Ji Liu

Lei Mo

Sijia Yang

Jingbo Zhou

Shilei Ji

Haoyi Xiong

Dejing Dou

Data Placement for Multi-Tenant Data Federation on the Cloud

Keywords: Data federation, Cloud computing, Secure data sharing, Data placement, Multi-objective !

Due to privacy concerns of users and law enforcement in data security and privacy, it becomes more and more difficult to share data among organizations. Data federation brings new opportunities to the data-related cooperation among different organizations by providing abstract data interfaces. With the development of Cloud computing, organizations store data on the Cloud to achieve elasticity and scalability for data processing. The existing data placement approaches generally only consider one aspect, which is either execution time or monetary cost, and do not consider data partitioning for hard constraints. In this paper, we propose an approach to enable data processing on the Cloud with the data from different organizations. The approach consists of a data federation platform for data processing on the Cloud named FedCube and a Lyapunov-based data placement algorithm that creates a plan to partition and store data on the Cloud in order to achieve multiple objectives while satisfying hard constraints based on a multi-objective cost model. The cost model is composed of two objectives, i.e., reducing both monetary cost and execution time. We present an experimental evaluation to show that our proposed algorithm significantly reduce the total cost (up to 69.8%) compared with existing approaches.

INTRODUCTION

D Ata sharing is the first step for the data-related collabo- rations among different organizations [START_REF] Greif | Data sharing in group work[END_REF], for example, joint modeling with data from multi-party. Meanwhile, direct sharing of raw data with collaborators is difficult due to big volume and/or ownership [START_REF] Liu | Efficient scheduling of scientific workflows using hot metadata in a multisite cloud[END_REF], [START_REF] Voigt | The EU General Data Protection Regulation (GDPR): A Practical Guide[END_REF]. Data federation [START_REF] Valentijn | Target and (astro-)wise technologies data federations and its applications[END_REF] virtually aggregates the data from different organizations, which is an appropriate solution to enable data-related collaborations without direct raw data sharing. Based on Cloud service, data federation works as an intermediate layer to establish an abstract data interface. It provides a virtual data view, on which the involved organizations can collaboratively store, share and process data.

As high efficiency and low cost makes it possible to lease resources, e.g., computing, storage and network, at a large scale, a growing number of organizations tend to outsource their data on the Cloud. With the pay-as-you-go model, Cloud computing (Cloud) brings convenience to the organizations to store and process large amount of data. Cloud services bring a large amount of resources at different layers. As shown in Fig. 1, there are typically three types of services on the Cloud, i.e., Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) [START_REF] Srirama | Scicloud: scientific computing on the cloud[END_REF]. For instance, virtual machines, in which data can be processed, are provided at the IaaS layer. A Virtual Machine (VM) is an emulator of a computer, which can be viewed as a computing node in a network [START_REF] Liu | Parallelization of Scientific Workflows in the Cloud[END_REF]. Data storage services are provided at the PaaS layer. Through the data storage services, unlimited data can be stored on the Cloud. Cloud providers promise to provide three features, i.e., infinite computing resources available on demand, dynamic hardware resource provisioning in need, machines and storage payed and released as needed [START_REF] Fox | Above the clouds: A berkeley view of cloud computing[END_REF]. Dynamic provisioning enables Cloud tenants/users to construct scalable systems with reasonable cost on the Cloud [START_REF] Kratzke | A brief history of cloud application architectures[END_REF]. With these features, the scientific collaboration on the Cloud among different organizations becomes a practical solution.

Despite the advantages of Cloud computing, data security issue on the Cloud tends to be serious. When the data is stored on the Cloud, it is crucial to keep confidentiality. Only the authorized tenants/users should have the access to the data [START_REF] Moghaddam | On data center demand response: A cloud federation approach[END_REF]. Encryption is a conventional way to keep the data confidential, such as identity-based encryption [START_REF] Boyen | Anonymous hierarchical identity-based encryption (without random oracles)[END_REF]. In addition, the isolation techniques [START_REF] Guabtni | Customizable isolation in transactional workflow[END_REF], which provide secure execution spaces for different jobs with specific access controls, are also used to control the accessibility to the data on Cloud. A job is composed of a data processing program or a set of data processing programs to be executed on the Cloud in order to generate new knowledge from the input data. During the scientific collaboration based on the data stored on the Cloud, the combination of encryption algorithms and isolation techniques can be utilized to keep the confidentiality and security of the data on Cloud.

When using the Cloud services, tenants/users have to pay for them. For instance, when tenants/users directly store their data on the Cloud, they would be charged for the Cloud storage service. Widely used Cloud service providers, such as Amazon Web Services (AWS) Cloud 1 , Microsoft Azure Cloud 2 and Baidu Cloud 3 , provide different data storage types, e.g., hot data storage, data storage with low frequency, cold data storage, and archive data storage, as data storage services. The cost of data storage on the Cloud varies from type to type. In order to reduce the monetary cost to store and to process the data on the Cloud, it is necessary to choose a proper data storage type based on a data placement algorithmHowever, the job execution frequency is not well exploited while constructing the data placement algorithms for the data storage on the Cloud. In addition, existing approaches cannot exploit data partitioning techniques to satisfy multiple constraints.

In this paper, we propose a solution to enable data processing on the Cloud for the scientific collaboration among different organizations. The solution consists of a secure data processing platform named FedCube, a multiobjective cost model and a Lyapunov-based data placement algorithm. The main contributions of this paper are:

• The FedCube platform. We propose a Cloud platform, i.e., FedCube, which is based on IaaS and PaaS as shown in Fig. 1. FedCube enables secure data processing with the encrypted data stored on the Cloud for the collaboration among different organizations.

• A data placement problem formulation. We formulate the data placement problem based a multiobjective cost model and constraints. The multiobjective cost model consists of monetary cost and the execution time. The constraints include hard execution time deadline, hard monetary budget, and the system stability constraint.

• A Lyapunov-based data placement algorithm. The algorithm creates a data storage plan based on the cost model in order to reduce both monetary cost and the execution time of jobs while satisfying constraints while exploiting data partitioning techniques.

• An extensive experimental evaluation based on a simulation and a widely used benchmark, i.e., Wordcount, and a real-life data processing application for COVID-19 [START_REF] Xiong | Understanding the collective responses of populations to the covid-19 pandemic in mainland china[END_REF]. The simulation and the experiments are carried out based on a widely used Cloud, i.e., Baidu Cloud.

The rest of the paper is organized as follows. Section 2 reviews related works. Section 3 presents the system design of the secure data processing platform. Section 4 presents the data placement system model, proposes a cost model, shows the hard constraints and defines the problem. Section 5 proposes the Lyapunove-based data placement algorithm

RELATED WORK

Lyapunov optimization is widely used to optimize the system while ensuring system stability. For instance, Lyapunov optimization is exploited to gain profit [START_REF] Fang | A stochastic control approach to maximize profit on service provisioning for mobile cloudlet platforms[END_REF], to ensure the Quality of Service [START_REF] Zhang | An integrated top-down and bottomup task allocation approach in social sensing based edge computing systems[END_REF] and the time average sensing utility [START_REF] Wang | Dynamic task assignment in crowdsensing with location awareness and location diversity[END_REF]. However, the aforementioned work focuses on single objective besides the system stability and does not consider task or data partitioning for satisfying multiple constraints. In this paper, we combine the Lyapunov optimization with multiple objectives for data placement.

Data placement is critical to both the monetary cost and the execution time of jobs. In order to reduce the execution time, data transfer can be reduced based on graph partitioning algorithm [START_REF] Golab | Distributed data placement to minimize communication costs via graph partitioning[END_REF]. In addition, the data dependency among different jobs can be exploited to reduce the time and monetary cost to transfer data [START_REF] Zhao | An optimized data storage strategy by computational performance and monetary cost with data importance in the cloud[END_REF]. However, these methods only consider one objective, i.e., reducing execution time. They cannot be applied to place the data in different storage types on the Cloud. A weighted function of multiple costs can be used to achieve multiple objectives, which can generate a Pareto optimal solution [START_REF] Liu | Multi-objective scheduling of scientific workflows in multisite clouds[END_REF], while the authors do not consider the cost to store data on the Cloud or hard constraints. Load balancing algorithms [START_REF] Kumar | Dynamic load balancing algorithm for balancing the workload among virtual machine in cloud computing[END_REF] or dynamic provisioning algorithms [START_REF] Tziritas | On minimizing the resource consumption of cloud applications using process migrations[END_REF] are proposed to generate an optimal provisioning plan in order to minimize the monetary cost while they do not consider the data storage types on the Cloud. The storage type of the best performance can be selected to store data [START_REF] Darwich | Cost-efficient storage for on-demand video streaming on cloud[END_REF] while the economic storage type can be selected [START_REF] Black | Feeding the pelican: Using archival hard drives for cold storage racks[END_REF]. However, these two methods cannot address multiple objectives. In this paper, we propose an algorithm to achieve multiple objectives by placing data into various data storage types while satisfying hard constraints.

Data security is of much importance to the Cloud users. In order to protect the data security, data accessibility is controlled by attributing different levels of permission to avoid unauthorized or maliciously access to data on the Cloud [START_REF] Farsi | Cloud computing and data security threats taxonomy: A review[END_REF]. In addition, encryption techniques [START_REF] Anthes | Security in the cloud[END_REF] and distributed data storage plan based on data partitioning [START_REF] Singh | A secured cost-effective multi-cloud storage in cloud computing[END_REF] can be exploited. Federated learning is proposed to train a model while ensuring the data privacy [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF], yet it is not applicable to the general data processing among different organizations on the Cloud. In addition, secure separated data processing spaces [START_REF] Guabtni | Customizable isolation in transactional workflow[END_REF] are proposed to ensure the access control and privacy of data. The separated data processing spaces are disconnected with the public network, which ensures that the confidentiality and the security of data within the local network. Out proposed platform, i.e., FedCube, not only provides different data access controls for different tenants/users but also exploits the secure separated data processing spaces to ensure the security and the confidentiality of the data.

SYSTEM DESIGN

In this section, we propose a secure data processing platform named FedCube. First, we explain the architecture of platform. Then, we present the life cycle of users' account and jobs to be executed.

Architecture

The FedCube platform is a data federation platform that provides tenants/users with secure data processing service on the Cloud. Tenants/users can upload their data onto the platform and execute the self-written programs on Baidu Cloud. In addition, tenants/users can leverage the data from other organizations for their own data processing jobs, as long as they get the permission from the data owners. We illustrate the architecture of the platform and explain the functionalities of each module in this section. As shown in Fig. 2, the functionality architecture of the platform consists of four modules:

Environment Initializer

The environment initializer creates the user account and its execution space on the coordinator node. The created user account is used for user's security configuration, e.g., the access permission to certain data from another user. The user account is also associated with secure execution spaces for the execution of submitted jobs in the cluster. The secure execution space is a working space without the connection to any public network, e.g., Internet, which can ensure the confidentiality and the security of the data within the local network.

As shown in Fig. 3, multiple clusters can be dynamically created by the environment initializer module when the execution of jobs is triggered. Each cluster consists of several computing nodes, i.e., VMs on the Cloud. The coordinator node coordinates the execution among different clusters for all users. The user has access to the platform through the coordinator node, which is connected to the public Internet. The computing nodes in each cluster are only interconnected with the coordinator node through local network on the Cloud. Each computing node is created based on the image [START_REF] Wei | Managing security of virtual machine images in a cloud environment[END_REF] indicated by the user, which contains necessary tools for the execution of her jobs. An image is a serialized copy of the entire state of a VM stored on the Cloud [START_REF] Wei | Managing security of virtual machine images in a cloud environment[END_REF].

Data Storage Manager

The data storage manager creates a data storage account and storage buckets on the Cloud for a user. A storage bucket is a separated storage space to store the data with its own permission strategy. The data storage account is used to transfer data between the platform and the user's devices, e.g., computer. Each account is associated with five buckets, i.e., user data bucket, user program bucket, output data bucket, download data bucket, and execution space bucket. Each account has independent Authorization Key (AK) and Secret Key (SK), with which, the tenants/users can send or retrieve the data stored in the buckets. In addition, the access permission strategy varies from bucket to bucket. For instance, the user has read and write permission on the user data bucket and the user program bucket while she only has the read permission on the download data bucket. A user can store data in the user data bucket while she can submit self-written codes to the user program bucket. The tenants/users do not have read or write permission on the output data bucket and the execution space bucket. After the execution of the program generated based on the submitted codes, the output data is stored in the output data bucket. After the confidentiality review of the output data, the output data is transferred to the download data bucket. The review is carried out by the owner of the input data of the job in order to avoid the risk that the raw data or sensitive information appears in the output data of the job. The execution space bucket is used to cache intermediate data of a job, which can be useful for the following execution in order to reduce useless repetitive execution [START_REF] Heidsieck | Adaptive caching for data-intensive scientific workflows in the cloud[END_REF].

Job Execution Trigger

The job execution trigger starts the execution of job in a cluster. A user can upload the user-written codes onto the platform through a web portal. Then, she can start the execution of the program using the job execution trigger. Once the execution of the program is triggered, a cluster is created, deployed, and configured (see details in Section 3.1.1). Afterwards, the execution of the job is performed in the computing nodes of the cluster. When several jobs start simultaneously in the same cluster, the job execution trigger creates the same number of execution spaces as that of jobs in order to enable parallel execution without conflict. When the input data of a program consists of the data from other data owners, the corresponding data interfaces are used in order to avoid direct raw data sharing. Let us take two tenants/users as example: User U 1 and User U 2 . A data interface (I 1) is defined by the data owner (User U 1), which is associate to the data (D 1) on the platform. When User U gets the permission to use D 1 , the program generated based on the submitted codes of User U 2 can process the data D using the Interface I 1 . The intermediate data stored in the execution bucket can also be used when the job needs the results of previous execution.

Security Module

In the platform, we use four mechanisms to ensure the security of the data. The first mechanism is to encrypt the data before storing it on the Cloud. The encryption is based on the Rijndael encryption algorithm [START_REF] Jamil | The rijndael algorithm[END_REF]. The second mechanism is to separate the computing nodes from the public network, e.g., Internet, which ensures that no data communication is allowed between the clusters and outside devices, e.g., servers, on the Cloud. The third mechanism is a uniformed data access control. When a user applies for the permission of the data owned by another user, a data access interface is provided by the data owner instead of direct raw data sharing. The last mechanism is the audition of the codes and output data by data owners, which ensures that no data is leaked from output data. Through these mechanisms, the data confidentiality and security is ensured by the data interface defined by the data owner while ensuring efficient cooperation among different organizations.

Life Cycle

In order to present the interactions among users, the platform and the job execution on the platform, we present the account life cycle and job life cycle. The life cycle describes the state transition of a user account or a job on the platform. We assume that there are n scientific collaborators, each collaborator has private data which requires keeping confidentiality and security. Through the life cycle, we present how n collaborators process the data on the platform.

Account Life Cycle

The account life cycle consists of three phases, i.e., account creation, data processing and account cleanup. First, the account related to the user of the platform is created. Then, the user can process the data on the platform. Finally, when the user no longer needs the platform, the data related to the account is removed.

Account Creation Phase. When a new user needs to use the platform, we create an account and configure the platform using the environment initializer module as shown in Fig. 2. For the n collaborators in the above scenario, we create n accounts (U t with t representing the number of the collaborator) for each scientific collaborator on the platform. First, the job execution trigger is deployed for each user in the coordinator node. Then, the data storage manager creates a storage account and five storage buckets (see details in Section 3.1.2) for each user. Afterwards, the environment initializer deploys the security module for each user. The security module contains the encryption and decryption information for each user. Please note that the encryption and decryption information is different for different users.

Data Processing Phase. After the account creation, tenants/users can carry out data processing on the platform. Before processing the data, each user uploads her own data and the data interface file to the user data bucket. As shown in Fig. 4, if User U i needs to exploit the data from another Users U j , User U i can apply for the permission. Once User U i gets the permission from User U j , she also gets the necessary information, e.g., the mock data, to access to the data using the corresponding data interface. The mock data contains the data schema of the raw data and some randomly generated examples while the raw data is never shared with the users. User U i may use the data from several other tenants/users at the same time. Then, User U i can submit the codes to process data. In order to process data, User U i triggers the execution of a job related to the submitted codes (see details in Section 3.2.2), which corresponds to the execution of the job (j i with i representing the number of the execution) on the platform. During the execution of a job, the intermediate data generated from different execution of the job can be directly used. After the execution and the review of the output data, user U i can download the output data of Job j i from the user download bucket.

Account Cleanup Phase. When the user no longer needs the platform, the corresponding data, storage buckets, and account are removed from the platform by the environment initializer module.

Job Life Cycle

The job life cycle consists of four phases, i.e., initialization, data synchronization, job execution and finalization.

Initialization Phase. The initialization phase [START_REF] Bardhan | The anatomy of mapreduce jobs, scheduling, and performance challenges[END_REF] is to prepare the environment to execute a job on the platform. The preparation contains three steps: provisioning, deployment and configuration. First, VMs are provisioned to the job as computing nodes. There are two cases where existing VMs can be provisioned to the job. The first case is that there are enough live computing nodes on the platform corresponding to the execution of the same or the other jobs of the same user. The second case is that there are enough live computing nodes for the programs of other tenants/users and all the related tenants/users allow sharing computing nodes. Otherwise, the environment initializer module dynamically creates new VMs as computing nodes, which contain necessary tools for the execution of the job. Then, in order to execute the job, a proper execution space is deployed on the allocated VMs. In order to enable the data access, the execution space is configured in each node. For instance, the AK and SK files are transferred into the computing nodes in order to enable data synchronization.

Data Synchronization Phase. During the data synchronization phase [START_REF] Yoo | A comparative review of job scheduling for mapreduce[END_REF], the data storage module synchronizes the data or data interfaces stored on the Cloud. In addition, the scripts or the files corresponding to the submitted codes are also transferred to the execution space created in the initialization phase.

Job Execution Phase. The execution phase [START_REF] Bardhan | The anatomy of mapreduce jobs, scheduling, and performance challenges[END_REF] is the period to execute jobs in the execution space of corresponding VMs. The execution frequency of each job can be dynamically monitored by the platform to compute the cost of data storage. The data, including newly generated intermediate data, is dynamically placed with appropriate storage types with small cost according to the method presented in Section 5. As shown in Fig. 4, after synchronizing the data from buckets, the program corresponding to the submitted codes processes the input data. The execution can be performed in a single computing node or multiple computing nodes in order to reduce the overall execution time. After the execution, the output data is transferred to the output bucket of the user. Once the data is reviewed and approved by the data owners of the input data, it is encrypted by the security module and is transferred to the download bucket to be accessed by the user.

Finalization Phase. In the finalization phase [START_REF] Surjandari | The batch sheduling model for dynamic multiitem, multilevel production in an assembly job-shop with parrallel machines[END_REF], the data storage manager uploads the encrypted intermediate of the job. Afterwards, the environment initializer module removes corresponding execution space(s). If a node does not contain any execution space, the node is released, i.e., removed, by the environment initializer, in order to reduce the monetary cost to rent the corresponding VMs.

MULTI-OBJECTIVE COST MODEL AND PROB-LEM FORMULATION

In this section, we first present the system model for data placement. Then, we propose a cost model based on two costs, i.e., monetary cost and execution time. Afterwards, we define the problem we address in this paper. Next, we present the data placement constraints, i.e., hard execution time constraints and the hard monetary budget constraints. Finally, we formally define the problem we address in the paper.

Data Placement System Model

The system model for data placement is shown in Fig. 5. In the FedCube platform, we assume that the execution of jobs generates intermediate data at time slot t, which may be used as input data in following time slots, e.g., t + x with x > 0. Then, the intermediate data should be placed with other input data. Each job has a queue to store the generated intermediate data and we consider N data storage spaces, which correspond to N storage types with diverse data access speeds and diverse prices to store data. Each data set can be placed to one or multiple data storage types. In order to place a data set to multiple storage types, a data set can be partitioned to several chunks, and each chunk is placed to a data storage type. We assume that the valid time of data set d i placed at storage type s j is T max(i,j) . If data set d i is not accessed by any job within T max(i,j) , the data set will be removed from the storage space of the platform. When there is a data set generated during the execution of a job or when a job is executed, all the input data is placed again. When the input data is being replaced, its original corresponding storage type is kept until a newly placed storage type is associated to.

Cost Model

Inspired by [START_REF] Liu | Multi-objective scheduling of scientific workflows in multisite clouds[END_REF], we propose a multi-objective cost model. The cost model is composed of monetary cost and time cost (i.e., the execution time of a job). In order to find a storage plan, we need a cost model to estimate the cost of storing the input data for the execution of jobs. The cost model is generally implemented in the data storage module and under a specific execution environment. In the case of this paper, the execution environment is the FedCube platform. The origin of parameters mentioned in this section are summarized in Table 1. We assume that there are K jobs on the platform.

The total cost to execute a set of jobs with a data placement plan at time slot t is defined as the sum of the total cost of all the jobs:

TotalCost(P lan[t]) = K k=1 Cost(job k , P lan[t]), (1)
where P lan[t] represents a data placement plan of the data sets related to the set of jobs at time slot t, and j k represents the k th job. In the rest of this paper, the total cost represents the normalized cost to execute a set of jobs with a data placement plan per time unit. P lan[t] is a matrix of data placement variables, which can be expressed by the following formula:

Plan[t] =      p 0,0 [t] p 0,1 [t] ... p 0,n [t] p 1,0 [t] p 1,1 [t] ... p 1,n [t] p m,0 [t] p m,1 [t] ... p m,n [t]      , (2)
Cost(job k , P lan[t]) = w m • M n (job k , P lan[t])) • f(job k) + w t • T n (job k , P lan[t]), (3)
where T n (job k , P lan[t]) and M n (job k , P lan[t]) are the normalized time cost and monetary cost, respectively, and they can be defined by Formulas (4) and (8); job k represents the k th job and P lan[t] represents the data placement plan at time slot t; w t and w m represents the importance of the monetary cost and the execution time of the job. w t and w m should be positive values, defined by the user. f(job k) represents the average frequency of the job execution, which can be dynamically measured according to the history execution before the job execution, e.g., daily, monthly, quarterly and yearly. Since the time cost and monetary cost are normalized, neither of them has a unit.

Time Cost

The normalized time cost is defined by the following formula:

T n (job k , P lan[t]) = T(job k , P lan[t]) DT k , (4)
where T(j, P lan[t]) represents the total execution time of the job and DT k represents the expected execution time (set by the user) of Job job k . The desired execution time could be larger or smaller than the real execution time Time(j, P lan[t]). The total execution time consists of three parts, which are defined by:

T(job k , P lan[t]) = InitT(job k) + DTT(job k , P lan[t]) + ET(job k), (5)
where

DTT(job k , P lan[t]) = N j=1 i∈data k size(d i) speed j • p i,j [t], (6)
where speed j represents the speed to transfer data from data storage type j to computing nodes. According to the Amdahl's law [START_REF] Sun | Reevaluating amdahl's law in the multicore era[END_REF], the execution time of Job j can be estimated by the following formula [START_REF] Liu | Multi-objective scheduling of scientific workflows in multisite clouds[END_REF]:

ET(job k) = [α/n + (1 + α)] • WL(job k) CSP , (7)
where α represents the percentage of the workload that can be executed in parallel; n is the number of computing nodes, which is configured by users; WL(j) represents the workload of a job which can be measured by the number of FLOP (FLoat-point Operations) [START_REF] Coutinho | Evaluating grasp-based cloud dimensioning for comparative genomics: a practical approach[END_REF]. CSP is the average computing performance of each computing node, which can be measured by the number of FLOPS (FLoating-point Operations Per Second).

Monetary Cost

Normalized monetary cost is defined by the following formula:

M n (job k , P lan[t]) = M(job k , P lan[t]) DM k , (8)
where

EM(job k , P lan[t]) = VMP(job k) • n k • [T(job k , P lan[t]) -InitT(job k)], (10)
where VMP(job k) represents the average monetary cost of a VM for the execution of Job j; n k represents the number of computing nodes to execute the job; T(job k , P lan[t]) and InitT(job k) are defined in Formula (5).

We allocate the storage monetary cost of a data set to the jobs based on the workload. DSM(j, P lan[t]) is defined by the following formula:

DSM(job k , P lan[t]) = WL(job k) K l=1 (WL(job l) • f(job l)) • N j=1 i∈data k (SP j • size(d i) • p i,j [t]), (11)
where WL(job k) represents the workload of job job k ; dataset(j) represents the data sets that job j uses; job(i) represents the jobs that takes data i as input data; SP(s i) represents the monetary cost to store the data with the storage type s i , which is defined in the data placement plan plan[t], on the Cloud; size(d i) represents the size of the input data d i .

DAM(job k , P lan[t]

) is defined by the following formula:

DataAccessMoney(job k , P lan[t]) = j=1 i∈data k (RP j • size(d i) • p i,j [t]), (12)
where RP j represents the monetary cost to read data d i from the Cloud storage service; size(d i) represents the size of the input data d i of Job job k .

Data Placement Constraints

In this section, we present the constraints of data placement. First, we present the hard execution time and monetary budget constraints for each job. Then, we present the system stability constraint based on Lyapunov optimization techniques.

We assume that there are hard time deadline and hard monetary budget for each job, which can be formulated as follows:

T(job k , P lan[t]) ≤ TDL k , ∀k ∈ [0, K], (13)
M(job k , P lan[t]) ≤ MB k , ∀k ∈ [0, K], (14)
where T DL k represents the hard execution time deadline, M B k represents the hard monetary cost Budget, and Jobs represents the set of jobs in the system. For storage spaces, as shown in the right part of Fig. 5, we use S j (t) to denote the set of data sets placed in the data storage space of Type j. Therefore, the dynamic set is defined as follows:

S j (t + 1) = max[S j (t) -r j (t), 0] + M i=1 p i,j [t], (15)
where r j (t) represents the data to be removed because of time limit and m i=1 p i,j [t] represents the newly placed data sets to data storage type s j .

For jobs shown in the middle part of Fig. 5, we use J i to denote the set of data sets generated from the execution of Job i. We have the following job data storage set defined as follows: [START_REF] Golab | Distributed data placement to minimize communication costs via graph partitioning[END_REF] where data k represents the set of input data sets of Job k, G k [t] represents the newly generated intermediate data of Job k.

J k (t+1) = max   J k (t) - N j=1 i∈data k p i,j [t], 0   +G k [t],
We exploit the Lyapunov optimization technique [START_REF] Polyak | Lyapunov functions: An optimization theory perspective[END_REF] by considering both the set of data sets placed in the data storage spaces and the job data storage sets. Let D(t) = (S j (t), J i (t), j ∈ {1, . . . , n}, i ∈ {1, . . . , k}, t ∈ {1, 2, . . . , } denote all the data sets in time slot t. We have the following constraint in order to ensure the stability of the system:

D lim T →∞ T -1 t=0   N j=1 E{S j (t)} + K k=1 E{J k (t)}   < ∞. (17)

Problem Definition

The problem we address in the paper is a data placement problem, i.e., how to choose a storage type to store the data in order to reduce the average total cost, which consists of the monetary cost and the execution time of jobs, while satisfying constraints, on the Cloud. The data placement problem is a typical NP-hard problem [START_REF] Ren | Datum: Managing data purchasing and data placement in a geo-distributed data market[END_REF]. A job can be executed multiple times because the user-defined codes are updated or the parameters are updated [START_REF] Chunduri | Parallel low discrepancy parameter sweep for public health policy[END_REF]. As shown in Table 2, different data storage types of storage services on the Cloud correspond to different prices. The storage type with higher expected data access frequency, e.g., Standard, has higher price and higher data access speed. The total cost to execute a job once differs with different data placement plans. Thus, the problem we address in this paper is how to find an optimal data placement plan of all the data sets in order to reduce the total cost to execute the jobs with different execution frequencies based on a cost model. We define the average total cost as:

Cost(Jobs, P lan[t]) = lim T →∞ 1 T T -1 t=0
E{Cost(J obs, P lan[t])}.

(18) Then, the problem addressed in this paper can be formulated as follows:

min Cost(Jobs, P lan[t]) (19)
s.t.

           p i,j [t] ∈ [0, 1] N j=1 p i,j [t] = 1,
Formulas (13) and (17). where Jobs represents the set of jobs in the system.

NEAR OPTIMAL DATA PLACEMENT

In this section, we present a near optimal data placement approach based on Lyapunov optimization. Lyapunov optimization is widely used to achieve optimization objective while ensuring the system stability [START_REF] Polyak | Lyapunov functions: An optimization theory perspective[END_REF], [START_REF] Liu | A fair task assignment strategy for minimizing cost in mobile crowdsensing[END_REF]. In order to exploit Lyapunov optimization techniques, we first construct a Lyapunov function and propose a Lyapunov based algorithm (LNODP) to perform the data placement while ensuring the system stability. Then, we propose a greedy approach to perform the near optimal data placement while satisfying hard deadlines. The greedy approach consists of three algorithm, i.e., near optimal data planning (NOD Planning), near optimal data placement and data placement (NOD Placement) with partitioning (NOD Partitioning). LNODP exploits NOD Planning to generate a near optimal data placement plan; NOD Planning takes advantage of NOD Placement to choose optimal data storage type when the hard constraints can be satisfied and NOD Placement uses NOD partitioning to generate a plan to partition the data in order to satisfy hard constraints when one data storage type does not work.

Lyapunov Optimization based Data Placement

We define a Lyapunov function L(t) as follows:

L(t) ∆ = 1 2   N j=1 [S j (t)] 2 + K k=1 [D k (t)] 2   . (20
)
This function represents the data sets to be placed. Then, we can define the derivative of the Lyapunov function as follows:

L(t) t ∆ = E{L(t + t) -L(t)|D(t)}. (21
)
We use the expectation to address the randomness of the intermediate data generated by the execution of jobs and the data placement actions. Then the problem defined in Formula (19) is equal to the following objective function:

min L(t) t + ω • E{Cost|D(t)} (22) s.t.      T(j, P lan[t]) < TDL, M(j, P lan[t]) < MB, p i,j [t] ∈ [0, 1],
where the parameter ω ≥ 0 represents the importance of the total cost compared with the stability of the system.

Theorem 1. The objective function has the following upper bound when t = 1:

L(t) + ω E{Cost(J obs, P lan[t])|D(t)} ≤ L + ω K k=1 C k + E    N j=1 S j (t)r j (t))|D(t)    -E K k=1 J k (t)G k [t])|D(t) + E    N j=1 K k=1 i∈data k (J k (t) -S j (t) + ωC i,j)p i,j [t]|D(t)    , (23)
with L defined in Formula (27), C defined in Formula (29), and C defined in Formula (30).

Proof. First, we focus on the data stored in the job data queue with the assumption that

M i=1 p i,j [t] ≤ d max and r j (t) ≤ r max : S 2 j (t + 1) -S 2 j (t) = max[S j (t) -r j (t), 0] + M i=1 p i,j [t] 2 -S 2 j (t) ≤ M i=1 p i,j [t] 2 + (r j (t)) 2 -2S j (t) r j (t) - M i=1 p i,j [t] ≤ (d max) 2 + (r max) 2 -2S j (t) r j (t) - M i=1 p i,j [t] . (24)
Then, we have the similar results for the data storage spaces with the assumption that N i∈data k ,j=1 p i,j [t] ≤ data max , where data max represents the maximum number of data sets for any job, and iter ← iter + 1 17: end for 18: Update J k (t) and S j (t) With Formulas (24) and (25), we have:

G k [t] ≤ G max k : J 2 k (t + 1) -J 2 k (t) =   max[J k (t) - N i∈data k ,j=1 p i,j [t], 0] + G k [t]   2 -J 2 k (t) ≤ (G k [t]) 2 +   N i∈data k ,j=1 p i,j [t]   2 -2 • J k (t)   N i∈data k ,j=1 p i,j [t] -G k [t]   ≤ (G max k) 2 + (data max) 2 -2 • J k (t)   N i∈data k ,j=1 p i,j [t] -G k [t]   (25
{L(t)|D(t)} ≤ L + E    N j=1 S j (t)(r j (t) - M i=1 p i,j [t])|D(t)    + E    K k=1 J k (t)   N i∈data k ,j=1 p i,j [t] -G k [t]   |D(t)    , (26)
L = N 2 • [(d max) 2 + (r max) 2] + K 2 • [(G max k) 2 + (data max) 2]. (27)
The cost model presented in Section 4.2 can be rewritten as:

E{cost(J obs, P lan[t])|D(t)} = K k=1 C k + E    N j=1 K k=1 i∈data k C i,j,k • p i,j [t]|D(t)    , (28)
C k = ω t • n k • AIT DT k + ω t DT k + ω m • VMP(job k) • n k DM k • (α n + (1 + α)) * WL(job k) CSP • f(job k), (29)
C i,j,k = ω t speed j • DT k + ω m • VMP(job k) • n k speed j • DM k + ω m • RP j DM k + ω m • WL(job k) • SP j K l=1 (WL(job k) • f(job k)) • DM k Algorithm 2
end if 7: end for • size(d i) • f(job k) (30)
Finally, we can take the expectation add the total cost, i.e., cost(P lan[t]) to both sides of Formula (26) and hence Theorem 1 is proven.

In order to solve the problem defined in Formula (19), we minimize the upper bound of Theorem 23. As the status of Time slot t can be observed in the system, we only need to minimize the following element:

E    N j=1 K k=1 i∈data k (J k (t) -S j (t) + ωC i,j,k)p i,j [t]|D(t)    = E    N j=1 M i=1 C i,j p i,j [t]|D(t)    , (31)
with C i,j defined as:

C i,j = k∈Jobsi (J k (t) + ωC i,j,k) -S j (t), (32)
where Jobs i represents the set of jobs that process Data set d i .

We design a Lyapunov-based approach to minimize Formula (31), as shown in Algorithm 1. First, we sort the data sets based on C i,j in a descent order in order to minimize the cost of the data set corresponding to big costs first (Line 1). Then, for each data set, we use Algorithm 2 to find an optimal data placement plan (Line 4). For each combination of {i, j} (Line 5), if C i,j ≤ 0 (Line 8), we will update p i,j [t + 1] = p * i,j (Line 9), otherwise, we will set p i,j [t + 1] = 0 (Line 11).

Near Optimal Data Placement Algorithm

Based on the multi-objective cost model, we propose a greedy algorithm to generate a near optimal data placement plan while reducing the total cost to execute a set of jobs on the FedCube platform as shown in Algorithm 2. In the algorithm, for each Data set d, we first calculate the total cost based on the cost model (Line 2). Then, we generate a near optimal data placement plan by replacing Data set d while keeping the other data sets based on Algorithm 3 (Line 3). Afterwards, if the new data placement plan can reduce the total cost according to the cost model, we update the data placement plan if the new data placement plan corresponds to smaller total cost (Lines 4 -5). For j ∈ [1, N] and p i,j ∈ P lan * , set p i,j = 1, j = j * 0, j = j * 8: else 9:

P lan * ← dataPlacementWithPartitioning(d, P lan, Jobs, T ypesF orT imeConstraints, 10: T ypesF orM onetaryConstraints) 11: end if Algorithm 3 replaces Data set d in order to reduce the total cost. First, we choose an optimal data storage type j * based on the data placement plan by trying each data storage type in storageT ypeList (Line 2). Then, we choose a set of possible storage type candidates that meet both the hard time deadline constraint and hard monetary budget constraint (Lines 3 -4). If the chosen data storage type j * is within the set of storage type candidates, we will update the data storage placement. If not, we will exploit Algorithm 4 to place the data set with data partitioning.

Algorithm 4 generates a near optimal data placement plan with the consideration of data partitioning while meeting the two constraints, i.e., the hard time deadline constraint and the hard monetary budget constraint. First, if any of the set of available data storage type candidates for the hard time deadline constraint or hard monetary budget constraint is an empty set, we consider that the two constraints cannot be met (Lines 2 and 3). If not, first, we choose an optimal type (j 1 for the time constraint and j 2 for the monetary constraint) within the set of candidates for each constraint by trying each storage type (Lines 5 and 6). We define a possible area as the range of parts of the data set to be placed at Type j 1 while meeting both the two constraints. We can calculate the possible area for each job and the intersection of the area for all the related jobs (Lines 7 -10). Given a related job job k of a data set and two data storage types (j 1 , j 2), we can calculate the possible area based on Formulas (1) -(12), (13) and (14), and the calculated area is: max{0, a} ≤ p i,j1 ≤ min{b, 1} when c > 0, or max{a, b} ≤ p i,j1 ≤ 1 when c < 0, with:

a = T DL k -ET (job k) -n k • AIT size(d) • speed j1 • speed j2 speed j2 -speed j1 - speed j1 speed j2 -speed j1 , Algorithm 4
end if 18: end if b = M B k c • size(d) - V M P (job k) • n k • ET (job k) c • size(d) - V M P (job k) • n k c • speed j2 - SP j2 c • size(d) - RP j2 c • size(d) , c = V M P (job k) • n k • 1 speed j1 - 1 speed j2 + d • (SP j1 -SP j2) + (RP j1 -RP j2), d = WL(job) K l=1 (WL(j l) • f(j l))
,

where AIT represents the average initialization time, ET represents the execution time, which can be calculated based on Formula 7, SP represents the storage price, RP represents the read price. Finally, if the final possible area is an empty set, we consider that the two constraints cannot be met (Lines 11 and 12). If not, we calculate the optimal data partitioning by choosing a boundary of the area that corresponds to a smaller total cost and update the data placement plan (Lines 14 and 16).

Complexity & Feasibility Analysis

Let us assume that we have M input data, N data storage types and each input data is related to K jobs on average. Then, the search space for the problem we address is O(N M), which is the complexity of the bruteforce method. The complexity of ActGreedy algorithm [START_REF] Liu | Multi-objective scheduling of scientific workflows in multisite clouds[END_REF] is LNODP can generate a near optimal result while satisfying the hard constraints in most cases. However, there are two cases where LNODP cannot generate a data placement plan to satisfy hard constraints for a job. First, when there is no data storage type to store all the input data of a job while satisfying both the hard time deadline and the hard monetary budget. Second, when there is no combination of two storage types that can satisfy both the hard time deadline and the hard monetary budget. In these two cases, the user should reset the hard constraints of the job in order to use LNODP to generate data placement plans.

O(M * K * N).

EXPERIMENTATION

In this section, we first present the simulation to compare the execution time of our proposed Lyapunov-based Near Optimal Data Placement (LNODP) algorithm and the bruteforce method. We consider four storage types, i.e., Standard, Low frequency, Cold and Archive, in our proposed algorithm. These four storage types are provided by the storage service on the Baidu Cloud. Then, we compare the total cost of four storage methods: LNODP, brute-force, Performance [START_REF] Darwich | Cost-efficient storage for on-demand video streaming on cloud[END_REF], and Economic [START_REF] Black | Feeding the pelican: Using archival hard drives for cold storage racks[END_REF]. The brute-force method is to search the minimum cost in the entire searching space which means that the result of brute-force is the optimal solution. The Performance method [START_REF] Darwich | Cost-efficient storage for on-demand video streaming on cloud[END_REF] uses the storage type that corresponds to the highest data transfer speed. Economic [START_REF] Black | Feeding the pelican: Using archival hard drives for cold storage racks[END_REF] uses the storage type that corresponds to the smallest price to store data. In addition, we compare out algorithm with simple adapted greedy algorithm, i.e., ActGreedy [START_REF] Liu | Multi-objective scheduling of scientific workflows in multisite clouds[END_REF], to show that our algorithm can address multiple hard constraints while ActGreedy only reduces the total cost without considering the hard constraints. Then, we present the comparison of the total cost among the four storage methods using a widely used data processing benchmark, i.e., Wordcount on Hadoop [START_REF] White | Hadoop: The Definitive Guide[END_REF], and a reallife data processing program for the correlation analysis of COVID-19 [START_REF] Xiong | Understanding the collective responses of populations to the covid-19 pandemic in mainland china[END_REF] (COVID-19-Correlation), which is selected from recent work related to COVID-19 [START_REF] Xiong | Understanding the collective responses of populations to the covid-19 pandemic in mainland china[END_REF], [START_REF] Liu | Analysis of collective response reveals that covid-19-related activities start from the end of 2019 in mainland china[END_REF], [START_REF] Liu | An investigation of containment measures against the covid-19 pandemic in mainland china[END_REF]. In the experimentation, we consider five execution frequencies (daily, semimonthly, monthly, quarterly and yearly) for Wordcount and COVID-19-Correlation.

Simulation

In this section, we compare our proposed algorithm with the brute-force method in terms of the execution time and the total cost. We take 15 data sets with the average size being 5.5 GB as the input data of jobs. We execute fifteen jobs to process the input data. Each job is associated with different data sets, including Wordcount, Grep etc. Each job is with different frequencies and different settings such as DT , w t . The data sets include DBLP XML files [START_REF]Dblp: computer science bibliography[END_REF] and some data sets from Baidu. The DBLP XML file contains the meta data, e.g., the name of authors, publishers, of computer-based English articles. The comparison experiment results shown in Fig. 6.

Fig. 6 shows the result of the execution time of different methods. In order to generate a data placement plan for six data sets with fifteen jobs, the execution time of the greedy algorithm is shorter than 0.0001s while that of LNODP is 0.08s. When the number of the data sets augments, the execution time of the brute-force method increases exponentially. When the number of data sets becomes 15, the execution time of the brute-force method is 67839s while that of LNODP remains within 0.0001s. Fig. 7 presents the comparison among four methods: LNODP, brute-force, Performance and Economic. LNODP corresponds to the same total cost as that of the brute-force method, which is up to 8.2% and 30.6% smaller than that of Performance and Economic, respectively. The simulation experiment shows that the result of our proposed algorithm is as same as the brute-force method which means the result of our proposed algorithm is the optimal solution in these situations.

Wordcount

Hadoop [START_REF]Apache hadoop[END_REF] is a framework for parallel big data processing on a cluster of commodity servers. Hadoop contains two components, i.e., HDFS [START_REF] Shvachko | The hadoop distributed file system[END_REF] and MapReduce. HDFS is a distributed file system with a master-slave architecture. MapReduce is a programming model and implementation for parallel data processing in a distributed environment. MapReduce contains two phases, i.e., Map and Reduce. In the Map phase, the input data is processed and key-value pairs are generated. In the reduce phase, the key-value pairs of the same Key are processed.

Wordcount is a widely used benchmark, which counts the frequency of each word in the input files. Wordcount contains two steps, i.e., Map and Reduce. In the Map step, < word, 1 > is generated for each work in the input data. Then, the number of < word, 1 > is counted for each work in the Reduce step. Finally, the frequency of each word is calculated and stored in HDFS.

We deploy Hadoop on three computing nodes based on the platform. Each node is a VM with one CPU core and 4 GB RAM. We use DBLP 2019 XML files of 6.04 GB as the input data. We set DT as 1200 seconds and DM as 1 dollar.

First, we set the hard time deadline as 2000 seconds and 10 dollars. Fig. 8 shows that our proposed algorithm, i.e., LNODP, significantly outperforms the baseline approach. When the frequency is daily, the total cost corresponding to different approaches are shown in Fig. 8(a). When ω t is 0 and ω m is 1, LNODP can reduce the total cost by 8.6% compared with Economic. Compared with Economic, LNODP can reduce the total cost by 25.1% and 42.2% when ω t is 0.5 and 0.9 respectively. When the frequency is quarterly, LNODP can reduce the total cost by 23.8% compared with Economic when the ω t is 0 as Fig. 8(b) shows. LNODP can generate an optimal storage plan, which significantly outperforms (the total cost is 37.1% smaller) Ecnomomic when ω t is 0.5. The total cost can be reduced by 48.6% using LNODP compared with Performance when ω t is 0.9 and ω m is 0.1. Fig. 8(c) presents the efficiency of our proposed algorithm when the frequency is yearly. Compared with Performance, our algorithm can reduce the total cost by 60.4% and 27.4% when ω t is 0.5 and 0.9, respectively. The experiment shows that the advantage of our algorithm is more significant when ω t is 0, where the total cost can be reduced by 69.8% compared with Economic.

Fig. 8 presents that our algorithm can reduce the total cost by up to 60.4% compared with Performance and up to 69.8% compared with Economic. As the execution frequency of job decreases, the advantage of our algorithm becomes significant. The comparison of Fig. 8(a), 8(b) and 8(c) indicates that as the user's tolerance for time, i.e., ω t , increases, the advantage of our proposed algorithm becomes significant as well. This experiment also shows that the result of our algorithm can generate the optimal solution as the brute-force method Table 3 presents the execution with a strict hard execution time constraint and a hard monetary budget constraint, i.e., 1420 seconds and 6.5 dollars. The existing methods, e.g., ActGreedy, Performance, Economic, cannot meet both the two constraints while LNODP can place the data with data partitioning while satisfying the two hard constraints with small total cost. In addition, we find that the weight of objectives only impacts the total cost, which has no impact on the satisfaction of the constraints.

COVID-19

Since the coronavirus disease (COVID-19) has become a global emergency, we reproduced the data processing program for the correlation among COVID-19-related search activities, human mobility and the number of confirmed cases in Mainland China presented in [START_REF] Xiong | Understanding the collective responses of populations to the covid-19 pandemic in mainland china[END_REF]. The data involved in [START_REF] Xiong | Understanding the collective responses of populations to the covid-19 pandemic in mainland china[END_REF] includes the number of confirmed cases in each city (dataset c), the volume of COVID-19-related search activities in each city (dataset s), inflows and outflows for each city (dataset m) and the population in each city (dataset p). dataset m is the inflow and outflow data of inter-city population with the transitions of the inter-city mobility categorized by the origin and destination pairs. dataset s includes the keywords and phrases related to the epidemic from January to March. The total amount of these data sets is 1.134 GB. The data processing for the COVID-19-related correlation analysis consists of the following three steps. First, the data is selected using a filter operation. Then, a join operator is used to generate the features for each city, i.e., the number of confirmed cases, the inflows, the outflows, the search volumes, the population. Afterwards, the correlation between any two features is calculated for each city. The experimental results are shown in Fig. 9. We set DT as 600 seconds and DM as 0.5 dollar.

First, we set the hard execution time constraint as 800 seconds and the hard monetary budget constraint as 2 dollar. Fig. 9 shows that our proposed algorithm, i.e., LNODP, significantly outperforms Performance (up to 63%) when the size of the input data of the job is smaller that of Wordcount. When the frequency is daily, the total costs of different approaches are shown in Fig. 9(a). When ω t is 0 and ω m is 1, our algorithm can reduce the total cost by 30.5% compared with Economic. When ω t increases to 0.5, our algorithm can reduce the total cost by 2.6% compared with Economic. When the importance of time, i.e., ω t , increases to 0.7, our algorithm can outperform Economic, the total cost can be reduced by 2.2%. Fig. 9(b) presents the total cost of different approaches when the frequency is quarterly. When the user only considers the importance of money, our algorithm can reduce the total cost by 35.7% compared with Performance. With the increase of ω t , our algorithm can reduce the total cost by 3.7% and 1.9% compared with Economic when ω t is 0.5 and 0.7 respectively. When the frequency is yearly, the execution results are shown in Fig. 9(c).

The most significant result is that our algorithm can reduce the total cost by 63% compared with Performance when ω t is 0 and ω m is 1. When ω t is 0.5 and 0.7, our algorithm can reduce the total cost by 18.2% and 7.7% compared with Performance and Economic, respectively. From Fig. 9, we find that our proposed algorithm, i.e., LNODP, significantly outperforms the standard method (up to 63%) and the archive method (up to 37.1%), when the frequency of the job execution is high and when the size of the input data of the job is big.

Table 4 presents the execution with a strict hard execution time constraint and a hard monetary budget constraint, e.g., 722 seconds and 1.9 dollars. Similar to the results of Wordcount, the existing methods, e.g., ActGreedy, Performance, Economic, cannot meet both the two constraints while LNODP can place the data with data partitioning while satisfying the two hard constraints with small total cost. We also find that the weight of objectives only impacts the total cost, which has no impact on the satisfaction of the constraints.

CONCLUSION

When organizations outsource their data on the Cloud, it is critical to choose a proper data placement strategy to reduce the cost. In this paper, we proposed a solution to enable data processing on the Cloud with the data from different organizations. The approach consists of three parts: a data federation platform with secure data sharing and secure data computing, a multi-objective cost model, and a Lyapunov-based near optimal data placement algorithm. The cost model consists of monetary cost and execution time. The Lyapunov-based near optimal algorithm generates a data placement plan with the minimum total cost while satisfying hard constraints. We carried out extensive experiments to validate our proposed approach. The experimental results indicate that our proposed algorithm outperforms the baseline approaches up to 69.8% and that our algorithm can generate the same optimal solution as the brute-force method within a short execution time.

Fig. 1 .

 1 Fig. 1. FedCube and Cloud services. FedCube is based on IaaS and PaaS.

Fig. 2 .

 2 Fig. 2. The functionality architecture of the FedCube platform.

Fig. 3 .

 3 Fig. 3. Infrastructure architecture of the FedCube platform.

Fig. 4 .

 4 Fig. 4. Job Execution Workflow.

Fig. 5 .

 5 Fig. 5. System model for data placement.

j 2 ←p

 2 getOptimalTypeForMonetaryConstraint(P lan, d, Jobs, T ypesF orM onetaryConstraints) 7: possibleArea ← [0, 1] 8: for j ∈ [1, N] do 9: possibleArea ← possibleArea ∩ getArea(P lan, d, j 1 , j 2 , Jobs) ← getOptimalPart(d, plan, Jobs, possibleArea) 15:For j ∈ [1, N] and p i,j ∈ P lan * , set 16: p i,j = = j 1 , 1 -p, j = j 2 , 0, else 17:

Fig. 6 .

 6 Fig. 6. Execution time of Greedy and Brute-force

 Then, the complexity of LNODP is O(T * M * K * N) (when there is no need to execute Algorithm 4) or O(T * M * K 2 * N) (when Algorithm 4 is executed for each job), which is much smaller than O(N M) when N M -1 > M * K 2 * T (this is a general case). The complexity of Economic and Performance (see details in Section 6) is O(M * M). Although the complexity of LNODP is slightly bigger than that of ActGreedy, Economic or Performance, it can generate near optimal data placement plan while satisfying hard constraints.

Fig. 7 .

 7 Fig. 7. Comparison among four methods

Fig. 9 .

 9 Fig. 8. Total cost of Wordcount

 on the cost model. Section 6 shows the experimental results. Finally, we conclude the paper in Section 7.

1. https://aws.amazon.com/ 2. https://azure.microsoft.com/en-us/ 3. https://cloud.baidu.com/ based

TABLE 1

 1 Description of parameters. "Abbreviation" represents the abbreviation of the parameters. "Origin" represents where the value of the parameter comes from. UD: that the parameter value is defined by users; Measure: that the parameter value is estimated by the user with the job in a Cloud environment; Execution: measured during the execution of job in Cloud; Cloud: the parameter value is obtained from the Cloud provider [t] represents that data set d i is placed to storage type s j , m represents the number of input and intermediate data sets, and n represents the number of storage types. When p i,j [t] = 0, data set d i is not placed to storage type s j ; when p i,j [t] = 1, data set d i is directly placed to storage type s j ; When 1 ≤ p i,j [t] ≤ 1, data set d i is partitioned and the part corresponding to p i,j [t] is placed to storage type s j .The total cost to execute a job is defined by:

	Abbreviation Parameter	Meaning

 k can be specified by the user or realized by the platform, which is out of the scope of this paper while the time can be calculated based on Job job k , e.g., n k • AIT with n k representing the number of computing nodes and AIT representing the average time to initialize a computing node. The data transfer time can be calculated based on the size of the input data of Job job k and the data placement plan as follows:

InitT(job k) represents the Time to Initialize the computing nodes for Job job k ; DTT(job k , P lan[t]) represents the Time to Transfer the Data from the Cloud storage service to computing nodes; ET(job k) represents the Execution Time of Job job k . The initialization of the computing nodes for Job job

 Money(job k , P lan[t]) is the financial cost to rent VMs as computing nodes on the Cloud. DM k represents the expected execution monetary cost of Job Job k , which can be configured by the user. DM k can be bigger or smaller than the real monetary cost Money(job , P lan[t]) represents the Monetary cost to use the computing nodes to Execute the job; DSM(job k , P lan[t]) represents the Monetary cost to Store the Data on the Cloud storage service; DAM(job k , P lan[t]) represents the Monetary cost to Access to the Data. EM(job k , P lan[t]) can be estimated by the following formula:

k , t). Money(job k , P lan[t]) can be estimated based on the following formula:

M(job k , P lan[t]) = EM(job k , P lan[t]) + DSM k (job k , P lan[t]) + DAM k (job k , P lan[t]),

(9)

where EM(job k

TABLE 2

 2 The monetary cost to store data on the Cloud with different storage types, i.e., Standard, Low frequency, Cold and Achieve.

		Standard	Low frequency	Cold	Achieve
	Expected data access frequency	frequently < once per month < once per year ≥ three years
	Cost to store data (Dollar/GB/month) 0.0155	0.0113	0.0045	0.015
	Cost to read data (Dollar/GB)	N/A	0.0042	0.0085	0.12

)

 Algorithm 1 Lyapunov-based Near Optimal Data Placement Input: D: A set of data sets; T : Maximum number of iterations; T : Maximum number of iterations for generating data placement plans; P lan[t]: data placement plan in Time slot t. Output: P lan[t + 1]: data placement plan in Time slot t + 1.

	3:	while not all data sets ∈ D are placed and iter < T
	do	
	4:	P lan * [t] ← NearOptimalDataPlanning(P lan[t])
	5:	for each Data set d i in D do
	6:	for j ∈ N do
	7: 8: 9:	p * i,j [t] ← getPlan(P lan * [t], i, j) if C i,j ≤ 0 and p * i,j [t] = 0 then Set p i,j [t + 1] = p * i,j [t]
	10:	else
	11:	Set p i,j [t + 1] = 0
	12:	end if
	13:	end for
	14:	end for
	15:	end while
	16:	

1: D ← sort(D) 2: for t ∈ T do

 Near Optimal Data Planning Input: D: A set of data sets; P lan: data placement plan in Time slot t. Output: P lan * : The near optimal data placement plan of each data d in data set D with the minimum cost. 1: for each Data d in D do

	2:	cost before ← calculateCost(P lan)	According to
		Formula (1)	
	3:	P lan ← getNearOptimalPlacement(d, P lan)
	4:	if Cost(Plan) < Cost(Plan) then	
	5:	P lan * ← P lan	
	6:		

Algorithm 3

 3 Near Optimal Data Placement Input: d: A data set; Jobs: A set of jobs that process Data set d; StorageT ypeList: The list of storage types; P lan: a data placement plan. Output: P lan * : The near optimal data placement plan of Data set d. 1: P lan * ← P lan 2: j * = getOptimalType(P lan, d, StorageT ypeList)

	3: T ypesF orT imeConstraints	←
	getTypesForTimeConstraint(P lan, d, Jobs)	
	4: T ypesF orM onetaryConstraints	←
	getTypesForMonetaryConstraint(P lan, d, jobs)	
	5: AvailableT ypes ← T ypesF orT imeConstraints ∩
	T ypesF orM onetaryConstraints	
	6: if j	

* ∈ AvailableT ypes then 7:

 Data Placement With Partitioning Input: d: A set of data; Jobs: A set of job that process Data set d; StorageT ypeList: The list of storage types; T ypesF orT imeConstraints: A set of storage types that only meet the hard execution time constraint; T ypesF orM onetaryConstraints: A set of storage types that only meet the hard monetary budget con-

	straint;			
	P lan: a data placement plan.			
	Output: P lan * : The near optimal data placement plan of
	each data d;			
	F easibility: If there is a data placement plan that meets
	the two constraints			
	1: P lan * ← P lan[t]			
	2: if	T ypesF orT imeConstraints	=	∅	or
	T ypesF orM onetaryConstraints = ∅ then		
	3:	F easibility = F alse			
	4: else			
	5:	j 1 ← getOptimalTypeForTimeConstraint(P lan, d,
	Jobs, T ypesF orT imeConstraints)			

6:

TABLE 3

 3 Results for hard execution time constraint and hard monetary budget constraint. Frequency: yearly. Hard time deadline: 1420; hard monetary budget: 6.5. The time unit is second and the monetary unit is yuan.

		Time	Constraints Monetary	Cost	ωt
	LNODP	Satisfied (1420.0) Satisfied (6.5)	0.018
	ActGreedy Performance Satisfied (1405.4) Broken (1465.8)	Satisfied (2.9) 0.0081 Broken (9.7) 0.027	0
	Economic	Broken (1465.8)	Satisfied (2.9) 0.0081
	LNODP	Satisfied (1420.0) Satisfied (6.5) 0.0053
	ActGreedy Performance Satisfied (1405.4) Broken (1465.8)	Satisfied (2.9) 0.0045 Broken (9.7) 0.0062	0.9
	Economic	Broken (1465.8)	Satisfied (2.9) 0.0045

TABLE 4

 4 Results for hard execution time constraint and hard monetary budget constraint. Frequency: yearly. Hard time deadline: 722; hard monetary budget: 1.9. The time unit is second and the monetary unit is yuan.

		Time	Constraints Monetary	Cost	ωt
	LNODP	Satisfied (722.0)	Satisfied (1.8)	0.0050
	ActGreedy Performance Satisfied (720.8) Broken (1.95) 0.00054 Broken (732.1) Satisfied (0.7) 0.0019	0
	Economic	Broken (732.1)	Satisfied (0.7)	0.0019
	LNODP	Satisfied (722.0)	Satisfied (1.8)	0.0038
	ActGreedy Performance Satisfied (720.8) Broken (732.1)	Satisfied (0.7) Broken (2.0)	0.0029 0.0040	0.7
	Economic	Broken (732.1)	Satisfied (0.7)	0.0029