihood (NLL) directly in the latent space, as to evaluate the capacity of the priors to generate coherent
latent maps. To this end, we mask a patch of the original latent space, and reconstruct the missing part,
similar to image inpainting, following for instance [Van Oord et al., 2016]. In the case of our prior, for each
sample x, we mask an area of the continuous latent state z0

e, i.e. we mask some components of z0
e, and aim

at sampling the missing components given the observed ones using the prior model. Let zq0 and ze
0 (resp.

zq
0 and ze

0) be the masked (resp. observed) discrete and continuous latent variables. The target conditional
likelihood is

pθ(zq
0|ze0) =

∫
pθ(zq

0, ze
0|ze0)dze

0 ,

=

∫
pθ(zq

0|ze0)pθ(ze
0|ze0)dze

0 .

This likelihood is intractable and replaced by a simple Monte Carlo estimate p̂θ(zq0|ze0) where ze
0 ∼

pθ(ze
0|ze0). Note that conditionally on ze

0 the components of zq0 are assumed to be independent but ze0 are
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sampled jointly under pθ(ze0|ze0). As there are no continuous latent data in PixelCNN, pθ(zq0|zq0) can be
directly evaluated.

Fréchet Inception Distance. We report Fréchet Inception Distance (FID) scores by sampling a latent
discrete state zq ∈ EN from the prior, and computing the associated image through the VQ-VAE decoder.
In order to evaluate each prior independently from the encoder and decoder networks, these samples are
compared to VQ-VAE reconstructions of the dataset images.

Kullback-Leibler divergence. In this experiment, we draw M = 1000 samples from test set and encode
them using the trained VQ-VAE, and then draw as many samples from the pixelCNN prior, and our diffusion
prior. We propose then to compute the empirical Kullback Leibler (KL) divergence between original and
sampled distribution at each pixel. Figure 4 highlights that PixelCNN performs poorly on the latest pixels
(at the bottom) while our method remains consistent. This is explained by our denoising process in the
continuous space which uses all pixels jointly while PixelCNN is based on an autoregressive model.

Figure 4: KL Distance between the true empirical distribution and both prior distributions in the latent space.
Darker squares indicates lower (better) values.

KL

Ours 0.713
PixelCNN 0.809

Table 1: Averaged KL metric on the feature map.

Computation times. We evaluated the computation cost of sampling a batch of 32 images, on a GTX
TITAN Xp GPU card. Note that the computational bottleneck of our model consists of the T = 1000
sequential diffusion steps (rather than the encoder/decoder which are very fast in comparison). Therefore,
a diffusion speeding technique such as the one described in [Song et al., 2021] would be straightforward to
apply and would likely provide a ×50 speedup as mentioned in the paper.

4.4 Qualitative results
Sampling from the prior. Samples from the PixelCNN prior are shown in Figure 5b and samples from
our prior in Figure 5a. Additional samples are given in Appendix 11. Note that contrary to original VQ-VAE
prior, the prior is not conditioned on a class, which makes the generation less specific and more difficult.
However, the produced samples illustrate that our prior can generate a wide variety of images which show a
large-scale spatial coherence in comparison with samples from PixelCNN.
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Table 2: Results on miniImageNet. Metrics are computed on the validation dataset. The means are displayed
along with the standard deviation in parenthesis.

NLL FID s/sample
PixelCNN [Oord et al., 2017] 1.00 (±0.05) 98 10.6s (±28ms)
Ours 0.94 (±0.02) 99 1.7s (±10ms)

Table 3: Results on CIFAR10. Metrics are computed on the validation dataset. The means are displayed
along with the standard deviation in parenthesis.

NLL FID s/sample
PixelCNN [Oord et al., 2017] 1.41 (±0.06) 109 0.21 (±0.8ms)
Ours 1.33 (±0.18) 104 0.05s (±0.5ms)
Ours end-to-end 1.59 (±0.27)1 92 0.11s (±0.5ms)

(a) Samples from our diffusion prior.

(b) Samples from the PixelCNN prior.

Figure 5: Comparison between samples from our diffusion-based prior (top) and PixelCNN prior (bottom).

Conditional sampling. As explained in Section 4.3, for each sample x, we mask some components of
z0
e(x), and aim at sampling the missing components given the observed ones using the prior models. This

conditional denoising process is further explained for our model in Appendix 7. To illustrate this setting,
we show different conditional samples for 3 images in Figure 6 and Figure 7 for both the PixelCNN prior
and ours. In Figure 6, the mask corresponds to a 9 × 9 centered square over the 21 × 21 feature map. In
Figure 7, the mask corresponds to a 9× 9 top left square. These figures illustrate that our diffusion model is
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Figure 6: Conditional sampling with centered mask: for each of the 3 different images, samples from our
diffusion are on top and from PixelCNN on the bottom. For each row: the image on the left is the VQVAE
masked reconstruction, the image on the right is the full VQ-VAE reconstruction. Images in-between are
independent conditional samples from the models.

much less sensitive to the selected masked region than PixelCNN. This may be explained by the use of our
denoising function εθ which depends on all conditioning pixels while PixelCNN uses a hierarchy of masked
convolutions to enforce a specific conditioning order. Additional conditional sampling experiments are given
in Appendix 11.

Denoising chain. In addition to the conditional samples, Figure 8 shows the conditional denoising pro-
cess at regularly spaced intervals, and Figure 9 shows unconditional denoising. Each image of the chain is
generated by passing the predicted ztq through the VQ-VAE decoder.

5 Conclusion
This work introduces a new mathematical framework for VQ-VAEs which includes a diffusion probabilistic
model to learn the dependencies between the continuous latent variables alongside the encoding and decoding
part of the model. We showed conceptual improvements of our model over the VQ-VAE prior, as well as first
numerical results on middle scale image generation. We believe that these first numerical experiments open up
many research avenues: scaling to larger models, optimal scaling of the hyperparameters, including standard
tricks from other diffusion methods, studying the influence of regulazation loss for end-to-end training, etc.
We hope that this framework will serve as a sound and stable foundation to derive future generative models.
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Figure 7: Conditional sampling with top left mask: for each of the 3 different images, samples from our
diffusion are on top and from PixelCNN on the bottom. For each row: the image on the left is the VQVAE
masked reconstruction, the image on the right is the full VQ-VAE reconstruction. Images in-between are
independent conditional samples from the models.

Figure 8: Sampling denoising chain from t = 500 up to t = 0, shown at regular intervals, conditioned on the
outer part of the picture. We show only the last 500 steps of this process, as the first 500 steps are not visually
informative. The sampling procedure is described in Appendix 7.
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Figure 9: Sampling denoising chain from t = 500 up to t = 0, shown at regular intervals, unconditional. We
show only the last 500 steps of this process, as the first 500 steps are not visually informative. The sampling
procedure is described in Algorithm 2
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6 Details on the loss function
Proof of Lemma 3.1. By definition,

L(θ, ϕ) = Eqϕ

[
log

pθ(z
0:T
q , z0:T

e , x)

qϕ(z0:T
q , z0:T

e |x)

]
,

which yields

L(θ, ϕ) = Eqϕ
[
log pxθ (x|z0

q)
]

+ Eqϕ

[
log

p
zq
θ (z0:T

q |z0:T
e )

q
zq
ϕ (z0:T

q |z0:T
e )

]
+ Eqϕ

[
log

pzeθ (z0:T
e )

qzeϕ (z0:T
e |x)

]
.

The last term may be decomposed as

Eqϕ
[
log

pzeθ (z0:T
e )

qzeϕ (z0:T
e |x)

]
= Eqϕ

[
log pzeθ,T (zTe )

]
+

T∑
t=1

Eqϕ

[
log

pzeθ,t−1|t(z
t−1
e |zte)

qzeϕ,t|t−1(zte|zt−1
e )

]
and

Eqϕ
[
log

pzeθ (z0:T
e )

qzeϕ (z0:T
e |x)

]
= Eqϕ

[
log pzeθ,T (zTe )

]
+Eqϕ

[
log

pzeθ,0|1(z0
e|z1

e)

qzeϕ,1|0(z1
e|z0

e)

]
+

T∑
t=2

Eqϕ

[
log

pzeθ,t−1|t(z
t−1
e |zte)

qzeϕ,t|t−1(zte|zt−1
e )

]
.

By (1),

Eqϕ
[
log

pzeθ (z0:T
e )

qzeϕ (z0:T
e |x)

]
= Eqϕ

[
log

pzeθ,T (zTe )

qzeϕ,T |0(zTe |z0
e)

]
+

T∑
t=2

Eqϕ

[
log

pzeθ,t−1|t(z
t−1
e |zte)

qzeϕ,t−1|0,t(z
t−1
e |z0

e, z
t
e)

]
+ Eqϕ

[
log pzeθ,0|1(z0

e|z1
e)
]
,

which concludes the proof.
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7 Inpainting diffusion sampling
We consider the case in which we know a sub-part of the picture X , and want to predict the complementary
pixels X . Knowing the corresponding n latent vectors ze

0 which result from X through the encoder, we
sampleN−n ze

T from the uninformative distribution ze
T ∼ N (0, (2ϑ)−1η2Id×(N−n)). In order to produce

the chain of samples zt−1
e from zte we then follow the following procedure.

• ze
t−1 is predicted from zte using the neural network predictor, similar to the unconditioned case.

• Sample ze
t−1 using the forward bridge noising process.

8 Additional regularisation considerations
We consider here details about the parameterisation of pzqθ (ztq|zte) and qzqϕ (ztq|zte) in order to computeLregt (θ, ϕ).
Using the Gumbel-Softmax formulation provides an efficient and differentiable parameterisation.

p
zq
θ,t(z

t
q = ·|zte) = Softmax{(−‖ze − ek‖22 +Gk)/τt}16k6K ,

qϕ,t(z
t
q = ·|zte) = Softmax{(−‖ze − ek‖22 + G̃k)/τ}16k6K ,

where {(Gk, G̃k)}16k6K are i.i.d. with distribution Gumbel(0, 1), τ > 0, and {τt}06t6T are positive
time-dependent scaling parameters. Then, up to the additive normalizing terms,

Lregt (θ, ϕ) = Eqϕ

[
log

p
zq
θ,t(z

t
q|zte)

q
zq
ϕ,t(z

t
q|zte)

]
=

(
− 1

τt
+

1

τ

)
‖zte − ẑtq‖22 −

G̃k
τ

+
Gk
τt

,

where ẑtq ∼ q
zq
ϕ,t(z

t
q|zte). Considering only the first term which depend on zte and produce non-zero gradients,

we get:
Lregt (θ, ϕ) = γt‖zte − ẑtq‖22

where γt = −1/τt + 1/τ drives the behavior of the regulariser. By choosing is γt negative for large t,
the regulariser pushes the codebooks away from zte, which prevents too early specialization, or matching of
codebooks with noise, as zt≈Te is close to the uninformative distribution. Finally, for small t, choosing γt
positive helps matching codebooks with ze when the corruption is small. In practice τ = 1 and a simple
schedule from 10 to 0.1 for τt was considered in this work.

9 Neural Networks
For εθ(zte, t), we use a U-net like architecture similar to the one mentioned in [Ho et al., 2020]. It consists of a
deep convolutional neural network with 57M parameters, which is slightly below the PixelCNN architecture
(95.8M parameters). The VQ-VAE encoder / decoders are also deep convolutional networks totalling 65M
parameters.

10 Toy Example Appendix
Parameterisation We consider a neural network to model εθ(zte, t). The network shown in Figure 10
consists of a time embedding similar to [Ho et al., 2020], as well as a few linear or 1D-convolutional layers,
totalling around 5000 parameters.
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Figure 10: Graphical representation of the neural network used for the toy dataset.

For the parameterisation of the quantization part, we choose pzqθ,t(z
t
q = ej |zte) = Softmax1≤k≤K{−‖ze−

ek‖2}j , and the same parameterisation for qzqϕ,t(z
t
q|zte). Therefore our loss simplifies to:

L(θ, ϕ) = Eqϕ
[
log pxθ (x|z0

q)
]

+ Lt(θ, ϕ) ,

where t is sampled uniformly in {0, . . . , T}.

t NN sequence
50 (0, 7, 3, 6, 2)
40 (6, 5, 5, 5, 3)
30 (5, 5, 5, 4, 2)
20 (6, 6, 5, 4, 3)
10 (5, 6, 5, 4, 3)
0 (5, 6, 5, 4, 3)

Table 4: Discrete samples during diffusion process. The discrete sequence is obtained by computing the
nearest neighbour centroid µj for each Xt

s. At t = 0, X0 is sampled from a centered Gaussian distribution
with small covariance matrix (2ϑ)−1η2I2×5, resulting in a uniform discrete sequence, as all centroids have a
similar unit norm.

Discrete samples during diffusion process Discrete sequences corresponding to the denoising diffusion
process shown in Figure 3 are shown in Table 4.

End-to-end training In order to train the codebooks alongside the diffusion process, we need to backprop-
agate the gradient of the likelihood of the data ze given a z0

e reconstructed by the diffusion process (corre-
sponding to Lrec(θ, ϕ)). We use the Gumbel-Softmax parameterisation in order to obtain a differentiable
process and update the codebooks ej .

In this toy example, the use of the third part of the loss
∑T
t=0 L

reg
t (θ, ϕ) is not mandatory as we obtain

good results withLregt (θ, ϕ) = 0, which means parametrising pzqθ,t(z
t
q|zte) = q

zq
ϕ,t(z

t
q|zte). However we noticed

that Lregt (θ, ϕ) is useful to improve the learning of the codebooks. If we choose γt to be decreasing with
time t, we have the following. When t is low, the denoising process is almost over, Lregt (θ, ϕ) pushes ze
and the selected zq to close together: ‖ze‖ ∼ 1, then ‖zte‖ will be likely near a specific ej and far from the
others; therefore only a single codebook is selected and receives gradient. When t is high, ‖zte‖ ∼ 0 and
the Gumbel-Softmax makes it so that all codebooks are equidistant from ‖zte‖ and receive non-zero gradient.
This naturally solves training problem associated with dead codebooks in VQ-VAEs. Joint training of the
denoising and codebooks yield excellent codebook positionning as shown in Figure 11.
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Figure 11: Left, initial random codebooks positions. Right, after training, position of codebook vectors.
Note that the codebook indexes do not match the indexes of the Gaussians, the model learnt to make the
associations between neighboring centroids in a different order.

Toy Diffusion inpainting We consider a case in which we want to reconstruct an x while we only know
one (or a few) dimensions, and sample the others. Consider that x is generated using a sequence q =
(q1, q2, q”, q4, q5) where the last one if fixed q1 = 0, q5 = 4. Then, knowing q1, q5, we sample q2, q3, q4, as
shown in Figure 12.

Figure 12: Three independent sampling of X using a trained diffusion bridge, with fixed q1 = 0, q5 = 4. The
three corresponding sequences are (0, 7, 6, 5, 4), (0, 1, 2, 3, 4), (0, 7, 6, 5, 4) all valid sequences.
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11 Additional visuals

11.1 Cifar

Figure 13: Reconstruction of the VQVAE model used in the following benchmarks.

Figure 14: Samples from the PixelCNN prior (left) and from our diffusion prior (right) on CIFAR10.

11.2 MiniImageNet

Figure 15: Reconstruction of the trained VQ-VAE on the miniImageNet dataset. Original images are encoded,
discretised, and decoded.
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Figure 16: Samples from our model for the miniimagenet dataset

Figure 17: Conditional sampling: Top: reconstructions from the vqvae of originals images, Middle: con-
ditional sampling with the left side of the image as condition, for our model. Bottom 1 and 2: conditional
sampling in the same context with the PixelCNN prior.
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Figure 18: Sampling denoising chain from up to t = 0, shown at regular intervals, conditioned on the left
part of the picture. The sampling procedure is described in Appendix 7.

Figure 19: Conditional sampling with the PixelCNN prior. Left: original images, Right: conditional sam-
pling with the left side of the image as condition. Each row represents a class of the validation set of the
miniImageNet dataset.
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flows and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems (NeurIPS 2021), 34.

[Lin et al., 2010] Lin, M., Chen, R., and Mykland, P. (2010). On generating monte carlo samples of contin-
uous diffusion bridges. Journal of the American Statistical Association, 105(490):820–838.

[Mittal et al., 2021] Mittal, G., Engel, J., Hawthorne, C., and Simon, I. (2021). Symbolic music generation
with diffusion models. arXiv preprint arXiv:2103.16091.

[Oord et al., 2016] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbren-
ner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499.

[Oord et al., 2017] Oord, A. v. d., Vinyals, O., and Kavukcuoglu, K. (2017). Neural discrete representation
learning. Advances in neural information processing systems (NeurIPS 2017).

[Ramesh et al., 2021] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and
Sutskever, I. (2021). Zero-shot text-to-image generation. 139:8821–8831.

[Razavi et al., 2019] Razavi, A., van den Oord, A., and Vinyals, O. (2019). Generating diverse high-fidelity
images with vq-vae-2. In Advances in neural information processing systems (NeurIPS 2019), pages
14866–14876.

[Salimans et al., 2017] Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. (2017). Pixelcnn++: Im-
proving the pixelcnn with discretized logistic mixture likelihood and other modifications.

22



[Sohl-Dickstein et al., 2015] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015).
Deep unsupervised learning using nonequilibrium thermodynamics. 37:2256–2265.

[Song et al., 2021] Song, J., Meng, C., and Ermon, S. (2021). Denoising diffusion implicit models.

[Song and Ermon, 2019] Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of
the data distribution. 32.

[Vahdat et al., 2021] Vahdat, A., Kreis, K., and Kautz, J. (2021). Score-based generative modeling in latent
space.

[van den Oord et al., 2016] van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and
Kavukcuoglu, K. (2016). Conditional image generation with pixelcnn decoders.

[Van Oord et al., 2016] Van Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural
networks. In International Conference on Machine Learning, pages 1747–1756. PMLR.

[Vinyals et al., 2016] Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., and Wierstra, D. (2016).
Matching networks for one shot learning. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett,
R., editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.

[Willetts et al., 2021] Willetts, M., Miscouridou, X., Roberts, S., and Holmes, C. (2021). Relaxed-
responsibility hierarchical discrete VAEs. ArXiv:2007.07307.

23


