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SmartPhOx: Smartphone-Based Pulse Oximetry
Using a Meta-Region Of Interest
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IRIT, Toulouse INP, CNRS, Université de Toulouse, France – Email: firstname.lastname@toulouse-inp.fr

Abstract—We present SmartPhOx, a pure camera-and-
flashlight smartphone-based pulse oximetry solution. We build
on the ratio-of-ratios (RR) method and linear regression, an
elegant approach resting on the Beer-Lambert law and land-
ing itself to efficient smartphone implementations. However,
its implementations without specialized hardware have so far
proved to be unsuitable for clinical use, in particular due to the
instability of the RR measurements. We use an empirical study
to shed light on the reasons why and propose using the very
RR measurements to filter RR measurements – a new paradigm
we call the Meta-Region of interest (Meta-ROI). We design a
complete-system architecture, including a novel data structure
for storing and RR values in the time and space dimensions and
an efficient algorithm for identifying Meta-ROI. Results from an
Android implementation of SmartPhOx with the participation of
37 volunteers show that it is the first pure camera-and-flashlight
solution to meet the FDA requirement for Root Mean Square
Error (RMSE).

Index Terms—Pulse oximetry, SpO2, Mobile health, Ratio-of-
ratios, Beer-Lambert law

I. INTRODUCTION

”... A vast majority of Covid pneumonia patients I met
had remarkably low oxygen saturations at triage — seemingly
incompatible with life — but they were using their cellphones
as we put them on monitors.”1

What if their cellphones could have measured their oxygen
saturation, how many of these patients would have seeked
timely medical help and avoided intubation?

As the world is gripped by the COVID-19 pandemic,
terms like oxygen saturation (SpO2) and silent hypoxia1 – the
condition in which a patient still feels well but their SpO2 is
dangerously low [1] – have entered the mainstream. The pulse
oximeter, the once-obscure fingertip device allowing home
monitoring of the blood oxygen levels, has emerged as an
important tool in fighting COVID-19, drawing attention to the
science and technology behind it – and raising the question
of whether it can be reinvented for the era of pervasive
computing.

The idea of pulse oximetry – the non-invasive monitoring
of oxygen saturation using the so-called ratio-of-ratios (RR)
method – dates back to 1935 [2]. Scientifically it rests on
the Beer-Lambert law stating that a light going through a
thin body part, like a finger or earlobe, will be impacted by
its thickness and concentration – the latter including oxygen
saturation. Using two light beams of specific wave lengths

1https://www.nytimes.com/2020/04/20/opinion/sunday/coronavirus-testing-
pneumonia.html

and the fact that at different points of the cardiac cycles only
oxygen saturation-related factors change, as we show in detail
in Section II, it is possible to manipulate the Beer-Lambert
law through two consecutive ratios to remove non-oxygen
saturation factors, like the medium thickness. The results is
a relation between a ratio-of-ratio (RR) of light measurements
and the SpO2 – the ratio-of-ratios (RR) method [3]. The first
pulse oximeter was developed in the ‘70s [4] and today a wide
range of pulse oximeters can be found off-the-shelf [5]–[9].
Nevertheless, dedicated hardware adds extra burden and, as the
silent hypoxia cases due to COVID-19 have revealed [1], often
people are not aware their oxygen level needs monitoring.

Increasingly in people’s hands and with advanced sensing,
computing and communicating capabilities, the smartphone
is seen as a building block of pervasive computing and key
enabler of the digital healthcare [10]–[13]. Researchers have
proposed smartphone-based pulse oximetry solutions predat-
ing the COVID-19 crisis. [14] was among the first to apply
the RR method for estimating SpO2 using smartphones. A user
places the finger over the flashlight – serving as the source of
light – and the camera. Acquiring the photoplethysmogram
(PPG) signal from processing the resulting video allows RR
of light measurements and the estimation of SpO2. However,
its accuracy is below the FDA clearance threshold [15].
The fundamental reason is that it uses linear regression for
implementing the RR method. Unfortunately, the PPG sig-
nal, and thus the RR measurements, can be unstable due
to finger movements and pressure changes [16]. To address
this issue, [17], [18] integrate into the RR measurements
the camera quantum efficiency. While improving accuracy,
this is information to which only manufacturers have access.
PhO2 [16] proposes attaching to the smartphone camera a
custom-made device mounted with two chromatic filters, each
allowing a precise wavelength to pass. The result is a system
allowing SpO2 predictions with accuracy meeting the FDA
clearance threshold. Nevertheless, the custom-built hardware
add-on, while manufactured with the help of 3D printing,
limits its large-scale application. Recently, dedicated oxygen
monitoring sensors are being integrated in smartwatches [19],
and some high-end smartphone models [20]. While accurate,
such solutions leave out large sections of users with older
smartphone models, particularly in developping countries.

In this paper, we introduce SmartPhOx, a smartphone-
based pulse oximetry system meeting the FDA clearance
threshold [15] for accuracy while relying only on the standard
smartphone camera and flashlight. To achieve this, we start



by first designing and conducting an empirical study aimed at
shedding light on the underlying reasons behind the inaccu-
racy of pure camera-and-flashlight solutions. The data shows
that focusing on primary factors – the quality of the PPG
signal [17], [18], [21] or identifying the right region on the
video [14], [22], known as the region of interest (ROI) – is
misleading. We find that signals of excellent quality can still
lead to unstable RR measurements. Focusing on a particular
area of the video frame, such as the center, does not help either.
In light of these results, we argue for a shift in approach. We
propose foregoing the primary factors and instead leveraging
the RR measurement values themselves for identifying stable
RR measurements.

Using RR measurements to essentially filter RR measure-
ment leads to the idea of Meta-Region of Interest – Meta-ROI,
the key innovation underpinning SmartPhOx. However, trans-
forming the Meta-ROI idea into a complete system solution
running on off-the-shelf smartphones raises several challenges.
First, using RR measurements to filter RR measurements
requires defining what is a good RR. Second, once the good
RR defined, we need an approach for automatically identifying
the good RR values using camera videos as input and the pro-
cessing capabilities of off-the-shelf smartphones. In short, we
address these challenges by introducing a new data structure
for RR measurements, we refer to as the RR Map, and an
efficient algorithm that can identify the Meta-ROI.

Throughout this paper, we make the following contributions:
• We show that the primary factors for filtering ratio-of-

ratios measurements are misleading. We shed light on the
reasons why and introduce Meta-ROI – a new paradigm for
identifying good RR measurements (Section III).

• We design SmartPhOx, a complete-system architecture
leveraging the concept of Meta-ROI for smartphone-base
pulse oximetry (Section IV).

• We introduce a new data structure for RR measurements,
the RR Map, that enables the definition of good RR values
(time-and-space consistent) (Section V). Leveraging it, we
develop an efficient algorithm for identifying Meta-ROI
(Section VI).

• We implement SmartPhOx as a standalone Android applica-
tion and evaluate it with data collected from 37 volunteers.
The results show that SmartPhOx is the first pure camera-
and-flashlight smartphone-based solution to meet the FDA
requirement for Root Mean Square Error (RMSE) [15]
(Section VIII).

II. PRIMER ON THE RATIO-OF-RATIOS (RR) METHOD

In this section, we introduce the ratio-of-ratios (RR) method
widely used for smartphone-based pulse oximetry [14], [16]–
[18], [22], [23] and adopted by SmartPhOx.

A. Theoretical underpinning

The RR method for measuring SpO2 rests on the law
of Beer-Lambert describing the attenuation of light as a
function of the traversed material. Mathematically: I(λ) =
I0(λ) exp

−ϵ(λ)ρd, where I0(λ) is the incident light intensity,

ϵ(λ), the absorptivity for the wavelength λ, ρ, the medium
concentration and, d, the path length through the medium. The
equation can be expressed in a form landing itself to practical
systems for estimating SpO2. Let us start by expressing it at
the two extremes of the cardiac cycle : in diastole, where
d = dmin, and systole, where d = dmax.Let Id(λ) and Is(λ)
denote the corresponding I(λ) values. Taking the logarithm of
their ratio, we get:

L(λ) = ln(
Is(λ)

Id(λ)
) = (dmin−dmax).(ϵO2

(λ)ρO2
+ϵHb

(λ)ρHb
)

(1)
While more pratical, Eq. (1), requires measuring dmin and

dmax. To relax this requirement, we can use the ratio of two
values corresponding to two different wavelengths, λ1 and λ2:

RRλ1,λ2
=

L(λ1)

L(λ2)
(2)

– hence the name ratio-of-ratios. Recognizing that Sp02 =
ρO2

ρO2
+ρHb

, where ρO2
and ρHb

denote the oxygen-saturated and
oxygen-unsaturated hemoglobin, respectively, and dividing the
numerator and denominator of Eq. 2 by ρO2 + ρHb

, we get

Sp02 =
ϵHb

(λ1)− ϵHb
(λ2)RRλ1,λ2

(ϵO2(λ2)− ϵHb
(λ2))RRλ1,λ2 + ϵHb

(λ1)− ϵO2(λ1)
.

(3)

B. Ratio-of-ratios on smartphones using linear regression

Equation (3) cannot be implemented on off-the-shelf smart-
phones without knowledge of all the coefficients. However,
studies [14], [24] have shown that it can be approximated using
a linear model as follows:

SpO2 = A×RR(λ1, λ2) +B (4)

This equation enables the implementation of the ratio-of-
ratio method on any smartphone using linear regression. RR
values are measured empirically and used to train a linear
regression model for estimating the coefficients A and B.

1) Measuring RR values on smartphones: The RR ex-
pression, Eq. (2), can be simplified by introducing δ(λ) =

Is(λ)− Id(λ). Indeed δ(λ)
Id(λ)

is small – the absorbance of the
blood changes lightly from systole to diastole. As a result,
RR(λ1, λ2) measurements can be made using

RR(λ1, λ2) ≈
δ(λ1)
Id(λ1)

δ(λ2)
Id(λ2)

. (5)

This approximation is significant since measuring systolic
and diastolic intensities per se is not necessary anymore. We
measure instead a base (constant) intensity DCλ1

= Id(λ1)
and variations ACλ1

= δ(λ1) over this baseline, significantly
simplifying the implementation.
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Fig. 1: Experimental setup

III. SMARTPHONE PULSE OXIMETRY : CHALLENGES AND
OPPORTUNITIES

Unlike dedicated pulse oximeters, smartphones use a flash-
light covering a wide spectrum (400-800nm [16]) and a high
resolution three-channel bitmap camera. Measuring oxygen
saturation using a smartphone requires carefully applying the
ratio-of-ratios method introduced in Section II-B on a video
sequence. It involves measuring RR2 values using Equation 5,
followed by linear regression for estimating the A and B co-
efficients of Equation 4. Therefore, the challenge in accurately
estimating SpO2 using a smartphone lies in how the RR are
measured, both during training and inference.

A. Baseline approach for measuring RR

The baseline approach for measuring RR, the basis of most
works on this topic [14], [16], [17], [22], starts with a video of
the subject’s finger placed over the camera and flashlight. The
average intensity of each channel for every video frame is col-
lected resulting in three photoplethysmogram (PPG) signals,
one for each channel. The AC/DC ratio is then calculated for
each signal: taking as AC the amplitude of the oscillations of
the PPG signal, and as DC the baseline of the signal. Taking
as λ1 the red channel and λ2 the green (or blue) channel, the
RR is finally obtained using Equation 5.

B. Analyzing the baseline approach

The objective of this section is not a thorough and large-
scale analysis of the baseline approach for measuring RR.
It is instead to introduce the simplest test case capable of
shedding light on the complexities of the RR measurements
on a smartphone and their underlying reasons.

Experiment: We design and conduct a controlled experi-
ment using the setup depicted in Fig. 1 with three different
users exhibiting healthy and stable SpO2 levels (around 99%).
Each user sits in a comfortable position and places their hand
on a table with the palm facing up. The user’s middle finger
is placed on the camera of a OnePlus 7T smartphone running
a custom application collecting video data, while the index
finger is connected to a CMS-50E Pulse Oximeter [5] for
establishing the ground truth (more details in Section VII-C).
We train the linear regression model using the SpO2 variation
protocol presented in Section VII-B, and test it while SpO2 is
naturally constant.

Results: Fig. 2 plots the RR values, predicted SpO2 and the
prediction errors for all three users. Fig. 2a shows that while

2For simplicity we write RR instead of RR(λ1, λ2).

the SpO2 levels are constant throughout the experiment the RR
values are highly unstable. This results casts serious doubts
on the feasibility of using Equation 4 for estimating SpO2 on
smartphones – no values for the A and B coefficients could
associate the RR values observed in Fig. 2a to the same SpO2
value. It is therefore no surprise that Fig. 2b and Fig. 2c show
highly erroneous SpO2 predictions.

Implication or the case for consistent RR: This section’s
test study shows that the ratio-of-ratios method can be un-
dermined by inconsistent RR measurements. Therefore, the
smartphone-based pulse oximetry challenge reduces to the
challenge of consistent RR measurements. Qualitatively, we
refer to RR measurements as consistent if for a given SpO2
level the RR measured using a smartphone are similar.

C. The quest for consistent RR values

The baseline approach being highly inaccurate due to highly
unstable RR values, different approaches have been proposed
for acquiring better RR values. Certain approaches have pro-
posed custom add-on hardware [16] filtering the flash light
to allow only a precise wavelength. Aiming for solutions
without hardware add-on, other approaches have focused on
the primary factors behind the RR values. The RR being
measured off the PPG signal, most focus has been on the PPG
signal quality [17], [18], [21] while some focus on a particular
region of the frame [14], [22]. In the following, we investigate
the approaches requiring no hardware add-on.

1) The curious case of the PPG signal quality: With the
RR a function of the PPG signal, a reasonable direction is
to first acquire a good quality signal before applying the RR
method. We investigate this approach empirically:

Methodology: To evaluate the relation between signal qual-
ity and RR consistency, we look back at the data of Fig. 2.
We select three RR values – two among those leading to
erroneous SpO2 predictions and one among those leading to
the accurate SpO2– and analyze the respective PPG signals.
Since the source of the PPG signal is the cardiac activity,
we use Qkurt in our analysis, a metric quantifying the pu-
rity of a signal related to cardiac activity [25]. Specifically,

QKurt(s) =
kurtosis

(
FFT (s)

)
kurtosis(Ps)

, where FFT is the Fast Fourier
Transform and, Ps, the perfect sine wave with frequency
corresponding to the heart rate.

Results: Fig. 3 shows that the RR values under consider-
ation are computed off excellent PPG signals. The respective
red and green channel signals exhibit their highest peaks
around the ground truth heart rate (72 bpm). The Qkurt values
of all signals are nearly perfect. Nevertheless, the RR values
are highly different. More important, two of the RR values
lead to erroneous SpO2 predictions.

Implication: While involving only three RR values, the data
demonstrates that excellent PPG signals can lead to highly
different RR and SpO2 prediction – even if the ground truth
SpO2 is constant. As a result, the signal quality can be a poor
proxy for consistent RR values. In Sec. III-D, we provide an
intuition as to the reasons behind this finding.
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Fig. 2: SpO2 measurements using the ratio-of-ratio (RR) method on three different users exhibiting SpO2 around 99%. The RR
values vary significantly (Fig. 2a) even if the ground truth SpO2 remains constant throughout the experiment – making linear
regression extremely challenging. The result is a significant amount of errors in the predicted SpO2 values (Fig. 2b, Fig. 2c).
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Fig. 3: PPG signals off which three RR values of Fig. 2 are computed. The signals are very similar in terms of frequency and
heart rate evaluation – highest peak around the actual heart rate frequency (72 bpm), with spectrum having very similar shape
and QKurt values. Nevertheless, the respective RR values are very different, as is the quality of the SpO2 prediction.

2) Location, location, location – and a new (RR) map:
Instead of using PPG signal quality, an alternative approach
is to simply use the central region of the image for all RR
calculations and SpO2 predictions [14], [22]. The intuition
being that lighting conditions should be more uniform in this
area, leading to consistent RR values.

Methodology: To evaluate the physical location-based ap-
proaches, we introduce what we refer to as the RR Map. The
input frame is divided into cells and for every cell a PPG
signal and an RR value are computed – the set of all the cell
RR values of a particular video input constitutes its RR Map.

Results: Fig. 4 shows the RR Map at two different time
instances of the data of Fig. 2. The data leads to two main

observations: First, RR values from a specific region (central
or not) can be highly inconsistent – they vary significantly
in time and space even if the ground truth SpO2 is constant.
Focusing on cells from the central region – (6,5), (8,5) and
(8,4) – shows that the respective RR values are very different.
Furthermore, they vary significantly from one time instance
to the other. A second observation is that RR values from
physically-distant cells can be consistent. Zooming in on cells
(1,9), (13,4) shows that their respective RR values are very
similar and remain stable from one time instance to the other.

Implications: The RR Map values of cells (6,5), (8,5) and
(8,4) underline the difficulty of reliable SpO2 predictions using
a fixed region of the frame in particular, and a physical region
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Fig. 4: RR Map at two time instances, t1,t2 of the same video
collected while SpO2 is constant and equal to 98%. i, and j
denote the image cell indices.

in general. On the other hand, the fact that the physically
distant cells, (1,9), (13,4), have similar and stable RR values
is leveraged in Section III-E for introducing a new way of
selecting consistent RR values.

D. RR (in)consistency – the underlying reasons

The model based on Beer-Lambert’s law has some limi-
tations. It assumes that monochromatic light rays pass com-
pletely through the finger and are reflected specularly back to
the camera, ignoring the complex phenomena of scattering and
refraction. Light rays arriving at the camera sensor undergo
an optical path that is subject to these phenomena, including
intermediary reflections inside the finger, and whose impact
can depend on the smoothness of the incidence region and
the angle of incidence. It is as if each pixel of the camera is
subject to rays following different virtual paths through the
finger, producing different RR values for the same SpO2. Fur-
thermore, the temporal volatility of the RRs can be explained
by the fact that these virtual paths change, depending on the
disturbance generated by the micro-movements of the finger.
Some paths are however more stable than others: the paths
for which the overall configuration of the finger surface, the
camera and the flash do not change much, despite the micro
movements. The Meta-Region of Interest introduced in the
next section is aimed at identifying the more stable paths.

E. A way forward – the Meta-Region of Interest

The key observation of our work, paving the way for
SmartPhOx’s meta-region of interest, is informed by intuition
and empirical evidence. Intuitively, while the finger is not
perfectly flat and never applied with the same pressure, there
must be regions of the fingers for which the light pathways
are similar. These regions need not be contiguous in time and
space. The intuition is supported empirically by the RR Map
of Fig. 4 showing cells (1,9) and (13,4), non-contiguous in
space, produce similar and stable RR values in an experiment
involving a stable SpO2 level. The challenge, however, is
automatically identifying the regions leading to consistent RR
values. Primary factors, the focus of previous works are shown
to fail: PPG signal quality is shown to be a poor proxy; the
areas with consistent RR values are not necessarily contiguous,
excluding an approach based on a particular physical area.

We propose to forego using primary factors and to rely on
the the RR values themselves to identify good RR values. Us-
ing RR values to essentially filter RR values leads to the idea
of Meta-Region of Interest – Meta-ROI, the central element of
SmartPhOx. Turning this idea into a robust smartphone-based
solution raises several scientific and system challenges, which
we detail and address in the following sections.

IV. SMARTPHOX SYSTEM OVERVIEW

Fig. 5 shows a high-level depiction of SmartPhOx ’s archi-
tecture. It comprises three modules:
1) Hardware: The SpO2 measurement starts with the subject

placing the finger on the smartphone flashlight and camera.
2) Data sensing: The smartphone camera generates a video

during the measurement session. Section V introduces
methods for customizing the video recording and trans-
forming the data into the RR Map.

3) Algorithms: Section VI formalizes the notion of consistent
RR values and introduce an algorithm that take as input the
RR Map and identifies the Meta-ROI. The latter is used for
estimating SpO2 using the ratio-of-ratio method described
in Section II-B.

V. DATA – RR MAP CONSTRUCTION

A. Data sensing

The first step in SmartPhOx is recording a video session
while the user places the finger on the smartphone flashlight
and camera. Selecting its duration involves satisfying two
constraints. It needs to be long enough to allow the calculation
of several RR values for identifying time-consistent RR values.
And, a single RR calculation requires a few seconds of PPG
signal [14], [26]. Let w denote the PPG signal length for
a single RR calculation and Z the number of consecutive
RR values necessary for training and prediction. SmartPhOx
calculates RR values using a sliding window of size w. Thus,
the video session duration is T = Z + w − 1 seconds.

B. RR Map computation

Once a video consisting of 30× T 3-channel (Red, Green,
Blue) frames is obtained, the frame surface is divided into X×
Y cells. The choice of X and Y represents a tradeoff. Higher
values translate to more cells and a finer the segmentation of
the frame, enabling a more precise selection of the RR values.
However, this leads to smaller individual cells with less data on
their surface, making their RR more sensitive to noise induced
by the camera acquisition chain. We evaluate this trade-off in
Section VIII. To compute the RR of a cell from the PPG signal,
recall from Sec. II-B that RR ≈ ACλ1

/DCλ1

ACλ2
/DCλ2

. Using the green
and red PPG signals as λ1 and λ2 of each cell, we compute its
RR by selecting as AC the standard deviation of the filtered
signal, and as DC the average of the raw signal.

For every cell, (x, y), x ∈ {1, 2, ..., X}, y ∈ {1, 2, ..., Y },
we obtain a vector

RR(x,y) =
[
rr

(x,y)
1 , rr

(x,y)
2 , ..., rr

(x,y)
Z

]
(6)
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where Z is the number of RR values computed over the
window T . Therefore, the RR Map can be seen as a set of
X ×Y , Z-dimension vectors, with X ×Y denoting the space
dimension and Z, the time dimension. For the rest of the paper,
we use the terms cell and Z-dimension vector interchangeably.

VI. META-ROI ALGORITHM

The basic premise of our work, as developed in Section III,
is that accurately estimating SpO2 requires consistent RR
values. In this section, we formalize the notion of consistency
and introduce an algorithm for identifying the most consistent
RR values – the Meta-ROI.

A. Space-time consistency in the RR Map

To formalize the notion of RR consistency, first introduced
qualitatively in Section III-B, we draw on the empirical
study of Section III and the cluster analysis. With the data
showing RR values vary across frame regions and time, we
define consistency in space and time. By construction, the RR
Map includes the space and time dimension. Therefore, we
consider RR cells to be consistent if they belong to the same
cluster produced by a clustering algorithm applied on the RR
Map. The clusters themselves are considered time-consistent
regions. Formally:

Definition 1 (Space-time consistency): Let
S = {S1, S2, ..., Sk} be a clustering of the RR Map
cells. Two cells are considered consistent in space and
time if they belong to the same cluster in S. The clusters
{S1, S2, ..., Sk} are referred to as space-time consistent
regions.

B. Meta-ROI algorithm

In this section, we address the challenge of identifying
the best among the space-time consistent RR Map regions.
Referred to as the the meta-region of interest (Meta-ROI), it
includes the RR values SmartPhOx’s linear regression model
will eventually associate with a particular SpO2 value.

A straightforward solution could be to approach this chal-
lenge as fundamentally a clustering problem and simply use an
efficient heuristic for k-means. However, owing to its origins
as a quantization technique [27], there is no simple way to
choose the k parameter. More important, our objective is not to
reduce the dimensionality of the RR Map but rather to identify
the Meta-ROI.

Algorithm 1: Meta-ROI algorithm
Input: RR MAP [X][Y ][Z]
Output: The meta region of interest, Meta Roi

1 for K := 2 to K MAX do
2 Centroids[K][Z] = k means (RR MAP, K);
3 Compute DB(Centroids[K]), using Eq.(8);
4 if DBk < minimum DB then
5 minimum DB = DB;
6 for i := 1 to K do
7 Calculate cv(Centroids[i]) using Eq.(7);

8 Meta Roi = cluster with minimum cv;

9 return Meta Roi;

Our solution to this two-pronged problem is a divide-and-
conquer approach. We first address the challenge of identifying
the best among the space-time consistent RR Map regions,
assuming the k parameter is known. Subsequently, we focus
on addressing the challenge of identifying the k parameter.

To identify the best space-time consistent region, we intro-
duce a new consistency metric. The metric needs to satisfy
two requirements. It needs to quantify the consistency of a
given cell cluster. Moreover, it needs to allow a meaningful
comparison of the k clusters with different numerical values
so as to identify the Meta-ROI. To meet these requirements,
we use the coefficient of variation. It measures the dispersion
of a population, allowing to quantify the consistency of a
given cluster. And it is normalized, enabling a fair comparison
between different clusters. Specifically:

Definition 2 (Consistency metric): Let S = {S1, S2, ..., Sk}
be a clustering of the RR Map cells and C = {C1, C2, ..., Ck}
the respective set of the Z-dimension centroids. The time-
consistency metric of a cluster, Si, is defined as the coefficient
of variation of its centroid vector, σ(Ci):

cvi =
σ(Si)

µi
=

√√√√ 1

Z

Z∑
z=1

(Ci,z − µi)2 × 1

µi
(7)

where µi =
1

Z

Z∑
z=1

Ci,z.



w 10 s
T 15 s
RR Map Z-dimension 6
RR Map cell size 94× 56 px
Video resolution 1260× 720 px

TABLE I: SmartPhOx implementation parameters.

Identifying the best value of the parameter k is a decades-
old problem [28], [29] with no simple solution. The naive
approach of iterating over different values of k until the con-
sistency metric of Definition 2 is minimized would not work
as it could converge to trivial, single-cell clusters. To strike a
balance between space-time consistency and region size, we
couple the consistency metric with the Davies-Bouldin (DB)
index [28], one of the classic validity indices for analysing
clustering. Unlike its main alternative, the silhoute [29] index,
which is focused on the cluster density, largely addressed by
the consistency metric, the DB index rewards the creation of
distinct clusters. Mathematically,

DB =
1

k

k∑
i=1

maxj ̸=i

(
di + dj
dij

)
, (8)

with k the number of clusters, di(dj), the average (Eu-
clidean) distance of all cells in cluster i(j) from its centroid,
and dij the distance between the centroids of clusters i and j.

The consistency metric and the DB index pave the way
for our algorithm for identifying the Meta-ROI (sketched in
Algorithm 1). It proceeds by making consecutive calls to a
k-means algorithm with increasing values of the parameter k
(lines 1, 2) up to a limit of K MAX. Since the DB index
is smallest for well-distinct clusters, the algorithms looks to
minimize it (line 4). Every time a clustering with a smaller
DB index is identified, the consistency metric is used for
identifying the best cluster (line 5). The algorithm returns the
most consistent cluster of the clustering with the smallest DB
index as the Meta-ROI. A key parameter of Algorithm 1 is
obviously the K MAX. In our experiments, the smallest DB
index was reached with k between 2 and 6, so we set the
default value of K MAX conservatively to 10.

VII. IMPLEMENTATION AND DATASET

A. Implementation

We implemented SmartPhOx as a standalone Android appli-
cation. The signal processing component is implemented using
the IIRJ library [30]. The k−mean clustering is implemented
in Java. Table I shows the default parameter values used in
the implementation (we evaluate the impact of these values
on the performance of SmartPhOx in Section VIII-B). Table II
shows the processing times on off-the-shelf smartphones of the
SmartPhOx implementation when using the default parameter
values of Table I.

B. SpO2 variation protocol

Ideally, we would test SpO2 on subjects suffering from
hypoxia, especially COVID-19 patients but in the current

RR Map computation Meta-ROI algorithm Linear Reg. Total
OnePlus 8t 27 ms 30 ms 0.2 ms 57.2 ms
Oneplus 7T 30 ms 32 ms 0.2 ms 62.2 ms
Huawei P30 57 ms 86 ms 0.5 ms 143.5 ms

TABLE II: SmartPhOx processing time on various phones.

context it proved infeasible. Therefore, we have developed
a protocol for inducing the oxygen level variation in healthy
volunteers. The protocol starts with breathing normally for the
first 30 s followed by a stop-n-go process of breathing/holding
their breath, exhaling/holding their breath. The objective is
to induce a gradual decrease and increase of SpO2, thus
generating a richer set of values. In particular, the volunteer
is asked to take a deep breath and then hold it until starting
to feel discomfort, then (b) exhale, followed by holding the
breath until feeling discomfort again. At this point the SpO2
reaches its low point, typically in the mid-to-high 80’s (%).
To raise SpO2 gradually, the volunteer is asked to take a
few consecutive short breaths, each followed by holding until
discomfort, returning gradually to a normal breathing pattern.

C. Data collection procedure

To collect the evaluation data, we followed the procedure
illustrated in Fig. 13. The volunteer is asked to sit in a
chair with their hand resting on the table. A pulse oximeter
(CMS50E) is clipped on their index finger while the back
camera of the smartphone is placed on the middle finger. The
person is then asked to apply the SpO2 variation procotocol,
described in Section VII-B. The average duration of each SpO2
measurement session is 3min.

a) Ground truth: To acquire the ground truth data,
we use the off-the-shelf CMS50E pulse oximeter [5], which
allows measurement of SpO2 in the range of 35%-99% with a
resolution of 1% [32]. It is an FDA approved device, widely
used in literature for heart rate or SpO2 monitoring [33].

As the oximeter is placed on the index finger while the
smartphone on the middle finger, a question arising is whether
it is valid to collect the ground truth on a different finger
than the one SmartPhOx is using. To address it, we perform
experiments with two oximeters placing one in each of the
index and the middle finger. We then apply a T-test on the
collected data to evaluate the null hypothesis that the pairwise
difference between recordings of both fingers has a mean equal
to zero at the 5% significance level. The test failed to reject the
null hypothesis (p-value = 0.6669 > 0.05), providing support
for using readings from index finger as ground truth while
SmartPhOx is collecting measurements on the middle finger.

D. Data set

The data set is summarized in Table III. We evaluate Smart-
PhOx on 37 participants and using three different smartphones,
OnePlus 8T, OnePlus 7T and Huawei P30 Lite. Both Oneplus
phones use a Sony IMX586 as main camera sensor, while
the Huawei a Sony IMX600y. Their focal lengths are 26mm,

3Our experiments are in agreement with the ethics defined in the Helsinki
Declaration [31].



Age 18 - 60
Average: 30.31; Std: 12.37

Gender Male: 27,
Female: 10

Fitzpatrick phototyping scale I:3, II:20, III: 3, IV: 2, V: 2, VI: 7

Oxygen level 85% - 99%
Average: 95.8%; Std: 3%

TABLE III: Data set summary
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Fig. 6: Overall SpO2 prediction results.

26mm and 28mm, and their apertures f/1.7mm, f/1.6mm and
f/1.8mm, respectively. To address concerns regarding racial
bias in SpO2 measurements, especially as it regards Black
patients [34], our study includes volunteers with different
skin pigmentation, as classified by the Fitzpatrick phototyping
scale [35].

VIII. EVALUATION RESULTS

In this section, we perform a careful evaluation of SpO2,
aimed at understanding its overall performance, the impact of
key system parameters and experimental settings, and finally
its utilization of system resources.

A. Overall SpO2 prediction performance

Methodology: SmartPhOx is evaluated using leave-one-
out cross validation, with data from 24, 12 and 1 users
for train, validation and test sets, respectively. The ground
truth is acquired as described in Section VII-C. We compare
SmartPhOx’s meta-ROI with the following approaches for
selecting the RR values:
• Full-frame: Adopted by several works [16]–[18], [21], it

uses the entire frame as the region of interest. The PPG
signals are constructed by stacking in time the average
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Fig. 7: Raw SpO2 results for 6 participants.

value of every frame for the corresponding channel. The RR
values are then computed from the resulting PPG signals.

• Central-ROI: It involves using the central 50x50 pixels of
the frame [14], [22]. The intuition behind this approach is
that the central part of the image should be least impacted by
movement or ambient light, and therefore the most stable.

• Max-AC: It involves using the cell producing the largest
value of the green channel AC [36]. The idea is that blood
has a bigger impact on a PPG signal with a large pulse,
making it, theoretically, of better quality.
Results: Fig. 6 plots the CDF (Fig. 6a) and the Root Mean

Square Error (RMSE) (Fig. 6b) of the SpO2 prediction of all
the considered approaches. To put the results into context,
Fig. 6b includes the FDA RMSE clearance threshold for pulse
oximeters [15]. The data shows SmartPhOx having the best
performance. The median prediction error for SmartPhOx is
1.75% against 2.2% for the second-best method. The RMSE
data paints a similar picture, with SmartPhOx delivering an
RMSE of 3.04 % versus 3.77, 4.84, 4.43% for Central-
ROI, Max-AC and Full-Frame, respectively. Most important,
SmartPhOx is the only approach to meet the FDA RMSE
requirement for pulse oximeters4.

For a look into the raw data, Fig 7 shows the SpO2 values
reported by all methods during a testing session. In the interest
of clarity, we show the data for 6 users. As the subjects are
following the SpO2 varying protocol, their levels drop from
the healthy values of around 99% to under 90%. The data
shows SmartPhOx is capable of predicting the ground truth
the best, which is in line with the analysis of Fig. 6.

B. Statistical analysis of the SmartPhOx performance

We conduct a one-tailed T-test on SmartPhOx’s prediction
errors observed in the experiments of Section VIII-A. In
particular, the statistical test is aimed at answering the question
of whether SmartPhOx’s prediction error is on average lower
than a given value, x. Towards this, we perform a one-tailed
T-test over the set of SmartPhOx’s prediction errors for various
values of x. Fig. 8 shows the p-value for different values of x.

4Obviously, this result does not imply FDA clearance, a process beyond
the scope of this work.
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PhO2 [16] SmartPhOx
Number of Subjects 6 37
Skin pigmentation Asian: 4, White: 2 Fitzpatrick I-VI
SpO2 range 81 % - 99 % 85 - 99 %
RMSE N/A 3.04 %
Mean Absolute error, Std Absolute error 2.5 %, 1.62% 2.31%, 1.96%
Absolute error, 80th percentile 3.5 % 3.83 %
Hardware add-on Yes No

TABLE IV: SmartPhOx vs PhO2. The data for PhO2 as
reported in [16] .

The data shows that the probability of SmartPhOx’s average
prediction error being above a given x drops below 0.05 for
x = 2.39, and below 0.005 for x = 2.43.

C. Comparison with a complete-system solution

In this section, we aim at contextualizing the performance of
SmartPhOx by comparing it with PhO2 [16], a state-of-the-art
system using the ratio-of-ratios (RR) method.

Methodology: With a full-fledged, in-house implementa-
tion of PhO2 being infeasible due to its using a custom-
built hardware add-on, we compare with results reported
in [16]. For SmartPhOx, we use the same data set and
training/validation/testing protocol as in Section VIII-A.

Results: Table IV compares the performance evaluation of
SmartPhOx with that of PhO2. It shows that SmartPhOx’s 80th

percentile of the absolute prediction error is very close to that
reported for PhO2 (no RMSE values are reported in [16]).

Implication: The results show that the meta-ROI approach
of identifying regions with consistent RR values introduced
by SmartPhOx can relax the requirement for custom-built
hardware.

D. Sensitivity analysis

In this section, we evaluate SmartPhOx’s performance as
function of its key parameters. The RR Map being fundamental
to its functionality, we focus on the RR Map cell size –
defining the map’s X,Y dimensions – and the RR Map Z-
dimension.

1) Sensitivity to RR Map cell size: We vary the RR Map cell
size from 32×18 px to 256×144 px. For our implementation
using a 1260× 720 px video (Table I), this corresponds to an
X,Y dimension ranging from 5× 5 to 40× 40.

Results: Fig. 9 reveals a binary behaviour. For large cell
sizes ( 256×144 px, 128×72 px), the X,Y dimension of the
RR Map (5×5, 10×10) is too coarse grained for SmartPhOx’s
meta-ROI algorithm to identify highly consistent meta-region
of interests. However, once the cell size is 96 × 54 px or
smaller the RMSE drops below the FDA clearance threshold.
Thus, SmartPhOx uses 96× 54 px by default.
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Fig. 9: Impact of cell size on SmartPhOx performance.
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Fig. 10: Impact of Z dimension on the RMSE of SmartPhOx.

2) Sensitivity to the size of Z-dimension: Fig. 10 depicts
the performance of SmartPhOx in terms of RMSE as function
of the RR Map Z-dimension size. The data shows the im-
portance of time consistency, embodied by the Z-dimension,
in selecting the best meta-region of interest. When Z = 1,
essentially eliminating the time dimension, the RMSE is well
above the FDA clearance. As the Z-dimension increases, the
performance of SmartPhOx improves significantly to meet
the FDA requirement. Further, the data shows that once a
time-consistent meta-region is identified, increasing the Z-
dimension brings no additional gain. As a result, SmartPhOx
uses Z = 6 as the default value.

E. Varying experimental settings

In this section, we evaluate the impact of two key exper-
imental parameters in the performance of SmartPhOx: finger
on which it measures SpO2, and ambient lightning.

Methodology: With the help of seven of our volunteers,
we run SmartPhOx with the smartphone placed successively
on the middle, ring and little finger. In a second step, we run
SmartPhOx in a completely dark room, with the smartphone
on the middle finger. We use two settings for the dark room
conditions: in one – Dark room – we use the regressor fitted
with the main data set, in the second – Dark room* – we use
fit the regressor with data collected in dark room conditions.

Results: Figure 11a shows a similar error distribution for
all fingers – median error of 1.8, 2.15 and 2.1%, respectively
– suggesting that SmartPhOx is robust to the finger selection.
We do observe a higher RMSE when using the pinky finger,
which may be due to the fact that it is the smallest finger,
making the light distribution over its surface more sensitive to
random movements.

Fig. 11b shows that testing SmartPhOx in a completely dark
room does not significantly alter its performance. The data
shows that training the regressor with dark-room data (Dark
room*) improves slightly the performance of SmartPhOx when
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Fig. 11: Varying experimental conditions.

Device CPU (%) Memory
(MB)

Energy
(% of time)
[L/M/H]

Oneplus 7t 24 176.9 90/10/0
Oneplus 8t 23 189.3 87/13/0
Huawei P30 Lite 26 298.7 95/5/0

TABLE V: SmartPhOx’s resource utilization.

compared to normal lighting conditions. This may be due to
there being less RR variability in the dark.

F. System resources utilization

We evaluate SmartPhOx’s utilization of CPU, memory and
energy by using Android Profiler [37] and report the results
in Table V. The intrinsic multiprocessing nature of the mobile
phone operating systems makes it very challenging to measure
the exact energy consumption of a given application. Thus,
we show the percentage of time Android Profiler reports
SmartPhOx’s energy consumption as being Light (L), Medium
(M) or Heavy (H). The data shows that SmartPhOx’s uti-
lization of resources is limited, especially in terms of energy
consumption.

IX. RELATED WORK

Prior works on pulse oximetry can be grouped into two ma-
jor categories: a) Works and systems using dedicated hardware
dating back to the 1930s, b) More recent works built around
the smartphone.

(a) Dedicated hardware: A pulse oximeter is a small
portable device for noninvasive monitoring of a person’s oxy-
gen saturation in the blood. The idea dates back to 1935 [2],
with the first pulse oximeter oximeter based on the ratio of
red and infrared light absorption developed in the ’70s [4].
Today, pulse oximetry remains an active area of research and
development, leading to a plethora of devices that can be
attached to the fingertip [5]–[7], earlobe [8], [38], forehead [9],
[39], [40], trachea [41] and ring type [42] products. Despite
the easy access to pulse oximeters, dedicated hardware can be
impractical in everyday life, not least because, as the COVID-
19 pandemic revealed, often people are not aware their oxygen
level needs monitoring.

(b) Smartphone-based sensing: Recognizing smartphones
as powerful sensing devices already in people’s hands, re-
searchers have proposed harnessing their capabilities for vital
signs monitoring [11]–[13]. In the particular case of oxygen
saturation, [14] was among the first to apply the ratio-of-ratios
method for estimating SpO2 using a smartphone. The RR

values are computed over a 50x50px region of interest (ROI) at
the centre of the frame. However, as our experiments showed,
computing RR values off a particular physical frame area can
lead to inaccurate SpO2 values. To address this issue, [17],
[18] integrate into the RR calculation the camera quantum
efficiency, which represents the sensitivity of each channels
(red, green, blue) of the image produced by the camera to
the different wavelengths of the input light. While accurate,
these solutions require knowledge of the camera quantum
efficiency – something to which only manufacturers have
access. PhO2 [16] proposes to attach to the smartphone camera
a custom-made device mounted with two chromatic filters,
each allowing a precise wavelength to pass. The result is a
system allowing SpO2 predictions with very good accuracy.
Nevertheless, the custom-built hardware add-on, while manu-
factured with the help of 3D printing, limits its large-scale
application. Recently, dedicated oxygen monitoring sensors
are being integrated in smartwatches [19], [43], [44], and
some high-end smartphone models [20], [45], [46]. While
very accurate, such solutions leave out a large section of users
who have older smartphone models, particularly in develop-
ping countries. SmartPhOx, on the other hand, requires no
custom hardware and can work on essentially any smartphone
currently in people’s hands.

X. CONCLUSION AND DISCUSSION

We presented SmartPhOx, a smartphone-based pulse oxime-
try solution requiring no custom hardware. Using a carefully
designed empirical study to inform our work, we identified the
limitations of current approaches and introduced the notion
of Meta-ROI. We transformed the Meta-ROI concept into a
complete-system solution capable of running on a smartphone
A carefully performance evaluation using an Android imple-
mentation of SmartPhOx and involving 37 healthy volunteers
showed that it is the first smartphone-base pulse oximetry
solution to meet the FDA requirement for Root Mean Square
Error (RMSE) without needing custom hardware.

This work has its limitations. Additional cycles of engineer-
ing and testing will be necessary before it can fully meet the
strict FDA requirements. In particular, SmartPhOx’s evaluation
needs to be extended to include non-healthy subjects. FDA
requires testing in the SpO2 range of 70% to 100%, while in
healthy subjects on which we could evaluate SmartPhOx our
protocol could not induce SpO2 below the low 80s.
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