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Families of eulerian functions involved in regularization of divergent polyzetas
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Extending the Eulerian functions, we study their relationship with zeta function of several variables. In particular, starting with Weierstrass factorization theorem (and Newton-Girard identity) for the complex Gamma function, we are interested in the ratios of ζ(2k)/π 2k and their multiindexed generalization, we will obtain an analogue situation and draw some consequences about a structure of the algebra of polyzetas values, by means of some combinatorics of words and noncommutative rational series. The same frameworks also allow to study the independence of a family of eulerian functions.

Introduction

Eulerian functions are most significant for analytic number theory and they are widely applied in Probability theory and in Physical sciences. They are tightly relating to Riemann zeta functions, for instance as follows

ζ(s) = 1 Γ (s) ∞ 0 dt t s-1 e t -1 and Γ (s) = ∞ 0 du u s-1 e -u , for ℜ(s) > 0. ( 1 
)
The function Γ is meromorphic, with no zeroes and -N * as set of simple poles. Hence Γ -1 is entire and admits -N * as set of simple zeroes. Moreover, it satisfies4 Γ (z) = Γ (z). From Weierstrass factorization [START_REF] Dieudonné | Infinitesimal calculus[END_REF] and Newton-Girard identity [START_REF] Lascoux | Fonctions symétriques[END_REF], we have successively

1 Γ (z + 1) = e γz n≥1 1 + z n e -z n = exp γz - k≥2 ζ(k) (-z) k k . (2) 
Using the following functional equation and Euler's complement formula, i.e.

Γ (1 + z) = zΓ (z) and Γ (z)Γ (1z) = π sin(zπ) ,

and also introducing the partial beta function defined (for any a, b, z ∈ C such that ℜa > 0, ℜb > 0, 

(u + v) n -(u n + v n ) n = Γ (1 -u)Γ (1 -v) Γ (1 -u -v) , (5) 
= Γ (u + v) Γ (u)Γ (v) π sin((u + v)π) sin(uπ) sin(vπ) (6) 
= π B(u, v) (cot(uπ) + cot(vπ)). [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF] In particular, for v = -u (|u| < 1), one gets exp -

k≥1 ζ(2k) u 2k k = 1 Γ (1 -u)Γ (1 + u) = sin(uπ) uπ . (8) 
Hence, taking the logarithms and considering Taylor expansions, one obtains . [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF] One can deduce then the following expression 5 for ζ(2k):

ζ(2k) π 2k = k k l=1 (-1) k+l-1 l n 1 ,...,n l ≥1 n 1 +...+n l =k l i=1 1 Γ (2n i + 2) ∈ Q. (11) 
Now, more generally, for any r ∈ N ≥1 and (s 1 , . . . , s r ) ∈ C r , let us consider the following several variable zeta function 5 Note that Euler gave another explicit formula using Bernoulli numbers.

which converges for (s 1 , . . . , s r ) in the open sub-domain of C r , r ≥ 1, [START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF][START_REF] Zhao | Analytic continuation of multiple zeta functions[END_REF] H r := {(s 1 , . . . , s r ) ∈ C r | ∀m = 1, . . . , r, ℜ(s 1 ) + . . . + ℜ(s m ) > m}. [START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF] In the convergent cases, from a theorem by Abel, for n ∈ N, z ∈ C, |z| < 1, its values can be obtained as the following limits ζ(s 1 , . . . , s r ) = lim z→1 Li s1,...,sr (z) = lim n→+∞ H s1,...,sr (n), [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] where the following polylogarithms are well defined Li s1,...,sr (z) := and so are the Taylor coefficients 6 here simply called harmonic sums H s1,...,sr : N -→ Q(i.e. an arithmetic function), [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF] n -→ H s1,...,sr (n) = 

On H r ∩ N r , the polyzetas can be represented by the following integral representation 7 over ]0, 1[ [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] (here, one set λ(z) := z(1z) -1 , t 0 = 1 and u r+1 = 1):

ζ(s 1 , . . . , s r ) = 1 0 ω 1 (t 1 ) log s1-1 (t 0 /t 1 ) Γ (s 1 ) . . . 

As for the Riemann zeta function in [START_REF] Berstel | Rational series and their languages[END_REF], we observe that (20) involves again the factors (and products) of eulerian Gamma function and also their quotients (hence, eulerian Beta function). In the sequel, in continuation with [START_REF] Duchamp | About Some Drinfel'd Associators[END_REF][START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF], we propose to study the ratios ζ(s 1 , . . . , s r )/π s1+...+sr (and others), an analogue of [START_REF] Lascoux | Fonctions symétriques[END_REF], which will be achieved as consequence of regularizations, via the values of entire functions, of divergent polyzetas and infinite sums of polyzetas (see Theorem 4 and Corollaries 5, 6 in Section 2.4) for which a theorem by Abel (see ( 14)) could not help any more. This achievement is justified thanks to the extensions of polylogarithms and harmonic sums (see Theorems 2 and 3 in Section 2.3) and 6 These quantities are generalizations of the harmonic numbers Hn = 1+2 -1 . . .+n -1 to which they boil down for r = 1, s1 = 1. They are also truncations of the zeta values ζ(s1, . . . , sr) at order n + 1. 7 On Hr, log(a/b) is replaced by log(a)log(b).

thanks to the study of the independence of a family of eulerian functions which can be viewed as generating series of zeta values: 

∀r ≥ 1, 1 Γ yr (z + 1) = k≥0 ζ(r, . . . , r ktimes )z kr = exp - k≥1 ζ(kr) (-z r ) k k (21) (see

Families of eulerian functions

In all the sequel, 1. C[{f i } i∈I ] denotes the algebra generated by {f i } i∈I , 2. C{{(g i ) i∈I }} denotes the differential C-algebra8 , generated by the family (g i ) i∈I of the C-commutative differential ring (A, ∂) equipping 1 A as the neutral element, 3. C 0 denotes a differential subring of A (∂C 0 ⊂ C 0 ) which is an integral domain containing the field of constants.

If the ring A is without zero divisors then the fields of fractions Frac(C 0 ) and Frac(A) are naturally differential fields and can be seen as the smallest ones containing C 0 and A, respectively, satisfying Frac(C 0 ) ⊂ Frac(A).

Words and formal power series

Let X denote either the alphabets

X := {x 0 , x 1 } or Y := {y k } k≥1 , (22) 
equipped with a total ordering, and let X * denote the monoid freely generated by X (its unit is denoted by 1 X * ). The set of noncommutative polynomials (resp. series) over X with coefficients in a commutative ring A, containing Q, is denoted by A X (resp. A X ) [START_REF] Berstel | Rational series and their languages[END_REF].

The algebraic closure of9 A.X by the rational operations10 {conc, +, * } within A X is denoted by A rat X [START_REF] Berstel | Rational series and their languages[END_REF]. We will also consider the dollowing Hopf algebras and, in the case of A = k being a field, their Sweedler's dual 11 [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF] 

(A X , conc, ∆ ⊔⊔ , 1 X * , ǫ) and (A Y , conc, ∆ , 1 Y * , ǫ), (23) (k rat X , ⊔⊔ , 1 X * , ∆ conc , ǫ) and (k rat Y , ⊔⊔ , 1 Y * , ∆ conc , ǫ). (24) 
In particular, using the set of Lyndon words, denoted by LynX , one constructs the basis {P l } l∈LynX , for Lie A X , generating the PBW-Lyndon basis {P w } w∈X * for (A X , conc, 1 X * ) and then the graded dual basis {S w } w∈X * containing the pure transcendence basis {S l } l∈LynX for the shuffle algebra (A X , ⊔⊔ , 1 

(C[{x * } x∈X ] X , ⊔⊔ , 1 X * ) ∼ = (C[{x * } x∈X ][LynX ], ⊔⊔ , 1 X * ) ∼ = (C[{x * , l} x∈X ,l∈LynX ], ⊔⊔ , 1 X * )
which is generated by the transcendent basis {x * , l} x∈X ,l∈LynX over C. 

2. Let f be the shuffle morphism (C[{x * } x∈X ] X , ⊔⊔ , 1 X * ) -→ (A, ×, 1 A ) and K := C[{f (x * )} x∈X ] and F := C[{f (l)} l∈LynX ].
C[{f (x * )} x∈X ][{f (l)} l∈LynX ] ∼ = C[{f (x * ), f (l)} x∈X ,l∈LynX ]
which is generated by the transcendent basis {f (x * ), f (l)} x∈X ,l∈LynX over C.

Proof -

1. Recall that the algebras (C[{x * } x∈X ], ⊔⊔ , 1 X * ) and (C X , ⊔⊔ , 1 X * ) are generated, respectively, by the transcendent bases {x * } x∈X [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF] and LynX [START_REF] Reutenauer | Free Lie Algebras[END_REF]. Moreover, {x * } x∈X is also algebraically independent over C X [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF] and then

C[{x * } x∈X ] ∩ C X = C.1 X * .
It follows the then expected results. 2. Straightforward. 11 Here, ⊔⊔ (resp.

) stand for the shuffle (resp. stuffle) product and ∆ ⊔⊔ (resp. ∆ ) is its co-product (see [START_REF] Reutenauer | Free Lie Algebras[END_REF] or [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF]).

The antipode of the first one is given by a(w) = (-1) |w| w, the antipode of the second one exists because the bialgebra is graded by weight, but is more complicated. Now, let us consider the following differential forms defined by ω r (z) = u yr (z)dz with u yr ∈ C 0 ⊂ A, r ≥ 1 (25)

and the following noncommutative differential equation (see [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF])

dS = M S; S|1 X * = 1 A , where M = x∈X u x x ∈ C 0 X , ( 26 
)
where d is the differential operator on A X extending ∂ as follows:

∀S = w∈X * S|w w ∈ A X , dS = w∈X * (∂ S|w )w. ( 27 
)
In order to prove Proposition 2, Theorems 1 and 2 below, we use the following lemma, a particular case of a general localization result to be proved in a forthcoming paper [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF]. Lemma 2. Suppose that the C-commutative ring A is without zero divisors and equipped with a differential operator ∂ such that C = ker ∂.

Let S ∈ A X be a group-like solution of (26), in the following form

S = 1 X * + w∈X * X S|w w = 1 X * + w∈X * X S|S w P w = ց l∈LynX e S|S l P l .
Then 1. If H ∈ A X is another group-like solution of (26) then there exists C ∈ Lie A X such that S = He C (and conversely). 2. The following assertions are equivalent (a

) { S|w } w∈X * is C 0 -linearly independent, (b) { S|l } l∈LynX is C 0 -algebraically independent, (c) { S|x } x∈X is C 0 -algebraically independent, (d) { S|x } x∈X ∪{1 X * } is C 0 -linearly independent, (e) The family {u x } x∈X is such that, for f ∈ Frac(C 0 ) and (c x ) x∈X ∈ C (X ) , x∈X c x u x = ∂f ⇒ (∀x ∈ X )(c x = 0). (f ) The family (u x ) x∈X is free over C and ∂Frac(C 0 )∩span C {u x } x∈X = {0}.
Proof -[Sketch] The first item has been treated in [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF]. The second is a grouplike version of the abstract form of Theorem 1 of [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF]. It goes as follows

• due to the fact that A is without zero divisors, we have the following embeddings C 0 ⊂ Frac(C 0 ) ⊂ Frac(A), Frac(A) is a differential field, and its derivation can still be denoted by ∂ as it induces the previous one on A, • the same holds for A X ⊂ Frac(A) X and d

• therefore, equation ( 26) can be transported in Frac(A) X and M satisfies the same condition as previously. • Equivalence between 2a-2d comes from the fact that C 0 is without zero divisors and then, by denominator chasing, linear independances w.r.t C 0 and Frac(C 0 ) are equivalent. In particular, supposing condition 2d, the family { S|x } x∈X ∪{1 X * } (basic triangle) is Frac(C 0 )-linearly independent which imply, by the Theorem 1 of [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF], condition 2e, • still by Theorem 1 of [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF], 2e is equivalent to 2f, implying that { S|w } w∈X * is Frac(C 0 )-linearly independent which induces C 0 -linear independence (i.e. 2a). Now, let A = H(Ω), the ring of holomorphic functions on a simply connected domain Ω ⊂ C (1 H(Ω) is its neutral element). With the notations in (25) and for any path z 0 z in Ω, let us consider the shuffle morphism defined [9]

α z z0 : C rat X -→ H(Ω), (28) 
x i1 . . . x i k -→ z z0 ω i1 (z 1 ) . . . z k-1 z0 ω i k (z k ) (29) satisfying, for any u, v ∈ X * , α z z0 (u ⊔⊔ v) = α z z0 (u)α z z0 (v) and α z z0 (1 X * ) = 1 H(Ω) . (30) 
After a theorem by Ree, the following Chen series of {ω r } r≥1 and along the path z 0 z in Ω, is group-like [START_REF] Reutenauer | Free Lie Algebras[END_REF]:

C z0 z = w∈X * α z z0 (w)w = ց l∈LynX e α z z 0 (S l )P l ∈ H(Ω) X . (31) 
Since

∂α z z0 (x i1 . . . x i k ) = u i1 (z)α z z0 (x i2 . . . x i k ) (32)
then C z0 z is a solution of (26).

Remark 1. For any w ∈ X X * , the value of α z z0 (w) depends on {ω i } i≥1 , or equivalently on {u x } x∈X . Moreover, for any x ∈ X , if f x (z) := α z z0 (x) then [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] ∀n ≥ 0,

α z z0 (x n ) = α z z0 (x ⊔⊔ n /n!) = f n x (z)/n! and then F x (z) := α z z0 (x * ) = e fx(z) .
With data in (25) and shuffle morphism in (28), we will illustrate a bijection, between (C X ⊔⊔ C[{x * } x∈X ], ⊔⊔ , 1 X * ), the subalgebra of noncommutative rational series and a subalgebra of H(Ω) containing the eulerian functions bellow.

Families of eulerian functions

Definition 1. For any z ∈ C such that |z| < 1, we put

ℓ 1 (z) := γz - k≥2 ζ(k) (-z) k k and for r ≥ 2, ℓ r (z) := - k≥1 ζ(kr) (-z r ) k k . For any k ≥ 1, let Γ y k (1 + z) := e -ℓ k (z) and B y k (a, b) := Γ y k (a)Γ y k (b) Γ y k (a + b) . Remark 2. 1. For any z ∈ Ω = C, |z| < 1 and k ≥ 1, using Remark 1, one has u y k α z 0 (y k ) α z 0 (y * k ) 1 Ω z e z (1 -z) -1 -log(1 -z) (1 -z) -1 ∂ℓ k ℓ k (z) e ℓ k (z) = Γ -1 y k (1 + z) e ℓ k ∂ℓ k e ℓ k (z) = Γ -1 y k (1 + z) e e ℓ k (z) -1
2. The function ℓ 1 is already considered by Legendre for studying the eulerian Beta and Gamma functions [START_REF] Legendre | Exercices de calcul intgral sur divers ordres de transcendantes et sur les quadratures[END_REF], denoted here, repectively, by B y1 and Γ y1 . 3. For any r ≥ 1, one has ∂ℓ r = e -ℓr ∂e ℓr . 4. For any n ≥ 0, one puts classically Ψ n := ∂ n log Γ . 5. Some of these functions cease (unlike Γ ) to be hypertranscendental. For

example 12 y(x) = Γ -1 y2 (1 + x) is a solution of (1 -π 2 x 2 )y 2 + 2xy ẏ + x 2 ẏ2 = 1
. Now, for any r ≥ 1, let G r (resp. G r ) denote the set (resp. group) of solutions, {ξ 0 , . . . , ξ r-1 }, of the equation z r = (-1) r-1 (resp. z r = 1). If r is odd, it is a group as G r = G r otherwise it is an orbit as G r = ξG r , where ξ is any solution of ξ r = -1 (this is equivalent to ξ ∈ G 2r and ξ / ∈ G r ). For r, q ≥ 1, we will need also a system X of representatives of G qr /G r , i.e. X ⊂ G qr such that

G qr = τ ∈X τ G r .
It can also be assumed that 1 ∈ X as with X = {e 2ikπ/qr } 0≤k≤q-1 .

Proposition 1. 1. For r ≥ 1, χ ∈ G r and z ∈ C, |z| < 1, the functions ℓ r and e ℓr have the symmetry, ℓ r (z) = ℓ r (χz) and e ℓr(z) = e ℓr(χz) . In particular, for r even, as -1 ∈ G r , these functions are even. 3. For any odd r ≥ 2,

Γ -1 yr (1 + z) = e ℓr(z) = Γ -1 (1 + z) χ∈Gr\{1} e ℓ1(χz) .
4. In general, for any odd or even r ≥ 2,

e ℓr(z) = χ∈Gr e ℓ1(χz) = n≥1 1 + z r n r .
Proof -The results are known for r = 1 (i.e. for Γ -1 ). For r ≥ 2, we get 1. By Definition 1, with χ ∈ G r , we get

ℓ r (χz) = - n≥1 ζ(kr) (-χ r z r ) k k = - k≥1 ζ(kr) (-z r ) k k = ℓ r (z),
thanks to the fact that, for any χ ∈ G r , one has χ r = 1. In particular, if r is even then ℓ r (z) = ℓ r (-z), i.e. ℓ r is even. 2. If r is odd, as G r = G r and, applying the symmetrization principle 13 , we get

- χ∈Gr ℓ 1 (χz) = - χ∈Gr ℓ 1 (χz) = r k≥1 ζ(kr) (-z) kr kr = k≥1 ζ(kr) (-z r ) k k .
The last term being due to, precisely, r is odd. If r is even, we have the orbit G r = ξG r (still with ξ r = -1) and then, by the same principle, Using the elementary symmetric functions of G r , we get the expected result. ) is entire (resp. meromorphic), and admits a countable set of isolated zeroes (resp. poles) on the complex plane which is expressed as χ∈Gr χZ ≤-1 . 4. One has E ∩ L = {0} and, more generally, 14 . So is (e ℓre ℓr(0) ) r≥1 . Hence, (ℓ r ) r≥1 and (e ℓr ) r≥1 are C-linearly free. Moreover, (e ℓr ) r≥1 is free from 1 Ω . 2. Using Chen series of {ω r } r≥1 defined, as in Remark ( 2 

C[E] ∩ C[L] = C.1 Ω . Proof - 1. (ℓ r ) r≥1 is triangular
α z 0 : (C Y , ⊔⊔ , 1 Y * ) -→ (span C {α z 0 (w)} w∈Y * , ×, 1 Ω ).
Hence, {α z 0 (w)} w∈Y * (resp. {α z 0 (l)} l∈LynY is linearly (resp. algebraically) independent over C.

From now on, the countable set of isolated zeros (resp. poles) of the entire (resp. meromorphic) function e ℓr (resp. e -ℓr ) is denoted by O(e ℓr ). We have

O(e ℓr ) = χ∈Gr χZ ≤-1 . ( 33 
)
Example 1. One has

O(e ℓ1 ) = Z ≤-1 , O(e ℓ2 ) = -iZ ≤-1 ⊎ iZ ≤-1 = iZ =0 , O(e ℓ3 ) = Z ≤-1 ⊎ jZ ≤-1 ⊎ j 2 Z ≤-1 , O(e ℓ4 ) = (1 + i)/ √ 2Z =0 ⊎ (1 -i)/ √ 2Z =0 .
Proposition 3. Let X denote any system of representatives of G qr /G r .

1. For any r ≥ 1 and odd q ≥ 1, one has, for |z| < 1,

e ℓqr(z) = χ∈X e ℓr(χz) , or, Γ -1 yqr (1 + z) = χ∈X Γ -1 yr (1 + χz).
2. e ℓr divides e ℓqr if and only if q is odd.

3. The full symmetry group of e ℓr for the representation s * f

[z] = f (sz) is G r . Proof - 1.
Let ξ be any root of z r = (-1) r-1 , one remarks that, in all cases (r be odd or even), we have G r = ξG r , G qr = ξG qr and G qr = χ∈X χG r .

Then, by Proposition 1, we have

ℓ qr (z) = χ∈Gqr ℓ 1 (χz) = ρ1∈Gqr ℓ 1 (ξρ 1 z) = χ∈X,ρ2∈Gr ℓ 1 (ξρ 2 χz) = χ∈X,ρ2∈Gr ℓ 1 (ξρ 2 (χz)) = χ∈X ℓ r (χz) = ℓ r (z) + χ∈X\{1} ℓ r (χz).
Last equality assumes that 1 ∈ X. Taking exponentials, we get e ℓqr(z) = χ∈X e ℓr(χz) = e ℓr(z) χ∈X\{1} e ℓr(χz) .

Again, first equality is general and the last assumes that 1 ∈ X. 2. The fact that e ℓr divides e ℓqr if q is odd comes from the factorization (34). Now, when q even, it suffices to remark, from (33), that the opposite of any solution of z r = -1 is a zero of15 e ℓr and O(e ℓqr ) ∩ U = -G qr . But when q is even one has -G r ∩ -G qr = ∅. Hence, in this case, e ℓr cannot divide e ℓqr .

3. Let G denote the symmetry group of e ℓr and remark that the distance of O(e ℓr ) to zero is 1. Hence, as O(e ℓr (s.z)) = s -1 O(e ℓr ), we must have G ⊂ U.

Then, as O(e ℓr ) ∩ U = G r , we must have G ⊂ G r , the reverse inclusion is exactly the first point of Proposition 1.

Example 2. 1. For r = 1, q = 2, X = {1, -1}, we get Euler's complement like formula:

Γ y2 (1 + iz) = Γ y1 (1 + z)Γ y1 (1 -z) = zπ/sin(zπ).
By changing z → -iz, we also get

Γ y2 (1 + z) = Γ y1 (1 + iz)Γ y1 (1 -iz).
2. For r = 2, q = 3, X = {1, j, j 2 },

Γ y6 (1 + z) = Γ y2 (1 + z)Γ y2 (1 + jz)Γ y2 (1 + j 2 z).
With the notations of Proposition 2, the algebra

C[L] (resp. C[E]
) is generated freely by (ℓ r ) r≥1 (resp. (e ℓr ) r≥1 ) which are holomorphic on D <1 (resp. entire) functions. Moreover, any

f ∈ C[L] \ C.1 H(Ω) (resp. g ∈ C[E] \ C.1 H(Ω) ) is holomorphic on D <1 (resp. entire) and then f / ∈ C[E] (resp. g / ∈ C[L]). Thus, E ∩ L = {0}, and more generally, C[E] ∩ C[L] = C.1 H(Ω) . (35) 
We are in a position to consider the following differential subalgebras of (H(Ω), ∂):

L := C{{(ℓ ±1 r ) r≥1 }} and E := C{{(e ±ℓr ) r≥1 }}. ( 36 
) Since ∂ℓ -1 r = -ℓ -2 r ∂ℓ r then L = C[{ℓ ±1 r , ∂ i ℓ r } r,i≥1 ]. Let L + := C[{∂ i ℓ r } r,i≥1 ]. (37) 
This C-differential subalgebra L + is an integral domain generated by holomorphic functions and Frac(L + ) is generated by meromorphic functions. Since there is 0 = q i,l,k ∈ L + such that (∂ i e ±ℓ k ) l = q i,l,k e ±lℓ k (i, l, k ≥ 1) then let

E + := span C {(∂ i1 e ±ℓr 1 ) l1 . . . (∂ i k e ±ℓr k ) l k } (i1,l1,r1),...,(i k ,l k ,r k )∈(N * ) 3 ,k≥1 = span C {q i1,l1,r1 . . . q i k ,l k ,r k e l1ℓr 1 +...+l k ℓr k } (i1,l1,r1),...,(i k ,l k ,r k )∈N * ×Z * ×N * ,k≥1 ⊂ span L + {e l1ℓr 1 +...+l k ℓr k } (l1,r1),...,(l k ,r k )∈Z * ×N * ,k≥1 =: C. ( 38 
)
Note that

E + ∩ E = {0} (39) 
and in (38), C is a differential subring of A = H(Ω) (hence, Frac(C) is a differential subfield of Frac(A)). If ∂Q = 0 then, integrating, Q ∈ E and then

E ⊃ Frac(L) ⊃ L ⊃ C[L] (resp. E ⊃ Frac(C) ⊃ C ⊃ E + )
contradicting with (35) (resp. (39)). It remains that ∂Q = 0. Since {e ℓ k } k≥1 and then {∂e ℓ k } k≥1 are C-linearly independent then c yr = 0, for r ≥ 1. Thus, by Proposition 2, {α z 0 (S l )} l∈LynY and then {α z 0 (S y )} y∈Y are algebraically independent over L (resp. C). It follows that (e ℓ k ) k≥1 is algebraically independent over C[L] (resp. E + ). Now, suppose there is an algebraic relation among (ℓ k ) k≥1 over L + in which, by differentiating and substituting ∂ℓ k by e -ℓ k ∂e ℓ k , we get an algebraic relation among {e ℓ k } k≥1 over C[L] and E + contradicting with previous results. It follows then (ℓ k ) k≥1 is L + -algebraically independent. Corollary 2. 1. Using the inputs {∂ℓ r } r≥1 (resp. {e ℓr ∂ℓ r } r≥1 ), the following morphism is injective (see also Remark (2))

α z 0 : (L + Y , ⊔⊔ , 1 Y * ) -→ (span L + {α z 0 (w)} w∈Y * , ×, 1 Ω ), (resp. α z 0 : (E + Y , ⊔⊔ , 1 Y * ) -→ (span E + {α z 0 (w)} w∈Y * , ×, 1 Ω )).
Hence, {α z 0 (w)} w∈Y * (resp. {α z 0 (l)} l∈LynY ) is linearly (resp. algebraically) independent over L + (resp. E + ). 2. Using the inputs {∂ℓ r } r≥1 , the family {α z 0 (λ)} λ∈LynY ∪{y * r } r≥1 is C-algebraically independent and the following restricted ⊔⊔ -morphism is bijective

α z 0 : (C exc Y ⊔⊔ C[{y * r } r≥1 ], ⊔⊔ , 1 Y * ) -→ C[L + E].
Hence, {(e ℓr ) r≥1 , (ℓ r ) r≥1 } is C-algebraically independent. 3. Let C k := span L + {e l1ℓr 1 +...+l k ℓr k } (l1,r1),...,(l k ,r k )∈Z * ×N * . Then Remark 3. Let us back the second point of Proposition 3 and then the formula (34), for any q ∈ N ≥1 such that q ≡ 1( mod 2), e ℓqr(z) = e ℓr(z) χ∈X\{1} e ℓr(χz) .

Since (e ℓr ) r≥1 is algebraically free over

E + then χ∈X\{1} e ℓr(χz) / ∈ E + [(e ℓ k ) k≥1 ].

Polylogarithms and harmonic sums indexed by rational series

In this section,

ω 0 (z) := z -1 dz, ω 1 (z) := (1 -z) -1 dz and Ω := C \ {0, 1}. ( 40 
)
We will use the one-to-one correspondences

(s 1 , . . . , s r ) ∈ (N * ) r ↔ y s1 . . . y sr ∈ Y * πX ⇋ πY x s1-1 0 x 1 . . . x sr-1 0 x 1 ∈ X * x 1 , (41) 
where the projector

π X : (C Y , ., 1 Y * ) -→ (C X , ., 1 X * ) (42)
is defined as the concatenation morphism of polynomial algebras (from C Y to C X ) mapping y s to x s-1 0

x 1 (for s ≥ 1) and admits π Y as adjoint. For any (s 1 , . . . , s r ) ∈ (N * ) r , one has(see (28)) Li s1,...,sr (z) = α z 0 (x s1-1

0 x 1 . . . x s k -1 0 x 1 ). ( 43 
)
Thus, putting Li x0 (z) := log(z), the following morphisms are injective Li Any series S ∈ C X is syntactically exchangeable iff it is of the form

• : (Q X , ⊔⊔ , 1 X * ) -→ (Q{Li w } w∈X * , ., 1) , x s1-1 0 x 1 . . . x sr-1 0 x 1 -→ Li x s 1 -1 0 x1...x sr -1 0 x1 = Li s1,...,sr , (44) 
H • : (Q Y , , 1 Y * ) -→ (Q{H w } w∈Y * , ., 1 
S = α∈N (X ) ,supp(α)={x1,...,x k } s α x α(x1) 1 ⊔⊔ . . . ⊔⊔ x α(x k ) k . ( 47 
)
The set of these series, a ⊔⊔ -subalgebra of A X , will be denoted by C synt exc X .

Theorem 2 (extension of Li

• ). Let C C := C[{z a , (1 -z) b } a,b∈C ]. Then 1. The algebra C C {Li w } w∈X * is closed under the differential operators θ 0 := z∂ z and θ 1 := (1 -z)∂ z
and under their sections ι 0 , ι 1 (θ 0 ι 0 = θ 1 ι 1 = Id). 2. The bi-integro differential algebra (C C {Li w } w∈X * , θ 0 , θ 1 , ι 0 , ι 1 ) is closed under the action of the group of transformations, G, generated by {z → 1z, z → 1/z}, permuting {0, 1, +∞}: Let L be the noncommutative series of the polylogarithms {Li w } w∈X * , which is group-like, and C z0 z be the Chen series, of {ω 0 , ω 1 } along z 0 z ∈ B, C z0 z = L(z)L -1 (z 0 ) (see [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]). Now, in view of Lemma 2, as the algebra C is without zero divisors and contains the field of constants C, it suffices to prove that Li x0 , Li x1 and 1 Ω are C-linearly independent. It is an easy exercise to check that s * ( f ) := f • s coincides with the given f . This is the case, in particular of the functions log(z) and log((1z) -1 ) whose liftings will be denoted log 0 and log 1 , respectively. So, we lift the functions z a and (1z) b as, respectively, e a 0 (z) := e a log 0 (z) and e b 1 := e b log 1 (z)

∀h ∈ C C {Li w } w∈X * , ∀g ∈ G, h(g) ∈ C C {Li w } w∈X * . 3. If R ∈ C rat exc X ⊔⊔ C X (resp. C rat exc X ) then Li R ∈ C C {Li w } w∈X * (resp. C C [log(z), log(1 -z)]).
and, of course, by construction,

e a 0 • s = (z → z a ) and e b 1 • s = (z → (1 -z) b ) (49) 
We suppose a dependence relation, in H(Ω)

P 0 (z a , (1 -z) b )Li x0 + P 1 (z a , (1 -z) b )Li x1 + P 2 (z a , (1 -z) b ).1 Ω = 0 ( 50 
)
where P i ∈ C[X, Y ] are two-variable polynomials. From (49) and the fact that Ω = ∅, we get

P 0 (e a 0 , e b 1 ) log 0 +P 1 (e a 0 , e b 1 ) log 1 +P 2 (e a 0 , e b 1 ).1 B = 0. (51) 
Now, we consider D 0 (resp. D 1 ), the deck transformation corresponding to the path σ 0 (t) = e 2iπt /2 (resp. 

• D 1 (z) = e [b] (53) and, similarly e [b] 1 
1 (z)e 2biπ and e

[a]

0 • D 1 = e [a] 0 (54) 
so that P i (e a 0 , e b 1 ) remain bounded through the actions of D r 0 and D s 1 , from (52), we get that P i = 0, i = 0..2 which proves the claim.

Example 3 ([7]

). Let us use the noncommutative multivariate exponential transforms i.e., for any syntactically exchangeable series, we get i0,i1≥0

s i0,i1 x i0 0 ⊔⊔ x i1 1 -→ i0,i1≥0 s i0,i1 i 0 !i 1 ! Li i0 x0 Li i1 x1 .
Hence,

x n 0 -→ Li n x0 /n! and x n 1 -→ Li n x1 /n!, for n ∈ N, yielding some polyloga- rithms indexed by series, Li x * 0 (z) = z, Li x * 1 (z) = (1 -z) -1 , Li (ax0+bx1) * (z) = z a (1 -z) -b .
Moreover, for any (s 1 , . . . , s r ) ∈ N r + , there exists an unique series R ys 1 ...ys r belonging to (Z[x * 1 ], ⊔⊔ , 1 X * ) such that Li -s1,...,-sr = Li Ry s 1 ...ys r .

More precisely,

R ys 1 ...ys r = s1 k1=0 . . . (s1+...+sr)-(k1+...+kr-1) kr=0 s 1 k 1 . . . r i=1 s i - r-1 i=1 k i k r ρ k1 ⊔⊔ . . . ⊔⊔ ρ kr ,
where ρ 0 = x * 1 -1 X * and16 

ρ ki = x * 1 ⊔⊔ ki j=1 S 2 (k i , j)j!(x * 1 -1 X * ) ⊔⊔ j , (k i = 0). Theorem 3 (extension of H • ). For any r ≥ 1, one has ∀t ∈ C, |t| < 1, H (t r yr) * = k≥0 H y k r t kr = exp k≥1 H y kr (-t r ) k-1 k . Moreover, for |a s | < 1, |b s | < 1 and |a s + b s | < 1,
H ( s≥1 (as+bs)ys+ r,s≥1 asbrys+r) * = H ( s≥1 asys) * H ( s≥1 bsys) * .

Hence,

H (asys+aryr+asarys+r) * = H (asys) * H (aryr) * , H (-a 2 s y2s) * = H (asys) * H (-asys) * .
Proof -For t ∈ C, |t| < 1, since the function Li (tx1) * is well defined then so are the arithmetic function, expressed via Newton-Girard formula (see [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF]), for N ≥ 0, by

H (ty1) * (n) = k≥0 H y k 1 (n)t k = exp - k≥1 H y k (n) (-t) k k = n l=1 1 + t l .
Similarly, for any r ≥ 2, the transcendent function H (t r yr) * can be expressed via Newton-Girard formula (see [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF]) once again and via Adam's transform, by

H (t r yr) * (n) = k≥0 H y k r (n)t kr = exp - k≥1 H y kr (n) (-t r ) k k = N l=1 1 - (-t r ) l r .
Since H yr ∞ ≤ ζ(r) then -k≥1 H kr (-t r ) k /k is termwise dominated by f r ∞ and then H (t r yr) * by e ℓr (see also Theorem 4 bellow). By the following identity [START_REF] Duchamp | Towards a noncommutative Picard-Vessiot theory[END_REF] From the estimations from above of the previous proof, it follows then Corollary 3. For any r ≥ 2, one has

1 Γ yr (1 + t) = k≥0 ζ(r, . . . , r ktimes )t kr = exp - k≥1 ζ(kr) (-t r ) k k = n≥1 1 - (-t r ) n r .
By identification the coefficients of t and by injectivity of H • , one also obtains . . . (-y kr ) s k k s k .

Extended double regularization by Newton-Girard formula

By (44)-(45), the following polymorphism is, by definition, surjective (see [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF])

ζ : (Q1 X * ⊕ x 0 Q X x 1 , ⊔⊔ , 1 X * ) (Q1 Y * ⊕ (Y -{y 1 })Q Y , , 1 Y * ) -։ (Z, . , 1), (55) 
mapping both x s1-1 0 x 1 . . . x sr-1 0

x 1 and y s1 . . . y sr to ζ(s 1 , . . . , s r ), where Z denotes the Q-algebra (algebraically) generated by {ζ(l)} l∈LynX-X , or equivalently, {ζ(l)} l∈LynY -{y1} . It can be extended as characters

ζ ⊔⊔ : (R X , ⊔⊔ , 1 X * ) -→ (R, ., 1), (56) ζ , γ • : (R Y , , 1 Y * ) -→ (R, ., 1) (57) 
such that, for any l ∈ LynX, one has (see [START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF])

ζ ⊔⊔ (l) = f.p. z→1 Li l (z), {(1 -z) a log b (1 -z)} a∈Z,b∈N , (58) 
ζ (π Y l) = f.p. n→+∞ H πY l (n), {n a H b 1 (n)} a∈Z,b∈N , (59) 
γ πY l = f.p. n→+∞ H πY l (n), {n a log b (n)} a∈Z,b∈N . (60) 
It follows that, for any l ∈ LynX -X,

ζ ⊔⊔ (l) = ζ (π Y l) = γ πY l = ζ(l), (61) 
and, for the algebraic generator x 0 ,

ζ ⊔⊔ (x 0 ) = 0 = log(1) (62) 
and, for the algebraic generators x 1 and y 1 (divergent cases),

ζ ⊔⊔ (x 1 ) = 0 = f.p. z→1 log(1 -z), {(1 -z) a log b (1 -z)} a∈Z,b∈N , (63) 
ζ (y 1 ) = 0 = f.p. n→+∞ H 1 (n), {n a H b 1 (n)} a∈Z,b∈N , (64) 
γ y1 = γ = f.p. n→+∞ H 1 (n), {n a log b (n)} a∈Z,b∈N . (65) 
As in [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF], considering a character χ • on (C X , ⊔⊔ , 1 X * ) and considering Dom(χ • ) ⊂ C X as in (46), we can also check easily that [START_REF] Bui | A local Theory of Domains and its (Noncommutative) Symbolic Counterpart[END_REF]: We now in situation to state that Theorem 4 (Regularization by Newton-Girard formula). The characters ζ ⊔⊔ and γ • are extended algebraically as follows:

-C X ⊔⊔ C rat x ⊂ Dom(χ •
ζ ⊔⊔ : (C X ⊔⊔ C rat exc X , ⊔⊔ , 1 X * ) -→ (C, ., 1), ∀t ∈ C, |t| < 1, (tx 0 ) * , (tx 1 ) * -→ 1 C . and γ • : (C Y C rat exc Y , , 1 Y * ) -→ (C, ., 1), ∀t ∈ C, |t| < 1, ∀r ≥ 1, (t r y r ) * -→ Γ -1 yr (1 + t). Moreover, the morphism (C[{y * r } r≥1 ], ⊔⊔ , 1 Y * ) -→ C[E]
, mapping y * r to Γ -1 yr , is injective and, for any r ≥ 1, one has

Γ y2r (1 + 2r √ -1t) = Γ yr (1 + t)Γ yr (1 + r √ -1t).
Proof -By Definition 1, Propositions 2, 3 and Theorems 2, 3, we get the expected results (see also Proposition 1).

Example 5. [7]

Li

-1,-1 = Li -x * 1 +5(2x1) * -7(3x1) * +3(4x1) * , Li -2,-1 = Li x * 1 -11(2x1) * +31(3x1) * -33(4x1) * +12(5x1) * , Li -1,-2 = Li x * 1 -9(2x1) * +23(3x1) * -23(4x1) * +8(5x1) * , H -1,-1 = H -y * 1 +5(2y1) * -7(3y1) * +3(4y1) * , H -2,-1 = H y * 1 -11(2y1) * +31(3y1) * -33(4y1) * +12(5y1) * , H -1,-2 = H y * 1 -9(2y1) * +23(3y1) * -23(4y1) * +8(5y1) * . Hence, ζ ⊔⊔ (-1, -1) = 0, ζ ⊔⊔ (-2, -1) = -1, ζ ⊔⊔ (-1, -2) = 0 and γ -1,-1 = -Γ -1 (2) + 5Γ -1 (3) -7Γ -1 (4) + 3Γ -1 (5) = 11/24, γ -2,-1 = Γ -1 (2) -11Γ -1 (3) + 31Γ -1 (4) -33Γ -1 (5) + 12Γ -1 (6) = -73/120, γ -1,-2 = Γ -1 (2) -9Γ -1 (3) + 23Γ -1 (4) -23Γ -1 (5) + 8Γ -1 (6)
= -67/120.

From Theorems 3 and 4, one deduces Hence,

γ (asys+aryr+asarys+r) * = γ (asys) * γ (aryr) * , γ (-a 2 s y2s) * = γ (asys) * γ (-asys) * . Remark 4. The restriction α z 0 : (C[{y r , y * r } r≥1 ], ⊔⊔ , 1 Y * ) -→ C[L+E] is injective (see Corollary 2) while ker(γ • ) = {0}, over C Y C rat exc Y [17]. Example 6. [15,16] By Theorem 4, γ (-t 2 y2) * = Γ -1 y2 (1 + it), γ (ty1) * = Γ -1 y1 (1 + t), γ (-ty1) * = Γ -1 y1 (1 + t).
Then, by Corollary 5,

γ (-t 2 y2) * = γ (ty1) * γ (-ty1) * meaning that Γ -1 y2 (1 + it) = Γ -1 y1 (1 + t)Γ -1 y1 (1 -t).
Or equivalently, exp

- k≥2 ζ(2k) t 2k k = k≥2 ζ( ktimes 2, . . . , 2)t 2k = sin(tπ) tπ = k≥1 (tiπ) 2k (2k)! . Since γ (-t 2 y2) * = ζ((-t 2 x 0 x 1 ) * )
then, identifying the coefficients of t 2k , we get

ζ( ktimes 2, . . . , 2) π 2k = 1 (2k + 1)! ∈ Q.
Similarly, by Theorem 4,

γ (-t 4 y4) * = Γ -1 y4 (1 + 4 √ -1t), γ (t 2 y2) * = Γ -1 y2 (1 + t), γ (-t t y2) * = Γ -1 y2 (1 + it).
Then, by Corollary 5,

γ (-t 4 y4) * = γ (t 2 y2) * γ (-t 2 y2) * meaning that Γ -1 y4 (1 + 4 √ -1t) = Γ -1 y2 (1 + t)Γ -1 y2 (1 + it). Or equivalently, exp - k≥1 ζ(4k) t 4k k = k≥2 ζ(4, . . . , 4 
ktimes )t 4k = sin(itπ) itπ sin(tπ) tπ = k≥1 2(-4tπ) 4k (4k + 2)! . Since γ (-t 4 y4) * = ζ((-t 4 y 4 ) * ), γ (-t 2 y2) * = ζ((-t 2 y 2 ) * ), γ (t 2 y2) * = ζ((t 2 y 2 ) * )
then, using the poly-morphism ζ and identities on rational series, we get

ζ((-t 4 y 4 ) * ) = ζ((-t 2 y 2 ) * )ζ((t 2 y 2 ) * ) = ζ((-t 2 x 0 x 1 ) * )ζ((t 2 x 0 x 1 ) * )) = ζ((-4t 4 x 2 0 x 2 1 ) * ).
Thus, by identification the coefficients of t 4k , we obtain

4 k ζ( ktimes 4, . . . , 4) π 4k = ζ( ktimes 3, 1, . . . , 3, 1) π 4k = 2 (4k + 2)! ∈ Q.
Corollary 6 (comparison formula, [START_REF] Duchamp | About Some Drinfel'd Associators[END_REF][START_REF] Ngoc | On the solutions of universal differential equation with three singularities[END_REF]). R := t 0 x 0 (t 0 x 0 + t 0 t 1 x 1 ) * (t 0 t 1 x 1 ) = t 2 0 t 1 x 0 [(t 0 x 0 ) * ⊔⊔ (t 0 t 1 x 1 ) * ]x 1 .

Then, with the differential forms ω 0 (z) = z (1ty) -1 t -t0 y -t0t1 dydt.

By expending (1ty) -1 and then integrating, we get on the one hand

ζ(R) = n≥1 t 0 n -t 0 t 0 t 1 n -t 0 t 1 = k>l>0 ζ(k)t k 0 t l 1 .
On the other hand, using the the expansion of R, we get also 

Conclusion

In this work, we illustrated a bijection, between a sub shuffle algebra of noncommutative rational series (recalled in 2.1) and a subalgebra of holomorphic functions, H(Ω), on a simply connected domain Ω ⊂ C containing the family of extended eulerian functions {Γ -1 y (1 + z)} y∈Y and the family of their logarithms, {log Γ -1 y (1 + z)} y∈Y (introduced in 2.2), involved in summations of polylogarithms and harmonics sums (studied in 2.3) and in regularizations of divergent polyzetas (achieved, for this stage, in 2.4).

These two families are algebraically independent over a differential subring of H(Ω) and generate freely two disjoint functional algebras. For any y r ∈ Y , the special functions Γ -1 yr (1 + z) and log Γ -1 yr (1 + z) are entire and holomorphic on the unit open disc, respectively. In particular, Γ -1 yr (1 + z) admits a countable set of isolated zeroes on the complex plane, i.e. χ∈Gr χZ ≤-1 , where G r is the set of solutions of the equation z r = (-1) r-1 .

These functions allow to obtain identities, at arbitrary weight, among polyzetas and an analogue situation, as the ratios ζ(2k)/π 2k , drawing out consequences about a structure of polyzetas. This work will be completed, in the forth comming works, by a study a family of functions obtained as image of rational series for which their linear representation (ν, µ, η) are such that the Lie algebra generated by the matrices {µ(y)} y∈Y is solvable.

  |z| < 1) by B(z; a, b) := z 0 dt t a-1 (1t) b-1 (4) and then, classically, B(a, b) := B(1; a, b) = Γ (a)Γ (b)/Γ (a + b), one has (for any u, v ∈ C such that |u| < 1, |v| < 1 and |u + v| < 1) the following expression exp -n≥2 ζ(n)

n 1 1 Γ

 11 ,...,n l ≥1 n 1 +...+n l =k l i=1 (2n i + 2)

ζ(s 1

 1 , . . . , s r ) :=

,

  Li s1,...,sr (z) 1z = n≥0 H s1,...,sr (n)z n (15)

tr- 1 0ω 1 1 Γ 1 Γ

 1111 (t r ) log sr-1 (t r-1 /t r ) Γ (s r ) (s i ) [0,1] r r j=1 ω 0 (u j )λ(u 1 . . . u j ) log sj -1 (s i ) R r + r j=1ω 0 (u j )u sj j λ(e -(u1...uj ) ).

  Then the following assertions are equivalent (a) The morphism f is injective. (b) The algebras K and F , satisfying K ∩ F = C.1 A , are generated by the transcendent bases {f (x * )} x∈X and {f (l)} l∈LynX , respectively, over C. Hence, if 2a, or 2b, holds then F, K are algebraically disjoint over C and

2 .

 2 For |z| < 1, we have ℓ r (z) = -χ∈Gr log(Γ (1 + χz)) and e ℓr(z) = χ∈Gr e γχz n≥1 (1 + χz/n)e -χz/n .

4 .

 4 Due to the fact that the external product is finite, we get e ℓr(z) =
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  Within the same disk of convergence as f , one has, f (z) = n≥1 anz n and χ∈Gr f (χz) = r k≥1 a rk z rk . Proposition 2. Let L := span C {ℓ r } r≥1 and E := span C {e ℓr } r≥1 . Let C[L] and C[L] be their respective algebra. One has 1. The families (ℓ r ) r≥1 and (e ℓr ) r≥1 are C-linearly free and free from 1 H(Ω) . 2. The families (ℓ r ) r≥1 and (e ℓr ) r≥1 are C-algebraically independent. 3. For any r ≥ 1, one has (a) The functions ℓ r and e ℓr are C-algebraically independent. (b) The function ℓ r is holomorphic on the open unit disc, D <1 , (c) The function e ℓr (resp. e -ℓr

1 .

 1 ), by u xr = e ℓr ∂ℓ r (resp. u xr = ∂ℓ r ), via 2, {e ℓr } r≥1 (resp. {ℓ r } r≥1 ) is the C-algebraically independent. 3. (a) Since ℓ r (0) = 0, ∂e ℓr = e ℓr ∂ℓ r then ℓ r and e ℓr are C-algebraically independent. (b) One has e ℓ1(z) = Γ -1 (1 + z) which proves the claim for r = 1. For r ≥ 2, note that 1 ≤ ζ(r) ≤ ζ(2) which implies that the radius of convergence of the exponent is 1 and means that ℓ r is holomorphic on the open unit disc. This proves the claim. (c) e ℓr(z) = Γ -1 yr (1 + z) (resp. e -ℓr(z) = Γ yr (1 + z)) is entire (resp. meromorphic) as finite product of entire (resp. meromorphic) functions and, by Proposition 1, Weierstrass factorization yields zeroes (resp. poles). 4. C[L] (resp. C[E]) is generated freely by (ℓ r ) r≥1 (resp. (e ℓr ) r≥1 ) which is holomorphic on D <1 (resp. entire) function. Moreover, any f ∈ C[L] (resp. g ∈ C[E]), not equals to 1 Ω , is holomorphic (resp. entire). Thus, f / ∈ C[E] (resp. g / ∈ C[L]). It follows then the expected result. By Lemma 1, Proposition 2 and Remark (2), one deduces then Corollary Using the inputs {∂ℓ r } r≥1 (resp. {e ℓr ∂ℓ r } r≥1 ), the following morphisms injective

Theorem 1 . 1 . 1 .

 111 The family (e ℓr ) r≥1 (resp. (ℓ r ) r≥1 ) is algebraically free over E + (resp. L + ). 2. C[E] and C[L] are algebraically disjoint, within A. Proof -Using the Chen series of {ω r } r≥1 defined by u yr = e ℓr ∂ℓ r , let Q ∈ Frac(L) (resp. Frac(C)) and {c y } y∈Y ∈ C (Y ) , non simultaneously vanishing, such that ∂Q = y∈Y c y u y = r≥1 c yr e ℓr ∂ℓ r .

2 .

 2 {e ℓ k } k≥1 (resp. {ℓ k } k≥1 ) is algebraically independent over C[L] (resp. C[E]). Hence, {e ℓ k , ℓ k } k≥1 generates freely C[E + L] and C[E] ∩ C[L] = C.1 Ω . It follows that C[E] and C[L] are algebraically disjoint, within A.

1 .

 1 It is a consequence of Theorem 1. 2. The free algebras (C exc Y , ⊔⊔ , 1 Y * ) and (C[{y r } r≥1 ], ⊔⊔ , 1 Y * ) are algebraically disjoint and their images by α z 0 , by Proposition 2, are, respectively, the free algebras C[L] and C[E] which are, by Theorem 1, algebraically disjoint. Moreover, since C exc X = C[{y} y∈Y ] and Y ⊂ LynY then we deduce the respected results. 3. For any k ≥ 1, let Φ k := span C {e l1ℓr 1 +...+l k ℓr k } distinct r1,...,r k ∈N * ,l1,...,l k ∈Z * . Let C[Φ] be the algebra of Φ := span C {e ±ℓr } r≥1 . Since (ℓ r ) r≥1 is C-free then Φ 1 Φ 2 . . . and then C[Φ] = k≥1 Φ k . Moreover, the disjunction of C[E] and C[L] leads to C k ∼ = L + ⊗ C Φ k and then yields the expected result.

4 .

 4 The family {Li w } w∈X * (resp. {Li l } l∈LynX ) is linearly (resp. algebraically) independent over C C . Proof -The three first items are immediate. Only the last one needs a proof: Let then B = C \ {0, 1}, Ω = C \ (] -∞, 0] ∪ [1, +∞[) and choose a basepoint b ∈ Ω, one has the following diagram ( Any holomorphic function f ∈ H(Ω) such that f ′ = df /dz admits an analytic continuation to B can be lifted to B by f (z) := f (b) + z b f ′ (s)ds.

  σ 1 (t) = (1e -2iπt )/2, one gets log 0 •(D r 0 )(z) = log 0 (z) + 2irπ and log 1 •(D s 1 )(z) = log 1 (z) + 2isπ (52) Now we remark that e

s≥1 a s y s * s≥1 b

 s≥1 s y s * = s≥1 (a s + b s )y s + r,s≥1 a s b r y s+r * , it follows the last results.

Corollary 4 .s 1

 41 For any r ≥ 1 and k ≥ 0 ,...,s k >0 s 1 +...+ks k =k (-y r ) s11 s1

Example 4 .

 4 ) which is closed by shuffle product, -for any S, T ∈ Dom(χ • ), one has χS ⊔⊔ T = χ S χ T , -if S ∈ Dom(χ • ) then exp ⊔⊔ (S) ∈ Dom(χ • ) and χ exp ⊔⊔ (S) = e χS . Similarly, considering a character χ • on (C Y , , 1 Y * ) and considering Dom(χ • ) ⊂ C Y as in (46), we can also check easily that[START_REF] Bui | A local Theory of Domains and its (Noncommutative) Symbolic Counterpart[END_REF]:-C Y C rat Y ⊂ Dom(χ • ) which is closed by quasi-shuffle product, -for any S, T ∈ Dom(χ • ), one has χ S T = χ S χ T , -if S ∈ Dom(χ • ) then exp (S) ∈ Dom(χ • ) and χ exp (S) = e χS . For any z ∈ C, |z| < 1, x ∈ X = {x 0 , x 1 }, y r ∈ Y = {y k } k≥1 , since(zx) * = exp ⊔⊔ (z) and (zy r ) * = exp k≥1 y kr (-z) k-1 k then ζ ⊔⊔ ((zx) * ) = e zζ ⊔⊔ (x) and γ (zyr) * = exp k≥1 ζ (y kr ) (-z) k-1 k .

Corollary 5 . 1 . 2 .

 512 With the notations of (28), Definition 1 and with the differential forms {(∂ℓ r )dz} r≥1 , for any z ∈ C, |z| < 1, one has γ r≥1 (z r yr) * = r≥1 γ (z r yr) One has, for |a s | < 1, |b s | < 1 and |a s + b s | < 1, γ ( s≥1 (as+bs)ys+ r,s≥1 asbrys+r) * = γ ( s≥1 asys) * γ ( s≥1 bsys) * .

5 .

 5 For any z, a, b ∈ C such that |z| < 1 and ℜ(a) > 0, ℜ(b) > 0, we haveB(z; a, b) = Li x0[(ax0) * ⊔⊔ ((1-b)x1) * ] (z) = Li x1[((a-1)x0) * ⊔⊔ (-bx1) * ] (z).Hence, on the one handB(a, b) = ζ ⊔⊔ (x 0 [(ax 0 ) * ⊔⊔ ((1b)x 1 ) * ]) = ζ ⊔⊔ (x 1 [((a -1)x 0 ) * ⊔⊔ (-bx 1 ) * ])and, on the other handB(a, b) = γ ((a+b-1)y1) * γ ((a-1)y1) * ((b-1)y1) * = γ ((a+b-1)y1) * γ ((a+b-2)y1+(a-1)(b-1)y2) * .Proof -The results, of B(z; a, b), are the computations of iterated integrals associated to different rational series, using the differential forms ω 0 (z) = z -1 dz and ω 1 (z) = (1z) -1 dz. Those of B(a, b), are then immediate consequences, by evaluating these iterated integrals at z = 1 and by using Definition 1 and Corollary Example 7. [15,16] Let us consider, for t 0 , t 1 ∈ C, |t 0 | < 1, |t 1 | < 1,

-1 dz and ω 1 0 ( 1 0 ( 1 t 1 z 0 ( 1 -s) -t0t1 1 0( 1 -( 1 -

 1010101111 (z) = (1z) -1 dz,s) -t0t1 s t0-1 s r) t0t1-1 r -t0 dsdr By change of variable, r = st, we obtain then Li R (z) = t 2 0 st) t0t1-1 t -t0 dtds. s) -t0t1 (1st) t0t1-1 t -t0 dtds.By change of variable,

ζ(R) = k>0 l>0 s 1 +t l 1 .

 11 ...+s l =k s 1 ...,s l ≥1,s1≥2 ζ(s 1 , . . . , s l )t k 0 Finally, by identification the coefficients of ζ(R)|t k 0 t l 1 , we deduce the sum formula ζ(k) = s 1 +...+s l =k s 1 ...,s l ≥1,s 1 ≥2 ζ(s 1 , . . . , s l ).

  Propositions 1-3 and Theorem 1 in Section 2.2) via the combinatorial tools introduced in Section 2.1 (see Lemma 2, 1 in Section 2.1). Finally, identities among these (convergent or divergent) generating series of zeta values are suitable to obtain relations, at arbitrary weight, among polyzetas (see Examples 6 and 7 in Section 2.4).

  X * ). Similarly, the basis {Π l } l∈LynY generating the PBW-Lyndon basis {Π w } w∈Y * for (A Y , conc, 1 Y * ) and then the graded dual basis {Σ w } w∈Y * containing the pure transcendence basis {Σ l } l∈LynY for the stuffle algebra (A Y , , 1 Y * ). Lemma 1. 1. The algebras (C[{x * } x∈X ], ⊔⊔ , 1 X * ) and (C X , ⊔⊔ , 1 X * ) are algebraically disjoint over C and

  ) , y s1 . . . y sr -→ H ys 1 ...ys r = H s1,...,sr .(45)In order to extend Li • , H • (in (44), (45)) over some subdomain of C rat X (resp. C rat Y ), let us call Dom(Li • ) (resp. Dom(H • )) the set of series Li Sn and n≥0 H Sn converge uniformly in any compact of Ω. Under suitable convergence condition this extension can be realized and [2,7,17] 1. Dom(Li • ) (resp. Dom(H • )) is closed by shuffle (resp. quasi-shuffle) products. 2. Li S ⊔⊔ T = Li S Li T and H S T = H S H T , for S, T ∈ Dom(Li • ) (resp. Dom(H • )).

	S =	S n with S n :=	S|w w	(46)
	n≥0	|w|=n		
	such that n≥0			

i.e. its coefficients are real, we will see later the combinatorial content of them.

i.e. the C-algebra generated by gi and their derivatives[START_REF] Van Der Put | Galois Theory of Linear Differential Equations[END_REF].

In general, A.X is the module of homogeneous series S ∈ A X of degree one.

Here conc stand for the Cauchy product (concatenation) and ∆conc is its co-product. For any S ∈ A X such that S|1X * = 0, the Kleene star of S is defined by S * := (1 -S) -1 = 1 + S + S 2 + . . . .

Indeed, we use the fact that Γ -1 y 2 (1 + x) = sin(iπx)/iπx (see Example 6 bellow).

(gi) i≥1 is said to be triangular if the valuation of gi, ̟(gi), equals i ≥ 1. It is easy to check that such a family is C-linearly free and that is also the case of families such that (gig(0)) i≥1 is triangular.

More precisely, denoting U the unit circle, one has O(e ℓr ) ∩ U = -Gr = ∅.

The S2(ki, j) are the Stirling numbers of second kind.