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Abstract

A set S ⊂ Z2 of integer points is digital convex if
conv(S) ∩ Z2 = S, where conv(S) denotes the con-
vex hull of S. In this paper, we consider the follow-
ing two problems. The first one is to test whether
a given set S of n lattice points is digital convex.
If the answer to the first problem is positive, then
the second problem is to find a polygon P ⊂ Z2

with minimum number of edges and whose inter-
section with the lattice P∩Z2 is exactly S. We pro-
vide linear-time algorithms for these two problems.
The algorithm is based on the well-known quick-
hull algorithm. The time to solve both problems
is O(n + h′ log r), where h′ = min(| conv(S)|, n1/3)
and r is the diameter of S.

1 Introduction

Digital geometry is the field of mathematics that
studies the geometry of points with integer coordi-
nates, also known as lattice points [28]. Although
the subsets of Zd are not convex in the usual mean-
ing of the term, a simple notion of convexity is in-
duced by the convexity of Rd [34]. A set of lattice
points S ⊂ Zd is digital convex if conv(S)∩Zd = S,
where conv(S) denotes the convex hull of S in Rd.
In other words, S is digital convex if it is the in-
tersection of a convex subset of Rd with the lat-

Convex

Not convex

Figure 1: Digital convexity. The first set is dig-
ital convex, while the second set is not because of
the red lattice points that are inside the convex hull
of the set but not in the set itself.

tice Zd (Fig. 1). Digital convex lattice sets are
then directly related to the lattice polytopes inves-
tigated in geometry of numbers since the works of
Minkowski [30]. Digital convexity is preserved by
homeomorphisms of Zd.

Let us remark that a digital convex lattice set
S is not necessarily connected while the convex
sets of Rd are arc-connected or simply connected.
In Z2 and Z3, the lack of connectivity has led
to the introduction of some alternative defini-
tions of digital convexity that we will not con-
sider [11, 12, 24, 25, 27].

Herein, we consider the following two problems
in the plane.
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1.1 Testing Convexity

The first problem is to determine whether a given
finite lattice set S is convex.

Problem TestConvexity

Input: Set S ⊂ Z2 of n lattice points given by
their coordinates.
Output: Determine whether S is digital convex.

The input of TestConvexity is an unstructured
finite lattice set (without repeating elements). Re-
lated work considered more structured data, in
which S is assumed to be connected. The contour
of a connected set S of lattice points is the ordered
list of the points of S having a grid neighbor (a lat-
tice point whose Chebyshev distance to the point
is one) not belonging to S. When S is connected,
it is possible to represent S by its contour, either
directly as in [15] or encoded by its Freeman chains
code [9]. The algorithms presented in [9, 15] test
digital convexity in linear time on the respective
input representations.

Our work, however, does not make any assump-
tion on S being connected, or any particular order-
ing of the input. In this setting, a naive approach
to test the digital convexity is:

1. Compute the convex hull conv(S) of the n lat-
tice points of S.

2. Compute the number n′ of lattice points inside
the convex hull of S.

3. If n = n′, then S is convex. Otherwise, it is
not.

Step 1 consists in computing the convex hull
of n points. The field of computational geome-
try provides a plethora of algorithms for comput-
ing the convex hull of a finite set S ⊂ R2 of n
points [8]. The fastest algorithms take O(n log n)
time [36], which matches the lower bound in the
algebraic decision tree model of computation [32].
If we also take into consideration the output size
h = | conv(S)|, i.e. the number of vertices of
the convex hull, then the fastest algorithms take
O(n log h) time [10, 26].

Step 2 consists in computing the number of lat-
tice points inside a convex polygon (represented

Figure 2: Minimization. The input of the
Minimization problem is a finite lattice set. The
question is to find a convex polygon P with the
smallest number of edges P ∩ Z2 = S and whose
intersection with Z2 is exactly S.

by its vertices), which is a well studied problem.
In dimension 2, it can be solved using Pick’s for-
mula [31]. In higher dimension, the question has
been widely investigated in the framework of the
geometry of numbers, from Ehrhart theory [17]
to Barvinok’s algorithm [7]. The currently best-
known algorithms have a complexity of O(nO(d))
for fixed dimension d [6]. Overall, the time com-
plexity of this naive approach is at least that of the
computation of the convex hull.

1.2 Digital Convex Polygon Mini-
mization

In the case where the set S is convex, the second
problem is to determine a convex polygon P having
as few edges as possible and whose intersection P ∩
Zd with the lattice is exactly S.

Problem Minimization

Input: Set S ⊂ Z2 of n lattice points given by
their coordinates.
Output: Find a convex polygon P with minimum
number q of edges verifying P ∩ Z2 = S.

The problem Minimization has been mentioned
in a survey of open questions in Digital geome-
try [3]. Contrary to what is claimed, a minimal
decomposition of the boundary of the set in dig-
ital straight segments (Min-DSS) as in [18] does
not yield a solution. We disprove the reduction
of Minimization to Min-DSS with the counter-
example provided in Fig. 3. A weaker form of the
problem, assuming 8-connectivity of the input set,
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Figure 3: Min-DSS fails to solve Minimization.
According to [3], the problem Minimization can be
solved by a technique decomposing the contour of
a 4-connected shape in a minimal number of digi-
tal segments. The above example disproves it. The
min-DSS decomposition of the boundary of the lat-
tice set is done with only 3 digital segments while
the set cannot be separated from its complement
in Z2 by a triangle. It can be seen by consider-
ing the four exterior colored points in (c). No pair
of colored points can be separated from the lat-
tice set by a line, which proves that the problem
Minimization admits only a solution with at least
q = 4 edges and not 3 as in Min-DSS.

has been studied in [23].

The problem Minimization is a fundamental
problem in geometry, related for instance to com-
binatorial optimization. In this field, solutions are
often characterized by an exponential number of
linear constraints, and the reduction of the num-
ber of linear inequalities characterizing them is a
major concern. It is related to the question that
we address but in our framework the set of inte-
ger points is explicitly given through the list of the
coordinates of the points. Even with the assump-
tion that the lattice set is given, the state of the
art about Minimization is restricted to a few re-
sults. The problem Minimization is decidable in

dimensions d = 2 and 3. In arbitrary dimensions,
the problem is only known to be decidable if S is
a non-hollow convex polytope (non-hollow means
that there is some lattice points in the interior of its
convex hull) [19–21]. These questions of decidabil-
ity have been investigated without focus on the ef-
ficiency of the algorithms. Providing algorithms of
low complexity for solving Minimization remained
a fully open question, which we solve in this paper
in dimension 2.

1.3 Our Results

In Section 2, we consider the problem of testing the
digital convexity of a given lattice set S. We recall
the linear time solution already presented in the
conference version [14]. Our main result is an al-
gorithm to solve TestConvexity in O(n+ h′ log r)
time, where h′ = min(| conv(S)|, n1/3) and r is the
diameter of S. Furthermore when the set S is dig-
ital convex, the algorithm returns the convex hull
of S.

In Section 3, we consider the problem
Minimization. We present the first linear-
time algorithm to recognize a digital convex
polygon. This algorithm uses the convex hull of
S computed in TestConvexity for digital convex
sets and then solves Minimization in O(h log r)
time where h is the number of vertices of the
convex hull of S.

2 Digital Convexity

The purpose of this section is to provide an algo-
rithm to test the convexity of a finite lattice S ⊂ Z2

in linear time in n. To achieve this goal, we first
show that the convex hull of a digital convex set
S can be computed in linear time using the well-
known quickhull algorithm [5].

Quickhull is one of the many early algorithms
to compute the convex hull in dimension 2. Its
worst-case time is O(n2). However for some inputs
and variations of the algorithm, the average time
complexity is reduced to O(n log n) or O(n) [8, 22].

The quickhull algorithm starts by initializing a
convex polygon in the following manner. First it
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Figure 4: Quickhull initialization. Points inside
the partial hull (light brown) are discarded. The
remaining points are potentially part of the hull.

computes the top-most and bottom-most points of
the set. Let ` be the line defined by these two
points. Then, the algorithm computes the farthest
point from `, on each side of `. The (at most) four
points we computed describe a convex polygon that
we call a partial hull, which is a subset of the ver-
tices of the convex hull of S. All points contained in
the interior of the partial hull are discarded from S.
Furthermore, horizontal lines and lines parallel to
the top-most to bottom-most line passing through
these points define an outlying bounding box con-
taining the convex hull (Fig. 4).

After the initial step, the algorithm adds vertices
one by one to the partial hull until it obtains the
entire convex hull. For each edge of the partial
hull, we apply the following steps. Let v denote
the edge’s outwards normal vector. The algorithm
searches for the extreme point in direction v. If
this point distance from the edge is 0, then the
edge is part of the convex hull. Otherwise, we add
to the convex hull the farthest point found, dis-
carding the points that are inside the new partial
hull. Throughout this paper, we call a step of the
quickhull algorithm the computation of the farthest
point of every edge for a given partial hull. When
adding new vertices to the partial hull, the region
inside the partial hull expands. Points inside that
expansion are discarded by quickhull and herein we
call this region discarded region. The points not
belonging to the partial hull are preserved, and are
the elements of the preserved region (Fig. 5).

We show that quickhull steps take linear time for

any digital convex lattice set and that, in this case,
at each step half of the remaining input points are
discarded. Therefore, the total running time re-
mains linear, as in standard decimation algorithms
(see for example [29]). In Section 2.2, we explain
how to use this algorithm to test the digital con-
vexity of any lattice set in linear time in n.

Theorem 1. If the input is a digital convex set of
n points, then quickhull has O(n) time and space
complexities.

2.1 Proof of Theorem 1

We prove Theorem 1 as follows.

Proof. During quickhull algorithm, we discard from
S the points that become useless for the next com-
putation and add some of them as vertices of the
partial hull. The algorithm discards all the points
that are in the interior or on the boundary of the
current partial hull. The theorem is a consequence
of the following two propositions, which we prove
next: (i) At each step, the running time is linear in
the number of points remaining in S. (ii) At least
half of the remaining points are discarded at each
iteration. We start by proving proposition (ii).

Consider one step of the algorithm. Let ab be the
edge defining the step. When a was added to the
hull, it was as the farthest point in a given direction.
Hence, there is no point beyond the line orthogonal
to this direction going through a (Fig. 5-b). The
same holds for b. Let c be the intersection point of
these two lines going through a and b. We know
that any remaining point of S is in the interior of
such a triangle 4abc to which it is allocated. We
proceed with the remaining points of S in 4abc
as follows. We are looking for the point that is
the farthest from the supporting line of ab in the
triangle4abc (Fig. 6). Three cases might occur. If
the triangle 4abc does not contain any remaining
point, then ab is an edge of the partial hull and we
stop the computation for this edge in the following
steps. If there is a unique remaining point of the
triangle 4abc which is the farthest from the line
ab, then we denote it d. If there are multiple points
which are farthest from ab in the interior of the
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Figure 5: Quickhull regions. The preserved re-
gion (region in which we look for the next vertex
to be added to the partial hull) is a triangle. This
stays true when adding new vertices to the hull (as
shown here in the bottom right corner). The par-
tial hull (whose interior is shown in light brown)
grows at each vertex insertion to the partial hull.
The points in or on the boundary of the new region
of the partial hull are discarded.

triangle 4abc, we denote the two extreme points of
S on this segment d and d′.

Let us consider the case where the point d is the
unique farthest point from the line ab. Let e and f
be the intersections between the line parallel to ab
going through d, and respectively ac and bc. The
point d is the unique remaining point in the triangle
4cef . Adding d to the partial hull creates two
other edges to be further processed: one is ad and
the other is bd. Then we insert the vertex d in the
partial hull and remove from S all the points which
are neither in the interior of the triangles 4ade nor
4bdf . The points of S in the interior of the triangle
4abc that we do not discard are allocated either to
4ade or to 4bdf according to their positions.

We denote respectively c1 and c2 the midpoints
of ad and bd. All the lattice points in the inte-

rior of the triangles 4ade and 4dbf have different
symmetric lattice points towards c1 and c2 in the
interior the triangle 4ade. Since S is digital con-
vex, those lattice points are in S, they also are dis-
carded due to their positions. (Fig. 6-a). In other
words, at this step, for each remaining points of S,
one point of S is discarded. It proves (ii). This
proposition also holds in the case where there are
two extreme points d and d′ from S on the line ef .
In this case, we insert the two vertices d and d′ in
the partial hull. We discard from S all the points of
the triangle 4abc which are not in the interiors of
the triangles 4ade and 4d′bf . As previously, any
of the remaining points has a different symmetric
point which is discarded (Fig. 6-b). It proves (ii)
in this case. In both cases our initial assumption
is preserved: all the remaining points are in the in-
terior of the triangle to which they are allocated.
At last, we can easily provide an initialization of
the partial hull and of the set of remaining points
satisfying this condition.

For proving (i), the computation of the farthest
point from the line ab among the remaining points
of S in the triangle 4abc takes linear time. For
all points in the triangle we test if they are in the
interior of either the triangles 4ade or 4dbf (or
4d′bf in the second case). We allocate them to
their containing triangle or discard them. The op-
eration takes a constant time per point. In the
second case, where we have two extreme points d
and d′, these two points are also computed in linear
time; This proves (i). Consequently, the number of

operations is proportional to n
∞∑
i=0

(1
2
)i = 2n and

quickhull takes linear time for digital convex sets.

2.2 Testing Digital Convexity

By running quickhull on any given set S, and stop-
ping the computation if any step of the algorithm
discards less than half of the remaining points, we
ensure both that the running time is linear, and
that if S is digital convex, quickhull finishes and
returns the convex hull of S. If the computation
finishes for S, we still need to test its digital con-
vexity. To do so, we use the previously computed
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Figure 6: Symmetrical regions. At each step,
we discard from S all the points of the triangle
4abc which are not in the interior of 4ade or of
4dbf (4d′bf in b). By considering the symmetries
through c1 and c2, any of these remaining points has
a symmetric lattice point in the interior of 4abd
which is discarded.

convex hull.
If the number of convex hull vertices h is larger

than (8π2n)1/3, then S is not digital convex (see [2,
33], the upper bound h ≤ (8π2A)1/3 is given ac-
cording to the area A of the convex hull of a dig-
ital convex set S, but if S is not a set of col-
inear points, Pick’s formula gives A < n which
gives h ≤ (8π2n)1/3 for convex lattice sets where
n = |S|). We can assume that h is lower than
(8π2n)1/3. Then we compute | conv(S) ∩ Z2| using
Pick’s formula [31]. The set S is digital convex if
| conv(S) ∩ Z2| = |S|. Hence the resulting Algo-
rithm 1.

Algorithm 1 isDigitalConvex(S)

Input: S a set of points
Output: true if S is digital convex, false if not.
1: while S is not empty do
2: Run one step of the quickhull algorithm on

S
3: if quickhull discarded less than half the re-

maining points of S then
4: return false
5: if The number of convex hull vertices h is

greater than (8π2n)1/3 then
6: return false
7: Compute | conv(S) ∩ Z2|
8: if | conv(S) ∩ Z2| > |S| then
9: return false

10: return true

Theorem 2. Algorithm 1 tests digital convex-
ity of S in O(n + h′ log r) time, where h′ =
min(| conv(S)|, n1/3) and r is the diameter of S.

Proof. As Algorithm 1 runs quickhull, but stops if
less than half of the remaining points have been
removed, the running time of the quickhull part is

bounded by the series n
∞∑
i=0

(1
2
)i = 2n, and is hence

linear. If quickhull has been stopped, then the set
S is not digital convex. Otherwise, if the number
of convex hull vertices h is larger than (8π2n)1/3,
then we also have that the set S is not digital con-
vex. We consider now the remaining case where
h ≤ (8π2n)1/3. Computing | conv(S) ∩ Z2| using
Pick’s formula requires the computation of both
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the area of conv(S) in O(h) time and the num-
ber of boundary lattice points, which requires the
computation of a greatest common divisor. Hence,
this takes O(h log r) time where h = | conv(S)| and
r is the diameter of S. As S is digital convex if and
only if |S| = | conv(S)∩Z2|, Algorithm 1 effectively
tests digital convexity in O(n+ h log r) time.

3 Minimum Digital Convex

Polygon

In this section, we consider a fundamental question
of pattern recognition: the recognition of digital
convex polygons, namely problem Minimization

from Section 1.2. In this problem, we are given a
set S ⊂ Z2 of n points and the goal is to find a
convex polygon P with minimum number of edges
such that P ∩ Z2 = S. Notice that the vertices of
P are not necessarily lattice points. We prove the
following theorem:

Theorem 3. Given a finite lattice set S ⊂ Z2

of n points, the algorithm 3 solves the prob-
lem Minimization. The running time is O(n +
h′ log r), where h′ = min(| conv(S)|, n1/3) and r is
the diameter of S.

3.1 Strategy

The problem Minimization can be rephrased as
the following polygonal separation problem with
the set IN = S and its complement OUT = Z2 \S.

Problem: Polygonal Separation

Input: A set IN ⊂ Z2 of inliers and a set OUT ⊂
Z2 of outliers.
Output: A convex polygon P ⊂ R2 with as few
edges as possible and such that all points of IN and
none of OUT are inside P .

Polygonal separability has been widely inves-
tigated in the literature. An optimal algorithm
for Polygonal Separation that takes O((|IN | +
|OUT |) log(|IN |+|OUT |)) time is presented in [16].
However, it cannot be applied to Minimization

since the set of outliers OUT = Z2 \ S is not fi-
nite.

The strategy to solve Minimization is the fol-
lowing: we start by testing the digital convexity of
S in linear time using Theorem 2. If S is not digital
convex, then there is no solution. Otherwise, the
algorithm quickhull computes the convex hull of S
in linear time and we can proceed to the second
step.

The second step of the algorithm is to reduce
the set of outliers OUT = Z2 \ S to a finite sub-
set OUT ′ ⊆ OUT of O(n) points. In fact, we do
not explicitly compute OUT ′. Instead, we com-
pute an implicit description of OUT ′ of size O(h)
in O(h log r) time, where h is the number of edges
of conv(S).

The third step is to separate OUT ′ from S us-
ing the smallest number of edges. We could use
the polygonal separability algorithm from [16], but
that would lead to a running time of O(n log r +
n log n) = O(n log r). Instead, we provide an algo-
rithm that takes benefit of the lattice structure to
achieve a running time of O(h log r) after the con-
vex hull computation and digital convexity tests of
the first step, that takes O(n+ h log r) time.

As the first step, i.e. testing the digital convex-
ity, is already addressed in the previous section, we
present the second and third steps of the algorithm
in the two following sections.

3.2 Reduction

In this section we assume that the set S is digital
convex and show how to reduce the set of outliers
OUT = Z2 \S to a finite set of O(n) points. To do
this, we use the notion of jewels introduced in [13,
19] for testing digital circularity and recognizing
digital polyhedra. We say that a point p ∈ Z2 \S is
a jewel of S if conv(S∪p)∩Z2 = S∪p (Fig. 7). The
set of all the jewels of S is denoted Jewel(S) and it
has the property that a convex set separates S from
Z2 \ S if and only if it separates separates S from
Jewel(S) [19]. Hence, the infinite set of the outliers
of our problem of separability can be reduced from
OUT = Z2 \ S to OUT ′ = Jewel(S).

The number of jewels is infinite if and only if S
is the intersection of a line segment and Z2 [19]. In
this case, it is easy to see that the set S forms a dig-
ital triangle. A simple way to establish bounds on
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a b

Figure 7: Jewel’s hull. In black, the set S, its
convex hull is in dark red. The point a is not a
jewel because of the red point, any convex polygon
that includes both S and a also includes the red
point. The point b is a jewel because its union
S ∩ {b} with S is still convex. In other words, the
convex hull of the union S ∩ {b} does not contain
any other lattice points.

Figure 8: Jewels. In black, the set S, its convex
hull is in dark red. The halfplanes H ′i are delimited
by the dashed lines, and form the jewel hull that
surrounds the convex hull of S. The jewel hull has
three properties: its edges are parallel to the ones
of the convex hull of S, there are no point between
the convex hull and the jewel hull and all the jewels
(drawn in red are) on its boundary.

the number of jewels has been discovered by French
high school students during the national contest
TFJM2017. They presented the following struc-
ture of the set of jewels: the jewels of the lattice
set S are the lattice points that lie on the edges of
a polygon J surrounding the convex hull of S. This
surrounding polygon J ⊃ conv(S) is the arithmetic
dilation of conv(S) obtained by moving the support
lines of the edges of the conv(S) to the next Dio-
phantine lines towards the exterior (Fig. 8). We
define J as the jewel hull of S (Fig. 8) and define
it more formally as follows.

Given S, let E = {e1, e2, ...eh} be the edges of
conv(S). For each i, let HPi : aix+ biy+ ci ≤ 0 (ai
and bi co-prime integers) be the closed supporting
halfplane associated with ei such that S ⊂ HPi.
Notice that conv(S) =

⋂
iHPi. Consider the open

halfplanes HP ′i : aix + biy + ci < 1. Notice that
there is no integer point in HP ′i \ HPi. The jewel
hull of S is the closure of the intersection of the
half-planes HP ′i (Fig. 8).

The jewel hull J of S has three main properties.
(i) By construction, its edges are parallel to the
edges of conv(S). (ii) It is easy to prove that there
is no integer point between conv(S) and the jewel
hull J . Finally, (iii) the jewels of S are a subset of
J . This last property is in fact a corollary of the
first Lemma of [35] which is reformulated in the
next lemma.

Lemma 4. For any three lattice points p1, p2, p3
such that p1, p2 lie on the line ax + by + c = 0
(coefficients a and b are coprime) and p3 does not,
we have that the triangle p1p2p3 either contains a
lattice point on the line ax + by + c + 1 = 0 or on
the line ax+ by + c− 1 = 0.

Proof. Up to a lattice preserving affine isomor-
phism, we can assume p1 = (0, 0) and p2 = (0, u)
while the images of the two lines are x = −1 and
x = 1. We assume p3 lies on the right of p1p2 (the
other case is identical by symmetry). Hence, there
exists three integers u, v, w with u, v > 0 such that
p1 = (0, 0), p2 = (0, u), and p3 = (v, w) and we
want to prove that the triangle p1p2p3 contains an
integer point on the line x = 1. The lower and up-
per points of the triangle in the line x = 1 are the
two intersection points of x = 1 and each of the
two segments p1p3 and p2p3. Their coordinates are
respectively (1, w

v
) and (1, u + w−u

v
). Then the in-

tersection of the line x = 1 and the triangle p1p2p3
contains an integer point if and only if the inter-
val [w

v
, uv+w−u

v
] contains an integer namely if the

interval [w,w + u(v − 1)] contains a multiple of v,
which is trivially true since there is necessarily a
multiple of v in any interval [w,w + v[ and then in
[w,w + v − 1] ⊂ [w,w + u(v − 1)] as u ≥ 1.

The area of the jewel hull of S is finite unless all
the points of S are colinear. This case is easy to
detect, and it is easy to see that in this case there
exists a triangle with vertices in R2 that separates
S from Z2 \ S.

The jewel hull consists of the intersection of a
set of h halfplanes. Computing the vertices of the
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intersection of halfplanes is the dual [8, Chapter 8]
of the computation of the convex hull of a given
points set. In the general case, computing the in-
tersection of h halfplanes takes O(h log h) time [8,
Chapter 4]. However, since we already have the
h halfplanes sorted by slope, we can use Graham
Scan [8, Chapter 1] to compute the jewel hull in
O(h) time. Notice that not all h halfplanes appear
on the boundary of the jewel hull, which is the dual
of the fact that some points may be in the interior
of the convex hull.

3.3 Jewel Separation

The jewel separation is the final step to solve the
Minimization problem. The jewel hull J has been
computed and the problem is the polygonal sep-
aration of IN = S and the jewel set OUT ′ =
Jewel(S). The previous step does not provide
the set of jewels but the ordered list of edges of
the jewel hull J as a sequence of linear equalities
`i : aix+biy+ci = 1 with coprime integers ai and bi.
An initial lattice point di of each given Diophantine
straight lines `i can be computed with the extended
Euclid algorithm in O(log r) time. We can go from
this first point to the other integer points of the line

`i through translations of vectors k
−−−−−→
(−bi, ai) where

k ∈ Z. Nevertheless, J is a rational polytope. Its
vertices are the intersection point of consecutive
Diophantine lines `i but they are not necessarily
integer points. It is even possible that some edges
of the jewel hull do not contain any integer point.
By computing the vertices of each edge ei we can
count all the jewels on `i and obtain a generating
formula for them in O(1) time and space for each
edge. The jewels on `i are:

⋃
k di + k(−bi, ai). The

computation of an integer point di per line `i for
each one of our at most h Diophantine lines takes
O(h log r). The computation of the vertices of J
takes O(h) time, and hence the computation of the
formulas generating the jewels takes O(h log r) time
and O(h) space.

The jewels are determined in counterclockwise
order according to their order of appearance in the
jewel hull. Their cyclic index i goes from 0 to
|jewel(S)| − 1. Furthermore, any pair of indices
i, j with i < j defines two intervals of indices, the

interval Ii→j containing the indices of the succes-
sors of i until j and the interval Ij→i containing
the indices of the successors of j until i. We intro-
duce now the precise meaning of separation. We
say that a real line ` separates some jewels from S
if S lies entirely on one side of ` while the jewels lie
strictly on the other side. The fact that all jewels
lie on the boundary of a convex polygon leads to
the following simple lemma:

Lemma 5. If ` is a line separating the jewels of
indices i and j from S, then the line ` separates S
from either the jewels with indices in Ii→j or the
jewels with indices in Ij→i.

A naive approach to solve the polygonal separa-
tion problem of the sorted set of jewels from S is
the following: Choose a starting jewel of index i0.
Search for the index j0 such that the jewels with
indices in the interval Ii0→j0 can be separated from
S and |Ii0→j0 | is maximized. The method used to
compute j0 in constant time using our representa-
tion of the jewels will be detailed later. We then de-
fine i1 as the successor of j0 and repeat the process:
search for j1 such that Ii1→j1 can be separated from
S and the number of jewels in the interval is max-
imized. We repeat until we find an interval Iik→jk

which contains the predecessor of i0. The num-
ber of lines of the solution is the number k + 1 of
intervals considered. This algorithm is illustrated
Fig. 9. We call this greedy algorithm the turn rou-
tine since the strategy is to turn around the set S
from a starting jewel pi0 .

The difficulty of this approach is that different
choices of the starting point pi0 may lead to dif-
ferent numbers of separating lines (actually, they
may differ by at most 1 line). The strategy to
find the minimum number of separating lines is
to test several starting jewels. Dynamic program-
ming approaches might be used to find an optimal
solution as in [18], but in the framework of our
minimization problem in the lattice, we are able
to obtain a major simplification.

The strategy to simplify the problem is the fol-
lowing. There are two families of jewels: the ones
which chosen as starting jewel in the turn routine
provide a minimal number of lines, their indices are

9



Algorithm 2 turn(conv(S), Jewel(S),i0)

Input: the convex hull conv(S), the ordered list
of its jewels Jewel(S), and a starting jewel p of
index i0.

Output: A separating polygon with S inside and
Jewel(S) outside.

1: Initialize i0 as the index of the starting jewel,
k = 0 and Ii−1→j−1 as an empty interval

2: while predecessor(i0) 6∈ Iik−1→jk−1
do

3: Compute jk such that the jewels with indices
in the interval Iik→jk can be separated from
S and |Iik→jk | is maximized.

4: ik+1 ← successor(jk)
5: k = k + 1
6: return The polygon obtained from the sepa-

rating lines

denoted IOPT , and the ones that provide a non op-
timal number of lines. Notice that if the index i0
is in IOPT , then all the indices ik computed dur-
ing the turn routine are also in IOPT since it can
be easily seen that they provide also optimal so-
lutions. In the general case of polygonal separa-
bility, a large set of starting points has to be in-
vestigated until finding one leading to an optimal
solution but in the framework of the separation of
IN = S and OUT ′ = Jewel(S), we can provide a
subset of at most 4 jewels containing at least one
in IOPT . It means that testing these four jewels
as starting points of the turn routine is enough to
find the optimal solution. The properties of the set
IOPT are presented in the next two lemmas.

The first lemma states that there is no line that
simultaneously separates two jewels of a line `i and
two jewels of `i+1.

Lemma 6. Let `1 and `2 be two jewel lines. (i) If
`1∩ `2 /∈ Z2 then there is no line that separates two
jewels of `1 and two jewels of `2. (ii) If `1∩ `2 ∈ Z2

then there is no line that separates three jewels of
`1 and three jewels of `2.

Proof. (i) Let order the jewels on `1: J1 =
{p1−1, p1−2, ...} according to their distance to `2,
and order the jewels on `2: J2 = {p2−1, p2−2, ...} ac-
cording to their distance to `1. Assume that there
is a line l such that l separates two jewels of `1

pi0a) b)
pi0pj0

pi1

pj1

d)
pi0

pi3

pj3c)
pi0

pi2

pj2

e) f)
pi0pi0 pi4

Figure 9: Turn algorithm. We start from a cho-
sen starting jewel pi0 and search for its last succes-
sor pj0 that can be separated from S simultaneously
with pi0 by a single line. We then take the succes-
sor of pj0 as new starting jewel pi1 and search for
the last successor pj1 of pi1 that can be separated
with pi1 ... We repeat the process until reaching the
predecessor of pi0 .

and two jewels of `2 from conv(S). Then l sepa-
rates p1−1, p1−2, p2−1 and p2−2 from conv(S). Hence
the triangle4p1−1p1−2p2−2 lies inside the jewel hull
and outside of conv(S) (Fig. 10.a). As the tri-
angle 4p1−1p1−2p2−1 is not degenerated we have
Area(4p1−1p1−2p2−1) ≥ 1

2
. Hence the inequal-

ity Area(4p1−1p1−2p2−2) > Area(4p1−1p1−2p2−1)
leads to Area(4p1−1p1−2p2−2) > 1

2
. Using Pick’s

theorem we can conclude that 4p1−1p1−2p2−2 con-
tains at least four lattice points. However, since
p1−1p1−2 are two consecutive lattice points of `1,
this means that there is a lattice point strictly in-
side the jewel hull and outside conv(S), which is
impossible. Hence l does not exist. The proof of
(ii) is the same, we just have to consider p1−0 =
p2−0 = `1 ∩ `2.

We complete Lemma 6 with a lemma about the
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`1

`2

p1−1

p1−2

p2−1conv(S)

p2−2

`i

`i+1

conv(S)

`j

ei+1

a) b)

Figure 10: Jewel separation. a) If a single
line separates both p1−2 and p2−2, then the triangle
4p1−1p1−2p2−2 is larger than 4p1−1p1−2p2−1 and
hence must contain a fourth lattice point, which is
impossible. b) No jewels lie between ei+1 and `i+1

hence it is impossible to separate simultaneously
jewels from `i and jewels from `j.

separation of jewels which are not in consecutive
lines `i and `i+1.

Lemma 7. If `i and `j are two non consecutive
jewels lines: j ≥ i + 2, then there is no line that
separates any jewel that belongs only to `i and any
jewel that belongs only to `j.

Proof. Consider `i+1 and its associated edge on
conv(S): ei+1. By construction, there is no lattice
points between `i+1 and ei+1 (Fig. 10.b ). Assume
that there is a line l that separates jewels of both
`i and `j As all the jewels belonging only to `i and
all the jewels belonging only to `j lies on the same
side sj of ei+1 as S, l has to be in sj to separate
jewels of `i, then has to leave sj in order to not
intersect conv(S), and finally has to go back in sj
to separate jewels of `i+1. Hence l intersects ei+1

twice which is impossible.

We now explain how to use Lemmas 6 and 7 to
determine at most four jewels such that at least one
of them leads to an optimal solution with the turn

routine. In other words, we provide four indices
with the guarantee that at least one of them is in
IOPT . For convenience, the successor of the index
s is now simply denoted s + 1 and so on with the
successor of the successor denoted s + 2. In the
same manner, we also use s− 1, s− 2, ... to denote
the predecessors of s. When looking for a jewel in
IOPT , several cases might occur:

1. The jewel hull J has an edge ei which does not
contain any integer point. If we denote s the
index of the first jewel after this edge, then
IOPT contains s. It is a corollary of Lemma 7.
Considering an optimal solution, the vertex
of index s cannot be included in the inter-
val Iir→jr containing s−1 because the interval
would contain jewels of the lines `i−1 and `i+1

which is excluded by Lemma 7. Hence the in-
dex s is a starting index namely an index of
the form ir of the considered optimal solution.
As the indices ir of the intervals Iir→jr com-
puted from an optimal starting index i0 are
also optimal, s is included in IOPT .

2. The jewel hull J has an edge ei with only one
jewel s, hence IOPT contains either s or s +
1. Considering an optimal solution, it follows
from Lemma 7 that s−1 and s+1 cannot be in
an interval of the form Iir→jr since they are on
distant lines `i−1 and `i+1. Hence, there exist
either an index ir equal to s or to s + 1. It
proves that one of these two indices s or s+ 1
is in IOPT .

3. The jewel hull has an edge with only two jew-
els. Their indices are s and s+ 1. Considering
an optimal solution, according to Lemma 7 the
indices s− 1 and s+ 2 cannot be in the same
interval Iir→jr because they belong to the dis-
tant lines `i−1 and `i+1. Hence, there is at least
a beginning of interval in s, s+1 or s+2. One
of these three indices s, s+ 1, s+ 2 is in IOPT

4. The edges of the jewel hull all contain at least
three jewels. We choose any edge ei and denote
s, s+1, s+2 the indices of its three firsts jewels.
According to Lemma 6 the indices s + 2 and
s − 2 cannot be in the same interval Iir→jr .
Hence, there is at least a beginning of interval
in s − 1, s, s + 1 or s + 2. One of these four
indices s− 1, s, s+ 1, s+ 2 is in IOPT .

In any case, we can determine a set of at most
four starting jewels with the guarantee that the
turn algorithm provides an optimal solution for at
least one of them. We now explain how, in the
turn algorithm 2, for a given jewel pi we compute
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its last successor pj that can be separated alongside
him with a single line. Let pi be on the jewel line
`i, and let vi be the end vertex of the edge of the
convex hull parallel to `i. Consider the line pivi.
S lies on one side of pivi, all the jewels that lies
strictly on the other side can be separated along-
side pi (Fig. 9). It is clear that all jewels located on
`i can be separated with pi, and using Lemma 7 we
know that the jewels located on `i+2 cannot. Hence,
all we have to do is determine the last jewel of `i+1

that lies on the correct side of pivi. This is easily
done by computing the intersection point q of pivi
and `i+1 and expressing q as di+1 + λ(−bi+1, ai+1)
(We remind that the jewels on `i+1 are expressed as:⋃

k di+k(−bi, ai)). From there a separating line can
be computed by rotating slightly pivi around any
points in between pi and vi.

The time complexity of the turn algorithm 2 is
hence O(h) = O(n1/3). This follows from the fact
that h is an upper bound to the number of edges
of the solution of the Minimization problem and
h = O(n1/3). Starting from any jewel, the algo-
rithm computes a polygon that has at most one
edge more than the optimal solution and each edge
is computed in O(1) time.

As the jewel hull is computed O(h log r) time, the
set of O(1) starting jewels can be computed in con-
stant time, and the turn algorithm 2 runs in O(h)
time. The minimization algorithm, once provided
with the convex hull of S runs in O(h log r) time,
which proves Theorem 3.

Algorithm 3 minimization(S)

Input: S a set of points.
Output: A minimal separating polygon if S is dig-

ital convex.
1: Test the digital convexity of S and compute
conv(S) using quickhull

2: Compute the jewel hull of S using Graham Scan

3: Compute at most four starting jewels
4: for all starting jewels do
5: Compute the minimal separating polygon us-

ing the given starting jewel using algorithm 2
6: return The minimal separating polygon

4 Perspectives

We showed that the convex hull of a digital con-
vex set in dimension 2 can be computed in linear
time, and we can determine the minimum digital
convex polygon in the same complexity. Can the
convex hull of digital convex sets be computed in
linear time in dimension 3, or more generally, what
is the complexity of convex hull computation of a
digital convex set in any fixed dimension? We note
that the number of faces of any digital convex set
in d dimensions is O(V (d−1)/(d+1)), where V is the
volume of the polytope [1, 4]. Therefore, the bound
of Θ(nb(d−1)/2c) for the worst-case complexity of the
convex hull of an n-vertex polytope does not hold
for digital convex sets. The decidability of the Poly-
gon Minimization Problem has been proven in di-
mension 3 [21], but no polynomial-time algorithm
have been presented yet. Even the decidability of
the problem remains an open problem for dimen-
sions higher than 3.
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J. Guédon, and F. Autrusseau, editors, Dis-
crete Geometry for Computer Imagery, pages
415–426, Cham, 2016. Springer International
Publishing.

[20] Y. Gerard. About the decidability of polyhe-
dral separability in the lattice Zd. Journal of
Mathematical Imaging and Vision, 59(1):52–
68, Sep 2017.

[21] Y. Gérard. Recognition of digital polyhedra
with a fixed number of faces is decidable in di-
mension 3. In Discrete Geometry for Computer

13



Imagery - 20th IAPR International Confer-
ence, DGCI 2017, Vienna, Austria, Septem-
ber 19-21, 2017, Proceedings, pages 279–290,
2017.

[22] J. S. Greenfield. A proof for a quickhull algo-
rithm. Technical report, Syracuse University,
1990.

[23] C. E. Kim. Digital convexity, straightness,
and convex polygons. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
PAMI-4(6):618–626, Nov 1982.

[24] C. E. Kim and A. Rosenfeld. Convex digital
solids. IEEE Trans. Pattern Anal. Mach. In-
tell., 4(6):612–618, 1982.

[25] C. E. Kim and A. Rosenfeld. Digital straight
lines and convexity of digital regions. IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, 4(2):149–153, 1982.

[26] D. Kirkpatrick and R. Seidel. The ultimate
planar convex hull algorithm? SIAM Journal
on Computing, 15(1):287–299, 1986.

[27] K. Kishimoto. Characterizing digital convex-
ity and straightness in terms of length and to-
tal absolute curvature. Computer Vision and
Image Understanding, 63(2):326 – 333, 1996.

[28] R. Klette and A. Rosenfeld. Digital geometry:
Geometric methods for digital picture analysis.
Elsevier, 2004.

[29] N. Megiddo. Linear programming in linear
time when the dimension is fixed. Journal of
the ACM (JACM), 31(1):114–127, 1984.

[30] H. Minkowski. Geometrie der Zahlen. Number
vol. 2 in Geometrie der Zahlen. B.G. Teubner,
1910.

[31] G. Pick. Geometrisches zur zahlen-
lehre. Sitzungsberichte des Deutschen
Naturwissenschaftlich-Medicinischen Vere-
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