
HAL Id: hal-03559412
https://hal.science/hal-03559412

Submitted on 6 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Integration of a strapdown gravimeter system in an
autonomous underwater vehicle

Clément Roussel, Jérôme Verdun, José Cali, Marcia Maia, Jean-François F
d’Eu

To cite this version:
Clément Roussel, Jérôme Verdun, José Cali, Marcia Maia, Jean-François F d’Eu. Integration of a
strapdown gravimeter system in an autonomous underwater vehicle. ISPRS International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-5/W5, pp.199 -
206. �10.5194/isprsarchives-xl-5-w5-199-2015�. �hal-03559412�

https://hal.science/hal-03559412
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


INTEGRATION OF A STRAPDOWN GRAVIMETER SYSTEM IN AN AUTONOMOUS
UNDERWATER VEHICLE

C. Roussela , J. Verduna, J. Calia, M. Maiab, J .F. d’EUb

a Geodesy and Geomatics Laboratory (L2G)
b Oceanic Domains Laboratory (LDO)

Commission V

KEY WORDS: Autonomous Underwater Vehicle, moving vectorial gravimetry and gradiometry, electrostatic accelerometer, Un-
scented Kalman filtering

ABSTRACT:

We present a new mobile instrument for measuring dynamically the gravity vector and its gradients in underwater environment, named
GRAVIMOB. Our instrument is a strapdown sensor, consisted of electrostatic accelerometers installed in a waterproof sphere. It is
designed to be embedded in an Autonomous Underwater Vehicle (AUV). Since the positioning of an AUV is approximate in underwater
environment, the key issue raised here is to estimate the uncertainty in the gravity field resulting from the use of such position data. This
paper focuses on the assessment of the system performances. The latter have been studied by simulation with reference data calculated
from actual submarine geological structures, on which different noise models have been added. Results show that spatial evolutions of
the gravity field and statistical properties of stochastic processes affecting the measurements have to be considered carefully in order
the minimize the error. The Unscented Kalman Filter (UKF) has been favored to the Extended Kalman Filter (EKF) by its ease of
implementation and its better robustness to non-linearities.

1. INTRODUCTION

One of the major challenges of modern gravimetry consists in
determining Earth’s gravity field models covering the whole of
wavelength range with the same reliability at local, regional and
global spatial scales. Since the Earth’s surface is covered by more
than 70% by the oceans, gravity field measurement techniques
must be adapted to the marine and submarine areas. Among
these techniques, satellite altimetry enables to reach long wave-
lengths (≥ 100 km) and covers almost the entire surface of the
oceans, but becomes inoperative at the land-sea interface where
local effects such as ocean tides have a high amplitude. Airborne
gravimetry, using airplanes or helicopters, or surface gravime-
try using ships, permit the recovery of intermediate wavelengths
(≥ 10 km) but requires the use of stabilized platforms because of
the large velocity and attitude variations encountered with such
carriers. Static measurements on the sea or ocean floor can be
carried out very close to the geological structures, thus allowing
short wavelengths (≤ 1 km) to be covered. However, they re-
quire the use of submersibles which must land on the bottom and
remain stationnary during the measuring time. Moreover, they
cannot access to hilly zones and are very time-consuming.

A more recent technique able to measure the undersea gravity
field consists in the integration of a measuring instrument in a Au-
tonomous Underwater Vehicle (AUV). The main advantage of a
mobile gravimetric measurement system operating in underwater
environment is that the measure of the gravity field can be con-
ducted very close to the geological sources along profiles of dif-
ferent depths where permanent instrumentation is not feasible due
to the high seismic activity and volcanism such as encountered
in subduction zones and oceanic ridges. Recovering the gravity
field at different depths is very useful for interpreting gravity vari-
ations to infer the location and the shape of gravity sources. Con-
sequently, many applications are possible in geodesy as well as
in geophysics. Indeed, some marine geophysicists argue that the
hydrothermal sources located in oceanic ridges should hold con-
siderable mineral resources. Several studies have already been

carried out on the subject as in (Araya et al., 2011, Yan et al.,
2012, Liu et al., 2010, Yao and Xiaorong, 2012). These studies
focus on the vertical component of the gravity field and there-
fore require the use of stabilized platforms. But at a time when
reduced size and limited available power of the submersibles be-
come weighty arguments, this technique need to be rethought to
make it compatible with current constraints.

We present here a new mobile instrument for measuring dynam-
ically the gravity vector and its gradients in underwater environ-
ment, named GRAVIMOB. Our research relies on the experi-
ence gained in the field of land mobile gravimetry with the mo-
bile gravimetry system LiMo-g (Light Moving gravimetry sys-
tem) initiated by the Geodesy and Geomatics Laboratory (L2G)
of the National Conservatory of Arts and Crafts (CNAM) and
the Geodesy Laboratory (LAREG) of the French Geographic and
Forest Institute (IGN) and studied during the doctoral thesis of
Bertrand de Saint-Jean (2008). Our instrument is a strapdown
sensor, composed of six electrostatic accelerometers divided into
two triads, both installed in a waterproof sphere. It allows the
three components of the gravity vector to be measured and does
not require the use of a stabilized platform.

Obviously, the measurements performed with such an instrument
only make sense if the movement of the AUV, its position and
attitude, is known at all times. One of the main difficulties en-
countered in underwater environment is that the positioning of
the carrier is approximate. The position, velocity, acceleration
and attitude, essential parameters for the restitution of the subma-
rine gravity field from accelerometer measurements, are obtained
by combining data from different sensors− inertial navigation
system and Doppler log− with a target position. This position is
deduced from that of the accompanying ship, obtained by GNSS
and transmitted to the submarine via acoustic signal. The key is-
sue raised here is to estimate the uncertainty in the gravity field
resulting from the use of such position data.

This paper focuses on the assessment of the system performances.
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Such performances have been evaluated thanks to numerical sim-
ulations with synthetic data calculated from actual submarine ge-
ological structures and actual AUV trajectories, obtained by ad-
dition of different noises to reference data.

The paper is organized as follows: part two describes the instru-
ment and the carrier in which it will be installed. Part three in-
troduces the mathematical equations related to our instrument.
Based on these equations, the four and the five parts expose the
principle of the numerical simulation used for assessing the per-
formances of our system. Reference data and noise models are
also detailed. The results of various simulations will be given
in part five. Part six introduces and justifies the choice of the
Unscented Kalman Filter (UKF) as the processing method. Con-
clusions and perspectives will be exhibited in part seven.

2. DESIGN

2.1 Sensors

Our instrumentation consists of six electrostatic accelerometers
Q-FLEX QA-3000-020 developed by the Honeywell - AlliedSig-
nal company (Figure 1). These six accelerometers are divided
into two triads, namedα andβ, both installed in a waterproof
glass sphere. Each triad allows the measurement of the three
components of the specific force related to the pointsMα and
Mβ , both geometrically defined as being the respective intersec-
tion point of the three sensitive axes of each triad. Note here that
the frames defined by each triad are supposed orthogonal and co-
incide with the frame of the carrier, calledb-frame (Figure 2).

Figure 1: View of the Q-FLEX QA-3000-020 electrostatic ac-
celerometer (source: asc-sensors.de)

.

Technically, the operation of these sensors consists on keeping
the equilibrium of a test mass mounted on a flexible blade made
of quartz and maintained horizontal through the restoring force
induced by the magnetic field generated by an electromagnet.
The balance is controlled by a capacitive position sensor detect-
ing any change of blade position. Under the effect of an acceler-
ation, the latter is disturbed as the proof mass moves with a delay
with respect to the housing of the sensor, due to its inertia and the
bending of the blade. The capacitive position sensor detects the
deviation between the proof mass and the frame and provides the
electromagnet with the current necessary to bring back the flexi-
ble blade to its equilibrium position. The force necessary for this
compensation corresponds to the acceleration component under-
gone in the sensitive direction of the accelerometer.

2.2 Carrier

GRAVIMOB is intended to be embedded in an Autonomous Un-
derwater Vehicle (AUV) of the French Research Institute for Ex-
ploitation of the Sea (IFREMER), named AsterX (Figure 3). This
AUV is able to dive down to 3,000 meter depth and travel up to
100 km. Its total mass is 800 kg and the maximum weight of the
scientific payload is 200 kg.

To ensure an autonomous navigation, this AUV is equiped with
an Inertial Navigation System (INS) coupled to a Doppler Veloc-

Figure 2: Position of the two triads (α and β). The pointP on
this figure belongs to (MαMβ) and corresponds to the vehicle
reference point. The sphere diameter is about 40cm.

Figure 3: The Autonomous Underwater Vehicle AsterX of the
French Research Institute for Exploitation of the Sea (IFRE-
MER). (source: http://flotte.ifremer.fr)

ity Log (DVL). A surface ship, geolocated using Global Naviga-
tion Satellite System (GNSS), monitors the submersible thanks
to an Ultra Short Base Line (USBL) acoustic positioning system.

3. EQUATION OF MOVING-BASE GRAVIMETRY

3.1 Application of Newton’s Second Law

Let us consider one 3D accelerometer labelled byα. Let Xi
α

be the position vector of the proof mass inside the accelerome-
ter triad expressed in the inertial frame abbreviatedi-frame. The
proof mass is located at the pointMα where acceleration mea-
surement is performed. According to Newton’s Second Law ap-
plied to the proof mass, the second-order time derivativeẌi

α of
Xi

α may be expressed as

Ẍ
i
α = g

i
α + a

i
α (1)

wheregiα is the gravitational acceleration andai
α is the restoring

force per unit of mass, that is the specific force exerted on the
proof mass inside the sensor, both projected ontoi-frame axes.
The position of the pointMα is not directly accessible. Only the
pointP , previously defined (Figure 2), is assumed to be known.
The position vectorXi

α can therefore be written as:

X
i
α = C

i
e X

e
P + C

i
b L

b
α (2)

whereLb
α = PMb

α is the level arm between the pointP located
at the vehicle reference point and the measuring pointMα of the
3D accelerometerα, Ci

e is the rotation matrix between the earth
frame, abbreviatede-frame and thei-frame andCi

b is the rotation
matrix between theb-frame and thei-frame. It must be empha-
sized that the restoring force maintains the proof mass fixed with

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W5, 2015 
Underwater 3D Recording and Modeling, 16–17 April 2015, Piano di Sorrento, Italy

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W5-199-2015

 
200



respect to the case of the sensor which is itself fixed with respect
to the b-frame. As a consequence, the components of the one
column matrixLb

α are constant independent of time.Ci
e depends

only on the speed of rotation of the Earth,ωe. Ci
b may be de-

composed as the product of the matrixCn
b , the matrixCe

n and the
matrixCi

e:
C

i
b = C

i
e C

e
n C

n
b (3)

whereCe
n is the rotation matrix between the navigation frame,

abbreviatedn-frame and thee-frame depending only on the geo-
graphical coordinates of the pointP (longitudeλP , and latitude
ϕP ). Cn

b is the rotation matrix between theb-frame and then-
frame depending only on the attitude of the carrier (heading,δ,
pitch,χ and roll,η).

The second-order time derivative of equation (2), combined with
equation (1) leads to the basic equation of moving-base gravime-
try:

g
n
α = C

n
e

[

Ẍ
e
P + 2Ωe

ie Ẋ
e
P + (Ωe

ie Ω
e
ie + Ω̇e

ie)X
e
P

]

+

C
n
b (Ωb

ib Ω
b
ib + Ω̇b

ib)L
b
α − C

n
b a

b
α (4)

whereΩb
ib (resp. Ωe

ie) is the skew symmetric matrix associated
with the rotation of theb-frame (resp.e-frame) with respect to
the i-frame andΩ̇b

ib (resp. Ω̇e
ie) its first-order time derivative,

both expressed in theb-frame (resp.e-frame).

3.2 Simplifying assumptions

In the context of this article, we will ignore the influence of the
rotation of the Earth with respect to the inertial frame. In other
words, we consider that the inertial and the earth frames are the
same. Therefore, the indicei is replaced by the indicee and
equationΩe

ie = Ω̇e
ie = 0 holds. Equation (4) then becomes:

g
n
α = C

n
e Ẍ

e
P + C

n
b (Ωb

eb Ω
b
eb + Ω̇b

eb)L
b
α − C

n
b a

b
α (5)

Equation (5) can also be written at the pointMβ of the 3D ac-
celerometerβ where acceleration measurement is also performed,
thus giving:

g
n
β = C

n
e Ẍ

e
P + C

n
b (Ωb

eb Ω
b
eb + Ω̇b

eb)L
b
β − C

n
b a

b
β (6)

Equations (5) and (6) show similarities. The acceleration term
relating to the pointP , and the factor multiplying the lever arms
Lb

α andLb
β are the same in both cases. By linear combination of

these two equations and under certain assumptions, it is possible
to remove them.

3.3 Linear combinations

Gravity atMα andMβ , can be related to the gravity at pointP .
Indeed, a first order approximation gives:

{

gnα = gnP +∇gnP Ln
α

gnβ = gnP +∇gnP Ln
β

, (7)

where∇gnP is the gravity gradient tensor at pointP expressed in
then-frame and corresponding there to the3× 3 matrix:

∆g
n
P =





∂Eg
E ∂NgE ∂Ug

E

∂Eg
N ∂NgN ∂Ug

N

∂Eg
U ∂NgU ∂Ug

U



 (8)

wheregE, gN andgU are the 3 components of the gravity vector
gP when expressed in then-frame and by denotingxE, xN , xU

the 3 coordinates of the pointP in then-frame, we have:

∂ig
j =

∂gj

∂xi
(9)

for i, j = E,N, U .

Under the assumption thatLα = −Lβ or in other words, that
pointP is the midpoint of the segment[MαMβ], the sum of the
previous two equations (7) leads to:

gnα + gnβ

2
= g

n
P (10)

By substitutinggnα andgnβ using the expressions established in
(5) and (6), we finally obtain:

g
n
P = C

n
e Ẍ

e
P − C

n
b

(

ab
α + ab

β

2

)

(11)

The same reasoning can be emitted by performing the difference
of the equations listed in (7), we can then deduce:

∇g
n
Pu

n
βα =

gnα − gnβ

‖MβMα‖
(12)

and, according to (5) and (6):

∇g
n
Pu

n
βα =

(

Cn
b (Ωb

ebΩ
b
eb + Ω̇b

eb)MβM
b
α − Cn

b (ab
α − ab

β)
)

‖MβMα‖
(13)

whereMβMα is the vector connecting the pointsMβ et Mα,
‖MβMα‖ its norm anduβα is unit vector defined as:

uβα =
MβMα

‖MβMα‖
(14)

∇gnPu
n
βα can be viewed as the 3-component gravity gradient vec-

tor in the direction defined by the vectoruβα.

4. NUMERICAL SIMULATION

4.1 Principle and purpose

In a simplified manner, equations (11) and (13) may be writing as
follows:

f :





λP , ϕP , hP

δ, χ, η

aα, aβ



→
{

gP
∇gPuβα

, (15)

wheref is a multivariate function mappingR12 into R
6, which

relates the geodetic coordinates of the pointP (longitudeλP ,
latitudeϕP , ellipsoidal heighthP ), the attitude angles (heading
δ, pitch χ, roll η) and the2 × 3 = 6 components of accelera-
tion aα andaβ to the3 components of the gravity vectorgP and
the3 gravity gradients in the direction of vectoruβα. Since the
input data (position, attitude and restoring accelerations) are sub-
ject to uncertainties, bias, drift and other faults, we attempt here
to determine the uncertainty affecting the output data, namely the
gravity vectorgP and the gravity gradient vector∇gPuβα. As
the functionf is highly non-linear, we opted for an assessment
of the uncertainty of the output error by means of Monte Carlo
statistical method. For this task, let us consider arbitrary noise
models representing faults on the different inputs given by equa-
tion (15). For thei-th simulation, the new input variables can be
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written as:
λ̃P,i = λP + ǫλ,i
ϕ̃P,i = ϕP + ǫϕ,i

h̃P,i = hP + ǫh,i
δ̃i = δ + ǫδ,i
χ̃i = χ+ ǫχ,i

η̃i = η + ǫη,i
ãα,i = aα + ǫaα,i

ãβ,i = aβ + ǫaβ,i

(16)

where ǫθ,i with θ = λ, ϕ, h, δ, χ, η, aα, aβ are additive noise
terms. The propagation of these noisy measurement variables
through the observation functionf and the knowledge of a refer-
ence gravity field allow the estimation of the induced errorsǫg,i
and ǫggt,i affecting the gravity vector and the gravity gradient
tensor respectively given by:

ǫg,i = gP − g̃P,i

ǫggt,i = ∇gP .uβα − ˜∇gP,i.uβα
(17)

By repeating this process, say N times, the estimation of the error
expectancy and its variance can be carried out, by means of the
following formulas:

E[ǫg ] =
1

N

N
∑

i=1

ǫg,i (18)

V AR[ǫg] = E
[

(ǫg − E[ǫg])
2
]

(19)

E[ǫggt] =
1

N

N
∑

i=1

ǫggt,i (20)

V AR[ǫggt] = E
[

(ǫggt − E[ǫggt])
2
]

(21)

Depending on the characteristics of the selected noise models to
represent the faults of the measurement system, the magnitude of
the gravity field error can then be greater than the expected accu-
racy. In order to reduce the level of the noise affecting the gravity,
a first simple solution consists in averaging the output signal on
a sliding window of widthL, which is equivalent to perform-
ing low-pass filtering. The evolution of the variance of the error
according to the window sizeL is then used to characterize the
accuracy of the instrument in terms of spatial resolution.

4.2 Generation of reference data

To achieve the previously described numerical simulation, it is
still necessary to generate reference data consisting of the gravity
field related quantities (gnP,α,β and∇gnP,α,β), submersible trajec-
tories (λP , ϕP andhP ), attitude angles (δ, χ andη) and mea-
sured accelerations (ab

α andab
β).

The reference gravity field derives from a geological model of
oceanic crust. The latter combines a bathymetric survey (Figure
4) and an assumed distribution of mineral blocks. Bathymetry is
extended to 5000m depth and the average density of the undersea
terrain assumed to be equal to 2.70g.cm−3. The mineral blocks
are added to the bathymetric model by introducing local higher
densities equal to 3.85g.cm−3. The thickness of the blocks is
set at 200m from the block top surface represented on Figure 5.
At this local gravity field is added a global field generated from
an ellipsoidal Earth model whose density is set at 5.52g.cm−3.
This ensure that the resulting synthetic gravity field has realistic
values and variations.

The reference trajectory of the AUV is generated by analyzing
actual navigation data which derive from the test mission carried
out by the IFREMER off the Mediterranean coasts in the south

Figure 4: Perspective view of the bathymetric surface. Widthand
length of the area are worth about 6 km.

Figure 5: View of mineralogic block top surface.

of France in 2012. The analysis of these navigation data permits
navigation deterministic models to be determined. These models
consist of polynomial functions for representing the submersible
movement variations at large spatial scales and periodic functions
for modeling the variations at smaller spatial scales. Finally,12
orthogonal profiles were generated. Each profile is of3600m
long. At an average navigation speed of4.3 km.h−1, the time
travel needed to cover the whole profile is of3000 s. Note that
only the height,hP , is set at−2200m in all cases. Figures 6 and
7 superimposed the gravity field variations on the12 profiles on
the considered area.

3

Figure 6: Superposition of 12 profiles with variations of gravity
field vector components. Results of Part 5. and 6. will be relative
to the profile number3, which has been highlighted on the first
map.

Finally, accelerationsab
α andab

β are deduced from the equations
of moving-base gravimetry introduced in part 3. Indeed, specific
forces in theb-frame can be derived from equations (5) and (6),
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Figure 7: Superposition of 12 profiles with variations of gravity
gradient tensor components.

thus giving:

a
b
α = C

b
e Ẍ

e
P + C

n
b (Ωb

eb Ω
b
eb + Ω̇b

eb)L
b
α − C

b
n g

n
α (22)

and

a
b
β = C

b
e Ẍ

e
P + C

n
b (Ωb

eb Ω
b
eb + Ω̇b

eb)L
b
β − C

b
n g

n
β (23)

Equations (22) and (23) relate the specific forces in theb-frame
to reference navigation data and gravity data.

4.3 Noise models

As discussed in part 1., the navigation of the Autonomous Under-
water Vehicle is achieved through the combination of measures
obtained from an Inertial Navigation System, a Doppler Velocity
Log and an Ultra Short Base Line acoustic positioning system.
The filtering applied to these different observations delivers only
the final position and attitude of the carrier and their respective
uncertainties. In other words, we have no access to the underlying
process leading to the calculation of these quantities. Concerning
the positionning of the carrier (longitudeλP and latitudeϕP ), the
manufacturer indicates an uncertainty egal to 0.1% of the trav-
elled distance. In our case, this represents an uncertainty of about
36 meters at the end of each profile. One possible modelisation
of the underlying stochastic process to this position fault can be
performed by double integration of a Gaussian noise process. In-
deed, in a first approximation, the position delivered can be seen
as the result of the double integration of noisy accelerations mea-
sured by the inertial unit installed in the INS. The elevation data
(or depthhP ), will be considered later as being assigned of an
uncertainty equal to a few tens of centimeters.

Regarding the attitude angles, the manufacturer indicates an un-
certainty about0.02 deg secant latitude for the heading angle,
δ, and uncertainties about0.01 deg secant latitude for the pitch,
χ, and roll,η, angles. Thus, the errors associated with the depth
and attitude data are modeled in a first approximation as a Gaus-
sian noise.

On the other hand, faults affecting accelerometers which consti-
tute GRAVIMOB need to be analyzed more carefully. Indeed,
in addition to uncertainty assigned to the values they deliver, the
sensors are subject to a bias and a scale factor. Although the cal-
ibration step aims to set the values of these parameters, they still
tend to vary over long time scales. Among the analyzing tools
for the study of stochastic process affecting signals, the Allan
Deviation is notable for its ease of implementation and its inter-
pretation. Its theory, calculation algorithm and connection with
the Power Spectral Density were established in (IEEE Standard
Specification Format Guide and Test Procedure for Single-Axis
Interferometric Fiber Optic Gyros, 1998). We show the results
of the calculation of the Allan Deviation applied to the QFLEX-
QA-3000-020 accelerometers (Figure 8). The calculation is per-
formed with three series of static observations of about 8-hour
duration at a sampling frequency of31.25 Hz. According to
the properties of Allan Deviation, it is possible to identify three
stochastic processes affecting the accelerometer measurements.
The first identified process corresponds to a White Noise (WN)

Figure 8: Allan Deviation of three QFLEX-QA-3000-020 ac-
celerometers constituting GRAVIMOB. The figure shows clearly
the presence of three distinct stochastic processes: white noise,
random walk and bias instability.

on the measured accelerations. It is characterized by a slope of
− 1

2
on the Allan Deviation graph. Its standard deviation equal to

7.10−6 m.s−1 = 7.10−1 mGal can be read for an averaging time
of 1 second on the graph and confirms the manufacturer value.
The second process is characterized by a slope egal to+ 1

2
and

corresponds to a Random Walk (RW) on the observations. These
first two stochastic processes can be easily reproduced numeri-
cally from the values given on the graphs of the Allan Deviation.
The last process, which is characterized by a zero slope, corre-
sponds to a Bias Instability. Unlike other processes, it is not easy
to imitate numerically.

5. RESULTS

This section summarizes the results of three numerical tests using
reference data and noise models that have been introduced previ-
ously (Table 1). For each simulation, 1000 random samples were
generated to estimate the standard deviation of the error on the
components of the gravity field (

√

V AR[ǫg] and
√

V AR[ǫggt]).
Figures 9, 10 and 11 show the evolution of their maximum value
on the profile number3 (Figure 6) as a function of the widthL of
the window used in the basic filtering process discussed in part 4.
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Test 1 Test 2 Test 3
Position

ǫλ IRW
ǫϕ IRW
ǫh WN

Attitude
ǫδ WN
ǫχ WN
ǫη WN

Accelerations
ǫaα WN + RW
ǫaβ

WN + RW

Table 1: Noise models associated to the numerical simulations.
IRW stands for Integrated Random Walk, RW for Random Walk
and WN for White Noise.

5.1 Test 1

The first simulation aims to study the effect of the AUV position-
ing uncertainty. As previously mentionned, one possible modeli-
sation of the underlying stochastic process affecting the position
(ǫλP

andǫϕP
) can be performed by double integration of a White

Noise process, or simple Integration of a Random Walk process,
abbreviated IRW. The elevation error (ǫhP

) is modeled as a sim-
ple White Noise, abbreviated WN.

Figure 9: Effect of the AUV positioning uncertainty. At1 km
resolution, the uncertainty affectinggU is 2 order of magnitude
greater thangE andgN . Components of the gravity gradient ten-
sor are not affected by the AUV positioning uncertainty.

The uncertainties affecting the gravity vector components decrease
appreciably when the integration length increases. The graph re-
lated togE andgN indicates that the uncertainties affecting these
components fall down to1mGal at 1 km resolution. However,
the uncertainty affectinggU is 2 order of magnitude greater at the
same resolution. It is consistent with the fact that the uncertainty
affecting the coordinatehP is more likely to perturb the restitu-
tion of the vertical componentgU . The components of the gravity
gradient tensor present low uncertainties. This is consistent with
equation (13) in which the positioning term does not appear.

5.2 Test 2

This simulation focuses on the effect of the uncertainty of the
attitude angles (ǫδ, ǫχ andǫη). These faults are modeled using a
simple White Noise process, WN.

In this case, we still observe the decrease of the uncertainties
when the integration length increases. Unlike the previous test,
the uncertainty affecting the componentgU falls down to1mGal
at only 15m resolution and uncertainties affectinggE andgN

are 2 order of magnitude greater at the same resolution. Despite
an integration over a length of1 km, uncertainties affecting the
components of the gravity gradient tensor range from100 E and
1000 E.

Figure 10: Effect of the AUV attitude uncertainty. Vertical com-
ponentgU is less affected than horizontal componentsgE and
gN . Despite the low-pass filtering, uncertainties affecting the
components of the gravity gradient tensor are still high when
compared to the gravity effect of geological sources.

5.3 Test 3

Here we look at the impact of faults affecting accelerometers (ǫaα

and ǫaβ
). Allan Deviation led to the identification of different

stochastic processes: White Noise, Random Walk and Bias Insta-
bility. Because Biais Instability is not easy to imitate numerically,
only White Noise, WN and Random Walk, RW processes have
been considered in this test.

Figure 11: Effect of the accelerometer measurements uncertainty.
The low-pass filtering has no effect on the noise reducing because
of the non-stationary nature of the first order random walk pro-
cess involved in the noise model.

Noises on acceleration measurements have a small impact on
the gravity vector components. Indeed, the uncertainty is about
1mGal without applying the low-pass filter. On the contrary, un-
certainties on the gravity gradient tensor components are about
60000 E which prevents a proper restitution of the latter. Note
that the low-pass filtering here does not reduce noise as in the
two previous cases. This can be explained by the non-stationary
nature of the first order random walk process introduced into the
noise model, which cannot be accounted for by non-predictive
filtering procedure.

6. KALMAN FILTERING

To improve the estimation, our filtering method must take into
account the statistical features of the parameters and noise affect-
ing the observations. The best estimator for this kind of problem
is the Kalman Filter (KF). Unfortunately, its original form can
not be applied here because of the nonlinearity of the observation
equation that links accelerometer measurements to the compo-
nents of the gravity field. Its extension, the Extended Kalman Fil-
ter (EKF) has already been implemented for the data processing
of the LiMo-g system (Saint-Jean, 2008). The method allowed
the gravity to be estimated from LiMo-g measurements along
profiles at a rate egal to the measurement sampling rate. Tests
of the method on semi-synthetic data have proved to be conclu-
sive only in short term, that is for short length profiles. Indeed,
uncertainty on gravity estimates significantly increases after only
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a few stages of calculation, indicating that the Extended Kalman
Filter used is likely to be unstable in the long term. One possible
way to cope with the problem would be to modify the time evo-
lution model within the Kalman Filter so as to allow for the spa-
tial variability of Earth’s gravity field deduced from geostatistics.
Theoretically speaking, Markov’s autoregressive moving average
models can be used for this task (Verdun et al., 2013).

Another complementary solution to the latter is the implementa-
tion of the Unscented form of the Kalman Filter (UKF) which
was introduced in (Julier and Uhlmann, 1997). The main differ-
ence between the EKF and the UKF stems from the manner in
which the state probability distribution is propagated through the
nonlinear system. In the EKF, the latter is propagated analytically
through a first-order linearization while, the UKF uses a minimal
set of chosen sample points (called sigma points) which are prop-
agated through the true nonlinear system. It can be shown that the
a posterior mean and covariance are captured accurately to sec-
ond order. On the other hand, the EKF only achieves first-order
accuracy. Moreover, the UKF algorithm does not require the de-
termination, implementation and calculation of Jacobian matrix
and its complexity is the same order as that of the EKF.

The UKF algorithm is described herein. We use the same notation
as in (Haykin, 2001). Let us consider the following discrete-time
nonlinear dynamical system:

{

xk+1 = F (xk, uk, vk)
yk = H (xk, nk)

, (24)

wherexk is the state of the system, in our case the related gravity
field quantities that is gravity vector components and gravity gra-
dients,uk is a known input,yk is the observed measures of the
state, accelerations in our case,vk is the process noise andnk is
the observation noise.

Like its Extended form, the UKF starts with an initialization phase:

x̂0 = E[x0]
P0 = E

[

(x0 − x̂0)(x0 − x̂0)
T
] (25)

The state vector is then augmented with the process and observa-
tion noises:

x̂a
0 = E [xa

0 ] =
[

xT
0 0 0

]T

P a
0 = E

[

(xa
0 − x̂a

0)(x
a
0 − x̂a

0)
T
]

=





P0 0 0
0 Rv 0
0 0 Rn





(26)
wherexa =

[

xT vT nT
]

, Rv is the process-noise covari-
ance andRn is the measurement-noise covariance. LetN be the
length of the augmented state vectorx̂a

k. Then, fork ≥ 1, 2N+1
sigma-points are calculated according to the following determin-
istic sampling:

χa
0,k−1 = x̂a

k−1,

χa
i,k−1 = x̂a

k−1 +
(√

(N + λ)P a
k−1

)

i
, i = 1, .., N

χa
i,k−1 = x̂a

k−1 −
(√

(N + λ)P a
k−1

)

i−N
, i = N + 1, .., 2N

(27)
whereλ is a scaling parameter. They can be writen as:

χ
a
k−1 =

[

x̂a
k−1 x̂a

k−1 + γ
√

P a
k−1 x̂a

k−1 − γ
√

P a
k−1

]

(28)
whereγ =

√
N + λ. A more general writing leads to:

χ
a =

[

(χx)T (χv)T (χn)T
]T

(29)

These sigma-points are propagated through the nonlinear state
function (F ):

χ
x
i,k|k−1 = F (χx

i,k−1, uk−1, χ
v
i,k−1), i = 0, ..., 2N (30)

A Priori estimate and covariance of the state can then be per-
formed as follows:

x̂
−
k =

2N
∑

i=0

W
m
i χ

x
i,k|k−1 (31)

P
−
k =

2N
∑

i=0

W
c
i (χ

x
i,k|k−1 − x̂

−
k )(χ

x
i,k|k−1 − x̂

−
k )

T (32)

whereW c
i andWm

i are weights associated to the sigma-points
given by:

Wm
0 = λ

N+λ

W c
0 = λ

N+λ
+ 1 + α2 + β

Wm
i = W c

i = 1
2(N+λ)

, i = 1, .., 2N

(33)

where the constantα controls the spread of the sigma-points and
β is used to incorporate prior knowledge of the state vector prob-
ability distribution. For a Gaussian distribution,β = 2 is optimal.

A Priori estimation and covariance of the observation are also
performed as follows:

ŷ
−
k =

2N
∑

i=0

W
m
i Υi,k|k−1 (34)

Pykyk =
2N
∑

i=0

W
c
i (Υi,k|k−1 − ŷ

−
k )(Υi,k|k−1 − ŷ

−
k )T (35)

whereΥi,k|k−1 are given by:

Υi,k|k−1 = H(χx
i,k|k−1, χ

n
k−1), i = 0, .., 2N (36)

Finally, the Kalman gain matrix is given by:

Kk = PxkykP
−1
ykyk

(37)

where the cross-correlation matrixPxkyk is given by:

Pxkyk =

2N
∑

i=0

W
c
i (χ

x
i,k|k−1 − x̂

−
k )(Υi,k|k−1 − ŷ

−
k )T (38)

A Posterior estimate and covariance of the state vector are given
by:

x̂k = x̂
−
k +Kk(yk − ŷ

−
k ) (39)

and
Pk = P

−
k −KkPykykK

T
k (40)

We propose here a simple implementation of the Unscented Kalman
Filter based on the same synthetic data described in part 4. In this
example, only accelerometer observations are assigned a Gaus-
sian noise whose variance is egal to1mGal and we seek to re-
store only the three components of the gravity field vectorgnP .
The discrete-time system can be written as:

{

gnP,k+1 = gnP,k + vk

Cn
b

(

Cb
eẌ

e
P − ab

P,k

)

= gnP,k + nk
(41)

whereab
P,k =

ab
α,k+ab

β,k

2
. Fork = 0, the augmented state vector
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and its covariance matrix are given by:

x̂
a
0 =

[

gnP,0 E[v0] E[n0]
]T

(42)

P
a
0 =





P0 0 0
0 Rv 0
0 0 Rn



 (43)

whereP0 = σ2
P I3 with σP = 0.01mGal, Rv = σ2

vI3 with
σv = 0.1mGal andRn = σ2

nI3 with σn = 1√
2
mGal.

Figure 12 shows for each component of the gravity field vector,
the superposition of the estimate and the reference, the noise level

added to the accelerationab
P =

ab
α,k+ab

β,k

2
and the noise level

on the estimated component which is basically the difference be-
tween the true and the estimate value. As previously mentioned,
noise level onab

P is σn = 1√
2
mGal. The noise level obtained

on the gravity field is only about0.15mGal which represents a
noise level reduction of about4.5 and demonstrates the efficiency
of the basic filter implemented.

Figure 12: On a simple example, the Unscented Kalman Filter
induces a sensible noise level reduction of about4.5 on the three
components of the gravity vector.

7. CONCLUSIONS

We have developed an instrument for measuring the gravity field
components in underwater environment. Based on synthetic data,
we studied their restitution by introducing different noise pro-
cesses. The results show that the recovery of the vertical gravity
vector component with an accuracy suitable to geological sources
detection is feasible by improving the positioning of the AUV.
The recovery of gravity vector horizontal components and the
gravity gradients requires very good estimates of carrier attitude
angles, and thus high grade attitude and heading reference sys-

tems are needed. It must be emphasized that whatever the perfor-
mances of positioning and attitude determination systems, the un-
certainty affecting the gravity related quantities depends directly
on the accelerometer sensibility. Given one type of accelerome-
ters, the unique way to reduce uncertainties on gravity estimates
relies upon the use of predictive filtering methods able to account
for non-stationary noise such as random walk which affects this
kind of sensor. In this work, an Unscented Kalman Filter has
been implemented in a simple case. The continuation of this work
will be the inclusion of all stochastic processes affecting the mea-
sures and the covariance of the gravity field components. These
new refinements will make possible even more accurate undersea
gravity measurements.
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