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Abstract
Gene expression is regulated through complex molecular interactions, involving cis-acting
elements that can be situated far away from their target genes. Data on long-range contacts
between promoters and regulatory elements is rapidly accumulating. However, it remains
unclear how these regulatory relationships evolve and how they contribute to the
establishment of robust gene expression profiles. Here, we address these questions by
comparing genome-wide maps of promoter-centered chromatin contacts in mouse and
human. We show that there is significant evolutionary conservation of cis-regulatory
landscapes, indicating that selective pressures act to preserve not only regulatory element
sequences but also their chromatin contacts with target genes. The extent of evolutionary
conservation is remarkable for long-range promoter-enhancer contacts, illustrating how the
structure of regulatory landscapes constrains large-scale genome evolution. We show that
the evolution of cis-regulatory landscapes, measured in terms of distal element sequences,
synteny or contacts with target genes, is significantly associated with gene expression
evolution.

Keywords: cis-regulatory landscapes, gene expression evolution, large-scale genome
evolution, Promoter Capture Hi-C

Introduction
The evolution of gene expression and the evolution of regulatory mechanisms have attracted
considerable attention ever since the proposal that phenotypic differences between species
may be driven by changes in gene activity rather than by changes in gene products (King
and Wilson, 1975). In the past decade, these two topics have been extensively scrutinized
through comparative “omics” approaches (Khaitovich et al., 2005; Gilad et al., 2006;
Brawand et al., 2011; Villar et al., 2015; Wong et al., 2015; Berthelot et al., 2018;
Cardoso-Moreira et al., 2019). These studies showed that gene expression patterns are well
conserved across species (Brawand et al., 2011; Cardoso-Moreira et al., 2019), while the
sequences and the activities of regulatory elements (in particular those of expression
enhancers) evolve rapidly (Villar et al., 2015; Berthelot et al., 2018). These paradoxical
observations warrant further exploration, to better understand the determinants of gene
expression robustness in the presence of rapidly evolving regulatory landscapes. However,
so far few attempts have been made to directly connect the evolution of gene expression to
the evolution of regulatory mechanisms, at a genome-wide scale (Berthelot et al., 2018;
Wong et al., 2017). These studies proposed that the presence of complex regulatory
landscapes, involving numerous expression enhancers with potentially redundant roles, is
the key driver of the robustness of gene expression levels (Berthelot et al. 2018).
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To date, identifying the regulatory elements that control each gene remains a challenging
task. Transcription is regulated through complex interactions between trans-acting factors
and cis-acting elements. Genes are typically associated with multiple cis-acting elements,
which can refine their expression levels, control different expression domains, or confer
robustness through partial redundancy (Spitz and Duboule, 2008; Kvon et al., 2021).
Conversely, each regulatory element can influence multiple genes, either concomitantly or in
a context-specific manner (Schoenfelder and Fraser, 2019). The complexity of cis-acting
regulatory landscapes is now better perceived thanks to chromatin conformation capture
techniques, which identify pairs of genomic segments found in physical proximity in the
nucleus (Dekker et al., 2002; Schoenfelder et al., 2015; Zhao et al., 2006). These techniques
revealed numerous long-range chromatin contacts between promoters and distal regulatory
elements (de Laat and Duboule, 2013). These long-range interactions challenge a common
assumption, namely that the targets of cis-regulatory elements are the neighboring genes in
the genome, within a certain genomic distance (McLean et al., 2010; Villar et al., 2015;
Wong et al., 2017; Berthelot et al., 2018; Danko et al., 2018; Dukler et al., 2020).

Here, we study the evolution of cis-regulatory interactions and the evolution of gene
expression, using genome-wide, high-resolution chromatin contact data. We perform a
comparative analysis of cis-regulatory landscapes using promoter-centered chromatin
interaction maps for human and mouse (Choy et al., 2018; Comoglio et al., 2018;
Freire-Pritchett et al., 2017; Javierre et al., 2016; Koohy et al., 2018; Mifsud et al., 2015;
Novo et al., 2018; Pan et al., 2018; Rubin et al., 2017; Schoenfelder et al., 2015, 2018;
Siersbæk et al., 2017). Through this study, we aim to better understand the constraints
imposed by the three-dimensional structure of cis-regulatory landscapes on genome
evolution and the consequences of regulatory landscape changes on gene expression
evolution.

Results

Promoter Capture Hi-C data collection and construction of a simulated
interaction dataset

To examine the evolution of cis-regulatory landscapes, we processed and analyzed
Promoter Capture Hi-C (PCHi-C) data derived from 16 human cell types and 7 mouse cell
types (Methods, Supplemental Table S1). The PCHi-C technique was designed to detect
interactions between gene promoters and other genomic regions, with high sensitivity and
spatial resolution (Schoenfelder et al., 2015; Mifsud et al., 2015). Briefly, promoter-containing
restriction fragments are targeted using RNA baits and interactions are scored between pairs
of restriction fragments, involving at least one baited fragment (Schoenfelder et al., 2015;
Mifsud et al., 2015). All data were generated with the same experimental protocol, ensuring
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that restriction maps are identical across all samples within a species (Methods). The
dataset included interactions for 19,389 baited fragments for human and 21,858 for mouse.
We focused on intra-chromosome (cis) interactions occurring at a linear genomic distance
comprised between 25 kb and 2 Mb, and involving a baited and an un-baited restriction
fragment (Methods).

To evaluate the significance of the observations obtained with this data, we simulated
interactions that reproduce the distribution of distances between baited fragments and
contacted fragments, as well as the numbers of contacts per baited region, for each sample
(Fig. 1A-C, Supplemental Fig. S1, Methods). The simulated interactions involve the same set
of baited fragments and are constructed on the same restriction map as the PCHi-C data
(Fig. 1A, Methods). We designed this simulated dataset to account for the effect of the
genomic distance between promoters and contacted regions, which is traditionally the main
criterion for inferring regulatory interactions, in addition to being the main factor driving the
likelihood of observing a chromatin contact (Cairns et al., 2016). However, our simulations
cannot reproduce other characteristics of the PCHi-C data, such as the number of contacts
per un-baited genomic fragment (Supplemental Fig. S1) or the number of contacts per baited
region across all samples (Supplemental Fig. S2). The simulated interaction data cover a
larger fraction of the genome than the PCHi-C data, for which contacted regions are more
often shared among baits and among samples (Supplemental Fig. S2, Supplemental Text).
Moreover, restriction fragments contacted in PCHi-C data may differ from those included in
the simulations in terms of sequence uniqueness or mappability, because interactions can
only be detected if sequencing reads can be correctly aligned to restriction fragments. To
minimize this possible source of discrepancy between the PCHi-C and the simulated data,
we filtered interactions to keep only those involving restriction fragments with a sufficient
theoretical mappable fraction and PCHi-C read coverage (Methods, Supplemental Text).

Promoter-centered chromatin contacts can occur in the absence of gene
expression
We first verified to what extent chromatin interactions are shared among cell types. Within
each species, chromatin contacts cluster by cell type (Supplemental Fig. S3). This result is
reassuring, given the inevitable batch effects that arise from combining PCHi-C data from
several publications. Overall, 56% of the analyzed PCHi-C interactions (N=661,097) are
detected in at least 2 cell types in human, compared to only 27% in the corresponding
simulated data (N=1,828,577) (Fig. 1D, chi-squared test p-value < 10-10). The increase
compared to simulated data is stronger for interactions that occur at large genomic
distances. For example, at approximately 500 kb, human PCHi-C interactions are observed
on average in 3 cell types, compared to only 1 cell type in the simulated data (Fig. 1E). We
obtained similar results for mouse (Supplemental Text). We wanted to verify that this
observation is not simply due to the presence of ubiquitously expressed genes, which may
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contact similar sets of regulatory elements in all cell types. We used published gene
expression data from multiple organs and developmental stages (Cardoso-Moreira et al.,
2019). The number of cell types in which chromatin contacts are observed is positively
correlated with expression breadth, defined as the number of samples in which gene
expression is detected (RPKM>=1, Methods, Supplemental Fig. S4). However, gene
expression breadth spans a wide range of values (from 10% to 100% of samples) even for
those genes that have contacts in all cell types (Supplemental Fig. S4). This is illustrated by
the interaction landscape of the developmental gene SHH, which contacts regions situated
in the introns of the neighboring LMBR1 gene in almost all cell types (where its main
enhancer, ZRS, is known to reside (Lettice et al., 2003)), even where SHH expression is not
detected (Fig. 1F, Supplemental Fig. S5). This result confirms previous reports that
promoter-centered interactions can be observed in PCHi-C data even in the absence of
gene expression (Schoenfelder et al., 2015).

Thus, PCHi-C data provide a broad overview of promoter-centered chromatin interactions,
likely including pre-formed contacts, which precede gene activation (de Laat and Duboule,
2013). These data thus extend beyond regulatory interactions that function exclusively in the
sampled cell types. For interactions shared across cell types, differences between the
human and mouse PCHi-C datasets are genuine between-species differences, rather than
consequences of unequal cell type sampling. Thus, although similar cell types were not
always available for human and mouse, we are confident that this dataset is suited for
between-species comparisons.

Inference of cis-regulatory landscapes from PCHi-C chromatin contact maps
The promoter-centered chromatin contacts defined with PCHi-C data are known to be
enriched in regulatory interactions (Schoenfelder et al., 2015). We validated this observation
by jointly analyzing PCHi-C contact maps and genome-wide enhancer prediction datasets
(Methods). For all datasets, the average restriction fragment length covered by predicted
enhancers is significantly higher in the PCHi-C data than in the simulated data (Fig. 2A,
Wilcoxon rank sum test, p-value <10-10). For example, for ENCODE data (N=408,738
enhancers), the average length fraction that is covered by enhancers is 3.5% in the PCHi-C
data, compared to 2.4% in the simulated data. Moreover, the proportion of restriction
fragments that overlap with at least one enhancer is significantly higher in PCHi-C data than
in simulations. For ENCODE, these proportions are 36% and 27% in PCHi-C data and in
simulations, respectively (chi-squared test, p-value <10-10). The overlap with enhancers
decreases when the distance between contacting regions increases, for both PCHi-C and
simulated data (Fig. 2B). The number of cell types in which interactions are observed is also
positively correlated with the presence of enhancers (Fig. 2C). Similar results were obtained
for both species and for all four enhancer datasets (Supplemental Text). Hereafter, we
consider that promoters and enhancers are in contact if the corresponding baited fragments

5

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.02.26.432473doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?GNsuH6
https://www.zotero.org/google-docs/?GNsuH6
https://www.zotero.org/google-docs/?0xbG7R
https://www.zotero.org/google-docs/?BBbFrz
https://www.zotero.org/google-docs/?wVJN4i
https://www.zotero.org/google-docs/?wVJN4i
https://www.zotero.org/google-docs/?jjnJ5q
https://doi.org/10.1101/2021.02.26.432473
http://creativecommons.org/licenses/by-nc/4.0/


of the promoters are in contact with restriction fragments that overlap with the corresponding
enhancers, for both PCHi-C and simulated data (Methods).

We note that the numbers of enhancers assigned to genes based on PCHi-C data are
considerably higher than those obtained with a classical genomic proximity approach where
enhancers are assigned to the neighboring genes within a 25 kb - 2 Mb distance interval
(Methods). For example, for the human ENCODE dataset, we find that 323,995
gene-enhancer pairs are in contact in PCHi-C data, while the genomic proximity approach
predicts 224,446 pairs, for the 9,395 genes with enhancers assigned to them by both
methods. The median gene contacts 25 enhancers, but has only 13 neighbor enhancers
(Supplemental Fig. S6). Moreover, the PCHi-C data predicts regulatory interactions at larger
genomic distances (median 277 kb for human ENCODE) than those predicted with the
genomic proximity approach (median 88 kb). Only 42,095 gene-enhancer regulatory pairs
were predicted by both approaches; the proportion of gene-enhancer pairs in common
increases with the genomic distance between the two (Supplemental Fig. S6). As a general
rule, we can thus confirm that contacts do not generally form between immediately
neighboring promoters and enhancers (Smemo et al., 2014).

To further test the presence of genuine regulatory interactions in the PCHi-C data, we
evaluated the correlations between gene expression and enhancer activity across samples
(Methods). Due to the complexity of gene regulatory mechanisms, as well as due to inherent
noise in activity measurements, these correlations are expected to be weak (Hait et al.,
2018). Nevertheless, the activity levels of genes and enhancers connected in PCHi-C data
are significantly better correlated than in simulated data (mean Spearman’s correlation
coefficient 0.08 in the PCHi-C dataset and 0.04 in the simulations, Wilcoxon rank sum test
p-value <10-10). The correlations between promoter and enhancer activity levels decrease
when the distance between the two elements increases (Fig. 2D). This occurs for both
PCHi-C and simulated data, although correlations always remain higher for the PCHi-C
dataset. The decrease with the distance could be explained by a higher proportion of
genuine regulatory relationships at a short distance from the promoter. However, it could
also be explained by the influence of the chromatin environment on regulatory elements
found in the vicinity of the promoter: transcriptional activation of the gene could lead to the
establishment of open chromatin in the broader region around the promoter, leading to
enhancer activation.

Genomic sequences contacted by promoters are conserved during evolution
We analyzed the sequence conservation of restriction fragments and enhancers contacted
by baited promoters by calculating the aligned sequence length in pairwise comparisons with
nine other vertebrate genomes (Methods, Fig. 3A). We also used the phyloP score (Pollard
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et al., 2010) to investigate evolutionary conservation at broader evolutionary scales. We
masked exonic regions for both approaches (Methods).

Our analyses reveal that restriction fragments contacted by baits in PCHi-C data are
significantly more conserved than those included in simulated data (Fig. 3B, Supplemental
Fig. S7, Supplemental Text). For the comparison between human and mouse, the median
aligned length fraction of contacted fragments is 26.57% in PCHi-C data (median over
N=263,176 fragments), which is significantly higher than the 23.25% observed in the
simulated dataset (median over N=563,651 fragments) (Wilcoxon rank sum test, false
discovery rate (FDR) <10-10). This observation holds for all pairwise comparisons between
vertebrates, although conservation scores are expectedly weak for comparisons between
divergent species (Fig. 3B, Supplemental Text).

In contrast, enhancers contacted by promoters in the PCHi-C dataset (N=170,306) are not
significantly more conserved than enhancers included in the simulated dataset (N=292,599)
(e.g., median aligned fraction 63.21% for PCHi-C data, 63.16% for simulated data, for
human and mouse, Wilcoxon rank sum test, FDR 0.051, Fig. 3C, Supplemental Text). This
suggests that the higher evolutionary conservation of PCHi-C contacted fragments
compared to simulated data may be explained by overlap with more enhancers, but not by
overlap with better conserved enhancers. We note that enhancers that overlap with
restriction fragments in the simulated dataset but not in the PCHi-C data may be missing
from the latter because they regulate other genes or function in other cell types.

The extent of sequence conservation tends to increase with the distance from gene
promoters, for contacted restriction fragments as well as for enhancers (Supplemental Fig.
S7, Supplemental Text). The distance between promoters and contacted regions or
enhancers also co-varies with other factors that correlate with sequence conservation, such
as the GC content, the overlap with repeats and the gene density in the neighboring regions
(Supplemental Fig. S8). Regions included in the PCHi-C data and in the simulated data also
often differ with respect to these genomic characteristics. In particular, restriction fragments
contacted in PCHi-C data have lower proportions of repetitive sequences than those present
in the simulated data (Supplemental Fig. S8). This observation holds true when separating
regions in classes of similar theoretical mappability (Supplemental Fig. S9). We thus wanted
to verify whether these genomic correlates could explain the sequence conservation patterns
observed in PCHi-C and in simulated data. We first evaluated sequence conservation scores
separately for repetitive and non-repetitive positions (Methods). For both classes of
positions, conservation levels are higher for restriction fragments involved in PCHi-C
contacts than for restriction fragments included in the simulations (Fig. 3D, Supplemental
Fig. S10). The increase in conservation with the genomic distance in PCHi-C is more subtle
when analyzing repetitive and non-repetitive sequences separately, indicating that it largely
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stems from the decrease in repeat proportion with the genomic distance (Fig. 3D,E,
Supplemental Fig. S10).

Sequence conservation levels for restriction fragments and enhancers are negatively
associated with the gene density in the neighboring regions, for both evolutionary
conservation measures (Fig. 3F,G, Supplemental Fig. S10). This observation is true for both
repetitive and non-repetitive sequences (Fig. 3F,G, Supplemental Fig. S10), indicating that it
is not simply a consequence of the association between repeat frequency and gene density
(Supplemental Fig. S11). For both repetitive and non-repetitive sequences, and irrespective
of the gene density class, restriction fragments that are contacted in PCHi-C data are
significantly more conserved than those included in the simulated data (Fig. 3F,G,
Supplemental Fig. S10). We also observed higher sequence conservation in observed
versus simulated PCHi-C data when we divided restriction fragments into classes of similar
GC content (Supplemental Fig. S12), to account for the strong correlation between
sequence composition and the rate of evolutionary divergence (Duret and Arndt, 2008).

These results illustrate the complexity of the factors affecting the evolution of cis-regulatory
elements. The proportion of repeated elements, gene density, GC content and the distance
to the baits are all highly correlated with measures of sequence conservation (Supplemental
Table S2). The higher fraction of overlap with enhancers observed in PCHi-C data compared
to simulated data may explain part of the difference in sequence conservation. The low
frequency of repetitive elements observed in PCHi-C data may in itself be an indication of
purifying selection acting on regulatory elements. Indeed, the most repeat-poor regions in
the human and mouse genomes are the HOX gene clusters, which are crucial for embryonic
development (International Human Genome Sequencing Consortium, 2001). Likewise, the
negative association between sequence conservation levels and gene density may be partly
explained by the presence of functionally constrained “gene deserts”, rich in regulatory
elements (Ovcharenko et al., 2005). Consistent with these observations, genes that are in
contact with highly conserved enhancers are enriched in functional categories related to
development (Supplemental Table S3). Moreover, highly constrained human genes, as
measured by the probability of intolerance to loss-of-function mutations (Lek et al., 2016,
Methods) tend to contact more conserved enhancers (Supplemental Fig. S13), as previously
proposed (Dukler et al., 2020).

Pairs of promoters and enhancers involved in chromatin contacts are
maintained in synteny
Genomic rearrangements that separate promoter-enhancer pairs to different chromosomes
or to contact-prohibiting distances are expected to be counter-selected. To test this
hypothesis, we assessed the proportion of promoter-enhancer pairs that are maintained in
synteny (on the same chromosome and within a maximum distance of 2Mb) through
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pairwise comparisons between human/mouse and other vertebrate species. We restricted
this analysis to promoter-enhancer pairs that are separated by distances between 100 kb
and 1.5 Mb in the reference species (Methods). With this convention, synteny "breaks" are
evolutionary events that add at least 500 kb to the distance between promoters and
enhancers. We found that pairs of contacting promoters-enhancers are maintained in
synteny significantly more often than in the simulated dataset (Fig. 4A, Supplemental Text).
For example, 95.9% of pairs between promoters and ENCODE enhancers (N=207,144) are
maintained in synteny between human and mouse, compared to 94.7% in the simulated
dataset (N=496,622) (Fig. 4A, chi-squared test FDR < 10-10). At larger evolutionary
distances, there is less difference between the PCHi-C data and the simulated interactions
(Fig. 4A, chi-squared test FDR = 0.034 for the comparison between human and chicken).
Our synteny conservation measure is influenced by the genome assembly quality, which
likely explains the lower values observed for the comparison between human and rabbit (Fig.
4A). The excess of synteny conservation compared to simulated data is mainly visible at
large genomic distances, which are likely to accumulate genomic rearrangements with time if
these are not counter-selected (Fig. 4B,C, Supplemental Text).

Promoter-enhancer contact maps are conserved during evolution
To further test the presence of selective pressures to maintain chromatin contacts between
promoters and enhancers, we directly compared PCHi-C interaction landscapes between
human and mouse. We tested for contact conservation between pairs of cell types in human
and mouse (Methods). For this analysis, we selected promoter-enhancer pairs that are
maintained in synteny in the target species, to avoid the confounding effect of genomic
rearrangements that break contacts. We also drew the same number of interactions for each
sample, to avoid the apparent excess of contact conservation in comparisons involving data
with better sequencing depth (Methods, Supplemental Text).

For all cell type pairs, the frequency of conserved contacts is higher in the PCHi-C data
(median=12.6%) than in the simulated data (median=0.99%, Wilcoxon rank sum test p-value
<10-10; Fig. 5B). The extent of contact conservation is high for comparable cell types
(embryonic stem cells or epiblast-derived stem cells, pre-adipocytes and B-lymphocytes),
but higher values could be observed in comparisons involving different cell types (Fig. 5A).
This could be explained by technical artifacts leading to better detection sensitivity in some
samples, despite our subsampling procedure. Our chromatin contact conservation measures
are necessarily under-estimates, given that human and mouse PCHi-C datasets do not
consist of the same cell types and that cell-type specific interactions may thus appear as
species-specific. Consistent with this, the extent of contact conservation is higher for
interactions observed in multiple cell types (Fig. 5C, Supplemental Text). Furthermore, the
extent of contact conservation increases with the score attributed to interactions by the
CHiCAGO processing pipeline (Supplemental Fig. S14).
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For both PCHi-C and simulated data, the proportion of conserved contacts between
promoters and enhancers decreases as the genomic distance between the two increases
(Fig. 5D, Supplemental Text), as expected given the over-representations of contacts at
relatively short distances in both species (Fig. 1, Supplemental Fig. S1). However, here
again, the excess of contact conservation compared to simulated data is stronger at large
genomic distances: for example, around 1 Mb, the proportion of conserved contacts is
0.99% for simulated data, while for PCHi-C data the value is 25.78% (Fig. 5D). We observed
an enrichment for functional categories related to developmental patterning among genes
that have high conservation levels for long-distance (minimum 500 kb) promoter-enhancer
contacts (Supplemental Table S4). We also show that the most highly constrained human
genes (Lek et al., 2016, Methods) have a higher rate of chromatin contact conservation
(Supplemental Fig. 13). These observations are consistent with the presence of strong
functional constraints on the cis-regulatory landscapes of developmental genes, and more
generally of dosage-sensitive genes.

The complexity of cis-acting regulatory landscapes is associated with gene
expression characteristics and with the rates of gene expression evolution

To better understand the functional relevance and the phenotypic implications of the
promoter-enhancer interactions predicted with PCHi-C data, we examined their relationship
with gene expression evolution. We evaluated gene expression patterns using a
comparative transcriptome collection spanning several organs and developmental stages
(Cardoso-Moreira et al., 2019). This dataset allowed us to identify changes in expression
profiles, such as changes in organ or developmental stage “preference”, the gain or loss of
an expression domain, etc. We measured the extent of expression conservation through
Spearman's correlation coefficient between relative expression values, for each pair of
orthologous genes (Methods). Given that gene expression levels and gene expression
breadth are correlated with our estimates of the rate of expression profile evolution
(Supplemental Fig. S15), we corrected for the effect of these two factors with a multiple
regression model (Methods). We repeated all analyses using the Euclidean distance to
contrast orthologous gene expression profiles, and obtained similar results (Supplemental
Fig. S16, Supplemental Fig. S17, Methods). Genes with the highest expression profile
conservation levels are enriched in processes related to RNA metabolism and transcriptional
regulation (Supplemental Table S5).

We observe that genes that are in contact with a large number of predicted enhancers in
PCHi-C data exhibit higher average expression levels, for both human and mouse
(Kruskal-Wallis test, p-value <10-10, Fig. 6A). This confirms previous observations showing
that the number of enhancers in the gene vicinity is positively correlated with expression
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levels (Berthelot et al., 2018). We also show that these genes generally have broad
expression patterns, that is, they are expressed in large numbers of samples (Kruskal-Wallis
test, p-value < 10-10, Fig. 6B). This suggests that the contact with a large number of
enhancers may enable gene activation in a wide variety of spatio-temporal contexts.
Consistent with the enrichment observed for genes with conserved expression profiles, we
note that functional categories associated with regulation of expression are over-represented
among genes with a large number of contacted enhancers (Supplemental Table S6).

Our results thus confirm that the complexity of the regulatory landscape is linked to the
pattern of gene expression (Berthelot et al., 2018). However, after correcting for the effect of
gene expression levels and expression specificity, our expression conservation measure is
not strongly correlated with the number of contacted enhancers (Kruskal-Wallis test, p-value
= 3.4 x 10-3 for human, p-value = 0.85 for mouse, Fig. 6C). These observations indicate that
the complexity of cis-acting regulatory landscapes - as measured with chromatin interaction
data - contributes to the robustness of gene expression during evolutionary time, but only
through the association between the number of regulatory elements, expression level and
expression breadth. The numbers of enhancers assigned to genes with the genomic
proximity approach (Methods) do correlate positively with gene expression conservation
(Kruskal-Wallis test, p-value < 10-10 for both species, Supplemental Fig. S18), as previously
reported (Berthelot et al., 2018, Danko et al., 2018). The distance to the next promoter,
which is the only determinant of the numbers of enhancers attributed to genes with this
approach, also correlates positively with the extent of expression conservation
(Kruskal-Wallis test, p-value < 10-10 for both species, Supplemental Fig. S18). These
observations may be explained by the strong enrichment of developmental functions among
the genes with large numbers of neighbor enhancers (Supplemental Table S7). Thus, they
may reflect the genomic architecture of developmental genes, rather than their pattern of
chromatin interactions.

We also evaluated the conservation of gene expression levels using transcriptome
sequencing data for the cell types sampled in both human and mouse PCHi-C datasets
(Methods, Supplemental Table S8). We confirm that there is a strong positive correlation
between the number of contacted enhancers and gene expression levels in each cell type
(Kruskal-Wallis test, p-value < 10-10, Supplemental Fig. S19). However, as for the
conservation of gene expression profiles, we do not find a significant association between
the number of contacted enhancers and the conservation of gene expression levels after
correcting for the effect of the gene expression level within species (Kruskal-Wallis test,
p-value > 0.05 for all comparisons, Supplemental Fig. S19).
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The evolution of cis-regulatory landscapes is correlated with the evolution of
gene expression profiles

We next investigated the relationship between the evolution of cis-regulatory landscapes and
the evolution of gene expression patterns. We evaluated the evolutionary conservation of
PCHi-C-predicted regulatory landscapes at three different levels: the conservation of the
contacted enhancer sequences, of the synteny between promoters and enhancers, and of
their chromatin contacts (Methods). We correlated these measures of regulatory landscape
evolution with the evolution of gene expression profiles, corrected for the effect of expression
level and expression breadth as described above (Methods).

We found significant positive associations between the rate of regulatory landscape
evolution and the rate of gene expression profile evolution (Fig. 6D-F, Supplemental Fig.
S16, Supplemental Fig. S17). Specifically, genes that contact enhancers with highly
conserved sequences tend to have well-conserved expression profiles (Kruskal-Wallis test,
p-value < 10-10 for both species, Fig. 6D). We observe a similar correlation when measuring
enhancer sequence evolution with phyloP scores (Supplemental Fig. S20). Moreover, genes
that underwent synteny breaks in their regulatory landscapes tend to have less conserved
expression profiles than genes in conserved synteny (Kruskal-Wallis test, p-value 4.7 x 10-5

for human, p-value 1.2 x 10-6 for mouse, Fig. 6E). Finally, we tested the correlation between
the proportion of conserved contacts and the rate of expression profile conservation.
Although we observe a positive tendency, we could not conclude on the presence of a
consistent significant signal for both species (Kruskal-Wallis test, p-value 0.26 for human, 5 x
10-4 for mouse). Similar results are found when we contrast gene expression profiles
between species with the Euclidean distance (Supplemental Fig. S17). These conclusions
are also confirmed by multiple regression models that explain the rate of gene expression
profile evolution as a function of gene expression characteristics (gene expression level and
gene expression specificity) and regulatory landscape characteristics (Supplemental Table
S9). We note that we did not observe significant correlations between quantitative
expression level differences and cis-regulatory landscape evolution in the cell types that
were sampled for both mouse and human (Supplemental Fig. S19).

To test whether the genomic distance between interacting promoters and enhancers has an
effect on the robustness of gene expression, we analyzed separately medium range
interactions (genomic distance below 500 kb) and long range interactions (genomic distance
above 500 kb). We found significant associations between the conservation of regulatory
landscapes, on one hand, and gene expression patterns and gene expression conservation,
on the other hand, for both distance classes (Supplemental Fig. S21). However, the effect is
generally weaker for long-range interactions, suggesting that distal regulatory elements
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contribute less to gene expression evolution than proximal elements (Supplemental Fig.
S21). We also found significant associations between the degree of sequence conservation
of neighbor enhancers and the extent of gene expression conservation (Kruskal-Wallis test,
p-value = 2.1 x 10-6 for human, p-value = 1.4 x 10-10 for mouse, Supplemental Fig. 22).
However, these associations are less strong than the ones observed with the PCHi-C data
(above) and the presence of synteny breaks does not correlate significantly with gene
expression conservation with the neighbor enhancer dataset (Supplemental Fig. 22).

Discussion
In this study, we investigated the evolution of cis-regulatory landscapes using experimentally
determined promoter-enhancer contacts. This data allowed us to evaluate long-range
promoter-enhancer interactions, which are thought to be critical part of cis-regulatory
networks (Montavon and Duboule 2012). The use of chromatin contact data avoids the
simplification made by most previous studies, which predicted target genes based on
genomic proximity alone (McLean et al., 2010; Villar et al., 2015; Wong et al., 2017;
Berthelot et al., 2018; Danko et al., 2018; Dukler et al., 2020). The PCHi-C data revealed
cis-regulatory landscapes that are more complex than those predicted based with the
“genomic proximity approach”: genes are assigned higher numbers of enhancers, and a
larger fraction of these enhancers are situated far away from their predicted target genes.

We were able to assess the evolution of cis-regulatory landscapes at multiple levels. Starting
with primary sequence analyses, we show that regions contacted by promoters in PCHi-C
data are better conserved than in simulated data, even after correcting for confounding
factors such as repetitive sequence content, GC content etc. Moreover, distant regulatory
elements have higher overall levels of sequence conservation than those found in the
immediate vicinity of their putative target genes, largely due to a lower overlap with repetitive
sequences. Enforcing the idea that long-range contacts between promoters and enhancers
are an important mode of gene expression regulation, we showed that synteny breaks that
would prohibit these interactions are under-represented, and thus potentially
counter-selected. Moreover, we observed substantial contact conservation for long-range
promoter-enhancer pairs, though very little is expected by chance. These results confirm
early hypotheses stating that the presence of long-range regulatory interactions constrains
the large-scale evolution of vertebrate genomes (Mongin et al. 2009; Lemaitre et al. 2009).
We thus validate previous computational studies, which predicted long-range regulatory
interactions based on long-term conservation (Mongin et al., 2009; Clément et al., 2020).
Our findings are also consistent with a recent comparative analysis of human and
chimpanzee Hi-C data, which proposed that changes in 3D genome structure may contribute
to regulatory evolution (Eres et al., 2019).
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We re-evaluated the relationship between gene expression evolution and regulatory
evolution. Although it seems intuitive that changes in cis-regulatory landscapes should affect
gene expression, it is well established that, overall, protein-coding gene expression patterns
evolve slowly (Necsulea and Kaessmann, 2014), while distal cis-regulatory elements such
as enhancers evolve rapidly (Cheng et al., 2014; Villar et al., 2015). Consistently, so far only
mild associations between expression evolution and regulatory evolution were reported in
vertebrates (Pai et al., 2011; Zhou et al., 2014; Wong et al., 2015; Berthelot et al., 2018). The
robustness of regulatory networks, achieved through the presence of redundant
cis-regulatory elements, is a plausible explanation for this paradoxical finding (Frankel et al.,
2010; Cannavò et al., 2016; Osterwalder et al., 2018). Consistently, it was previously shown
that the number of enhancers attributed to genes is positively associated with gene
expression conservation (Berthelot et al., 2018; Danko et al., 2018). However, this result was
obtained with the traditional approach of inferring regulatory relationships based on genomic
proximity. With this approach, genomic architecture plays an important role, because the
size of the neighboring intergenic and intronic regions directly influences the number of
enhancers assigned to a given gene. Thus, genes involved in developmental processes or
transcriptional regulation, which can be surrounded by large gene deserts (Montavon and
Duboule, 2012), tend to have large numbers of regulatory elements attributed to them
(Supplemental Table S7). Because these genes need to be tightly regulated to avoid
deleterious phenotypic consequences, this functional enrichment could explain part of the
positive association between regulatory landscape complexity and gene expression
robustness. These observations raise the question of whether expression robustness is
achieved not only through the number of regulatory elements that are available to genes, but
also through the evolution of a specific genomic architecture. For example, the presence of
large intergenic regions around developmental genes may contribute to the “resilience” of
their expression patterns during evolution, by preventing unwanted transcriptional or
regulatory interference (Montavon et al., 2011).

With PCHi-C data, we do not observe a strong association between the numbers of
contacted enhancers and gene expression conservation, beyond what is explained by
expression levels and expression breadth. This puzzling observation might be explained by
the fact that regulatory relationships inferred with PCHi-C data are to a great extent
orthogonal to genomic architecture: enhancers contacted by promoters are not necessarily
their immediate neighbors. Another explanation may reside in the discrepancy between the
PCHi-C, gene expression and enhancer datasets that we used here, in terms of biological
sampling. Unlike previous studies, which analyzed genes and enhancers that are active in
the same tissue (Berthelot et al., 2018), here we rely on heterogeneous sample collections
for the different types of data. Despite this drawback, we could uncover significant
associations between the rate of regulatory landscape evolution and the pattern of gene
expression evolution, by analyzing relative expression profiles across comparable organs
and developmental stages (Cardoso-Moreira et al., 2019). Although it does not include
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biological samples directly related to organ development, there is evidence that our PCHi-C
dataset provides a good starting point to study its underlying cis-regulatory landscapes. For
example, we found that genes that have evolutionarily conserved chromatin contacts at large
genomic distances are enriched in functional categories associated with embryonic
development. Analyzing expression profiles with this comparable transcriptome collection
has the advantage of reducing technical biases linked to gene expression comparisons
between distant species, as well as of providing a broader overview of the pattern of
expression evolution. Despite the functional redundancy of cis-regulatory networks, by jointly
analyzing numerous biological conditions we increase the likelihood of observing the
molecular consequences of enhancer evolution. Nevertheless, performing similar analyses
with comparable PCHi-C and transcriptome sequencing data would likely reveal even
stronger relationships between regulatory landscape evolution and gene expression
evolution.

We show that genomic rearrangements that affect cis-regulatory landscapes are associated
with increased divergence of expression profiles. By partially restructuring cis-regulatory
landscapes, genomic rearrangements likely contribute to gene expression evolution, not just
by disrupting existing regulatory relationships, but also by redistributing regulatory elements
and thus allowing their adoption by other genes (Lettice et al., 2011). These effects on gene
expression explain why rearrangements are generally counter-selected, as indicated by our
synteny conservation analyses. Our findings offer an intermediate point of view between
reports that large-scale rearrangements that perturb regulatory landscapes can have strong
phenotypic consequences, in mouse models of human diseases (Lupiáñez et al., 2015), and
reports that multiple chromosomal rearrangements in Drosophila laboratory strains have little
to no effects on gene expression (Ghavi-Helm et al., 2019). We note that our work, like
previous studies, does not provide a complete overview of the phenotypic consequences of
regulatory landscape rearrangements. On one hand, studies that were motivated by the
need to understand the genomic underpinnings of human diseases are necessarily biased
towards events with deleterious consequences (Lupiáñez et al., 2015). On the other hand,
studies of Drosophila strains are likely biased towards genomic alterations with little impact
on organism fitness (Ghavi-Helm et al., 2019). Here, we can only observe those genomic
rearrangements that were maintained during evolution, and thus also exclude events with
highly deleterious effects. This inherent limitation may explain why we do not observe
stronger correlations between gene expression evolution and regulatory evolution. Moreover,
we only analyze genes that are kept as orthologs between human and mouse. We speculate
that cases where promoter-enhancer interactions are affected by major evolutionary events,
such as large-scale genome rearrangements, could often lead to loss of function or
pseudogenization, rather than gene expression profile changes.

We note that recent studies have proposed that the presence of chromatin contacts or loops
between promoters and enhancers may be dispensable for gene activation in mammals
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(Alexander et al., 2019; Benabdallah et al., 2019) and in Drosophila (Heist et al., 2019;
Ing-Simmons et al., 2021). This idea challenges the model of gene regulation centered on
contacts between promoters and regulatory elements, built over the last decade by
chromatin conformation studies (de Laat and Duboule, 2013; Schoenfelder and Fraser,
2019). The PCHi-C technique, like other “C” techniques, cannot inform on the precise
molecular mechanisms that underlie the physical proximity between genomic regions. Thus,
the promoter-enhancer interactions that we analyze here may be the result of more complex
cellular dynamics, such as the one described in the “phase separation” model (Hnisz et al.,
2017). Nevertheless, irrespective of the underlying molecular process, our results support
the idea that interactions between promoters and enhancers separated by large distances in
the linear genome are a critical part of the complex regulatory networks that control gene
expression in mammals.

Methods

Promoter Capture Hi-C data processing
We collected and processed publicly available Promoter Capture Hi-C (PCHi-C) data for
human (Choy et al., 2018; Freire-Pritchett et al., 2017; Javierre et al., 2016; Mifsud et al.,
2015; Pan et al., 2018; Rubin et al., 2017) and mouse samples (Comoglio et al., 2018;
Koohy et al., 2018; Novo et al., 2018; Schoenfelder et al., 2015, 2018; Siersbæk et al.,
2017). We selected PCHi-C datasets that were generated with experimental procedures
similar to those described by Schoenfelder and co-authors (Schoenfelder et al., 2015).
Genome fragmentation was generated with the HindIII restriction enzyme in all cases,
ensuring identical restriction maps across all samples within a species. We processed
PCHi-C data for 26 samples and 16 cell types for human and 14 samples and 8 cell types for
mouse (Supplemental Table S1). The data include several cell types (embryonic stem cells,
epiblast-derived stem cells, adipocytes and B cells) that are comparable across species,
although cell culture procedures and differentiation stages may differ (Supplemental Table
S1).

To homogenize computational analyses across datasets and species, we re-processed all
PCHi-C raw data. We used the HiCUP pipeline (Wingett et al., 2015), which aligns reads,
filters artifactual fragments (such as circularized reads and re-ligations), and removes
duplicates. We mapped PCHi-C reads to the human hg38 (GRCh38.p12) and mouse mm10
(GRCm38.p6) genome assemblies, downloaded from Ensembl release 94 (Cunningham et
al., 2019), using Bowtie version 2.3.4.3 (Langmead and Salzberg, 2012). We called
interactions with the CHiCAGO pipeline (Cairns et al., 2016). We selected chromatin
contacts with a CHiCAGO score greater or equal to 5 in at least one sample (Supplemental
Table S1). An interaction between a bait and a restriction fragment is said to be detected in a
given cell type if it was detected in at least one of the corresponding samples. We combined
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detected interactions across samples and found 910,180 unique interactions between
19,389 baited restriction fragments and 308,359 other fragments for human, and 824,406
interactions between 21,858 baited fragments and 247,668 other fragments for mouse.
These data are provided in Supplemental Dataset S1.

We further focused on intra-chromosomal contacts (cis-interactions) separated by a genomic
distance of 25 kb to 2 Mb, computed between the midpoint of baited and contacted regions.
We thus exclude short-range interactions that have high levels of background noise (Cairns
et al., 2016), as well as interactions that are beyond the typical size observed for
topologically-associating domains (Dixon et al., 2012). We discarded interactions that
involved restriction fragments smaller than 150 bp or larger than 50 kb. We also removed
interactions probably involved in structural variation or potential genome assembly issues,
i.e. pairs of contacting regions separated by a large distance in a reference species (>1Mb),
and by a small distance (<100kb) in the target species. The list of excluded restriction
fragments is provided in Supplemental Dataset S1. Finally, we restricted our analyses to
contacts between baited and non-baited restriction fragments.

Simulated interactions
We generated simulated interaction landscapes that reproduce the observed distribution of
distances between baited restriction fragments and non-baited contacted fragments, as well
as the number of contacted fragments per bait, for each sample (Supplemental Text). To do
this, we computed the absolute linear genomic distance between the center position of each
baited fragment and each interacting fragment. We then divided the observed interactions
into 5 kb distance classes, from 25 kb to 2 Mb upstream and downstream of the baited
region. We computed the fraction of contacts observed in each distance class, across all
baited fragments, for each sample. This distance distribution was used to simulate contacts,
as follows: for each baited fragment, we computed the contact probability for all fragments
found on the same chromosome, within the 25 kb - 2 Mb distance window, as the average
probability of the overlapping distance classes (a single fragment can overlap with multiple
distance classes). We then randomly drew contacts among the list of all possible interactions
based on this empirical probability distribution. We respected the number of interactions
observed in the real PCHi-C data, for each bait. However, we discarded a posteriori those
simulated interactions that fell within a baited restriction fragment; after this filtering step, the
number of contacts per bait are lower in the simulated data than in the PCHi-C data
(Supplemental Fig. 1). The simulated interaction data are available in Supplemental Dataset
S2.
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Theoretical mappability and PCHi-C read mapping statistics

We evaluated the theoretical mappability of all restriction fragments by drawing artificial
sequencing reads from the genome and re-mapping them with Bowtie 2 (Langmead and
Salzberg, 2012), with the same parameters as the HiCUP pipeline. The starting points of the
reads were spaced by 5 nucleotides. We did not simulate sequencing errors. Regions for
which artificial reads were aligned unambiguously to their original location were said to be
mappable. We computed the percentage of mappable bases and the maximum mappable
stretch (the largest perfectly mappable interval) for each restriction fragment. As several
read lengths were available for each species, we repeated this procedure for each read
length and computed the minimum values. We also estimated the actual number of mapped
PCHi-C reads attributed to each fragment in each sample, using BEDTools utilities (Quinlan
and Hall, 2010). We discarded restriction fragments that had a maximum theoretical
mappable stretch lower than 150bp and fewer than 50 mapped PCHi-C reads, combined
across all samples.

Subsampled chromatin interaction dataset

To minimize differences in detection sensitivity among PCHi-C samples (Supplemental Table
S1, Supplemental Text), we generated subsampled datasets. We first computed the
minimum number of observed interactions (N) across all samples for each species (79,843
for human and 70,475 for mouse). We then ranked interactions based on their CHiCAGO
score and kept the strongest N interactions from each PCHi-C sample, reasoning that the
relative ranking would remain unchanged if detection power were reduced. For simulated
datasets we randomly re-sampled N interactions. We applied the same filtering steps
described previously (e.g., discarding bait-bait interactions, trans interactions and
interactions occurring at distances < 25 kb or > 2 Mb) on the subsampled data before
analyzing them further. We used these subsampled interaction datasets to evaluate sample
clustering within species (Supplemental Fig. S3, Supplemental Text), and for pairwise
comparisons of contact conservation between human and mouse samples (Fig. 5A,B,
Supplemental Text).

As PCHi-C and simulated datasets differ in terms of total numbers of interactions after
pooling all available samples (Supplemental Text), we randomly subsampled the pooled
simulated dataset to obtain the same number of interactions as in pooled PCHi-C data.
These datasets were used in the contact conservation analyses that rely on pooled samples
across species (Fig. 5C,D, Supplemental Text) and are available in Supplemental Dataset
S1 and Supplemental Dataset S2.
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Sample clustering

We evaluated the similarity between pairs of samples from the same species starting from
the percentage of shared interactions, i.e. 100 times the ratio between the number of shared
interactions and the number of interactions observed in at least one of the samples. For
each pair of samples, we computed the difference between the percentage of shared
interactions in PCHi-C data and the percentage of shared interactions in simulated data. We
computed this measure of similarity on the subsampled PCHi-C and simulated data. We
used this pairwise measure of similarity to cluster samples within a species, using the
hierarchical clustering approach implemented in the “hclust” function in R (R Core Team,
2014). We also used functions within the “ade4” R package (Dray et al., 2007) to perform a
correspondence analysis for each species, starting from a contingency table describing for
each unique chromatin interaction whether it was observed or not in each sample. We
performed this analysis on the subsampled PCHi-C dataset.

Baited region annotation
We assigned transcription start sites to PCHi-C baited restriction fragments using
annotations from the Ensembl database, release 94. We downloaded transcript coordinates
from Ensembl using the BioMart interface (Kinsella et al., 2011). For each baited fragment,
we extracted all transcription start sites that were found within at most 1 kb of the fragment.
The baited fragment annotation is available in Supplemental Dataset S1; gene and transcript
annotations are provided in Supplemental Dataset S3.

Genomic characteristics of PCHi-C contacted sequences
We extracted the repeat-masked DNA sequence of all baits and contacted regions, and
used BLAT (Kent et al., 2012) to search for sequence similarity in the same genome. For
each sequence, we counted the number of BLAT hits corresponding to at least 80% of their
repeat-masked length with at least 95% sequence identity. We discarded sequences with
more than 1 BLAT hit, which could be potentially duplicated in the reference genome. We
evaluated the repetitive sequence content for restriction fragments and enhancers using
RepeatMasker annotation tables provided by the UCSC Genome Browser (Hinrichs, 2006).
We evaluated the number of protein-coding genes found within a maximum distance of 500
kb, upstream and downstream of the contacted sequences. We also analyzed the GC
content of restriction fragments and enhancers. These genomic characteristics are available
in Supplemental Dataset S1 for restriction fragments and in Supplemental Dataset S4 for
enhancers.
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Predicted enhancer elements
We evaluated the presence of predicted enhancer elements in the PCHi-C contacted regions
using different data. For human, we used pre-filtered data from a recent study (Hait et al.,
2018) (http://acgt.cs.tau.ac.il/focs/download.html), obtaining 408,802 enhancer positions
predicted with DNase I hypersensitivity (DHS) assays by the ENCODE consortium (Thurman
et al., 2012). For mouse, we extracted enhancer positions predicted based on the presence
of H3K4me1, H3K4me3 and H3K27ac histone modifications from the ENCODE consortium
(The Mouse ENCODE Consortium et al., 2014). We downloaded the midpoint coordinates of
predicted enhancer elements for 23 tissues or cell lines from
http://promoter.bx.psu.edu/ENCODE/download.html and we extended them by 75 bp on
each side. We then combined the enhancer coordinates across all samples, obtaining
740,058 enhancer regions.

To confirm our results, we also used human enhancers prediction from the Roadmap
Epigenomics consortium (Roadmap Epigenomics Consortium et al., 2015), and from global
run-on sequencing analyzed in the same study (Hait et al., 2018)
(http://acgt.cs.tau.ac.il/focs/download.html). Moreover, we downloaded enhancers predicted
with the Cap Analysis of Gene Expression method by the FANTOM5 consortium (Andersson
et al., 2014) for human (https://zenodo.org/record/556775#.X3Gvf5rgprl) and mouse
(https://zenodo.org/record/1411211#.X3Gvq5rgprm).

We converted enhancer coordinates to the latest genome assembly of each species if
needed (hg38 for human and and mm10 for mouse) using liftOver and associated genome
alignment files downloaded from the UCSC Genome Browser (Kent et al., 2012). Finally, we
applied the same procedure described above for restriction fragments to discard duplicated
enhancers and to evaluate their genomic characteristics (GC content, repetitive sequences,
proximal gene density). The predicted enhancers data and their genomic characteristics are
available in Supplemental Dataset S4.

Prediction of contacts between gene and enhancers
We constructed gene-enhancer pairs by associating to each “baited” protein-coding gene all
the predicted enhancers that overlapped with the restriction fragments contacted by its baits.
We applied this procedure to each enhancer dataset described above, obtaining four
different contact datasets for human and two datasets for mouse (Supplemental Dataset
S4).
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Prediction of gene-enhancer association using the genomic proximity
approach

We inferred regulatory relationships between promoters and enhancers using the genomic
proximity approach, as implemented by Berthelot and co-authors (Berthelot et al 2018). We
first determined for each gene the canonical transcript, based on Ensembl APPRIS
annotations when available (Cunningham et al., 2019). For genes that did not have APPRIS
annotations, we kept the transcripts with the longest coding sequence (for protein-coding
genes) or with the longest exonic sequence (for non-coding RNAs). For this analysis, we
kept only protein-coding genes, long non-coding RNAs and antisense transcripts. Each gene
was assigned a unique transcription start site (TSS), belonging to the canonical transcript.
Then, we defined for each gene a putative regulatory region delimited by the closest TSS
upstream and downstream of the gene’s TSS. Enhancers found within this region were then
assigned to the focal gene. We restricted promoter-enhancer relationships defined with the
genomic proximity approach to the same 25kb to 2Mb distance interval used for the PCHi-C
data. The corresponding data are available in Supplemental Dataset S4.

Correlated activity of gene-enhancer pairs
We evaluated the correlation of gene expression and enhancer activity levels for each
promoter-enhancer pair, across samples. Depending on the dataset, activity levels were
evaluated with ChIP-seq or DNase I hypersensitivity experiments (ENCODE,
RoadmapEpigenomics consortia), with the CAGE technique (FANTOM5 consortium) or with
the GRO-seq technique. In all cases, we used processed promoter and enhancer activity
data (Hait et al., 2018). We downloaded normalized activity profiles for promoters and
enhancers from http://acgt.cs.tau.ac.il/focs/download.html. We computed pairwise Spearman
correlations, based on normalized activity profiles across samples, for all pairs of promoters -
enhancers in contact in the real PCHi-C data or in the simulated data. We then tested
whether the correlation coefficient distributions were significantly different, using the
Wilcoxon rank-sum test for median comparisons, as implemented in R (R Core Team, 2014).
The resulting data are available in Supplemental Dataset S12.

Sequence conservation
To evaluate the conservation of sequences contacted in PCHi-C data, we first identified
putative homologous regions using liftOver on whole-genome alignments between a
reference species (human or mouse) and a target species (human, macaque, mouse, rat,
rabbit, cow, elephant, dog, opossum or chicken), downloaded from the UCSC Genome
Browser (Hinrichs, 2006). We set a low threshold (10%) for the minimum ratio of bases that
must remap in the liftOver conversion. We discarded regions that were duplicated or split in
the target genome. The regions that could not be projected with liftOver were considered as
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non-conserved and were given a conservation score of 0. The predicted homologous
regions were then aligned with Pecan (Paten et al., 2008). We computed the conservation
score as the ratio between the total number of aligned (without gaps) base pairs and the
total number of positions in the alignment. To better evaluate the determinants of sequence
conservation patterns in PCHi-C data, we also measured sequence conservation separately
for repetitive and non-repetitive sequences, using the information provided in the
repeat-masked genome sequence available in Ensembl (Zerbino et al., 2018). We extracted
exonic coordinates from the Ensembl database and we masked exons before evaluating
sequence conservation. We discarded sequences whose alignment length was smaller than
10 bp. We applied the same alignment procedure to predicted enhancers.

We also analyzed the phyloP basewise conservation score (Pollard et al., 2010). We
retrieved from the UCSC Genome Browser (Hinrichs, 2006) phyloP scores calculated from
multiple alignments of 30 vertebrate species for human and for 60 vertebrate species for
mouse. We computed average phyloP scores for each restriction fragment and enhancer,
across all non-exonic bases that had phyloP coverage. We also computed average phyloP
scores separately for repetitive and non-repetitive sequences, using RepeatMasker
annotations downloaded from the UCSC Genome Browser (Hinrichs, 2006).

The alignment statistics and phyloP scores are available in Supplemental Dataset S6 and in
Supplemental Dataset S7.

Synteny conservation
We defined synteny conservation between a reference and a target species as the presence
of the gene and of the predicted enhancer on the same chromosome and at a distance of
less than 2 Mb in both species. We restricted this analysis to protein-coding genes with
1-to-1 orthologues in the target species, as predicted in the Ensembl database (release 99
for macaque, release 94 for all other species). We also selected only enhancers that had
predicted homologous regions in the target genome, as defined above. For each pair of
species, we discarded the 10% least conserved enhancers based on the alignment score
defined above. We further restricted this analysis to promoter-enhancer pairs that are
separated by distances between 100 kb and 1.5 Mb in the reference species. We then asked
whether the predicted homolog of the contacted enhancer was on the same chromosome
and within 2 Mb of the TSS of the orthologous gene. If the orthologous gene in the target
species had more than one TSS, we considered the minimum distance between these and
the homologous contacted region. The resulting data are available in Supplemental Dataset
S8 and in Supplemental Dataset S9.
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Chromatin contact conservation
We restricted this analysis to protein-coding genes with 1-to-1 orthologues in the target
species, in contact with enhancers that had predicted homologs in the target species, as
described above. We further restricted the analysis to cases where the 1-to-1 orthologous
gene was also baited in the PCHi-C data of the target species (human or mouse). To
dissociate contact conservation from synteny conservation, we require that the bait and
restriction fragment be situated on the same chromosome in the target species. We
excluded interactions for which the restriction fragment contacted was baited or the distance
bait-contacted fragment was below 25 kb or above 2 Mb, for either the reference or the
target species. We then asked whether the predicted homolog of the contacted enhancer
overlapped any of the regions found in contact with the bait(s) associated with the
orthologous gene in the PCHi-C data of the target species. The proportion of conserved
contacts was computed with respect to the number of pairs satisfying all previous criteria
(i.e., homology prediction for the baited gene and the contacted enhancer, presence of baits
for the orthologous gene in the target species, distance and unbaited contacted fragment
filters).

We evaluated the contact conservation for each pair of human and mouse samples. We
performed this analysis on the downsampled dataset, which comprises the same number of
contacts for each sample. We also evaluated the extent of chromatin contact conservation
for the pooled PCHi-C dataset. In this case, we used as a comparison the subsampled
pooled simulated dataset, which matches the number of interactions observed in the pooled
PCHi-C dataset. For the analyses that contrast the extent of regulatory landscape
conservation and gene expression conservation, we use the entire PCHi-C data, without
subsampling.

The resulting data are available in Supplemental Dataset S10 and Supplemental Dataset
S11.

Gene expression data
To evaluate the gene expression patterns, we used expression data for human and mouse
across multiple organs and developmental stages (Cardoso-Moreira et al., 2019). We
downloaded gene-level RPKM (reads per kilobase of exon per million mapped reads)
values. For evolutionary comparisons, we analyzed protein coding genes predicted as 1-to-1
orthologs for human and mouse in the Ensembl database release 94, and to
organ/developmental stage combinations that were directly comparable between the two
species (Cardoso-Moreira et al., 2019). We re-normalized the data across samples and
species using a median-scaling procedure based on the genes that vary the least in terms of
ranks across samples (Brawand et al., 2011). For the expression conservation analyses, we
required genes to be expressed above a minimum threshold (RPKM=1) in at least three
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samples. The resulting expression data and sample details are provided in Supplemental
Dataset S5.

We also aimed to compare gene expression levels between human and mouse, in cell types
that are comparable between the two species and for which PCHi-C data is also available.
We analyzed embryonic stem cells or epiblast-derived stem cells (ESC or epiSC),
adipocytes and B cells. For these cell types, we downloaded RNA-seq data from the
ENCODE consortium and from the Sequence Read Archive (SRA) database. We computed
gene expression levels using kallisto (Bray et al., 2016), on cDNA sequences extracted from
Ensembl 94. For each gene, we computed mean and median TPM (transcript per million)
expression levels, across all replicates for each cell type. We applied the same normalization
procedure as above (Brawand et al., 2011). These values were used to compute cell
type-specific gene expression conservation values between human and mouse. The
resulting expression data and sample details are provided in Supplemental Dataset S5 and
Supplemental Table S8.

Gene expression characteristics
We defined gene expression breadth as the number of organ/developmental stage
combinations where the average RPKM level across biological replicates was above 1, using
the expression data described above. We analyzed the distribution of this estimate of
expression breadth as a function of the maximum number of cell types in which interactions
were observed for baited genes. We also computed a tissue/developmental stage specificity
index with the formula tau = sum (1 – ri)/(n-1), where ri represents the ratio between the
expression level in sample i and the maximum expression level across all samples, and n
represents the total number of samples (Liao et al., 2006). Genes with perfectly
homogeneous expression levels across all samples thus have a tau value of 0, while genes
expressed in a single condition have a tau value of 1. We computed this index on RPKM
values, averaged across all replicates for a given species / organ / developmental stage
combination.

Evolutionary conservation of gene expression profiles
To evaluate the conservation of gene expression patterns between human and mouse, we
first computed relative expression profiles, by dividing the RPKM values (averaged across
biological replicates) by the maximum value observed among samples for each gene. We
used the transcriptome data described above (Cardoso-Moreira et al., 2019). We measured
expression conservation as Spearman's correlation coefficient between the relative
expression profiles of orthologous genes. We also measured expression conservation as
1-d, where d is the Euclidean distance between orthologous gene expression profiles. As
these measures of expression conservation are significantly correlated with the average
gene expression level and with the expression specificity index (Supplemental Fig. S15), we
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built linear regressions that model the relationship between expression conservation,
expression specificity and expression levels (averaged across all samples and across
species, for each gene), and extracted the residual values. We referred to these residual
values as “corrected expression conservation” in the figures. The gene expression
conservation data is provided in Supplemental Dataset S5.

We analyzed the factors associated with gene expression evolution with multiple regression
models (Supplemental Table S9). The response variable in these models is the conservation
of gene expression profiles, measured by Spearman's correlation coefficient before and after
correction. The explanatory variables are various regulatory landscape characteristics
(number of contacted enhancers, sequence conservation for contacted enhancers, synteny
conservation, contact conservation) and gene expression characteristics (gene expression
level, gene expression specificity).

Evolutionary conservation of gene expression levels

We measured quantitative gene expression differences between species for the three cell
types that were present in the PCHi-C datasets of both human and mouse: B lymphocytes,
pre-adipocytes and embryonic stem cells. We also performed a comparison between human
embryonic stem cells and mouse epiblast-derived stem cells. To do this, we computed
average TPM levels across all replicates available for a given cell type, for each species. We
then estimated expression divergence as the absolute value of the difference between
human and mouse, divided by the maximum of the two values, for each gene. We note that
this expression divergence measure is strongly correlated with gene expression levels. To
correct for this effect, we constructed a linear regression that models the relationship
between the expression divergence and the average expression levels, across both species,
and extracted the residual values. Gene expression conservation measures are defined as
expression divergence values subtracted from 1. We referred to these values as “corrected
expression conservation”. The gene expression conservation data are provided in
Supplemental Dataset S5.

Evolutionary divergence of regulatory landscapes
We performed this analysis on 1-to-1 orthologous protein-coding genes between human and
mouse. For each gene pair, we evaluated: the number of enhancers found in contact with
the reference gene promoter(s); the sequence alignment score of the contacted enhancers;
the number of enhancers with conserved sequences in the target species (i.e., successfully
projected with liftOver in the target genome and with an alignment score greater than or
equal to 40%) and found in conserved synteny with the orthologous gene in the target
genome (as defined above); the number of enhancers with conserved sequences, whose
predicted homolog was also in contact with the orthologous gene in the target genome. We
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could thus evaluate for each pair of orthologous genes: the median alignment score of
contacted enhancers, the percentage of conserved enhancers maintained in synteny and the
percentage of conserved contacts. These two last measures were calculated only for genes
that had between 5 and 100 conserved enhancers. We then correlated these measures with
the gene expression conservation values calculated above.

Constraints on gene sequence
We analyzed the probability of intolerance to loss-of-function mutations for a gene (pLI
score), inferred from variation in human exome-sequencing data leading to truncating
proteins (Lek et al. 2016). We downloaded pre-computed pLI scores for transcripts from the
website indicated in the original article
(ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_gene_constraint). We
then associated pLI scores to genes using Ensembl94 annotations. We retained the 17,558
genes associated with a unique transcript. The pLI scores are provided in Supplemental
Dataset S6.

Gene Ontology enrichment
We used GOrilla (Eden et al., 2009) to perform Gene Ontology enrichment analyses on
single-ranked lists of genes. We considered only protein coding genes present in the human
PCHi-C data and with an 1-to-1 orthologous gene in the mouse. Genes were ranked by the
following factors: the number of contacted ENCODE enhancers, the number of neighbor
enhancers, the median distance between enhancers and the gene TSS, the mean alignment
score of contacted enhancers, the proportion of enhancers that are conserved in synteny
and in contact, the gene expression profile conservation. The ontology enrichment results
are provided in Supplemental Dataset S13 and Supplemental Tables S3-S7.

Statistics and graphical representations

We used R 3.5.2 for all statistical analyses and graphical representations (R Core Team,
2014). Given that the variables we analyze are often not normally-distributed, we used
non-parametric statistical tests as a general rule. We computed 95% confidence intervals for
mean values using the BCa non-parametric bias-corrected and accelerated bootstrap
method (DiCiccio and Efron, 1996), as implemented in the coxed_0.3.3 package in R
(Kropko and Harden, 2019). We performed 100 bootstrap replicates. We computed 95%
confidence intervals for median values using the formula +/- 1.58 IQR/sqrt(n), where IQR is
the inter-quartile range of the distribution and n the total number of values. This formula is
implemented in the boxplot.stats function in the grDevices package in R (Chambers et al.,
1983). We performed pairwise comparisons of distributions with the Wilcoxon rank sum test
and multiple comparisons with the Kruskal-Wallis test, both implemented in the stats
package in R. We compared proportions with the chi-squared test and computed two-sided
95% confidence intervals with the prop.test function in R. For all tests, we display p-values
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as “<10-10” if lower values are found. For the analyses where we performed multiple tests, we
computed false discovery rates with the Benjamini-Hochberg approach.

Data access
All processed data generated in this study are available as Supplemental Datasets on the
publisher’s website as well as at the following address:
http://pbil.univ-lyon1.fr/members/necsulea/RegulatoryLandscapes

All scripts used in this analysis are available at:
https://github.com/AlexandreLaverre/Regulatory_Landscape, as well as in the Supplemental
Code.
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Figure legends
Figure 1. Chromatin interactions measured by PCHi-C data are shared among cell
types. A. Example of interactions between a baited restriction fragment (red) and other
restriction fragments, for PCHi-C data (orange) and simulated data (blue). The positions of
ENCODE enhancers are displayed below the restriction fragments track. B. Distribution of
genomic distances between baited fragments and contacted restriction fragments, in PCHi-C
data (CD34 sample, human). C. Same as B, for simulated data. D. Histogram of the number
of cell types in which interactions are observed, for human PCHi-C data and simulated data.
E. Average number of cell types in which interactions are observed, as a function of the
distance between baits and contacted fragments. Dots represent mean values, vertical
segments represent 95% confidence intervals of the mean, obtained with a non-parametric
bootstrap approach (Methods). F. Chromatin contacts between the SHH gene promoter and
other genomic regions. From top to bottom: gene coordinates; localization of PCHi-C baited
fragments; localization of restriction fragments contacted by the SHH bait in different
samples. Rectangles with alternating colors indicate individual restriction fragments that are
contacted by the SHH bait.

Figure 2. Gene-enhancer pairs connected by PCHi-C data are enriched in genuine
regulatory interactions. A. Average length fraction covered by predicted enhancers, for
restriction fragments contacted in human PCHi-C data (orange) and simulated data (blue).
B. Average length fraction covered by ENCODE enhancers, as a function of the distance
between baits and contacted restriction fragments. C. Average length fraction covered by
ENCODE enhancers, as a function of the number of cell types in which interactions are
observed, for human restriction fragments. D. Distribution of Spearman’s correlation
coefficient between promoter and enhancer activity levels, for promoter-enhancer pairs in
contact in PCHi-C data or in simulated data, according to the distance between them
(Methods). A-D. Bars and dots represent mean values, vertical segments represent 95%
confidence intervals of the mean, obtained with a non-parametric bootstrap approach
(Methods). “*” indicates a significant difference between PCHi-C and simulated data (FDR
<10-10) based on a chi-squared test.

Figure 3. Sequences contacted by promoters are conserved during evolution. A.
Phylogenetic tree for the analyzed species. B. Sequence conservation levels, derived from
pairwise alignments, for contacted restriction fragments. Violin plots represent the
distribution of the percentage of aligned nucleotides between human and other species.
Vertical segments represent median values; white dots represent mean values. C. Sequence
conservation levels for contacted ENCODE enhancers. D. Conservation of contacted
restriction fragments between human and mouse, as a function of the median genomic
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distance between restriction fragments and contacting baits. E. Same as D, for ENCODE
enhancers. F. Conservation of contacted restriction fragments between human and mouse,
as a function of the number of genes found within at most 500kb from the restriction
fragment. G. Same as F, for ENCODE enhancers. D-G. Dots represent mean values, vertical
segments represent 95% confidence intervals of the mean, obtained with a non-parametric
bootstrap approach (Methods). Filled dots represent non-repetitive sequences; empty dots
represent repetitive sequences.

Figure 4. Long-range promoter-enhancer pairs are conserved in synteny. A. Proportion
of human promoter-enhancer (ENCODE) pairs maintained in synteny (i.e., found on the
same chromosome, within a maximum distance of 2 Mb) in other vertebrate genomes, for
PCHi-C data (orange) and simulated data (blue). B. Proportion of human promoter-enhancer
pairs maintained in synteny in the mouse genome, as a function of the distance between
them in the human genome. C. Same as B, for the comparison between human and
opossum. B-C. Bars represent 95% two-sided confidence intervals for the proportions
(Methods). “*” indicates a significant difference between PCHi-C and simulated data (FDR
<10-10) based on a chi-squared test.

Figure 5. Chromatin contacts between promoters and enhancers are conserved. A.
Heatmap representing the frequency of contact conservation in comparisons between pairs
of PCHi-C samples (one human sample and one mouse sample). We sub-sampled the
PCHi-C data to obtain the same numbers of interactions for each sample (Methods). Yellow
squares highlight comparable cell types. B. Distribution of the frequency of contact
conservation between all pairs of samples, for PCHi-C data (orange) and for simulated data
(blue). C. Proportion of human promoter-enhancer contacts conserved in mouse, as a
function of the number of human cell types in which interactions are observed. D. Proportion
of human promoter-enhancers contacts conserved in mouse, as a function of the distance
between the two elements in the human genome. B-C. Bars represent 95% two-sided
confidence intervals for the proportions (Methods).

Figure 6. The complexity and the evolution of cis-regulatory landscapes are
associated with gene expression evolution. A. Average expression levels as a function of
the number of contacted enhancers in PCHi-C data, for human (red) and mouse (blue). B.
gene expression specificity index (tau, which ranges from 0 for housekeeping genes to 1 for
highly specific genes; Methods) as a function of the number of contacted enhancers. C.
Expression conservation as a function of the number of contacted enhancers in PCHi-C
data. D. Expression conservation as a function of the average sequence conservation of
contacted ENCODE enhancers. E. Expression conservation, depending on whether or not
genes underwent at least one break of synteny with the contacted enhancers between
human and mouse genomes. F. Expression conservation as a function of the proportion of
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promoter-enhancers contacts conserved in the other species’ PCHi-C data. A-F. Dots
represent median values across all genes in a class, vertical segments represent 95%
confidence intervals for the median. C-F. Gene expression conservation is measured with
Spearman's correlation coefficient between human and mouse relative expression profiles,
for pairs of 1-to-1 orthologous genes, across organs and developmental stages (expression
data from Cardoso-Moreira et al., 2019). Expression conservation is further corrected to
account for the effect of expression levels and of expression specificity with a multiple linear
regression model (Methods). Enhancer predictions are taken from ENCODE. Expression
conservation values are the same for both species, but PCHi-C contact maps differ.
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