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Abstract  

In this paper, we study the algebraic relationships between n- refined neutrosophic modules by using semi-module 

homomorphisms. 

On the other hand, this work shows the relationship between neutrosophic geometrical AH-isometry and semi-

module isomorphisms.  

Keywords: AH-isometry, Semi homomorphism, semi isomorphism, n-refined neutrosophic module 

1.Introduction 

 

Neutrosophy is a new kind of philosophy founded by Smarandache [1] to study the uncertainty and the lack of 

information in many areas os science and life. 

The indeterminacy element I and its refinements, were usefule in algebra where we find some generalizations of 

classical algebraic structures such as neutrosophic modules , n-refined neutrosophic matrices [2-5]. 

The concept of semi-modules homomorphism /isomorphism was presented in [6] as a tool to study the relations 

between modules which are defined over different rings. 

In this work, we show a new application of semi homomorphisms in the study of n-refined neutrosophic modules. 

Also, we present a novel application in neutrosophic Euclidean geometry [9] based on semi- isomorphisms, where 

we show that algebraic isometries used in the study of neutrosophic Euclidean geometrical shapes can be considered 

as semi-module isomorphisms. 

 Main discussion  

https://doi.org/10.54216/IJNS.180101
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Firs of all, we show that the concept of semi-homomorphism (semi-isomorphism) is essential in the study of 

neutrosophic Euclidean geometry. 

Neutrosophic Euclidean geometry wae built over the idea of AH-isometry, where the AH-isometry is a function that 

preserves distances between neutrosophic points in 𝑅(𝐼) × 𝑅(𝐼). 

Definition 1.  

(a). Let 𝑅(𝐼) × 𝑅(𝐼) be the neutrosophic plane with two N-dimensions, then. 

𝑔: 𝑅(𝐼) × 𝑅(𝐼) → 𝑅2 × 𝑅2 

𝑔(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) = ((𝑎, 𝑎 + 𝑏), (𝑐, 𝑐 + 𝑑)) 

is called the two dimensional AH-isometry. 

(b). the function 𝑇: 𝑅(𝐼) → 𝑅 × 𝑅; 𝑇(𝑎 + 𝑏𝐼) = (𝑎, 𝑎 + 𝑏)is called the one dimensional AH-isometry. 

Theorem 2 

𝑔, 𝑇 preserve operations and distances. 

In the following, we prove that the two dimensional AH-isometry is a semi-module isomorphisim. 

Definition 3: 

Let ( M,+,.) be a module over the ring R, then (M(I),+,.) is called a weak neutrosophic module over the ring 

R, and it is called a strong neutrosophic module if it is a module over the neutrosophic ring R(I). 

Elements of M(I) have the form  𝒙 + 𝒚𝑰; 𝒙 , 𝒚 ∈ 𝑴, i.e M(I) can be written as 𝑴(𝑰) = 𝑴 + 𝑴𝑰. 

Definition 4: 

(a) Let (M,+,.) be a module over the ring R, we say that 𝑀𝑛(𝐼) = 𝑀 + 𝑀𝐼1 + ⋯ + 𝑀𝐼𝑛 = {𝑥0 + 𝑥1𝐼1 +

⋯ + 𝑥𝑛𝐼𝑛;  𝑥𝑖 ∈ 𝑀} is a weak n-refined neutrosophic module over the ring R. Elements of 𝑀𝑛(𝐼) are 

called n-refined neutrosophic vectors, elements of R are called scalars. 

(b) If we take scalars from the n-refined neutrosophic ring 𝑅𝑛(𝐼), we say that 𝑀𝑛(𝐼) is a strong n-

refined neutrosophic module over the n-refined neutrosophic ring 𝑀𝑛(𝐼). Elements of 𝑀𝑛(𝐼) are 

called n-refined neutrosophic scalars. 

Definition 5: 

Let M be a module over a ring R, N be a module over a ring T, 𝜑: 𝑀 → 𝑁 be a well defined map, we say 

that 𝜑 is an 𝑓-semi module homomorphism if and only if the following conditions are true: 

(a) 𝜑(𝑥 + 𝑦) = 𝜑(𝑥) + 𝜑(𝑦) for all 𝑥, 𝑦 ∈ 𝑀. 

(b) There is a ring homomorphism 𝑓: 𝑅 → 𝑇 such 𝜑(𝑟. 𝑥) = 𝑓(𝑟). 𝜑(𝑥) for all 𝑟 ∈ 𝑅, 𝑥 ∈M. 

Example 6: 

https://doi.org/10.54216/IJNS.180101
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Let M be a module over a ring R, M(I) be the corresponding strong neutrosophic module over R(I), 

𝑀(𝐼1, 𝐼2) be the corresponding strong refined neutrosophic module over 𝑅(𝐼1, 𝐼2). Then 

𝜑: 𝑀(𝐼1, 𝐼2) → 𝑀(𝐼);  𝜑(𝑎, 𝑏𝐼1, 𝑐𝐼2) = 𝑎 + (𝑏 + 𝑐)𝐼 is a semi homomorphism. 

Theorem 7.  

Let 𝑔: 𝑅(𝐼) × 𝑅(𝐼) → 𝑅2 × 𝑅2 be the two dimensional AH-isometry, and 𝑇: 𝑅(𝐼) → 𝑅 × 𝑅 be the one dimensional 

AH-isometry, then, 𝑔 is a semi-module isomorphism. 

Proof. 

we have 𝑅(𝐼) × 𝑅(𝐼) is a module over the ring 𝑅(𝐼), and 𝑅2 × 𝑅2 is a module over the ring 𝑅 × 𝑅. 

According to [14], 𝑇is a ring isomorphism. 

On the other hand, 𝑔 preserves addition between 𝑅(𝐼) × 𝑅(𝐼) and 𝑅2 × 𝑅2, and 𝑔 is a bijection. 

Now, we prove that 𝑔 has the following property. 

𝑔[(𝑚 + 𝑛𝐼). (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)] = 𝑇(𝑚 + 𝑛𝐼)𝑔(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼) 

𝑙1 = [(𝑚 + 𝑛𝐼). (𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)] = 𝑔[(𝑚 + 𝑛𝐼)(𝑎 + 𝑏𝐼), (𝑚 + 𝑛𝐼)(𝑐 + 𝑑𝐼)] 

= 𝑔[(𝑚𝑎 + 𝐼(𝑎𝑏 + 𝑛𝑎 + 𝑛𝑏)), (𝑚𝑐 + 𝐼(𝑎𝑚𝑑 + 𝑛𝑐 + 𝑛𝑑))] 

= ((𝑚, 𝑚 + 𝑛). (𝑎, 𝑎 + 𝑏), (𝑚, 𝑚 + 𝑛). (𝑐, 𝑐 + 𝑑)) = (𝑚, 𝑚 + 𝑛)((𝑎, 𝑎 + 𝑏), (𝑐, 𝑐 + 𝑑)) 

= 𝑇(𝑚 + 𝑛𝐼)𝑔(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼). 

Thus 𝑔 is a semi isomorphism. 

Result 8.  

According to the previous theorem, the neutrosophic Euclidean geometry can be undersood as a semi isomorphic 

image of a neutrosophic module. 

Now, we study semi homomorphisms between n-refined neutrosophic modules. 

Theorem 9  

Let 𝑅 be a ring, 𝑅𝑛(𝐼) be the corresponding n-refined neutrosophic ring. 

Let 𝑀 be a module over 𝑅, 𝑀𝑛(𝐼)  be the corresponding n-refined neutrosophic  module over 𝑅𝑛(𝐼), then. 

 (a). 𝑀𝑛−1(𝐼) is a semi homomorphic image of 𝑀𝑛(𝐼). 

(b). 𝑀 is a semi homomorphic image of 𝑀𝑛(𝐼). 

Proof. 

(a). 𝑔: 𝑅𝑛(𝐼) → 𝑅𝑛−1(𝐼); 𝑔(𝑎0 + 𝑎1𝐼1 + ⋯ + 𝑎𝑛𝐼𝑛) = 𝑎0 + 𝑎1𝐼1 + ⋯ + (𝑎𝑛−1 + 𝑎𝑛)𝐼𝑛−1 

https://doi.org/10.54216/IJNS.180101
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is a ring homomorphism.  

We define 𝑓: 𝑀𝑛(𝐼) → 𝑀𝑛−1(𝐼); 𝑓(𝑥0 + 𝑥1𝐼1 + ⋯ + 𝑥𝑛𝐼𝑛) = 𝑥0 + 𝑥1𝐼1 + ⋯ + (𝑥𝑛−1 + 𝑥𝑛)𝐼𝑛−1. 

It is clear that 𝑓is well defined and preserves addition. 

Now, Let's compute: 

𝑓[(𝑎0 + 𝑎1𝐼1 + ⋯ + 𝑎𝑛𝐼𝑛). (𝑥0 + 𝑥1𝐼1 + ⋯ + 𝑥𝑛𝐼𝑛)] = 𝑓 [ ∑ 𝑎𝑖𝑥𝑗𝐼𝑖𝐼𝑗

𝑛

𝑖,𝑗=0

] 

The coefficient of 𝐼𝑛is 𝑎0𝑥𝑛 + 𝑎𝑛𝑥0 + 𝑎𝑛𝑥𝑛. 

The coefficient of 𝐼𝑛−1 is 𝑎0𝑥𝑛−1 + 𝑎𝑛−1𝑥0 + 𝑎𝑛𝑥𝑛−1 + 𝑎𝑛−1𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1. 

This implies that 

𝑓 [ ∑ 𝑎𝑖𝑥𝑗𝐼𝑖𝐼𝑗

𝑛

𝑖,𝑗=0

] = 𝑓[𝐴 + 𝐼𝑛−1(𝑎0𝑥𝑛−1 + 𝑎𝑛−1𝑥0 + 𝑎𝑛𝑥𝑛−1 + 𝑎𝑛−1𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1) + 𝐼𝑛(𝑎0𝑥𝑛 + 𝑎𝑛𝑥0 + 𝑎𝑛𝑥𝑛)] 

= 𝐴 + 𝐼𝑛−1(𝑎0𝑥𝑛−1 + 𝑎𝑛−1𝑥0 + 𝑎𝑛𝑥𝑛−1 + 𝑎𝑛−1𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1) + 𝐼𝑛(𝑎0𝑥𝑛 + 𝑎𝑛𝑥0 + 𝑎𝑛𝑥𝑛) 

Now, we compute. 

𝑔(𝑎0 + 𝑎1𝐼1 + ⋯ + 𝑎𝑛𝐼𝑛). 𝑓(𝑥0 + 𝑥1𝐼1 + ⋯ + 𝑥𝑛𝐼𝑛) 

= (𝑎0 + ⋯ + 𝑎𝑛−2𝐼𝑛−2 + 𝐼𝑛−1(𝑎𝑛 + 𝑎𝑛−1)). (𝑥0 + ⋯ + 𝑥𝑛−2𝐼𝑛−2 + 𝐼𝑛−1(𝑥𝑛 + 𝑥𝑛−1)) 

Where 𝐵 = 𝑎0𝑥𝑛−1 + 𝑎0𝑥𝑛 + 𝑎𝑛𝑥0 + 𝑎𝑛−1𝑥0 + 𝑎𝑛𝑥𝑛−1 + 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−1𝑥𝑛 

Which is exactly equal to the coefficient 𝐼𝑛−1in 𝑓[(∑ 𝑎𝑖𝐼𝑖 . ∑ 𝑥𝑖𝐼𝑖
𝑛
𝑖=0

𝑛
𝑖=0 )]. 

This means that 𝑓[(∑ 𝑎𝑖𝐼𝑖 . ∑ 𝑥𝑖𝐼𝑖
𝑛
𝑖=0

𝑛
𝑖=0 )] = 𝑔(∑ 𝑎𝑖𝐼𝑖

𝑛
𝑖=0 ). 𝑓(∑ 𝑥𝑖𝐼𝑖

𝑛
𝑖=0 ), hence 𝑓 is a semi module homomorphism. 

(b). since 𝑀𝑛−𝑖(𝐼) is a semi homomorphic image of 𝑀𝑛−𝑖+1(𝐼), we get the following sequence: 

𝑀𝑛(𝐼) → 𝑀𝑛−1(𝐼) → ⋯ → 𝑀2(𝐼) → 𝑀1(𝐼) → 𝑀(𝐼) 

Thus 𝑀 is a semi homomorphic image of 𝑀𝑛(𝐼).  

Example 10 

Let 𝑅 = 𝑍, 𝑀 = 𝑍3. 𝑀 is a module over 𝑅 . 

Let 𝑀3(𝐼) = {𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3;  𝑎𝑖 ∈ 𝑍3}be the corresponding 3-refined neutrosophic module over 𝑅3(𝐼) 

𝑍3(𝐼) = {𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2 + 𝑏3𝐼3;  𝑏𝑖 ∈ 𝑍}. 

(a). 𝑔: 𝑍3(𝐼) → 𝑍2(𝐼); 𝑔(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3) = 𝑎0 + 𝑎1𝐼1 + (𝑎2 + 𝑎3)𝐼2 

Is a ring homomorphism. 

https://doi.org/10.54216/IJNS.180101
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(b). 𝑓: 𝑀3(𝐼) → 𝑀2(𝐼); 𝑓(𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3) = 𝑥0 + 𝑥1𝐼1 + (𝑥2 + 𝑥3)𝐼2 

is a semi homomorphism, that is because: 

𝑓 preserves addition clearly. 

𝑓[(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3). (𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3)] 

= 𝑓[𝑎0𝑥0 + 𝐼1(𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑎1𝑥2 + 𝑎1𝑥3 + 𝑎2𝑥1 + 𝑎3𝑥1) + 𝐼2(𝑎0𝑥2 + 𝑎2𝑥2 + 𝑎2𝑥3 + 𝑎3𝑥2)

+ 𝐼3(𝑎0𝑥3 + 𝑎3𝑥0 + 𝑎3𝑥3)] + 𝑎2𝑥0 

= 𝑎0𝑥0 + 𝐼1(𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑎1𝑥2 + 𝑎1𝑥3 + 𝑎2𝑥1 + 𝑎3𝑥1)

+ 𝐼2(𝑎0𝑥2 + 𝑎2𝑥2 + 𝑎2𝑥3 + 𝑎3𝑥2 + 𝑎2𝑥0 + 𝑎0𝑥2 + 𝑎3𝑥0 + 𝑎3𝑥3) 

On the other hand. 

𝑔(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3). 𝑓(𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3) = (𝑎0 + 𝑎1𝐼1 + 𝐼2(𝑎3 + 𝑎2))(𝑥0 + 𝑥1𝐼1 + 𝐼2(𝑥3 + 𝑥2)) 

= 𝑎0𝑥0 + 𝐼1(𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑎1𝑥2 + 𝑎1𝑥3 + 𝑎2𝑥1 + 𝑎3𝑥1)

+ 𝐼2(𝑎2𝑥0 + 𝑎3𝑥0 + 𝑎2𝑥2 + 𝑎2𝑥3 + 𝑎3𝑥2 + 𝑎0𝑥2 + 𝑎3𝑥3 + 𝑎0𝑥3)

= 𝑓[(𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + 𝑎3𝐼3). (𝑥0 + 𝑥1𝐼1 + 𝑥2𝐼2 + 𝑥3𝐼3)] 

(c).𝑘𝑒𝑟𝑓 = {𝑎2𝐼2 − 𝑎2𝐼3 ∈ 𝑀3(𝐼)} = {𝑎2(𝐼2 − 𝐼3); 𝑎2 ∈ 𝑀} 

𝑀3(𝐼) 𝑘𝑒𝑟𝑓 ≅𝑠 𝑓(𝑀3(𝐼))⁄ = 𝑀2(𝐼). 

The symbol ≅𝑠means semi isomorphic property. 

Conclusion 

In this paper, we have presented some novel applications of semi module homomorphisms/isomorphisms, where we 

proved that every module is a semi homomorphic image of it corresponding n-refined neutrosophic module. 

Also, we have shown that the AH-isometry used in the theory of neutrosophic Euclidean geometry is a semi-module 

isomorphism.  
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