N
N

N

HAL

open science

Greedy and Local Search Heuristics to Build
Area-Optimal Polygons

Loic Crombez, Guilherme D da Fonseca, Yan Gerard

» To cite this version:

Loic Crombez, Guilherme D da Fonseca, Yan Gerard.
Build Area-Optimal Polygons. ACM Journal of Experimental Algorithmics, 2022, 27 (2.2), pp.1-11.

10.1145/3503999 . hal-03559069

HAL Id: hal-03559069
https://hal.science/hal-03559069
Submitted on 5 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Greedy and Local Search Heuristics to

https://hal.science/hal-03559069
https://hal.archives-ouvertes.fr

Greedy and Local Search Heuristics to Build Area-Optimal Polygons

Loic Crombez, Guilherme D. da Fonseca, and Yan Gerard

ABSTRACT. In this paper, we present our heuristic solutions to the problems of finding
the maximum and minimum area polygons with a given set of vertices. Our solutions are
based mostly on two simple algorithmic paradigms: greedy method and local search. The
greedy heuristic starts with a simple polygon and adds vertices one by one, according
to a weight function. A crucial ingredient to obtain good solutions is the choice of an
appropriate weight function that avoids long edges. The local search part consists of
moving consecutive vertices to another location in the polygonal chain. We also discuss
the different implementation techniques that are necessary to reduce the running time.

1. INTRODUCTION

In this paper, we consider the optimal area polygonalization problem, i.e. the problem
of finding large and small area simple polygons with a given vertex set. Optimal area
polygonalization resembles to the well-known travelling salesman problem, the difference
being that the objective function of the former is the area of the computed polygon instead
of its perimeter. This problem has been the subject of the 2019 Geometric Optimization
Challenge and is known to be NP-hard for both minimization and maximization [2]. Exact
algorithms are discussed in [3] and a recent state of the art is given in [I].

In this paper, we describe the algorithm that we developed during the 2019 Geometric
Optimization Challenge. Our results gave us the second place, both for the minimization
and maximization contests. Throughout, we refer to the score of a solution as the area of
the polygon divided by the area of the convex hull. The score is a real number between
0 and 1, and a lower score is better for the minimization version while a higher score is
better for the maximization version. The scores obtained on the instances of the challenge
are in the range [0.025,0.352] for the minimization problem and in the range [0.835,0.976]
for the maximization problem. These two intervals become [0.110, 0.135] and [0.871, 0.924]
if we only consider the uniform instances of at least 100 points where the inputs sets have
been randomly generated in a square with a uniform density function. More results are
presented in Section [4]

Our results have been obtained with a relatively simple and fast heuristic coded in
Python and executed with pypy3. The heuristic consists of two phases: a greedy heuristic
and a subsequent local search optimization. It is surprising that our results are very
competitive when compared to the more complex approaches used by the other teams [].
The whole source code is available at github.com/gfonsecabr/poLYG and is less than
500 lines long, requiring no external library. While during the challenge we used several
different machines, all the running times presented herein have been obtained on a Dell
XPS 13-9380 laptop with an Intel i7-10510U CPU and 16GB of RAM running Fedora 32
Linux. The implementation only uses one CPU thread and the other CPU threads were
kept mostly idle during the benchmarks.

The paper is organized as follows. Section [2| describes the algorithmic approach we

used. In Section [3, we present different techniques implemented to make the code run
1

https://github.com/gfonsecabr/poLYG

faster and find better solutions. Section [4] presents our results. In Section [5, we discuss
some possible improvements.

2. METHODS

In the next two sections, we describe the two phases of our solution. For simplicity,
we focus only on the mazimum area polygon. The few changes necessary to solve the
minimization version are described in Section 2.3l

2.1. Greedy Heuristic. Let S be the input set with n points. Throughout the execution
of the algorithm, we work with a simple polygon P whose set of vertices is a subset of S.
The set of points in S which are not yet vertices of P is denoted P. The current polygon
P is initialized with the convex hull of S.

Each greedy step consists of choosing a point ¢ € P and inserting ¢ in the current
polygon P. We insert ¢ as the intermediary point of an edge pi, ps € P so that our current
polygon P has two new edges pi, q and q, p» replacing py, po. We preserve at each step the
simplicity of P by verifying that the new edges pi,q and ¢, p» do not cross the existing
edges of P.

We repeat our greedy steps until either the set P becomes empty or until no point of P
can possibly be inserted anywhere in P (see Figure . In the former case the algorithm
successfully finds a solution, and in the latter case it fails. Our experiments showed that
if the triple ¢, p1, p2 is chosen carefully at each step, as we explain in the next paragraphs,
then the heuristic hardly ever fails. Hence, we simply ignored the extremely rare failures
and when it happened we used a different value of the parameter o described later on to
guide the heuristic.

The choice of the triple g, p1, p2 at each step is essential to the quality of the solution.
A strategy investigated in [5] is to randomly choose the point ¢ in P and then choose the
best edge pi1, ps where to insert ¢. We employ a more exhaustive search. At each step
we choose the triple minimizing weight(p1, p2, q), for a weight function to be described
next. Perhaps, the most natural greedy choice is to minimize the area of the triangle
p1p2q (denoted area(pip2q)), since the area of P will decrease by exactly area(pip2q)
when ¢ is inserted between p; and p,. In this case, we say that the weight function is
weight(p1, pa, q) = area(pi1paq). This weight function has the property that all points of
P lie in the interior of P. However, this function leads to very long edges as shown in

FIGURE 1. Two greedy solutions to the maximum area polygon for the
euro-night-0005000 instance. (a) Each greedy steps chooses the minimum
area triangle. (b) Longer edges are penalized with o = 1/90. The respective
scores are 0.869 and 0.930.

(a) (b)

FIGURE 2. Examples with a red point ¢ (a) inside and (b) outside the
polygon such that ¢ cannot be inserted on any of the polygon edges.

greedy only after local search
a=1/10 | «a=1/30 | a=1/90 | a=1/270 | a=1/10 | «a=1/30 | a=1/90 | a =1/270
euro-night 0.848 0.885 0.893 0.886 0.896 0.911 0.912 0.908
0.882 0.894 0.892 0.891 0.910 0.911 0.920 0.916
paris 0.833 0.871 0.882 0.871 0.880 0.899 0.900 0.889
0.860 0.871 0.876 0.854 0.893 0.902 0.898 0.877
stars 0.833 0.858 0.881 0.867 0.885 0.898 0.903 0.901
0.858 0.866 0.872 0.858 0.895 0.896 0.903 0.889
us-night 0.850 0.914 0.928 0.919 0.898 0.942 0.943 0.934
0.907 0.920 0.924 0.920 0.933 0.939 0.943 0.945
uniform-1 0.824 0.846 0.859 0.841 0.865 0.872 0.875 0.863
0.817 0.842 0.841 0.828 0.865 0.868 0.866 0.856
uniform-2 0.795 0.838 0.844 0.815 0.848 0.861 0.862 0.849
0.816 0.830 0.837 0.813 0.860 0.858 0.857 0.846

TABLE 1. Scores before and after local search for different values of
a and instances with 500 points. The scores above use the formula
weight (p1, p2, ¢) = area(pip2q) + a(l[gpi]l + llgpz|| — [[pip2|l) While the ones
below use weight(p1, p2, q) = area(pip2q) + a([lgp:1 || + llgpal + [[p1p2l])-

Figure (a). While long edges may seem like a good choice at short term, they dramatically
reduce the search space of potential new triangles, which will hence deteriorate the solution
at long term and often make the algorithm fail.

We experimented with several different weight functions in order to obtain better
solutions. The best function that we found by penalizing long edges is

weight(py, p2,) = area(pipaq) + o|lgp1|| + |lapz2ll — llpip2l)),

where || - || denotes the Euclidean distance and « is a small parameter. The term
lgp1 || + ||gp=|| penalizes the creation of long edges, while the term —||p;ps|| favors breaking
existing long edges. Another weight function that gives good results is obtained by
replacing the minus sign by a plus sign, and numerous other variations exist. Notice that
these functions do not guarantee that all points of P lie in the interior of P.

The value of area(p;ps2q) is a positive number if ¢ is inside P and a negative number
otherwise. Using signed areas (negative for clockwise triangles) is important, since some
input points in P may possibly lie outside P. We determined that the best values of «
are generally in the range 1/150 < o < 1/50. Unless otherwise specified, the examples in
this paper use a = 1/90. Figure (b) shows the improvement obtained by penalizing long
edges, while Table 1| shows some scores achieved through different weight functions (the

local search algorithm is discussed in the next section).
3

2.2. Local Search. After obtaining the greedy solution, we perform a second phase to
improve the score of the solution, by making local changes to the polygon. The simplest
optimization we perform consists of moving one vertex v to another position in the
polygonal chain, between the endpoints of an edge ujus (Figure [§(a)), adding the edges
u1v and vug, while removing the edge ujus. A more general version of this procedure
consists of moving a path V' = vy, ..., v (consisting of one or more vertices) together, in
reverse order, between the endpoints of an edge ujus (Figure [3(b)). The order by which
we perform the numerous local changes has some impact on the solution. Hence, we chose
to generally perform the changes that increase the area the most first. Our algorithm
works as follows.

We fix a maximum number of vertices ¢ for the path V' as a parameter (typically at
most ¢ = 10 vertices). Then, we go through every pair of edge e = ujus and path V' of
length at most /¢, testing the following two conditions: moving V' to e should (i) increase
the area of the polygon and (ii) result in a simple polygon. Every pair e,V that meets
these conditions is stored in a list L. Then, we sort L from the largest to the smallest
area change. Finally, we iterate through L applying the changes in order. However, before
applying each change, we need to retest that the modification is still valid (condition (ii))
and beneficial (condition (i)), since previous changes already modified the polygon. We
repeat the whole procedure until the improvement becomes negligible (in the test cases
presented herein, a score change smaller than 0.001). An example of the greedy solution
as well as two local search optimizations with different values of ¢ is presented in Figure [4]
To see the differences in this figure, compare the large white areas on the left figure with
the corresponding areas on the right figures.

2.3. Minimization. The strategy to find the polygon of small area is similar to the one
described before to maximize the area and the polygons obtained often resemble each
other except for the outermost edges (see Figure . In fact, almost all lines of code are
identical for both problems, except for fewer than 20 lines. The polygons are oriented
clockwise for area minimization and counterclockwise for area maximization. This way,
as signed areas are positive for clockwise orientation and negative for counterclockwise
orientation, solving the problem to maximize the area addresses both objective functions.

The main difference between the two implementations is that instead of initiating the
greedy algorithm with the convex hull, in the minimization version we start with a triangle
and add vertices as we go. We use the same weight function as before, which allows us to
add points that do not increase the area of the polygon by much while avoiding long edges.
This procedure can be started with different triangles, which allows for better solutions by
testing multiple triangles, but increases the running time significantly. Even though there
are O(n?) possible triangles with vertices in P, most of them do not seem appealing to

(a)

F1GURE 3. Local search. (a) The blue edge is replaced by a two-edge path
that detours to the red point, and the two prior edges incident on the red
point are replaced with a single edge. (b) The blue edge is replaced by a
detour to utilize the red subpath.

FIGURE 4. (a) Greedy and (b,c) local search solutions to the
uniform-0001000-1 instance with & = 1/90. The two local search so-
lutions use ¢ = 1 and ¢ = 10, respectively. The respective scores are 0.842,
0.863, and 0.866.

FIGURE 5. Polygons of maximum and minimum area obtained for the
us-night-0002000 instance.

start the greedy algorithm. Intuitively, we would like to start with a triangle of small area
or perimeter. For example, one could choose to always start with the minimum perimeter
triangle, but that choice would be very constraining and would eliminate the benefits of
multiple starting configurations. As a compromise between 1 and ©(n?) triangles, we
decided to use O(n) possible starting triangles defined by a vertex p; as follows. We set
p2 to be the nearest neighbor of p; and ps to be the vertex that minimizes the perimeter
of the starting triangle ¢ty = pypaps. This difference can be found on the poLYG.py source
code available on github on lines 63-75.

There are only two additional small technical changes that we need to make to the
greedy algorithm. First, we need to add a test to make sure that the area of the polygon
never changes sign by reversing the orientation of the polygon, as seen in lines 167-170 of
geometer.py. Second, we only add triangles that increase the area in the greedy step, as
seen in lines 106-110 of poLYG.py. The reason is that there are too many triangles that
would decrease the polygon area but are not valid since they cross other edges. Hence,
testing all these intersections takes far too long. In theory, forbidding triangles that
decrease the area could be problematic because if at any iteration an unconnected point
lies inside the polygon, this point will never be added and no solution will be found. In

practice this rarely happens.
5

Greedy and Local Search

1000 — 1000 peeeesngneeas I e

= 900 |+ = 900 ——&— (bl) Brute force - ; i

Y 800 | Y 800 | —4— (b2) Grid

£ 700 H E 700 | —>%— (b3) Restricted

2 600 — 2 600 H —— (b4) (=10

! 500 |- ! 500 |—--oeedeeeees

g 400 2 400

[} [

2 300 |- 2 300 |—-oeedeeeeehene M

] 200 f-oeedrereneeebe et T e] 200 — :

> ' 3 ' ' T T H

< 100 - hgzaens < 100 (i e i e
0 shemnsssaitii Bz R T e e X g % ek
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input size Input size

(a) (b)

FIGURE 6. Running time of (a) the greedy heuristic and (b) the total
running time including local search as functions of the number of points.
The values are an average over the 6 different instances with the same
number of points.

3. ALGORITHM ENGINEERING

In our fist implementation, we used a brute force approach to test whether each line
segment intersects the existing edges of P, which takes O(n) time. A naive implementation
builds the final polygon P by repeating, through O(n) greedy steps, the test for all O(n)
edges p1ps and O(n) points ¢, testing intersection against O(n) edges (see [4] for the
intersection test). This approach would take O(n?) time in both best and worst cases,
which is far too slow for our purposes. Hence, we need to make it faster in practice, even
if the worst case complexity does not improve. This goal is achieved by (i) using binary
heaps, (ii) using grids to speed up the intersection tests, and (iii) using grids to limit the
set of points tested for each edge. Further improvements include a randomization step for
the small instances and a divide-and-conquer strategy for very large instances (namely
Mona Lisa, with 1 million points).

3.1. Binary Heaps. In order to improve performance, we want to perform as few
intersection tests as possible. To do that, we use several minimum binary heaps. Each
edge pipiy1 € P is associated to a heap that contains all points ¢ in P (and possibly some
points that are no longer in P). The priority of each point ¢ in the heap of p;p; 41 is set to
weight(p1, p2,). A higher-level minimum heap stores the minimum value of each binary
heap.

We repeatedly extract the triangle p;p;11g of minimum weight and test if p;q and gp;11
intersect existing edges of P. If so, we repeat the procedure until a valid point ¢ is
obtained, that is a point ¢ € P such that ¢ may be inserted between p; and p;;; while
maintaining simplicity. Then, we add the edges p;q and ¢p;.1 creating the corresponding
heaps. We remove the heap associated to the former edge p;p; 1. Notice that heap creation
with n elements takes O(n) time while inserting an element and extracting the minimum
value take O(logn) time. Since the number of intersection tests is significantly reduced,
this approach yields a much faster running time in practice.

In a best-case scenario, the first triangle extracted from the heaps would always be
accepted, which would lead to only one intersection test for each greedy iteration and a
total running time of O(n?). Practical instances are not as good, but much closer to the
best case than to the worst case of O(n?). The execution times for instances between
1,000 and 10,000 points is presented in Figure [6 plots (al) and (b1). Running this code

6

Greedy and Local Search on Large Files

T ,——_ I A it vt i i K
7000 | %= (c1) Greedy only t

—¢— (c2) Greedy and local search (¢=1)

6000 —+— (c3) Greedy and local search (¢=10)

Average running time (s)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Input size

FI1GURE 7. Running time of the greedy algorithm and the total running
time including local search as a function of the number of points. The
values are an average over the 6 different instances with the same number
of points.

for 100, 000 points would take multiple days, but another serious impediment is the O(n?)
space complexity of the algorithm. Due to the memory overhead of Python, an instance
with 10,000 points already uses over 5GB of RAM memory. Hence, an instance with
100, 000 points would require more than 500G B of memory. Next, we describe how to
reduce the running time and later on, we will deal with the memory issue.

3.2. Grid Intersection Test. In order to speed up the algorithm, we perform a more
efficient intersection test. We chose a very simple approach, with no worst-case guarantees.
We partition the bounding box of the data using a square grid with the number of columns
of roughly (4n)'/*. If the points are uniformly distributed on a square, this gives O(y/n)
data points per grid cell. Each grid cell stores the list of edges that intersect that cell.
Edges that intersect more than 4 cells are kept on a separate list of long edges instead.
To test edge intersections with a line segment pq, we start by testing intersections with
all long edges. If no intersection is found, then we trace the grid cells intersected by pq
and test intersections with the edges stored in each corresponding grid cell. The running
time of our algorithm is presented in Figure [6] plots (a2) and (b2). Clearly, this approach
is inefficient if there are too many long edges, but as explained before, our heuristic tries
to avoid such edges.

3.3. Restricted Candidates. The same grid we described in the previous section is also
used to partition the points of S into grid cells. It seems rather unlikely that an edge
pipiv1 € P will be connected to a point that is located many grid cells away from the
cells intersected by that edge. For an integer k > 0, we define the k-neighborhood of a
grid cell C as the set of non-empty grid cells within L., distance at most x of C'. The
k-neighborhood of C' contains at most (2x + 1)? cells. We define the k-neighborhood of a
segment ppy as the union of the k-neighborhood of all cells intersected by pips.

Let k be a parameter of our algorithm. We limit the candidate triangles p;p;11q to
triangles such that ¢ is in the sk-neighborhood of the segment p;p;11. Setting k = 2
makes the algorithm run much faster when compared to the previous case (which we
call k = 00) with no noticeable impact on the quality of the solution. Furthermore, the
memory requirement decreases significantly. The results of the algorithm for k = 2 are
presented in Figure[f] plots (a3) and (b3). The execution for larger instances with x = 2

is presented in Figure [7]
7

3.4. Randomization. With all improvements, the algorithm runs very fast on instances
with fewer than 1000 points. Since more than half of the challenge instances are in this
category, it is important to spend additional effort to convert a longer computational
time into improved solutions. For this purpose, we used a very simple modification of the
greedy algorithm from Section followed by the same local search optimization.

We use a Gaussian random variable gauss(o) of standard deviation o to obtain the
following randomized weight function, where the original weight function is multiplied by
1+ | gauss(o)|.

weight(p1, p2,) = (1 + | gauss(o)]) - (area(p1p2q) + a(llgp:ll + llgpal — HPlPQH))

The weight is calculated only once per triangle and kept throughout the execution of
the greedy heuristic. Furthermore, we set xk = oo for instances with at most 100 points,
and keep k = 2 otherwise.

In Figure[8, we show two histograms of the scores of the solutions obtained with different
values of 0. The histograms were obtained by rounding down the scores to a multiple
of 0.0025 among 5000 solutions for each instance and value of . Some lower scores are
not shown. We used ¢ = 1 for both files, Kk = oo for the files with at most 100 points and
k = 2 for 500 points. The time to obtain these 5000 solutions is around 6 minutes for 100
points and 30 minutes for 500 points.

Using the same parameters, the best scores for different values of o and several files
with 100 and 500 points is represented in Figure[9] The plot shows that the best values of
o are generally between 0.2 and 0.8 and that using multiple values of o for each file while
keeping the best solution found will give a slightly better score.

Setting o = 0.5 we obtain an average of 0.918 among the 84 files with up to 100 points
and 0.911 among the 48 files with 200 to 900 points. The solutions submitted to the
challenge have slightly better average scores of 0.921 and 0.913, respectively. This small
improvement can be obtained by trying multiple parameters and keeping the best score
for each file.

3.5. Mona Lisa. Since the algorithm we presented would take several weeks for one

million points, we use a divide and conquer strategy for the mona-1isa-1000000 file.
We partition the points from S into a regular square grid of 32 x 32 cells. This way

each grid cell contains approximately 1000 points on average. We then separately execute

Histogram for usnight-0000100 Histogram for stars-0000500

25% b B B 0=0.1

20%

15%

10%

5%

0.905 091 0915 092 0925 093 0935 0.94 0.885 0.89 0.895 0.9 0.905 0.91

Score Score

FiGure 8. Histogram of the distribution of scores of solutions found for
files usnight-0000100 (100 points) and stars-0000500 (500 points) with
different values of o.

Scores with 100 Points Scores with 500 Points

—&— euronight
—~4— usnight
—— london/paris
stars
—+— uniforml

Average best score
Average best score

0 01 02 04 08 16 32 64 0 01 02 04 08 16 32 6.4

Value of o Value of o

FIGURE 9. Score as a function of ¢ for different instances with 100 and
500 points.

the algorithm to the points contained in each grid cell. At the end of the execution, we
have 1024 simple polygons that we merge into one single simple polygon as follows.

First, for each cell, and for each of the (up to 4) adjacent cells we compute the best way
to merge the two polygons associated to those cells. Let P, and P, be the two polygons
that we desire to merge. Then, for each edge e; in P, and each edge e; in P, we compute
the quadrilateral @);; supported by the edges e; and e;. Among all quadrilaterals ();; that
intersects neither Py nor P, we select the one with the largest (or smallest depending on
the objective) area. We call this quadrilateral ();; a bridge. This construction guarantees
that P, U Q;; U P, is a simple polygon.

Note that it is possible for two bridges to intersect one another. We fix this issue by
forbidding the new bridges to intersect the ones that have been computed previously. We
now have to select which bridges should be used to connect all the 1024 polygons into a
single one. If we consider all cells of the grid as vertices of a graph G and all bridges as
edges of (G, connecting our 1024 polygons is equivalent to computing a minimum spanning
tree in G. We compute this spanning tree using Prim’s algorithm.

4. RESULTS

Our algorithm is controlled by four parameters: « for the weight penalty of the long
edges in the greedy routine, ¢ for the maximum length of the path investigated in the
local search, x for the size of the neighborhood of an edge in which we are searching for
new vertices and at last, o for the randomization. In the software we made available,
1/a, ¢, K, o are respectively called pen, hops, hood, and sigma.

For small instances (at most 1000 points), the speed of the algorithm allows us to run a
very large number of experiments in order to keep the best solution found. The parameter
k is fixed at 400, £ is equal to 10 and we used different values of a and o, keeping the
best score.

For medium instances (2,000 to 10,000 points), we use k = 2 to accelerate the algorithm
and try different values of a. We avoid using randomization (o # 0) as each execution is
too slow to allow for a sufficiently large number of executions.

The average score obtained for the instances with 10,000 to 100,000 points using only
the greedy algorithm, k = 2, and « = 1/90 is 0.892. Using local search with ¢ = 1 the
average score improves to 0.910. Setting ¢ to 10 increases the average score to 0.912.
Increasing ¢ beyond 10 made no difference to the solutions obtained. In the challenge, the

average score we got for the same instances was close to 0.915. The small improvement
9

euro-night us-night uniform1
min max min max min max
size | score score score score score score
10| 0.312 0.893 0.251 0.898 0.352 0.884
20 | 0.140 0.910 0.114 0.940 0.214 0.864
30| 0.126 0.923 0.081 0.930 0.176 0.920
40| 0.187 0.944 0.075 0.945 0.161 0.917
50| 0.113 0.923 0.063 0.959 0.091 0.925
70| 0.085 0.938 0.078 0.952 0.117 0.921
90 | 0.075 0.947 0.097 0.933 0.137 0.898
200 | 0.085 0.929 0.073 0.941 0.123 0.895
400 | 0.079 0.934 0.061 0.950 0.135 0.883
600 | 0.071 0.936 0.059 0.948 0.121 0.890
800 | 0.068 0.942 0.049 0.953 0.130 0.876
1000 | 0.065 0.943 0.049 0.955 0.130 0.871
3000 | 0.061 0.942 0.043 0.957 0.122 0.880
5000 | 0.055 0.947 0.041 0.959 0.125 0.878
7000 | 0.052 0.949 0.038 0.962 0.127 0.873
9000 | 0.050 0.949 0.036 0.965 0.127 0.872
20000 | 0.046 0.955 0.032 0.968 0.126 0.874
40000 | 0.041 0.959 0.029 0.972 0.124 0.876
60000 | 0.038 0.962 0.027 0.973 0.125 0.876
80000 | 0.038 0.964 0.025 0.976 0.124 0.877
100000 0.035 0.965 0.025 0.975 0.124 0.877

TABLE 2. The results of our heuristics for several instances on the 2019
challenge.

can be achieved by using multiple values of «, increasing ¢, and using randomization with
multiple values of o. The times of computation of a single solution are shown in Figure [7]

We present some of the results obtained for some of instances of the challenge CG:SHOP
2019 in Table

5. CONCLUDING REMARKS

The greedy algorithm that we use in the first phase is highly dependent on the weight
function chosen. Figure [l shows the huge difference between two results obtained with a
weight function with and without a penalty for long edges. We tested different penalties
and different values of «a, but these investigations have not been done in an exhaustive
manner. It is likely that better results may be obtained by customizing the weight function
for different types of files, depending on specific characteristics of the instances. Even
without changing the expression of the weight function, a deeper investigation on the
dependency on the value of « is desirable.

The local search step that we use in the second phase can also be improved with more
sophisticated tools such as meta-heuristics and heuristics developed for the TSP problem,

as it has been done by other teams during the challenge. The combination of our greedy
10

heuristics with the more advanced local optimization could provide better results than
the ones that we obtained independently.

6. ACKNOWLEDGMENTS

Loic Crombez has been sponsored by the French government research program “In-
vestissements d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).
Guilherme D. da Fonseca and Yan Gerard are supported by the French ANR PRC grant
ADDS (ANR-19-CE48-0005).

We would like to thank Hélene Toussaint, Raphaél Amato, Boris Lonjon, and William
Guyot-Lénat from the LIMOS HPC cluster, whose computational resources were extremely
useful for the competition. We would also like to thank the challenge organizers and other
competitors for their time, feedback, and making this whole event possible.

REFERENCES

[1] E. D. Demaine, S. P. Fekete, and J. S. Mitchell. The 2019 cg challenge: Area-optimal polygonalizations.
ACM J. Exp. Algorithmics, ():same issue, submitted.

[2] S. P. Fekete. On simple polygonalizations with optimal area. Discret. Comput. Geom., 23(1):73-110,
2000.

[3] S. P. Fekete, A. Haas, P. Keldenich, M. Perk, and A. Schmidt. Computing area-optimal simple
polygonalizations. ACM J. Exp. Algorithmics, ():same issue, submitted.

[4] J. O’Rourke. Computational geometry in C. Cambridge University Press, UK, 1998.

[5] J. Peethambaran, A. D. Parakkat, and R. Muthuganapathy. An empirical study on randomized
optimal area polygonization of planar point sets. ACM J. Exp. Algorithmics, 21, 2016.

11

	1. Introduction
	2. Methods
	2.1. Greedy Heuristic
	2.2. Local Search
	2.3. Minimization

	3. Algorithm Engineering
	3.1. Binary Heaps
	3.2. Grid Intersection Test
	3.3. Restricted Candidates
	3.4. Randomization
	3.5. Mona Lisa

	4. Results
	5. Concluding Remarks
	6. Acknowledgments
	References

