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Abstract
Developing models and algorithms to draw causal inference for time series is a long standing statis-

tical problem. It is crucial for many applications, in particular for fashion or retail industries, to make
optimal inventory decisions and avoid massive wastes. By tracking thousands of fashion trends on social
media with state-of-the-art computer vision approaches, we propose a new model for fashion time series
forecasting. Our contribution is twofold. We first provide publicly12 the first fashion dataset gathering
10000 weekly fashion time series. As influence dynamics are the key of emerging trend detection, we
associate with each time series an external weak signal representing behaviors of influencers. Secondly, to
leverage such a complex and rich dataset, we propose a new hybrid forecasting model. Our approach com-
bines per-time-series parametric models with seasonal components and a global recurrent neural network
to include sporadic external signals. This hybrid model provides state-of-the-art results on the proposed
fashion dataset, on the weekly time series of the M4 competition [Makridakis et al., 2018], and illustrates
the benefit of the contribution of external weak signals.

Keywords: Hybrid models, Recurrent neural networks, Time series.

1 Introduction
Multivariate time series forecasting is a widespread statistical problem with many applications, see for in-
stance [Särkkä, 2013, Douc et al., 2014, Zucchini et al., 2017] and the numerous references therein. Para-
metric generative models provide explainable predictions with statistical guarantees based on a precise mod-
eling of the predictive distributions of new data based on a record of past observations. Calibrating these
models, for instance using maximum likelihood inference, often requires a fair amount of tuning to design
a time series-specific model to provide accurate forecasts and sharp confidence intervals. Depending on
the use case, statistical properties of the signal and the available data, many families of models have been
proposed for time series. The exponential smoothing model [Brown and Meyer, 1961], the Trigonometric
Box-Cox transform, ARMA errors, Trend, and Seasonal components model (TBATS) [Livera et al., 2011],
or the ARIMA with the Box-Jenkins approach [Box et al., 2015] are for instance very popular parametric
generative models. Hidden Markov models (HMM) are also widespread and presuppose that available obser-
vations are defined using missing data describing the dynamical system. This hidden state is assumed to be

1http://files.heuritech.com/raw_files/f1_fashion_dataset.tar.xz
2https://github.com/etidav/f1fashiondataset
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a Markov chain such that at each time step the received observation is a random function of the correspond-
ing latent data. Although hidden states are modeled as a Markov chain, the observations arising therefrom
have a complex statistical structure. In various applications where signals exhibit non-stationarities such as
trends and seasonality, classical HMM are not adapted. However, [Touron, 2017] recently proposed sea-
sonal HMM, assuming that transition probabilities between the states, as well as the emission distributions,
are not constant in time but evolve in a periodic manner. Strong consistency results were established in
[Touron, 2019] and Expectation Maximization based numerical experiments were proposed. Although these
works provide promising results, HMM are computationally expensive to train and are not yet well studied
for seasonal sequences with thousands of components.

In many fields, single or few time series have become thousands of sequences with various statisti-
cal properties. In this new context, classical time series specific statistical models show limitations when
dealing with numerous heterogeneous data. Recurrent neural networks and recent sequence to sequence
deep learning architectures offer very appealing numerical alternatives thanks to their capability of lever-
aging any kind of heterogeneous multivariate data, see for instance [Hochreiter and Schmidhuber, 1997,
Vaswani et al., 2017, Siami-Namini et al., 2018, Li et al., 2019, Lim et al., 2019, Salinas et al., 2020]. The
DeepAR model proposed in [Salinas et al., 2020] provides a global model from many time series based
on a multi-layer recurrent neural network with LSTM cells. More recently, applications using the Trans-
former model have been proposed [Li et al., 2019]. The Temporal Fusion Transformers (TFT) approach
is a direct alternative to the DeepAR model [Lim et al., 2019]. Unfortunately, all these solutions suffer
from two main weaknesses. Firstly, many of them are black-boxes as the final forecast usually does not
come with a statistical guarantee although a few recent works focused on measuring uncertainty in recurrent
neural networks, see [Martin et al., 2021]. Secondly, without a fine preprocessing and well chosen hyper-
parameters, these methods may lead to poor results and be outperformed by traditional statistical models,
see [Makridakis et al., 2018].

In this paper, we consider a new time series forecasting application referred to as fashion trends pre-
diction. Based on a cutting-edge image recognition technology, we built the first fashion dataset containing
10000 weekly sequences of fashion trends on social media from 01-01-2015 to 01-01-2019. This dataset has
very appealing properties: all time series have the same length, no missing value and there is no sparse time
series even for niche trends. The originality of our dataset comes from the fact that additional external weak
signals can also be introduced. With our fashion expertise, we detected several groups of highly influential
fashion users. Analyzing their specific behaviours on social media, we associate with each time series an
external weak signal representing the same fashion trends on a sub-category of users. They are called weak
signals because they are often alerts or events that are too sparse, or too incomplete to allow on their own an
accurate estimation of their impact on the prediction of the target signal. With this totally new application,
we aim at designing a model able to deal with such a large dataset, leveraging complex external weak signals
and finally providing the most accurate forecasts.

Recurrent neural networks are appealing to tackle our forecasting problem due to their capability of
leveraging external data. Recently, hybrid models combining deep neural network (DNN) architectures
with widespread statistical models to deal with seasonality and trends have been proposed, see for instance
[Zhang, 2003, Jianwei et al., 2019, Bandara et al., 2020]. The approach providing the most striking results
was proposed in [Smyl, 2020] in the context of the M4 forecasting competition [Makridakis et al., 2020].
Given a large dataset, a per-time-series multiplicative exponential smoothing model was introduced to es-
timate simple but fundamental components for each time series and compute a first prediction. Then a
global recurrent neural network was trained on the entire dataset to correct errors of the previous exponen-
tial smoothing models.

Following this work, we present in this paper HERMES, a new hybrid recurrent model for time series
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Étienne David, Jean Bellot, Sylvain Le Corff Nonparametric general translation HMM

forecasting with inclusion of external signals. This new architecture is decomposed into two parts: local
predictors and a global corrector. First, a per-time-series parametric statistical model is trained on each
sequence. Then, a global recurrent neural network is trained to evaluate and correct the forecast weaknesses
of the first collection of models. The external weak signals reveal the real potential of the hybrid approach: a
global neural network, able to leverage large amounts of heterogeneous data, deal with any kind of external
weak signals, learn context and finally correct weaknesses and errors of parametric models.

The paper is organized as follows. Section 2 introduces the proposed hybrid model. Then, the new
fashion dataset provided with this article is presented in Section 3. Section 4 describes the HERMES results
and comparisons with several benchmarks. Finally, a general conclusion and some research perspectives are
given in Section 5.

2 Hybrid model with external signals
We introduce a new hybrid approach for time series forecasting composed of two parts: a collection of per-
time-series parametric models, and a global error-corrector neural network train on all time series. Per-time-
series parametric models are used to learn local behaviours, to normalize sequences by removing trends and
seasonality, and to compute a first forecast. Then, gathering information of the first predictions and external
variables, a recurrent neural network is trained to correct the predictions provided by the first collection of
per-time-series models.

Consider N > 1 time series. For all 1 6 n 6 N and 1 6 t 6 T , let ynt be the value of the n-th sequence
at time t and yn = {ynt }16t6T be all the values of this sequence. The objective of this paper is to propose
a model to forecast all time series in a given time frame h ∈ N, i.e. we aim at sampling {ynT+1:T+h}16n6N

based on {yn1:T }16n6N .

2.1 Per-time-series predictors
The time-series-specific predictors compute, for each sequence, a first h-ahead prediction based on the
past. For all 1 6 n 6 N , we note fn(.; θnpredictor) the n-th parametric model of the n-th sequence
where θnpredictor are unknown parameters. Given the sequences {yn1:T }16n6N and the estimated parameters
{θnpredictor}16n6N , the time-series-specific forecasts {ŷpred,nT+1:T+h|T }16n6N are, for all n ∈ {1, . . . , N}, for
all i ∈ {1, . . . , h},

ŷpred,nT+i|T = fn(yn1:T ; θnpredictor)i .

During the M4 competition, the hybrid model of [Smyl, 2020] was based on a multiplicative exponential
smoothing model as the time-series-specific predictor. However, on sporadic time series, this choice leads to
poor results and instability. In this paper, a more general framework able to deal with any kind of per-time-
series models is provided. In Section 4, two versions of our framework are proposed. The first one is based
on an exponential smoothing as a reference similar to the baseline [Smyl, 2020] and the second one uses a
TBATS model [Livera et al., 2011] which provides better results as this parametric model includes Fourier
representations with time varying coefficients, and ARMA error correction.

In the specific application of fashion trends prediction, two main forms of standard weaknesses were
detected and defined for univariate parametric forecasts. The first one is a weakness of definition, when the
model is not well defined for its forecasting task. For instance, an additive model provides good predictions
on time series with additive seasonality but fails at handling multiplicative seasonalities. The second form,
harder to detect and correct, is the weakness of information. For non stationary time series, huge changes
of behaviours are not always predictable using the past of the sequence. In somes cases, these changes

3
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depend on external variables not considered by univariate parametric models. The difficulty is that the exact
influence of external variables on the main signal is mostly unknown. This motivates the introduction of
a global RNN trained on all time series and able to consider and leverage external signals. First forecast
examples of our new hybrid model are given in Figure 1.

2.2 Error-corrector recurrent model
The second part of the model is a global RNN, trained on all the N sequences to correct the weaknesses of
the first per-time-series parametric models. This task requires a thorough data pre-processing as recurrent
neural networks training is highly sensitive to the scale of the data and requires well-designed inputs. Since
no assumption about the scale of our time series was made, inputs require a careful normalization before
being fed to the RNN.

Let w ∈ N be the window size, usually this window is proportional to the forecast horizon w ∝
h. The RNN input is defined as the following normalized, deseasonalized and rescaled sequence znT =
{znT−w+i|T }16i6w, where, for all 1 6 n 6 N , 1 6 i 6 w and k = i− hbi/hc,

zn,TT−w+i|T =
ynT−w+i − ŷ

pred,n
T+k|T

ȳnT
, ȳnT =

1

w

w∑
i=1

ynT−w+i .

Let RNN(.; θcorrector) be the recurrent neural network model where θcorrector are unknown parameters.
Given the RNN input sequences {znT }16n6N and the global RNN estimated parameters θcorrector, the error-
corrector predictions {ŷcorr,nT+1:T+h|T }16n6N are, for all n ∈ {1, . . . , N}, for all i ∈ {1, . . . , h},

ŷcorr,nT+i|T = RNN(znT ; θcorrector)i · ȳnT .

Our hybrid model forecast is, for all 1 6 n 6 N and all i ∈ {1, . . . , h},

ŷnT+i|T = ŷpred,nT+i|T + ŷcorr,nT+i|T (1)

= fn(yn1:T ; θnpredictor)i + RNN(znT ; θcorrector)i · ȳnT .

2.3 Weak signal
Using well-fitted time-series-specific parametric models, the new hybrid network corrects the first form of
weakness and provides very good performance on the fashion dataset, see Table 2. Then, to correct the
second form of weakness, in addition to the N target time series, K ×N external sequences indexed from 0
to T are considered. For all 1 6 n 6 N , 1 6 k 6 K and 1 6 t 6 T , letwn,k

t be the value of the k-th external
sequence at time t associated with the sequence yn. Let wn = {{wn,k

t }16t6T }16k6K be all the values of
the weak signals associated with the n-th sequence. In addition, let wn

T = {{wn,k
T−w+i}16i6w}16k6K be

only the last w terms of the sequence. Concatenating znT and wn
T , a new input for the RNN is defined:

xn
T = {xnT−w+i|T }16i6w

= {znT−w+i|T , w
n,1
T−w+i, ..., w

n,K
T−w+i}16i6w .

Finally, for all 1 6 n 6 N and for all i ∈ {1, . . . , h} the final prediction becomes:

ŷnT+i|T = ŷpred,nT+i|T + ŷcorr,nT+i|T (2)

= fn(yn1:T ; θnpredictor)i + RNN(xn
T ; θcorrector)i · ȳnT .

An illustration of the proposed model is displayed in Figure 2.

4
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Figure 1: Hermes forecast examples. In green the prediction of the TBATS per-time-series predictors. In
red the final forecast of our HERMES hybrid model. (Top) Time series representing a shoes fashion trend
for females in The United States. (Bottom) Time series representing the vertical stipes texture fashion trend
for females in Brazil.
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Figure 2: Architecture of the hybrid model with weak signals.

3 Fashion dataset with external weak signals

3.1 Translate fashion to data
A collection of vision neural networks were designed and trained at detecting clothes details on pictures:
type of clothing (pants, shoes, tops, etc.), form, size, color, texture, etc. Then, fashion experts designed
fashion trends by aggregating these clothes details: a meaningful combination of items that represent an
existing trend in the fashion sphere. To finely represent human behaviours based on social media, a group
of thousands of random users, called a panel, was created on several geolocalisations. Analyzing every day
images shared on social networks by these panels with our computer vision algorithms, we can translate the
history of thousands of fashion trends in thousands of time series. All sequences have 261 time steps, from
2015-01-05 to 2019-12-31 with weekly values and no missing values. Each value represents the number of
users posts in a week where computer vision algorithms detected the fashion trend. As an illustration, an
example of fashion time series is given in Figure 3.

3.2 Fashion dataset
Due to the increasing use of social media and behaviour changes, a normalization step is applied to the raw
sequences. Each fashion trend is divided by its hierarchical parent category trend. Moreover, in order to
avoid removing the seasonality of all sequences, we deseasonalized the hierarchical parent category trend
before the normalization. For instance, as displayed in Figure 3, the raw Jersey Top trend for females in
China is divided by the deseasonalized global Top trend for females in China. The final normalized sequence
is expressed in share of category.

We therefore introduce a new dataset for fashion time series forecasting. It contains a sample of 10000
anonymized and normalized fashion trends for men and women, in 9 different categories and 5 geozones.
An overview of it can be found in Table 1. This collection of 10000 fashion trends was selected in order
to represent finely the issues faced by the fashion industry. For instance, some sequences show complex
behaviours with sudden changes, referred to as emerging or declining trends. A central point of this work is
to accurately detect and forecast such trends.
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Figure 3: Example of difference between the raw sequence and the normalized one. In this example, we nor-
malize by the deseasonalized global top fashion trend for females in China. (Top) Time series representing
the raw signal of a top fashion trend for females in China. (Bottom) Time series representing the normalized
signal of a top fashion trend for females in China.

Table 1: Fashion time series overview. For each couple geozone/category, the table gives the number of
trends (Female/Male).

Top Pants Short Skirt Dress Coat Shoes Color Texture

United States 411/208 149/112 47/22 29/- 20/- 208/151 293/86 38/44 85/81
Europe 409/228 134/114 48/21 28/- 20/- 211/159 303/78 41/42 87/74
Japan 403/218 136/107 49/31 28/- 23/- 185/149 311/78 46/42 92/65
China 424/202 147/114 46/29 27/- 27/- 178/161 310/78 41/47 88/77
Brazil 431/222 134/117 49/27 30/- 28/- 203/152 311/76 48/41 107/84

Total 2078/1078 700/564 239/130 142/- 118/- 985/772 1528/396 214/216 459/381
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Figure 4: A shoes trend of the fashion dataset. In black the main signal and in red its associated fashion-
forward weak signal. The shift between these two signals at the end of 2017/beginning of 2018 announces
the future burst of the trend.

3.3 Weak signal
In theoretical fashion dynamics [Rogers, 1962], different categories of adopters follow a trend in succession,
resulting in several adoption waves. Numerous social media influencers were selectioned by hand by fashion
experts. By aggregating them, a specific “fashion-oriented“ panel is created. With the same methodology
as for the main panel described in Section 3.1 and Section 3.2, a normalized time series representing each
fashion trend on this specific population is created. We named fashion-forwards this weak signal. For
all trends {yt}16t6T , let yf,nt be the value of the n-th fashion-forwards sequence at time t and yf,n =

{yf,nt }16t6T be all the values of this sequence. As we want to detect shifts between the main signal and the
fashion forward signal, the following input is computed for our hybrid model: for all n ∈ {1, . . . , N}, for
all t ∈ {1, . . . , T},

wf,n
t =

yf,nt

yf,nt + ynt
.

Values close to 0.5 indicate a similar behaviour between the influencers panel and the general panel. For
instance, an impressive emerging fashion shoes trend with its fashion-forwards weak signal is represented
in Figure 4.

4 Experimental results

4.1 Training
The dataset is split into three blocks, train, eval and test sets. The 3 first years are used as the train set,
the 4th year is kept for the eval set and the test set is made of the last year. The hybrid model is trained to
compute a one-year ahead prediction, h equal to 52, and the window size w is fixed at 104. Using the two
first years of the train set, a first per-time-series parametric model for each time series is fitted. With the
resulting collection of local models, a forecast of the third year is computed for each sequence. Corrector
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Figure 5: Temporal split for our training process. The three first years define our training set. The fourth
year is used as our eval set and the final year is reserved for the test set.

inputs are finally computed and the RNN is trained at correcting this first collection of third-year forecasts.
For the eval set, per-time-series predictors are fitted a second time using the three first years and forecasts of
the fourth year are computed. The eval set is used during training to control the learning of the RNN model
and prevent overfitting. The per-time-series predictors are fitted a last time for the test set using the four first
years. The final accuracy measures of all our models are computed on this test set. As an illustration, an
example of our split is shown in Figure 5.

For the first parametric per-time-series models, existing Python or R libraries are used to estimate the
different parameters θnpredictor. Depending of the choice of local parametric models, two versions of HER-
MES are proposed. The first one uses as predictors an additive exponential smoothing model as a reference
close to [Smyl, 2020]. The second one uses the TBATS model of [Livera et al., 2011] and achieves the best
accuracy results on the fashion dataset. The neural network architecture is summarized in Figure 6. It is
composed of 3 LSTM layers of shape 50 and a final Dense layer to provide the correct output dimension. A
classical Adam optimizer is used with a learning rate set at 0.001 or 0.005, the batch size is fixed to 64 and
the loss function is defined as follows:

`(ynT+1:T+h, ŷ
n
T+1:T+h|T ) =

1

ȳnT

h∑
i=1

|ynT+i − ŷnT+i|T | .

This choice of L1 loss function is motivated by its robustness to outliers which accounts for some time series
in the fashion industry with very specific behaviors. The loss and previous parameters are all set with a
grid search (additional materials can be found in Appendix B). The code is developed in Python using the
Tensorflow library. It allows the use of GPU to speed up the training process.

4.2 Benchmarks, hybrid models and Metrics
As benchmarks, several widespread statistical methods and deep learning approaches were selected. Using
the R package forecast and the Python packages statsmodels, tbats, for each time series, predic-
tions are computed with the following methods: snaive, ets, stlm, thetam, tbats and auto.arima. The forecast

9
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Figure 6: Architecture of the RNN corrector part of the HERMES framework. The same architecture is used
in the lstm benchmark model.

of the snaive method is only the repetition of the last past period. The ets model is an additive exponen-
tial smoothing with a level component and a seasonal component. The stlm approach uses a multiplicative
decomposition and models the seasonally adjusted time series with an exponential smoothing model. The
Thetam model decomposes the original signal in θ-lines, predicts each one separately and recomposes them
to produce the final forecast and tbats uses a trigonometrical seasonality. Finally, auto.arima is the R imple-
mentation of the ARIMA model with an automatic selection of the best parameters. A complete description
and references for these models can be found in [Hyndman et al., 2020]. As a deep learning approach, a
full LSTM (lstm) neural network composed of 3 LSTM layers of shape 50 and a final Dense layer of shape
52 is considered. Two versions of HERMES are proposed. They are called respectively hermes-ets and
hermes-tbats according to the per-time-series model choice. Moreover, two versions with the inclusion of
the weak signals (ws) are proposed. They are referred to as hermes-ets-ws and hermes-tbats-ws. In order to
provide a fair comparison, a lstm with the weak signals named lstm-ws is trained.

To compare the different methods, we use the Mean Absolute Scaled Error (MASE) for seasonal time
series. As our sequences have completely different scales, from 10−5 to 10−1, this metric was chosen to
compute a fair error measure, independent of the scale of the sequence and suited for our seasonal fashion
time series. The MASE metric is defined as follows, with m the seasonal period:

MASE =
T −m
h

∑h
j=1 |YT+j − ŶT+j |∑T−m
i=1 |Yi − Yi−m|

.

Detecting emerging and declining trends is a crucial issue for the fashion industry. A correct or incorrect
prediction could lead to good returns or massive waste due to overstock or unsold clothes. In addition to
the MASE accuracy metric, the different methods are also evaluated on a classification task and especially
differences between methods using weak signals or not. In a given year, an increasing trend is defined as a
trend that does more than 5% of growth on average with respect to the previous year. In the same way, a
decreasing trend is defined as a trend that declines by 5% on average or more. Other trends are classified
as flat trends. With this threshold, the proposed fashion dataset is almost balanced on the test set: There are
3087 increasing trends, 3342 decreasing trends and 3571 flat trends.
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Table 2: Results summary on the 10000ts Fashion dataset. For each metric, the average on all our time series
is computed. For approaches using neural networks, 10 models are trained with different seeds. The mean
and the standard deviation of the 10 results are displayed.

MASE ↓ ACCURACY ↑
mean std mean std

snaive 0.881 - 0.357 -
thetam 0.844 - 0.482 -
arima 0.826 - 0.464 -
ets 0.807 - 0.449 -
stlm 0.770 - 0.482 -
hermes-ets-ws 0.769 0.005 0.501 0.007
hermes-ets 0.758 0.001 0.490 0.006
tbats 0.745 - 0.453 -
lstm-ws 0.728 0.004 0.500 0.008
lstm 0.724 0.003 0.498 0.007
hermes-tbats 0.715 0.002 0.488 0.008
hermes-tbats-ws 0.712 0.004 0.510 0.005

4.3 Result for Heuritech Fashion dataset
10000 Heuritech Fashion time series global accuracy. For the two metrics and for each model, we com-
pute the average on all sequences in the final year. Results are displayed in Table 2. For our model using
neural networks, 10 models are trained with different seeds. The average and the standard deviation of their
results are computed and displayed. For the statistical models, TBATS largely dominates the alternatives in
terms of MASE. It is one of the main motivations why this model is used on the best HERMES candidate as
the predictor model.

Considering the new HERMES approach, hermes-tbats and hermes-tbats-ws slightly outperform the
alternatives in terms of MASE and are stable across the different trainings. Regarding hermes-ets, although
it is very similar to the baseline [Smyl, 2020], its accuracy remains low in comparison to the lstm benchmark
or HERMES using TBATS.

Models using our weak signals perform similarly as without-weak-signals models for the MASE. In-
terestingly, weak signals significantly improve the accuracy in detecting emerging and declining trends.
Figure 7 displays some examples of hermes-tbats models and some weaknesses that can be corrected.

10000 Heuritech Fashion time series classification task. Classification results between the tbats
model and the hybrid method hermes-tbats are given in Table 3, we note an impressive decrease of impactful
errors: i.e. forecasting an increase instead of a decrease and vice versa. The hermes-tbats model divides by
3 the error rate in comparison to tbats with only a slight decrease of the number of correct increase/decrease
predictions. However, with our weak signals, we see that hermes-tbats-ws is able to catch twice as much as
its relative model without weak signals while keeping a relatively low number of impactful errors.

Size of the dataset. In addition to the results on the fashion dataset gathering 10000 time series, the
behaviour of the HERMES model is analyzed when it is trained on smaller datasets: two experiments were
performed, HERMES models were trained on a reduced dataset of 1000 time series and on a reduced dataset
of 100 time series. Results are given in Table 4.

First, the hybrid framework hermes-tbats achieves the best performance in terms of global accuracy on
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Figure 7: hermes-tbats forecast examples. In green the prediction of the per-time-series predictors tbats.
In red the final forecast of our HERMES hybrid model hermes-tbats. (Top) Time series representing a top
fashion trend for females in The United States. (Bottom) Time series representing the horizontal stipes
texture fashion trend for females in China.
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Table 3: tbats, hermes-tbats and hermes-tbats-ws models confusion matrix
tbats

pred-dec pred-flat pred-inc

true-dec 902 2113 327
true-flat 351 2920 300
true-inc 300 2078 709

hermes-tbats
pred-dec pred-flat pred-inc

true-dec 1261 1960 121
true-flat 549 2823 199
true-inc 214 2004 869

hermes-tbats-ws
pred-dec pred-flat pred-inc

true-dec 1956 1245 141
true-flat 1257 2087 227
true-inc 358 1620 1109

both datasets. Due to the strength of its per-time-series predictor TBATS, the hybrid model succeeds at
correcting TBATS and reaches a satisfactory final accuracy. Secondly, we can note that the accuracy of the
full neural network lstm decreases when the dataset size decreases. On the small dataset of 100 time series,
a local statistical model like tbats or stlm largely outperforms its accuracy level. Providing sharp predictions
from scratch is a complex task and high-dimensional recurrent neural networks require large amounts of
data to do so. Nevertheless, with the HERMES framework, the RNN task is largely simplified. Our model
needs less data to be trained and to obtain interesting performance.

4.4 Result for M4 weekly dataset
We also assessed the performance of HERMES using the M4 weekly dataset [Makridakis et al., 2020]. The
M4 dataset gathers 359 weekly time series and has 3 main differences compared to our proposed fashion
dataset. Firstly, sequences do not have the same length with sequence lengths lying between 93 and 2610
time steps. Secondly, as some of the sequences represent financial signals or some others are demographic
sequences, the 359 time series have very distinct scales and dynamics. Thirdly, compared to the previous
fashion application, the time horizon of the prediction is set to 13 for the weekly dataset.

Training. The M4 dataset is firstly preprocessed. This preliminary step is motivated by two reasons.
First, as some sequences are short (93 time steps), they limit the window size w of the RNN part and
consequently the global accuracy of the HERMES approach. Second, the longer time series slow down the
training of the collection of the first predictors especially for complex methods like TBATS. We kept 300
time steps for each sequence in order to train the HERMES model. For the shorter sequences, the train set
is duplicated in order to reach the length of 300. Longer sequences are cropped in order to keep the last 300
time steps.

The horizon h is set to 13 and the window size w is set to 104. For the RNN part, the same architecture
as the one described in Figure 6 is used. The Adam optimizer is used with a learning rate equal to 0.005
and a batch size set to 8. As the M4 weekly dataset is small, a rolling window is used on the train set in
order to increase the train number of examples and improve training results. Three windows are computed
for each sequence for the RNN train set. An overview of our train, eval, test set split and the resizing of the
shortest sequences is given in Figure 8. The previous parameters: window size, learning rate, batch size and
the number of train windows per time series are set using a grid search, see Appendix B.
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Table 4: Results summary on the 1000 time series and 100 time series Fashion dataset. The MASE average
on all our time series is computed. For the two approaches using a neural network, 10 models with different
seeds are trained. the mean and the standard deviation of the 10 results are displayed.

1000 time series Fashion dataset

MASE
mean std

snaive 0.871 -
thetam 0.849 -
arima 0.821 -
ets 0.801 -
stlm 0.765 -
lstm 0.740 0.007
tbats 0.734 -
hermes-tbats 0.719 0.002

100 ts Fashion dataset

MASE
mean std

snaive 0.876 -
thetam 0.823 -
arima 0.814 -
ets 0.785 -
lstm 0.767 0.045
stlm 0.742 -
tbats 0.745 -
hermes-tbats 0.739 0.003

Figure 8: One of the shortest sequences of the M4 weekly dataset (93 time steps). In order to fit its predictor,
the last complete year is duplicated in order to reach a total length of 300 time steps.
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Étienne David, Jean Bellot, Sylvain Le Corff Nonparametric general translation HMM

Table 5: Results summary on the m4 weekly dataset. For each metric, the average on all our time series is
computed. For approaches using a neural network, 10 models are trained with different seeds. The mean
and the standard deviation of the 10 results are displayed.

SMAPE MASE OWA
mean std mean std mean std

MLP 21.349 - 13.568 - 3.608 -
RNN 15.220 - 5.132 - 1.755 -
snaive 9.161 - 2.777 - 1.000 -
SES 9.012 - 2.685 - 0.975 -
Theta 9.093 - 2.637 - 0.971 -
Holt 9.708 - 2.420 - 0.966 -
Com 8.944 - 2.432 - 0.926 -
Damped 8.866 - 2.404 - 0.917 -
S.Smyl [Hyndman et al., 2020] 7.817 - 2.356 - 0.851 -
tbats 8.111 - 2.214 - 0.841 -
hermes-tbats 7.597 0.113 2.205 0.042 0.812 0.011

Benchmarks. The M4 competition provides a rich collection of benchmarks emcompassing statistical
models and neural network approaches. The same candidates are used in this part as baselines. In addition,
the hybrid model named Uber of S.Smyl is added. For a complete description and references of the bench-
mark models, see [Makridakis et al., 2020]. As a HERMES candidate, a version using TBATS is proposed
and called hermes-tbats. Following the M4 competition methodology, models are evaluated according to
the MASE, the SMAPE and the OWA measures. A complete definition of these metrics is proposed in
[Makridakis et al., 2020], see also Appendix A for additional information about the M4 weekly dataset.

Results and discussion. The final results for the M4 weekly dataset are displayed in Table 5. The
HERMES approach hermes-tbats outperforms all the benchmarks. This result is partially induced by the use
of TBATS per-time-series predictors which achieves very good results on the test set. Regarding the hybrid
model proposed by S.Smyl, its accuracy remains low in comparison to tbats and hermes-tbats. With this
second application, two important conclusions can be made. Firstly, the results provided by hermes-tbats
confirm that the HERMES approach is a general framework, well suited for a large collection of forecasting
tasks. Secondly, the accuracy gap between the two hybrid candidates validates the HERMES approach and
illustrates the importance of a global framework able to leverage any kind of per-time-series predictors.

5 Conclusion
The motivation of this paper was to present HERMES, a new hybird model for non stationary time series
forecasting. By mixing the performance of local parametric models and a global neural network, hermes-
tbats clearly outperforms traditional statistical methods and full neural network models on two forecasting
tasks. Furthermore, this new model is totally suited to deal with external signals. With a fine pre-processing
and a well-designed architecture, our hybrid framework succeeds at leveraging our complex extra data and
reaches very promising accuracy levels in terms of classification. In addition to this article, a fashion dataset
gathering a sample of 10000 time series and a collection of weak signals is provided. We believe that this
dataset contains really fine dynamics and interactions where complex models would express their potential.
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By making it publicly available12, we hope that it will enhance the diversity of datasets for time series
forecasting and pave the way for further explorations. As a possible future work, designing new models for
the weak signals would improve their inclusion in the HERMES architecture. Focusing on the examples
with huge changes of behaviours, a fine analysis of the impact of the collection of weak signals is the topic
of ongoing works. In the same way, an interesting improvement of the hybrid framework can be to introduce
not a single but several neural networks trained at correcting different kinds of weaknesses. A perspective is
to add a latent discrete label to select dynamically the regime shifts.
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A M4 weekly dataset and results
The M4 weekly dataset is a collection of 359 time series with contrasting behaviours and sizes. An overview
of the dataset is given in Table 6 and some examples of sequences are given in Figure 9. As sequences come
from a wide diversity of sectors, the forecasting task is very challenging. However, on some examples as in
Figure 10, efficient corrections of the TBATS forecasts can be obtained.

Looking at the final results of the M4 competition, some models reach a higher accuracy than the HER-
MES framework on the weekly dataset. All of them are ensemble frameworks: methods that mix different
kinds of approaches to reach a higher final accuracy. As the M4 weekly dataset gathers really heterogeneous
sequences, combining several methods to leverage their strengths appear to be a promising way. However in
this paper, only individual models were evaluated in order to provide a fair comparison with the HERMES
framework.
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Étienne David, Jean Bellot, Sylvain Le Corff Nonparametric general translation HMM

Table 6: M4 weekly dataset overview. For each category, the number of sequences and the average length
are given.

Nb. of sequences Avg. length Min. length

Demographic 24 1659 1615
Finance 164 1237 260
Industry 6 834 356
Macro 41 1264 522
Micro 112 473 93
Other 12 1598 470

Figure 9: Examples of time series from the M4 weekly dataset. From Top to Bottom, Left to Right : time
series called W10 from the Other category, W20 from the Macro category, W220 from the Finance category
and W354 from the Micro category.
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Figure 10: hermes-tbats forecast examples on the M4 weekly dataset. In green the prediction of the per-
time-series predictors tbats. In red the final forecast of our HERMES hybrid model hermes-tbats. (Top) the
W133 time series, (Bottom) the W314 time series.
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B Training parameters and loss

B.1 Loss grid search on the Fashion Dataset
Using deep learning models in time series forecasting is an appealing way to achieve higher accuracy per-
formance. However, it induces two main issues. First, it requires a large enough dataset to train the model
as illustrated in Section 4. Second, a dataset can hide contrasting time series in terms of scale, noise and
behaviour. These differences can impact training performance. For the HERMES architecture, some candi-
date losses were defined for the training: the Mean Absolute Error (MAE), the Mean Square Error (MSE),
the Scaled Mean Absolute Error (SMAE) and the Scaled Mean Square Error (SMSE). The loss functions are
defined as follows:

MAE =
1

h

h∑
i=1

|ynT+i − ŷnT+i|T | ,

MSE =
1

h

h∑
i=1

(ynT+i − ŷnT+i|T )2 ,

SMAE =
1

ȳnT

h∑
i=1

|ynT+i − ŷnT+i|T | ,

SMSE =
1

ȳnT

h∑
i=1

(ynT+i − ŷnT+i|T )2 .

For each loss, 10 hermes-tbats-ws models have been trained with different seeds and the final mean and
standard deviation are given in Figure 11. The final Scaled Mean Absolute Error reaches the lowest MASE
and was selected to train all the HERMES model in this paper.

B.2 Parameters grid search on the M4 weekly Dataset
In addition to the loss function, the HERMES model also depends on several hyperparameters to set correctly
in order to reach satisfactory performance. For instance, an overview of the learning rate, batch size and
number of windows per time series grid search for the M4 weekly dataset is shown in Figure 12. For each
parameter, a collection of 10 hermes-tbats models have been trained with a range of values and the final
OWA was calculated. As in the Figure 11, the mean and the standard deviation of each group of 10 trainings
is computed. For the final hermes-tbats model of the M4 weekly dataset, the following set of parameters was
selected: 3 windows per time series were used as the train set, the batch size was set to 8 and the learning
rate was fixed to 0.005.
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Figure 11: MASE accuray for the hermes-tbats-ws model depending on the loss used during the RNN
training. For each loss, 10 models with different seeds have been trained. The mean and the standard
deviation are represented with a point and a vertical line.
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Figure 12: OWA for the hermes-tbats model on the M4 weekly dataset depending on 3 parameters used
during the RNN training: Number of moving windows per time series, the batch size and the learning rate.
For each parameter, 10 models with different seeds have been trained. The mean and the standard deviation
are represented with a point and a vertical. (Top) Result of the HERMES model depending on the number of
windows provided per time series to the RNN corrector. (Middle) Result of the HERMES model depending
on the size of the batch size. (Bottom) Result of the HERMES model depending on the learning rate of the
optimizer.
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