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By proving the existence of a zero-free region for the Riemann zeta-function, de la Vallée-Poussin was able to bound θ(x) = x + O(x × exp(-c 2 × log x)), where θ(x) is the Chebyshev function and c 2 is a positive absolute constant. Under the assumption that the Riemann hypothesis is true, von Koch deduced the improved asymptotic formula θ(x) = x + O( √ x × log 2 x). We prove when θ(x) = x + Ω( √ x × log 2 x), then the Riemann hypothesis is false.

Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 [START_REF] Borwein | The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike[END_REF]. In mathematics, the Chebyshev function θ(x) is given by θ(x) = p≤x log p where p ≤ x means all the prime numbers p that are less than or equal to x. Say Nicolas(p n ) holds provided

q≤p n q q -1 > e γ × log θ(p n ).
The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural logarithm, and p n is the n th prime number. The importance of this property is:

Theorem 1.1. [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]. Nicolas(p n ) holds for all prime numbers p n > 2 if and only if the Riemann hypothesis is true.

We know the following properties for the Chebyshev function:

Theorem 1.2. [START_REF] Poussin | Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inferieurs à une limite donnée[END_REF]. For a positive absolute constant c 2 :

θ(x) = x + O(x × exp(-c 2 × log x)).
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Theorem 1.3. [START_REF] Koch | Sur la distribution des nombres premiers[END_REF]. If the Riemann hypothesis holds, then

θ(x) = x + O( √ x × log 2 x).
Theorem 1.4. [START_REF] Rosser | Approximate Formulas for Some Functions of Prime Numbers[END_REF]. For 2 ≤ x ≤ 10 8 θ(x) < x.

We also know that Theorem 1.5. [START_REF] Rosser | Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x)[END_REF]. If the Riemann hypothesis holds, then

        e -γ log x × q≤x q q -1 -1         < 3 × log x + 5 8 × π × √ x
for all numbers x ≥ 13.1.

Let's define H = γ -B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF]. We know from the constant H, the following formula:

Theorem 1.6. [8]. q log( q q -1 ) - 1 q = γ -B = H.
For x ≥ 2, the function u(x) is defined as follows

u(x) = q>x log( q q -1 ) - 1 q .
We use the following theorems:

Theorem 1.7. [START_REF] Kozma | Useful Inequalities[END_REF]. For x > -1:

x x + 1 ≤ log(1 + x).
Theorem 1.8. [START_REF] Ghosh | An Asymptotic Formula for the Chebyshev Theta Function[END_REF]. For x ≥ 1:

log(1 + 1 x ) < 1 x + 0.4 .
Let's define:

δ(x) =         q≤x 1 q -log log x -B         .
Definition 1.9. We define another function:

ϖ(x) =         q≤x 1 q -log log θ(x) -B         .
Putting all together yields the proof that the inequality ϖ(x) > u(x) is satisfied for a number x ≥ 3 if and only if Nicolas(p) holds, where p is the greatest prime number such that p ≤ x. In this way, we introduce another criterion for the Riemann hypothesis based on the Nicolas criterion and deduce some of its consequences. 2

Results

Theorem 2.1. The Riemann hypothesis is true if and only if the inequality ϖ(x) > u(x) is satisfied for all numbers x ≥ 3.

Proof. In the paper [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF] is defined the function:

f (x) = e γ × (log θ(x)) × q≤x q -1 q .
We know that f (x) is lesser than 1 when Nicolas(p) holds, where p is the greatest prime number such that 2 < p ≤ x. In the same paper, we found that

log f (x) = U(x) + u(x)
where U(x) = -ϖ(x) [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]. When f (x) is lesser than 1, then log f (x) < 0. Consequently, we obtain that -ϖ(x) + u(x) < 0 which is the same as ϖ(x) > u(x). Therefore, this is a consequence of the theorem 1.1.

Theorem 2.2. If the Riemann hypothesis holds, then

3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 + log x log θ(x) > 1
for all numbers x ≥ 13.1.

Proof. Under the assumption that the Riemann hypothesis is true, then we would have

q≤x q q -1 < e γ × log x × 1 + 3 × log x + 5 8 × π × √ x
after of distributing the terms based on the theorem 1.5 for all numbers x ≥ 13.1. If we apply the logarithm to the both sides of the previous inequality, then we obtain that

q≤x log( q q -1 ) < γ + log log x + log 1 + 3 × log x + 5 8 × π × √ x .
That would be equivalent to

q≤x 1 q + q≤x log( q q -1 ) - 1 q < γ + log log x + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2
where we know that

log 1 + 3 × log x + 5 8 × π × √ x < 1 8×π× √ x 3×log x+5 + 0.4 = 3 × log x + 5 8 × π × √ x + 0.4 × (3 × log x + 5) = 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 3
according to theorem 1.8 since 8×π× √ x 3×log x+5 ≥ 1 for all numbers x ≥ 13.1. We use the theorem 1.6 to show that q≤x log( q q -1 ) -

1 q = H -u(x)
and γ = H + B. So,

H -u(x) < H + B + log log x - q≤x 1 q + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2
which is the same as

H -u(x) < H -δ(x) + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 .
We eliminate the value of H and thus,

-u(x) < -δ(x) + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 which is equal to u(x) + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 > δ(x).
Under the assumption that the Riemann hypothesis is true, we know from the theorem 2.1 that ϖ(x) > u(x) for all numbers x ≥ 13.1 and therefore,

ϖ(x) + 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 > δ(x).
Hence,

3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 > log log θ(x) -log log x.
Suppose that θ(x) = ϵ × x for some constant ϵ > 1. Then,

log log θ(x) -log log x = log log(ϵ × x) -log log x = log log x + log ϵ -log log x = log log x × (1 + log ϵ log x ) -log log x = log log x + log(1 + log ϵ log x ) -log log x = log(1 + log ϵ log x ).
In addition, we know that

log(1 + log ϵ log x ) ≥ log ϵ log θ(x)
using the theorem 1.7 since log ϵ log x > -1 when ϵ > 1. Certainly, we will have that

log(1 + log ϵ log x ) ≥ log ϵ log x log ϵ log x + 1 = log ϵ log ϵ + log x = log ϵ log θ(x) .
Thus,

3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 > log ϵ log θ(x)
.

If we add the following value of log x log θ(x) to the both sides of the inequality, then

3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 + log x log θ(x) > log ϵ log θ(x) + log x log θ(x) = log ϵ + log x log θ(x) = log θ(x) log θ(x) = 1.
We know this inequality is satisfied when 0 < ϵ ≤ 1 since we would obtain that log x log θ(x) ≥ 1. Therefore, the proof is done.

Theorem 2.3. The Riemann hypothesis is false when

θ(x) = x + Ω( √ x × log 2 x).
Proof. If the Riemann hypothesis holds, then

θ(x) = x + O( √ x × log 2 x)
due to the theorem 1.3. Now, suppose there is a real number x ≥ 10 8 such that θ(x) > x + √ x × log 1.9 x. That would be equivalent to log θ(x) > log(x + √ x × log 1.9 x) and so,

1 log θ(x) < 1 log(x + √ x × log 1.9 x)
for all numbers x ≥ 10 8 . Hence, log x log θ(x) < log x log(x + √ x × log 1.9 x) .

If the Riemann hypothesis holds, then

3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 + log x log(x + √ x × log 1.9 x) > 1
for those values of x that complies with θ(x) > x + √ x × log 1.9 x due to the theorem 2.2. By contraposition, if there exists some number y ≥ 10 8 such that for all x ≥ y the inequality

3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 + log x log(x + √ x × log 1.9 x) ≤ 1
is satisfied, then the Riemann hypothesis should be false. Let's define the function

υ(x) = 3 × log x + 5 8 × π × √ x + 1.2 × log x + 2 + log x log(x + √ x × log 1.9 x) -1.
The Riemann hypothesis would be false when there exists some number y ≥ 10 8 such that for all x ≥ y the inequality υ(x) ≤ 0 is always satisfied. We ignore when 2 ≤ x ≤ 10 8 since θ(x) < x according to the theorem 1.4. We know that the function υ(x) is monotonically decreasing for every number x ≥ 10 8 . The derivative of υ(x) is negative for all x ≥ 10 8 . The derivative of υ(x) is approximately

- 0.1875 × (0.3 + π × √ x) × (1.66667 + log(x)) x × (0.25 + π × √ x + 0.15 × log(x)) 2 + 3 2 × x + 8 × π × x 3 2 + 1.2 × x × log(x) - √
x × log(x) + 1.9 × log 1.9 (x) + 0.5 × log 2.9 (x) x × ( √ x + log 1.9 (x)) × log 2 (x + √ x × log 1.9 (x)) + 1

x × log(x + √ x × log 1.9 (x)) .

Indeed, a function υ(x) of a real variable x is monotonically decreasing in some interval if the derivative of υ(x) is lesser than zero and the function υ(x) is continuous over that interval [START_REF] Anderson | Monotonicity Rules in Calculus[END_REF].

It is enough to find a value of y ≥ 10 8 such that υ(y) ≤ 0 since for all x ≥ y we would have that υ(x) ≤ υ(y) ≤ 0, because of υ(x) is monotonically decreasing. We found the value y = 10 8 complies with υ(y) ≤ 0. In this way, we obtain that υ(x) ≤ 0 for every number x ≥ 10 8 . Consequently, under the assumption that the Riemann hypothesis is true, then θ(x) < x + √ x × log 1.9 x for all x ≥ 10 8 . Hence, this implies that the Riemann hypothesis is false when θ(x) = x + Ω( √ x × log 2 x).