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ON THE SOLUTIONS OF THE UNIVERSAL DIFFERENTIAL
EQUATION WITH THREE REGULAR SINGULARITIES

(ON SOLUTIONS OF 𝐾𝑍3)

VINCEL HOANG NGOC MINH

Abstract. This review concerns the resolution of a special case of Knizhnik-Zamolodchikov
equations (𝐾𝑍3) and our recent results on combinatorial aspects of zeta functions on several
variables.

In particular, we describe the action of the differential Galois group of 𝐾𝑍3 on the
asymptotic expansions of its solutions leading to a group of associators which contains the
unique Drinfel’d associator (or Drinfel’d series). Non trivial expressions of an associator
with rational coefficients are also explicitly provided, based on the algebraic structure and
the singularity analysis of the multi-indexed polylogarithms and harmonic sums.
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1. Knizhnik-Zamolodchikov equations and Drinfel’d series

In this paper, we survey our recent results which pertain to an in-depth combi-
natorial study of the several complex variables zeta functions defined as follows

∀𝑟 > 1, 𝜁𝑟 : ℋ𝑟 −→ R, (𝑠1, . . . , 𝑠𝑟) ↦−→
∑︁

𝑛1>...>𝑛𝑘>0
𝑛−𝑠1

1 . . . 𝑛−𝑠𝑟

𝑘 ,

where ℋ𝑟 = {(𝑠1, . . . , 𝑠𝑟) ∈ C𝑟 | ∀𝑚 = 1, . . . , 𝑟, ℜ(𝑠1) + . . . + ℜ(𝑠𝑚) > 𝑚} [29,
30]. They appear in the regularization of solutions of the following fuchsian first
order differential equation without initial condition, with regular singularities in
{0, 1, +∞} and noncommutative indeterminates in 𝑋 = {𝑥0, 𝑥1} :

(𝐷𝐸) 𝑑𝐺(𝑧) =
(︂

𝑥0
𝑑𝑧

𝑧
+ 𝑥1

𝑑𝑧

1 − 𝑧

)︂
𝐺(𝑧). (1.1)

Let us denote by ℋ(Ω) the ring of holomorphic functions over the simply connected
domain Ω := C ∖ (] − ∞, 0] ∪ [1, +∞[, with 1Ω : Ω → ℋ(Ω) as the neutral element
(𝑧 ↦→ 1). Let us also introduce the following differential forms

𝜔0(𝑧) := 𝑑𝑧

𝑧
and 𝜔1(𝑧) := 𝑑𝑧

1 − 𝑧
.

This equation can be considered as the universal fuchsian first order differential
equation with three regular singularities. Here, the notation has become essentially
classical since Drinfel’d’s papers [24, 25] which emphasized the importance of (1.1).
After some elementary transformations [24, 25] one also finds that (1.1) is (equiv-
alent to) the first non trivial Knizhnik-Zamolodchikov 𝐾𝑍3. This is connected to
the fact that the colored braid group on three strands 𝑃3 is the direct product of
its cyclic center with a copy of the free group on two generators. Although this
interpretation of (1.1) does not play an explicit role below, it should be kept in
mind with a view towards applications.

We may now return to (1.1) for which a solution can be obtained, as already
pointed out by Poincaré, and done for the systems of ordinary linear differential
equations with regular singularities in [18, 26, 37, 50], via Picard’s iterative approx-
imation. The differential Galois group of (1.1) is nothing else than the Hausdorff
group, set of exponentials of Lie series in ℒ𝑖𝑒C⟨⟨𝑋⟩⟩ (see Section 5). In this way, on
the completion of ℋ(Ω)⟨𝑋⟩, one obtains the so-called Chen series, over 𝜔0 and 𝜔1
along the path 𝑧0  𝑧 on Ω, defined by [9, 33] :

𝐶𝑧0 𝑧 :=
∑︁

𝑤∈𝑋*

𝛼𝑧
𝑧0

(𝑤)𝑤 ∈ ̂ℋ(Ω)⟨𝑋⟩, (1.2)

where 𝑋* is the free monoid, generated by 𝑋 [1, 58] (1𝑋* is the neutral element),
𝛼𝑧

𝑧0
(1𝑋*) equals 1Ω and, for subdivisions (𝑧0, 𝑧1 . . . , 𝑧𝑘, 𝑧) of 𝑧0  𝑧 and for 𝑤 =

𝑥𝑖1 · · · 𝑥𝑖𝑘
∈ 𝑋*𝑋, the coefficient 𝛼𝑧

𝑧0
(𝑥𝑖1 · · · 𝑥𝑖𝑘

) is defined by

𝛼𝑧
𝑧0

(𝑥𝑖1 · · · 𝑥𝑖𝑘
) :=

∫︁ 𝑧

𝑧0

𝜔𝑖1(𝑧1) . . .

∫︁ 𝑧𝑘−1

𝑧0

𝜔𝑖𝑘
(𝑧𝑘) ∈ ℋ(Ω) (1.3)

and satisfies the shuffle relation 𝛼𝑧
𝑧0

(𝑢 ⊔⊔ 𝑣) = 𝛼𝑧
𝑧0

(𝑢)𝛼𝑧
𝑧0

(𝑣), for 𝑢, 𝑣 ∈ 𝑋* [11].
By termwise differentiation, the power series 𝐶𝑧0 𝑧 satisfies (1.1), with initial

condition 𝐶𝑧0 𝑧0 = 1𝑋* . From a theorem due to Ree [56], there exists a primitive
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series 𝐿𝑧0 𝑧 ∈ ̂ℋ(Ω)⟨𝑋⟩ such that 𝑒𝐿𝑧0 𝑧 = 𝐶𝑧0 𝑧, meaning that 𝐶𝑧0 𝑧 is group-
like. The challenge is then to determine explicitly 𝐿𝑧0 𝑧, via the Magnus’ Lie-
integral-functional expansion [54] and to regularize, effectively, 𝐶0 1 and 𝐿0 1
(although a lot of iterated integrals be divergent). On the other hand, essentially
interested in the solutions of (1.1) over the interval ]0, 1[ and using the involution
𝑧 ↦→ 1 − 𝑧, Drinfel’d stated that (1.1) admits a unique solution 𝐺0 (resp. 𝐺1)
satisfying the following asymptotic behaviors [24, 25] :

𝐺0(𝑧) ∼0 𝑧𝑥0 and 𝐺1(𝑧) ∼1 (1 − 𝑧)−𝑥1 . (1.4)

In particular, since 𝐺0 and 𝐺1 are group-like, there is a unique group-like series
Φ𝐾𝑍 ∈ R⟨⟨𝑋⟩⟩, called the Drinfel’d associator [55] (or Drinfel’d series [34]), such
that [24, 25]

𝐺0 = 𝐺1Φ𝐾𝑍 . (1.5)
Drinfel’d proved also the existence of group-like series in Q⟨⟨𝑋⟩⟩ satisfying similar
properties of Φ𝐾𝑍 , but he neither constructed such an expression nor made explicit
𝐺0 and 𝐺1 (similarly for log(𝐺0), log(𝐺1) and log(Φ𝐾𝑍)).

After that, Lê and Murakami expressed, in particular, the divergent coefficients
of Φ𝐾𝑍 as linear combinations of {𝜁𝑟(𝑠1, . . . , 𝑠𝑟)}𝑟>1

(𝑠1,...,𝑠𝑟)∈N𝑟
>1,𝑠1>2, via a regular-

ization based on representation of the chord diagram algebras [52].
One has two ways of considering, for any (𝑠1, . . . , 𝑠𝑟) ∈ ℋ𝑟, the quantities

𝜁𝑟(𝑠1, . . . , 𝑠𝑟) as limits fulfilling identities (see Section 3) [13, 16, 46, 47]. Firstly,
they are limits at 𝑧 = 1 of polylogarithms, and secondly, as truncated sums, they
are limits of harmonic sums when the upper bound tends to +∞ :

Li𝑠1,...,𝑠𝑘
(𝑧) :=

∑︁
𝑛1>...>𝑛𝑘>0

𝑛−𝑠1
1 . . . 𝑛−𝑠𝑘

𝑘 𝑧𝑛1 , for 𝑧 ∈ C, |𝑧 | < 1, (1.6)

H𝑠1,...,𝑠𝑘
(𝑛) :=

𝑛∑︁
𝑛1>...>𝑛𝑘>0

𝑛−𝑠1
1 . . . 𝑛−𝑠𝑘

𝑘 , for 𝑛 ∈ N+. (1.7)

More precisely, if (𝑠1, . . . , 𝑠𝑟) ∈ ℋ𝑟 then1, after a theorem by Abel, one has

lim
𝑧→1

Li𝑠1,...,𝑠𝑘
(𝑧) = lim

𝑛→∞
H𝑠1,...,𝑠𝑘

(𝑛) = 𝜁𝑟(𝑠1, . . . , 𝑠𝑘). (1.8)

This does not hold for (𝑠1, . . . , 𝑠𝑟) /∈ ℋ𝑟, while (1.6) is well defined over {𝑧 ∈ C, |𝑧 |
< 1} and so are (1.7) as Taylor coefficients of the following function

P𝑠1,...,𝑠𝑘
(𝑧) := Li𝑠1,...,𝑠𝑘

(𝑧)
1 − 𝑧

=
∑︁
𝑛>1

H𝑠1,...,𝑠𝑘
(𝑛)𝑧𝑛, for 𝑧 ∈ C, |𝑧 | < 1. (1.9)

The coefficients in (1.3) are single valued over Ω ; alternatively they can be
analytically continued and appear as multivalued functions over 𝐵 := C − {0, 1}.
In fact, we have mappings from the universal cover of 𝐵, denoted by �̃�, i.e. we
choose a universal covering (𝐵, �̃�, 𝑝), where 𝑝 : �̃� → 𝐵 is the covering map [9].

This second point of view will be adopted in the sequel. In this respect, let
ℋ(𝐵) (resp. ℋ(�̃�)) denote the ring of holomorphic functions over 𝐵 (resp. �̃�),
with 1𝐵 : 𝐵 → C (resp. 1�̃� : �̃� → C) as the neutral element (𝑧 ↦→ 1).

1𝜁1(𝑠1) is nothing else than the Riemann zeta function. It is convenient to set 𝜁0 to 1R.
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Let 𝑠 : Ω → �̃� be a lifting of the canonical embedding 𝑗 : Ω →˓ 𝐵

�̃�

Ω 𝐵

𝑝

𝑗

𝑠

In particular, for any 𝑔 : 𝐵 → 𝐵 and 𝑥, 𝑦 ∈ �̃� such that 𝑔(𝑝(𝑥)) = 𝑝(𝑦) there
exists a unique lifting 𝑔 (depending on (𝑥, 𝑦)) such that 𝑔(𝑥) = 𝑦) and the following
commutes [9]

�̃� �̃�

𝐵 𝐵

𝑝

𝑔

𝑝

𝑔

The work presented in this survey will concern our recent results about polylog-
arithms, harmonic sums and zeta values, involved in the coefficients of 𝐶𝑧0 𝑧 and
𝐿𝑧0 𝑧 belonging to ℋ(𝐵)⟨⟨𝑋⟩⟩.

We will base our work essentially on
(1) The isomorphisms of the Cauchy and Hadamard algebras of polylogarith-

mic functions, as defined in (1.6) and (1.9), respectively, with the shuffle
(C⟨𝑋⟩, ⊔⊔ , 1𝑋*) and the quasi-shuffle algebras (C⟨𝑌 ⟩, , 1𝑌 *) admitting
Lyndon words as pure transcendence bases (recalled in Section 2),

(2) The isomorphisms of the bialgebras
(𝐴⟨𝑋⟩, ., 1𝑋* , Δ⊔⊔ , e) and (𝐴⟨𝑌 ⟩, ., 1𝑌 * , Δ , e)

with, respectively, the enveloping algebras of their primitive elements, lead-
ing to the constructions of the pairs of bases in duality to factorize the diag-
onal series thanks to the Cartier-Quillen-Milnor-Moore (CQMM, in short)
and Poincaré-Birkhoff-Witt (PBW, in short) theorems (recalled in Section
2),

(3) The use of commutative and noncommutative generating series to estab-
lish combinatorial algebraic and analytical aspects of the polylogarithms
{Li𝑠1,...,𝑠𝑟

}𝑟>1
(𝑠1,...,𝑠𝑟)∈C𝑟 , the harmonic sums {H𝑠1,...,𝑠𝑟

}𝑟>1
(𝑠1,...,𝑠𝑟)∈C𝑟 , and the

zeta functions {𝜁𝑟(𝑠1, . . . , 𝑠𝑟)}𝑟>1
(𝑠1,...,𝑠𝑟)∈C𝑟 (recalled in Sections 3–5).

In the sequel, for simplification, we will adopt the notation 𝜁 for 𝜁𝑟, 𝑟 ∈ N.
We will examine the following problems :
P1. The renormalization which consists of finding counter terms to eliminate

the divergence of the polylogarithms {Li𝑠1,...,𝑠𝑟
}𝑟>1

(𝑠1,...,𝑠𝑟)∈Z𝑟 at 𝑧 = 1, and
of the harmonic sums {H𝑠1,...,𝑠𝑟

}𝑟>1
(𝑠1,...,𝑠𝑟)∈Z𝑟 for 𝑛 → +∞ (see Theorems

4.1 and 4.9 below).
For this, a theorem due to Abel is extended to treat, simultaneously, all

convergent cases as well as all divergent cases via their generating series.
P2. The regularization which consists of evaluating analytically the finite parts

(involved in the coefficients of 𝐶0 1 and 𝐿0 1) of the singular expansions
of the polylogarithms {Li𝑠1,...,𝑠𝑟 }𝑟>1

(𝑠1,...,𝑠𝑟)∈N𝑟
>1

at 𝑧 = 1 with respect to the

comparison scale {(1−𝑧)−𝑎 log𝑏(1−𝑧)}𝑎,𝑏∈N, and the asymptotic expansions
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of the harmonic sums {H𝑠1,...,𝑠𝑟
}𝑟>1

(𝑠1,...,𝑠𝑟)∈N𝑟
>1

for 𝑛 → +∞ in the scales

{𝑛−𝑎 log𝑏(𝑛)}𝑎,𝑏∈N and {𝑛−𝑎H𝑏
1(𝑛)}𝑎,𝑏∈N, via combinatorial aspects of their

noncommutative generating series (see Proposition 5.9 below).
For this, the definition of the regularization characters over the algebraic

bases of noncommutative polynomial algebras have to be reduced to match
with their analytical meanings.

P3. For any multiindex (−𝑠1, . . . , −𝑠𝑘) in N𝑟
−, since the polylogarithms (resp.

harmonic sums) are polynomial in 𝑒− log(1−𝑧) for | 𝑧 | < 1 (resp. in 𝑛 ∈ N)
with coefficients in Z (resp. Q) (see Propositions 4.7 and 4.11 below) :

Li−𝑠1,...,−𝑠𝑘
(𝑧) =

𝑟+𝑠1+...+𝑠𝑘∑︁
𝑘=0

𝑝𝑘𝑒−𝑘 log(1−𝑧) = 𝑝(𝑒− log(1−𝑧)), (1.10)

H−𝑠1,...,−𝑠𝑘
(𝑛) =

𝑟+𝑠1+...+𝑠𝑘∑︁
𝑘=0

𝑝𝑘

𝑘! (𝑛 + 𝑘)𝑛 = 𝑝(𝑛). (1.11)

Hence, Li−𝑠1,...,−𝑠𝑘
(1) (resp. H−𝑠1,...,−𝑠𝑘

(+∞)), as divergent sums, can be
regularized (see Lemma 5.12 below) by the value 𝑝(1) ∈ Z (resp. 𝑝(1) ∈
Q) admitting generating series as rational associators (see Theorem 5.15
below).

This way, the previous regularizations are extended algebraically (i.e.
by transcendent extension over a subalgebra of noncommutative rational
series, see Proposition 5.11 below) and analytically (i.e. by evaluation of
their finite parts within the comparison scales {(1 − 𝑧)−𝑎 log𝑏(1 − 𝑧)}𝑎,𝑏∈N
and {𝑛−𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N, see Lemma 5.12 below), allowing to regularize,
in particular, the iterated integrals and their Taylor coefficients associated
with the rational series in (C[𝑥*

1], ⊔⊔ , 1𝑋*) and2 (C[𝑦*
1 ], , 1𝑌 *), i.e. the

following sums with divergent coefficients (see Theorem 5.15 below)∑︁
𝑛>0

Li1, . . . , 1⏟  ⏞  
𝑛 times

(1) 𝑡𝑛 and
∑︁
𝑛>0

H1, . . . , 1⏟  ⏞  
𝑛 times

(+∞) 𝑡𝑛.

P4. For any multiindex (𝑠1, . . . , 𝑠𝑟) in N𝑟
>1, by expanding (1 − 𝑧)−1 the poly-

logarithms as in (1.6) can be obtained as iterated integrals over the differ-
ential forms 𝜔0 and 𝜔1 along the path 0  𝑧 associated with the words
𝑥𝑠1−1

0 𝑥1 . . . 𝑥𝑠𝑟−1
0 𝑥1 over 𝑋*𝑥1, as in (1.3). They induce shuffle relations

while the Taylor coefficients as in (1.7) induce quasi-shuffle relations among
convergent zeta values, as obtained in (1.8) (see Theorem 3.1 below).

In fact, the polynomial relations (homogenous in weight) over a com-
mutative Q-extension, denoted by 𝐴, among convergent zeta values, are
relations obtained at singularities among elements of a transcendence basis
of the algebra of polylogarithms (or harmonic sums, see Proposition 4.3 be-
low). These relations are not due to but imply the double-shuffle relations
and do not need any regularization. Moreover, if Euler’s constant 𝛾 /∈ 𝐴,
then they are algebraically independent of 𝛾 (see Corollary 5.7 below).

2Here, 𝑌 = {𝑦𝑘}𝑘>1 and is the quasi-shuffle (or stuffle, for sticky shuffle) product.
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The organization of this paper is as follows :
∙ In Section 2, the algebraic combinatorial framework is introduced. In par-

ticular, we will give an explicit isomorphism 𝜙𝜋1 from the shuffle bialgebra
to the quasi-shuffle bialgebra (Theorem 2.1).

Working with 𝜙𝜋1 , the construction by Mélançon-Reutenauer-Schützen-
berger (MRS, in short), initially elaborated in the shuffle bialgebra and use-
ful to factorize the group-like series and then rational power series (Theorem
2.3), will be extended in the quasi-shuffle bialgebra for the similar factor-
izations via the constructions of pairs of bases in duality (see (2.6)–(2.7)).

∙ In Section 3, to study their structure via generating series, polylogarithms
and harmonic sums at integral multiindices will be encoded by words over
various alphabets (Theorems 3.1, 3.2 and Lemmas 2.4–3.5). In particu-
lar, the bi-integro differential algebra of polylogarithms will be examined
(Proposition 3.6) and their noncommutative generating series will be put
in the MRS form (their logarithms will be also provided, Proposition 3.8).

Concerning the polylogarithms at positive indices, we will insist on the
fact that their noncommutative generating series is the actual solution of
(1.1), and the noncommutative generating series of the finite parts of their
singular expansions corresponds to the associator Φ𝐾𝑍 which will be also
put in MRS form without divergent zeta values as local coordinates.

∙ In Section 4, with noncommutative generating series, the global renormal-
izations of polylogarithms and harmonic sums will provide associators (The-
orems 4.1 and 4.9). In particular, using the bridge equations connecting
shuffle structures (Propositions 4.2 and 4.3), the enumerable families of
irreducible zetas values will be implemented (see (4.8)–(4.9)) and Euler’s
𝛾 constant will be generalized as finite parts of harmonic sums (Corollary
4.6). This will be achieved by identifying the local coordinates in infinite
dimension and by obtaining algebraic relations among zeta values.

With commutative generating series, many functions (algebraic functions
with singularities in {0, 1, +∞}, see Example 3.3) forgotten in the straight
algebra of polylogarithms, at positive indices, will be recovered.

∙ In Section 5, the elements of the differential Galois group GalC(𝐷𝐸) con-
taining the groups of monodromy and of associators will be considered as
regularized solutions of (1.1). The actions of GalC(𝐷𝐸) on the singular
expansions of the solutions of (1.1) will be then discussed (Theorem 5.2) :
on the one hand, since the group of associators contains itself Φ𝐾𝑍 and the
local coordinates of each associator are homogenous in weight polynomials
on zeta values over 𝐴, the independence of the convergent zeta values with
respect to 𝛾 will be discussed according to 𝐴 (Corollary 5.7), and log(Φ𝐾𝑍)
will be also expressed (Proposition 5.9); on the other hand, since the poly-
logarithms at negative indices are polynomial in (1 − 𝑧)−1 with coefficients
in Z (Propositions 4.7–4.11), the generating series of the finite parts of their
singular expansions will specify the regularization characters (Propositions
5.6–5.11) and give examples of rational associators (Theorem 5.15).
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2. Combinatorial framework

2.1. Shuffle and quasi-shuffle algebras. Let 𝐴 be a commutative and associa-
tive Q-algebra with unit.

Let 𝑋 = {𝑥0, 𝑥1} (resp. 𝑌0 = {𝑦𝑠}𝑠>0) be an alphabet equipped with the total
order 𝑥0 < 𝑥1 (resp. 𝑦0 > 𝑦1 > 𝑦2 > . . .) and let 𝑌 = 𝑌0 − {𝑦0}. The free monoid
generated by 𝑋 (resp. 𝑌 , or 𝑌0) is denoted by 𝑋* (resp. 𝑌 *, or 𝑌 *

0 ) and admits
the empty word, 1𝑋* (resp. 1𝑌 * and 1𝑌 *

0
) as unit [1].

The sets of polynomials and formal power series over 𝑋* (resp. 𝑌 * or 𝑌 *
0 ) with

coefficients in 𝐴 are denoted respectively by 𝐴⟨𝑋⟩ (resp. 𝐴⟨𝑌 ⟩ or 𝐴⟨𝑌0⟩) and 𝐴⟨⟨𝑋⟩⟩
(resp. 𝐴⟨⟨𝑌 ⟩⟩ or 𝐴⟨⟨𝑌0⟩⟩) [1]. The sets of polynomials are 𝐴-modules admitting
{𝑤}𝑤∈𝑋* (resp. {𝑤}𝑤∈𝑌 * and {𝑤}𝑤∈𝑌 *

0
) as linear bases, i.e.

𝐴⟨𝑋⟩ ∼= 𝐴[𝑋*], 𝐴⟨𝑌 ⟩ ∼= 𝐴[𝑌 *], 𝐴⟨𝑌0⟩ ∼= 𝐴[𝑌 *
0 ]. (2.1)

Therefore, their full duals are
𝐴⟨⟨𝑋⟩⟩ = 𝐴𝑋*

, 𝐴⟨⟨𝑌 ⟩⟩ = 𝐴𝑌 *
, 𝐴⟨⟨𝑌0⟩⟩ = 𝐴𝑌 *

0

and the natural pairing is given by the scalar product

⟨𝑆 | 𝑃 ⟩ =
∑︁

𝑢∈𝑍*

𝑆(𝑢)𝑃 (𝑢) with 𝑍 ∈ {𝑋, 𝑌, 𝑌0},

where, 𝑆(𝑢) and 𝑃 (𝑢) are the coefficients3 of 𝑢 in the series 𝑆 and the polynomial
𝑃 , respectively.

As algebras (see (2.1)) the 𝐴-modules 𝐴⟨𝑋⟩ (resp. 𝐴⟨𝑌 ⟩ and 𝐴⟨𝑌0⟩) come
equipped with the associative concatenation product and

(1) in 𝐴⟨𝑋⟩, the associative commutative shuffle product [11, 27, 56] is defined,
for any 𝑢, 𝑣, 𝑤 ∈ 𝑋* and 𝑥, 𝑦 ∈ 𝑋, as follows [33]
𝑤 ⊔⊔ 1𝑋* = 1𝑋* ⊔⊔ 𝑤 = 𝑤 and 𝑥𝑢 ⊔⊔ 𝑦𝑣 = 𝑥(𝑢 ⊔⊔ 𝑦𝑣) + 𝑦(𝑥𝑢 ⊔⊔ 𝑣),

(2) in 𝐴⟨𝑌 ⟩ and 𝐴⟨𝑌0⟩, the associative commutative quasi-shuffle product [49]
is defined for all 𝑦𝑖, 𝑦𝑗 ∈ 𝑌0 and 𝑢, 𝑣, 𝑤 ∈ 𝑌 *

0 as follows [48]
𝑤 1𝑌 *

0
= 1𝑌 * 𝑤 = 𝑤,

𝑦𝑖𝑢 𝑦𝑗𝑣 = 𝑦𝑖(𝑢 𝑦𝑗𝑣) + 𝑦𝑗(𝑦𝑖𝑢 𝑣) + 𝑦𝑖+𝑗(𝑢 𝑣).
Their associated coproducts, Δ⊔⊔ and Δ , are defined for 𝑢1, 𝑣1, 𝑤1 ∈ 𝑋* and
𝑢2, 𝑣2, 𝑤2 ∈ 𝑌 *

0 as follows
⟨𝑢1 ⊔⊔ 𝑣1 | 𝑤1⟩ = ⟨𝑢1 ⊗ 𝑣1 | Δ⊔⊔ (𝑤1)⟩,
⟨𝑢2 𝑣2 | 𝑤2⟩ = ⟨𝑢2 ⊗ 𝑣2 | Δ (𝑤2)⟩.

These operators are morphisms for the concatenation defined on the letters 𝑥 ∈ 𝑋
and 𝑦𝑘 ∈ 𝑌0 by

Δ⊔⊔ (𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1,

Δ (𝑦𝑘) = 1 ⊗ 𝑦𝑘 + 𝑦𝑘 ⊗ 1 +
∑︁

𝑖+𝑗=𝑘

𝑦𝑖 ⊗ 𝑦𝑗 .

The algebras (𝐴⟨𝑋⟩, ⊔⊔ , 1𝑋*) and (𝐴⟨𝑌 ⟩, , 1𝑌 *) admit the sets of Lyndon
words denoted, respectively, by ℒ𝑦𝑛𝑋 and ℒ𝑦𝑛𝑌 , as pure transcendence bases [57]

3This coefficient is then ⟨𝑆 | 𝑢⟩ and ⟨𝑃 | 𝑢⟩.
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(resp. [46, 47]). A pair of Lyndon words (𝑙1, 𝑙2) is called the standard factorization
of 𝑙 if 𝑙 = 𝑙1𝑙2 and 𝑙2 is the smallest nontrivial proper right factor of 𝑙 (for the
lexicographic order) or, equivalently, its (Lyndon) longest such [53].

2.2. Diagonal series on bialgebras. Let ℒ𝑖𝑒𝐴⟨𝑋⟩ and ℒ𝑖𝑒𝐴⟨⟨𝑋⟩⟩ denote the sets
of, respectively, Lie polynomials and Lie series over 𝑋 with coefficients in 𝐴 [53, 57].

The CQMM theorem [7] guarantees that the connected N-graded, co-commu-
tative Hopf algebra4 is the enveloping algebra of its primitive elements (hence,
𝐴⟨𝑋⟩ = 𝒰(ℒ𝑖𝑒𝐴⟨𝑋⟩)). Classically, the pair of dual bases, {𝑃𝑤}𝑤∈𝑋* expanded over
the basis {𝑃𝑙}𝑙∈ℒ𝑦𝑛𝑋 of ℒ𝑖𝑒𝐴⟨𝑋⟩ and {𝑆𝑤}𝑤∈𝑋* containing the pure transcendence
basis of the shuffle algebra denoted by {𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑋 , permits an expression of the
diagonal series as follows [57]

𝒟𝑋 :=
∑︁

𝑤∈𝑋*

𝑤 ⊗ 𝑤 =
∑︁

𝑤∈𝑋*

𝑆𝑤 ⊗ 𝑃𝑤 =
↘∏︁

𝑙∈ℒ𝑦𝑛𝑋

𝑒𝑆𝑙⊗𝑃𝑙 . (2.2)

We also get two other connected N-graded, co-commutative Hopf algebras isomor-
phic to the enveloping algebras of their Lie algebras of their primitive elements :

ℋ⊔⊔ := (𝐴⟨𝑌 ⟩, ., 1𝑌 * , Δ⊔⊔ , e) ∼= 𝒰(ℒ𝑖𝑒𝐴⟨𝑌 ⟩),
ℋ := (𝐴⟨𝑌 ⟩, ., 1𝑌 * , Δ , e) ∼= 𝒰(Prim(ℋ )),

where Prim(ℋ ) = Im(𝜋1) = span𝐴{𝜋1(𝑤) | 𝑤 ∈ 𝑌 *} and 𝜋1 is the extended
eulerian projector defined, for any 𝑤 ∈ 𝑌 *, by [46, 47]

𝜋1(𝑤) = 𝑤 +
(𝑤)∑︁
𝑘=2

(−1)𝑘−1

𝑘

∑︁
𝑢1,...,𝑢𝑘∈𝑌 +

⟨𝑤 | 𝑢1 . . . 𝑢𝑘⟩𝑢1 . . . 𝑢𝑘. (2.3)

Denoting by (𝑙1, 𝑙2) the standard factorization of 𝑙 ∈ ℒ𝑦𝑛𝑌 − 𝑌 , let us consider
(1) The PBW basis {𝑝𝑤}𝑤∈𝑌 * of 𝒰(ℒ𝑖𝑒𝐴⟨𝑌 ⟩) constructed recursively as follows

[57]⎧⎪⎨⎪⎩
𝑝𝑦𝑛

= 𝑦𝑛, for 𝑦𝑛 ∈ 𝑌,

𝑝𝑙 = [𝑝𝑙1 , 𝑝𝑙2 ], for 𝑙 ∈ ℒ𝑦𝑛𝑌 − 𝑌, 𝑠𝑡(𝑙) = (𝑙1, 𝑙2),

𝑝𝑤 = 𝑝𝑖1
𝑙1

. . . 𝑝𝑖𝑘

𝑙𝑘
, for 𝑤 = 𝑙𝑖1

1 . . . 𝑙𝑖𝑘

𝑘 with 𝑙1, . . . , 𝑙𝑘 ∈ ℒ𝑦𝑛𝑌, 𝑙1 > . . . > 𝑙𝑘.

(2.4)
(2) and, by duality5, the basis {𝑠𝑤}𝑤∈𝑌 * of (𝐴⟨𝑌 ⟩, ⊔⊔ , 1𝑌 *), i.e.

⟨𝑝𝑢 | 𝑠𝑣⟩ = 𝛿𝑢,𝑣 for all 𝑢, 𝑣 ∈ 𝑌 *.

This linear basis can be computed recursively as follows [57].⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠𝑦𝑛 = 𝑦𝑠, for 𝑦𝑛 ∈ 𝑌,

𝑠𝑙 = 𝑦𝑛𝑠𝑢, for 𝑙 = 𝑦𝑛𝑢 ∈ ℒ𝑦𝑛𝑌,

𝑠𝑤 =
𝑠⊔⊔ 𝑖1

𝑙1
⊔⊔ . . . ⊔⊔ 𝑠⊔⊔ 𝑖𝑘

𝑙𝑘

𝑖1! . . . 𝑖𝑘! ,
for 𝑤 = 𝑙𝑖1

1 . . . 𝑙𝑖𝑘

𝑘 with
𝑙1, . . . , 𝑙𝑘 ∈ ℒ𝑦𝑛𝑌, 𝑙1 > . . . > 𝑙𝑘.

(2.5)

4Here, e denotes the counit defined by e(𝑃 ) = ⟨𝑃 | 1𝑋* ⟩ (for any 𝑃 ∈ 𝐴⟨𝑌 ⟩).
5The dual family, i.e. the set of coordinates forms, is linearly free (but not a basis in general)

in the algebraic dual which is the space of noncommutative series, but as the enveloping algebra
under consideration is graded in finite dimension by multidegree. In Fact it consists of multi-
homogeneous polynomials.
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As in (2.2), let 𝒟⊔⊔ be the diagonal series on ℋ⊔⊔ . Then [57]

𝒟⊔⊔ :=
∑︁

𝑤∈𝑌 *

𝑤 ⊗ 𝑤 =
∑︁

𝑤∈𝑌 *

𝑠𝑤 ⊗ 𝑝𝑤 =
↘∏︁

𝑙∈ℒ𝑦𝑛𝑌

𝑒𝑠𝑙⊗𝑝𝑙 .

Theorem 2.1 ([47]). — Let 𝜙𝜋1 : (𝐴⟨𝑌 ⟩, ., 1𝑌 *) → (𝐴⟨𝑌 ⟩, ., 1𝑌 *) be the endo-
morphism of algebras mapping 𝑦𝑘 to 𝜋1(𝑦𝑘). Then 𝜙𝜋1 is an automorphism of 𝐴⟨𝑌 ⟩
and it realizes an isomorphism from the bialgebra ℋ⊔⊔ to the bialgebra ℋ . In
particular, the following diagram is commutative

Q⟨𝑌 ⟩
Δ⊔⊔//

𝜙𝜋1

��

Q⟨𝑌 ⟩ ⊗Q⟨𝑌 ⟩

𝜙𝜋1 ⊗𝜙𝜋1

��
Q⟨𝑌 ⟩

Δ
// Q⟨𝑌 ⟩ ⊗Q⟨𝑌 ⟩

.

and
ℋ ∼= 𝒰(Prim(ℋ )) and ℋ∨ ∼= 𝒰(Prim(ℋ ))∨.

Moreover, the bases {Π𝑤}𝑤∈𝑌 * and {Σ𝑤}𝑤∈𝑌 * of, respectively, 𝒰(Prim(ℋ ))
and 𝒰(Prim(ℋ ))∨, are images by 𝜙𝜋1 and 𝜙−1

𝜋1
of {𝑝𝑤}𝑤∈𝑌 * and {𝑠𝑤}𝑤∈𝑌 * .

Algorithmically6, the families {Π𝑤}𝑤∈𝑌 * and {Σ𝑤}𝑤∈𝑌 * of polynomials homoge-
nous for the weight can be constructed directly and recursively as follows [3, 46, 47]

(1) The PBW basis {Π𝑤}𝑤∈𝑌 * of 𝒰(Prim(ℋ )) :⎧⎪⎨⎪⎩
Π𝑦𝑠 = 𝜋1(𝑦𝑠), for 𝑦𝑠 ∈ 𝑌,

Π𝑙 = [Π𝑙1 , Π𝑙2 ], for 𝑙 ∈ ℒ𝑦𝑛𝑌 − 𝑌, 𝑠𝑡(𝑙) = (𝑙1, 𝑙2),

Π𝑤 = Π𝑖1
𝑙1

. . . Π𝑖𝑘

𝑙𝑘
, for 𝑤 = 𝑙𝑖1

1 . . . 𝑙𝑖𝑘

𝑘 with 𝑙1, . . . , 𝑙𝑘 ∈ ℒ𝑦𝑛𝑌, 𝑙1 > . . . > 𝑙𝑘.

(2.6)
(2) and, by duality, i.e.

⟨Π𝑢 | Σ𝑣⟩ = 𝛿𝑢,𝑣 for all 𝑢, 𝑣 ∈ 𝑌 *,

the basis {Σ𝑤}𝑤∈𝑌 * of (Q⟨𝑌 ⟩, , 1𝑌 *) :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Σ𝑦𝑠
= 𝑦𝑠, for 𝑦𝑠 ∈ 𝑌,

Σ𝑙 =
∑︁
(*)

1
𝑖!𝑦𝑠𝑘1 +...+𝑠𝑘𝑖

Σ𝑙1...𝑙𝑛
, for 𝑙 = 𝑦𝑠1 . . . 𝑦𝑠𝑘

∈ ℒ𝑦𝑛𝑌,

Σ𝑤 =
Σ 𝑖1

𝑙1
. . . Σ 𝑖𝑘

𝑙𝑘

𝑖1! . . . 𝑖𝑘! ,
for 𝑤 = 𝑙𝑖1

1 . . . 𝑙𝑖𝑘

𝑘 , with
𝑙1, . . . , 𝑙𝑘 ∈ ℒ𝑦𝑛𝑌, 𝑙1 > . . . > 𝑙𝑘.

(2.7)

In (*), the sum is taken over all {𝑘1, . . . , 𝑘𝑖} ⊂ {1, . . . , 𝑘} and 𝑙1 > . . . > 𝑙𝑛
such that (𝑦𝑠1 , . . . , 𝑦𝑠𝑘

) *⇐ (𝑦𝑠𝑘1
, . . . , 𝑦𝑠𝑘𝑖

, 𝑙1, . . . , 𝑙𝑛), where *⇐ denotes the
transitive closure of the relation on standard sequences, denoted by ⇐ [3].

6In [4], other pairs of bases in duality for ℋ are also proposed.
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Let 𝒟 = 𝒟⊔⊔ be the diagonal series7 on 𝑌 . One has [46, 47]

𝒟 :=
∑︁

𝑤∈𝑌 *

𝑤 ⊗ 𝑤 =
∑︁

𝑤∈𝑌 *

Σ𝑤 ⊗ Π𝑤 =
↘∏︁

𝑙∈ℒ𝑦𝑛𝑌

𝑒Σ𝑙⊗Π𝑙 . (2.8)

More generally, under suitable conditions8 these factorizations still hold for the
𝜙-deformed shuffle product, thanks to an extension of Theorem 2.1 [6, 7, 31].

Now, let us consider the following morphism

𝜋∘
𝑌 : (𝐴 1𝑋* ⊕ 𝐴⟨𝑋⟩𝑥1, .) −→ (𝐴⟨𝑌 ⟩, .),

𝑥𝑠1−1
0 𝑥1 . . . 𝑥𝑠𝑟−1

0 𝑥1 ↦−→ 𝑦𝑠1 . . . 𝑦𝑠𝑟
, for 𝑟 > 1,

and 𝜋∘
𝑌 (𝑎) = 𝑎 for any 𝑎 ∈ 𝐴. The extension of 𝜋∘

𝑌 over 𝐴⟨𝑋⟩ is the map 𝜋𝑌 :
(𝐴⟨𝑋⟩, .) → (𝐴⟨𝑌 ⟩, .) satisfying 𝜋𝑌 (𝑝) = 0 for any 𝑝 ∈ 𝐴⟨𝑋⟩𝑥0. Hence, ker 𝜋𝑌 =
𝐴⟨𝑋⟩𝑥0 and Im(𝜋𝑌 ) = 𝐴⟨𝑌 ⟩. Let 𝜋𝑋 be the inverse of 𝜋∘

𝑌 :

𝜋𝑋 : (𝐴⟨𝑌 ⟩, .) −→ (𝐴 ⊕ 𝐴⟨𝑋⟩𝑥1, .),
𝑦𝑠1 . . . 𝑦𝑠𝑟

↦−→ 𝑥𝑠1−1
0 𝑥1 . . . 𝑥𝑠𝑟−1

0 𝑥1, for 𝑟 > 1.

For the scalar products, the projectors 𝜋𝑋 and 𝜋∘
𝑌 are then mutually adjoints :

∀𝑝 ∈ 𝐴 ⊕ 𝐴⟨𝑋⟩𝑥1, ∀𝑞 ∈ 𝐴⟨𝑌 ⟩, ⟨𝜋∘
𝑌 (𝑝) | 𝑞⟩ = ⟨𝑝 | 𝜋𝑋(𝑞)⟩.

We have 𝜋𝑌 ∘ 𝜋𝑋 = Id𝑋 . But 𝜋𝑋 ∘ 𝜋𝑌 ̸= Id𝑌 . It is an orthogonal projector of
𝐴⟨𝑋⟩ on 𝐴 ⊕ 𝐴⟨𝑋⟩𝑥1 parallel to 𝐴 ⊕ 𝐴⟨𝑋⟩𝑥0. Indeed ker(𝜋𝑋 ∘ 𝜋𝑌 ) = 𝐴⟨𝑋⟩𝑥0 and
Im(𝜋𝑋 ∘ 𝜋𝑌 ) = 𝐴⟨𝑌 ⟩.

The map 𝜋𝑋 is a morphism of associative algebras with unity (AAU) and the
map 𝜋𝑌 is multiplicative on 𝐴.1𝑋* ⊕ 𝐴⟨𝑋⟩𝑥1 but not on 𝐴⟨𝑋⟩. For example,

0 = 𝜋𝑌 (𝑥0)𝜋𝑌 (𝑥1) ̸= 𝜋𝑌 (𝑥0𝑥1) = 𝜋∘
𝑌 (𝑥0𝑥1) = 𝑦2.

These can be extended by linearity and continuity over 𝐴⟨⟨𝑋⟩⟩ and 𝐴⟨⟨𝑌 ⟩⟩, respec-
tively.

Lemma 2.2 ([53, 58]). — 𝑙 ∈ ℒ𝑦𝑛𝑋 − {𝑥0} if and only if 𝜋𝑌 (𝑙) ∈ ℒ𝑦𝑛𝑌 .

2.3. Exchangeable and noncommutative rational series. Recall that a for-
mal power series 𝑅 is exchangeable if and only if two words have the same coeffi-
cient in 𝑅 ∈ 𝐴⟨⟨𝑋⟩⟩ whenever they have the same commutative image, i.e. for any
𝑢, 𝑣 ∈ 𝑋*, if | 𝑢 |𝑥=| 𝑣 |𝑥 for any 𝑥 ∈ 𝑋 then ⟨𝑅 | 𝑢⟩ = ⟨𝑅 | 𝑣⟩ [33]. It follows that
an exchangeable series 𝑅 takes the following form [33]

𝑅 =
∑︁

𝑖0,𝑖1>0
𝑟𝑖0,𝑖1𝑥𝑖0

0 ⊔⊔ 𝑥𝑖1
1 =

∑︁
𝑖0,𝑖1>0

𝑟𝑖0,𝑖1

𝑥⊔⊔ 𝑖0
0
𝑖0!

⊔⊔
𝑥⊔⊔ 𝑖1

1
𝑖1! . (2.9)

The set of exchangeable series is denoted by 𝐴exc⟨⟨𝑋⟩⟩.
Let 𝐴rat⟨⟨𝑋⟩⟩ denote the closure, of 𝐴⟨𝑋⟩ in 𝐴⟨⟨𝑋⟩⟩ under9 {+, ., *}. It is closed

under shuffle [1]. A power series 𝑅 ∈ 𝐴rat⟨⟨𝑋⟩⟩ is said to be rational.

7The set-theoretical object is the same, but the different indexing here expresses the fact that
they will be considered as living in different algebras.

8In fact associative commutative dualizable and moderate, see [6, 7, 31].
9Let 𝑅 ∈ 𝐴⟨⟨𝑋⟩⟩ be such that ⟨𝑅 | 1𝑋* ⟩ = 0. Then 𝑅* = 1𝑋* + 𝑅 + 𝑅2 + · · · ..
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Let 𝑅 ∈ 𝐴rat⟨⟨𝑋⟩⟩. By the Kleene-Schützenberger theorem [1] there exists a
linear representation (𝛽, 𝜇, 𝜂) of dimension 𝑛 > 1, where

𝛽 ∈ ℳ𝑛,1(𝐴), 𝜇 : 𝑋* −→ ℳ𝑛,𝑛(𝐴), 𝜂 ∈ ℳ1,𝑛(𝐴) (2.10)

such that

𝑅 =
∑︁

𝑤∈𝑋*

(𝛽𝜇(𝑤)𝜂) 𝑤 = 𝛽

(︂∑︁
𝑥∈𝑋

𝜇(𝑥)𝑥
)︂*

𝜂.

Hence, letting 𝑀(𝑥) := 𝜇(𝑥)𝑥 for 𝑥 ∈ 𝑋, one has 𝑀(𝑋) = 𝑀(𝑥0) + 𝑀(𝑥1) as
morphism of monoids, and, using Lazard’s elimination [53, 58], one gets

𝑀(𝑋*) = (𝑀(𝑥*
1)𝑀(𝑥0))*𝑀(𝑥*

1) = (𝑀(𝑥*
0)𝑀(𝑥1))*𝑀(𝑥*

0).

Via the diagonal series 𝒟𝑋 given in (2.2), the Kleene-Schützenberger theorem
[1] can also be extended as follows

Theorem 2.3 ([36, 37, 43]). — A series 𝑅 ∈ 𝐴⟨⟨𝑋⟩⟩ is rational if and only if
there exists a linear representation (𝛽, 𝜇, 𝜂), of dimension 𝑛 > 1, where

𝛽 ∈ ℳ𝑛,1(𝐴), 𝜇 : 𝑋* −→ ℳ𝑛,𝑛(𝐴), 𝜂 ∈ ℳ1,𝑛(𝐴)

such that

𝑅 = 𝛽((Id ⊗ 𝜇)𝒟𝑋)𝜂 = 𝛽

(︂ ↘∏︁
𝑙∈ℒ𝑦𝑛𝑋

𝑒𝑆𝑙𝜇(𝑃𝑙)
)︂

𝜂.

Now, let (𝛽, 𝜇, 𝜂) be a minimal10 linear representation of 𝑅 ∈ 𝐴rat⟨⟨𝑋⟩⟩ [1],
and let ℒ(𝜇) be the Lie algebra generated by {𝜇(𝑥)}𝑥∈𝑋 . Moreover, if the ma-
trices {𝜇(𝑥)}𝑥∈𝑋 are triangular, then there are diagonal and nilpotent matrices,
{𝐷(𝑥)}𝑥∈𝑋 and {𝑁(𝑥)}𝑥∈𝑋 in ℳ𝑛,𝑛(𝐴𝑋) such that 𝑀(𝑋) = 𝐷(𝑋) + 𝑁(𝑋).
Hence, again by Lazard’s elimination, one also gets

𝑀(𝑋*) = ((𝐷(𝑋*)𝑇 (𝑋))*𝐷(𝑋*)). (2.11)

The set of exchangeable rational series, i.e. 𝐴rat⟨⟨𝑋⟩⟩ ∩ 𝐴exc⟨⟨𝑋⟩⟩, is denoted by
𝐴rat

exc⟨⟨𝑋⟩⟩. As examples, one can consider the following forms (𝐹0), (𝐹1) and (𝐹2)
of rational series in Crat⟨⟨𝑋⟩⟩ [35, 36, 37] :

(𝐹0) 𝐸1𝑥𝑖1 . . . 𝐸𝑗𝑥𝑖𝑗
𝐸𝑗+1, where 𝑥𝑖1 , . . . , 𝑥𝑖𝑗

∈ 𝑋 and 𝐸1, . . . , 𝐸𝑗 ∈ Crat⟨⟨𝑥0⟩⟩,
(𝐹1) 𝐸1𝑥𝑖1 . . . 𝐸𝑗𝑥𝑖𝑗

𝐸𝑗+1, where 𝑥𝑖1 , . . . , 𝑥𝑖𝑗
∈ 𝑋 and 𝐸1, . . . , 𝐸𝑗 ∈ Crat⟨⟨𝑥1⟩⟩,

(𝐹2) 𝐸1𝑥𝑖1 . . . 𝐸𝑗𝑥𝑖𝑗 𝐸𝑗+1, where 𝑥𝑖1 , . . . , 𝑥𝑖𝑗 ∈ 𝑋 and 𝐸1, . . . , 𝐸𝑗 ∈ Crat
exc⟨⟨𝑋⟩⟩.

One has

Lemma 2.4. — (1) Let 𝑘 ∈ N+, 𝑡0, 𝑡1 ∈ C. Then (𝑥*
𝑖 )⊔⊔ 𝑘 = (𝑘𝑥𝑖)*,

(𝑡0𝑥0 + 𝑡1𝑥1)* = (𝑡0𝑥0)*
⊔⊔(𝑡1𝑥1)* and (𝑡𝑖𝑥𝑖)*𝑘 = (𝑡𝑖𝑥𝑖)*

⊔⊔(1 − 𝑡𝑖𝑥𝑖)𝑘−1.

(2) The series of form (𝐹0), (𝐹1) and (𝐹2) generate sub-bialgebras of (Crat⟨⟨𝑋⟩⟩,
⊔⊔ , 1𝑋* , Δconc, e).

(3) Let (𝛽, 𝜇, 𝜂) be a minimal linear representation of 𝑅 ∈ Crat⟨⟨𝑋⟩⟩ and ℒ(𝜇)
be the Lie algebra generated by {𝜇(𝑥)}𝑥∈𝑋 . Since 𝑅 = 𝛽𝑀(𝑋*)𝜂,

10Now, 𝐴 is supposed to be a field.



12 V. Hoang Ngoc Minh

(a) 𝑅 is a linear combination of expressions of the form (𝐹0) (resp. (𝐹1))
if and only if 𝑀(𝑥*

1)𝑀(𝑥0) (resp. 𝑀(𝑥*
0)𝑀(𝑥1)) is nilpotent11. Hence,

if 𝑅 ∈ Crat⟨⟨𝑥0⟩⟩ ⊔⊔ C⟨𝑋⟩ (resp. Crat⟨⟨𝑥1⟩⟩ ⊔⊔ C⟨𝑋⟩) then 𝑀(𝑥*
1)𝑀(𝑥0)

(resp. 𝑀(𝑥*
0)𝑀(𝑥1)) is nilpotent.

(b) 𝑅 is a linear combination of expressions of the form (𝐹2) if and only
if ℒ(𝜇) is solvable12. Hence, if 𝑅 ∈ Crat

exc⟨⟨𝑋⟩⟩ ⊔⊔ C⟨𝑋⟩ then ℒ(𝜇) is
solvable.

(c) 𝑅 ∈ C⟨𝑋⟩ if and only if for any 𝑃 ∈ ℒ𝑖𝑒C⟨𝑋⟩ the matrix 𝜇(𝑃 ),
belonging to ℒ(𝜇), is nilpotent.

(d) 𝑅 ∈ Crat
exc⟨⟨𝑋⟩⟩ ⇔ [𝜇(𝑥0), 𝜇(𝑥1)] = 0 ⇔ 𝑅 ∈ Crat⟨⟨𝑥0⟩⟩ ⊔⊔ Crat⟨⟨𝑥1⟩⟩.

To end this section, let us note that for any 𝑅 ∈ Crat⟨⟨𝑋⟩⟩ of minimal linear
representation (𝛽, 𝜇, 𝜂) of dimension 𝑛 and, for any 𝑥, 𝑦 ∈ 𝑋 one has

⟨𝑆 | 𝑥𝑦⟩ = 𝛽𝜇(𝑥)𝜇(𝑦)𝜂 =
𝑛∑︁

𝑖=1
(𝛽𝜇(𝑥)𝑒𝑖)(𝑒𝑇

𝑖 𝜇(𝑦)𝜂) =
𝑛∑︁

𝑖=1
⟨𝑆(1)

𝑖 | 𝑥⟩⟨𝑆(2)
𝑖 | 𝑦⟩,

where 𝑒𝑖 is the vector such that 𝑒𝑇
𝑖 =

(︀
0 . . . 0 1 0 . . . 0

)︀
. Hence 𝑆

(1)
𝑖 (resp.

𝑆
(2)
𝑖 ) admits (𝛽, 𝜇, 𝑒𝑖) (resp. (𝑒𝑇

𝑖 , 𝜇, 𝜂)) as a linear representation, and
(Crat⟨⟨𝑋⟩⟩, ⊔⊔ , 1𝑋* , Δconc, e)

is nothing but the Sweedler dual of the bialgebra (C⟨𝑋⟩, conc, 1𝑋* , Δ⊔⊔ , e) [57].

3. Indexation by words and generating series

3.1. Indexation by words. For any 𝑟 ∈ N, any multiindex(𝑠1, . . . , 𝑠𝑟) ∈ N𝑟
+

can be associated with the words 𝑥𝑠1−1
0 𝑥1 . . . 𝑥𝑠𝑟−1

0 𝑥1 ∈ 𝑋*𝑥1 ⊔ {1𝑋*}. Similarly,
any13 (𝑠1, . . . , 𝑠𝑟) ∈ N𝑟 can be associated with the word 𝑦𝑠1 . . . 𝑦𝑠𝑟

∈ 𝑌 *
0 . Put

Li𝑥𝑟
0
(𝑧) := (log(𝑧))𝑟/𝑟!.
(1) Let Li𝑠1,...,𝑠𝑘

and H𝑠1,...,𝑠𝑘
be indexed by words [38, 39] :

Li
𝑥

𝑠1−1
0 𝑥1...𝑥𝑠𝑟−1

0 𝑥1
:= Li𝑠1,...,𝑠𝑟

and H𝑦𝑠1 ...𝑦𝑠𝑟
:= H𝑠1,...,𝑠𝑟

.

(2) Let Li−𝑠1,...,−𝑠𝑘
and H−𝑠1,...,−𝑠𝑘

be indexed by words [21, 22] :

Li−𝑦𝑠1 ...𝑦𝑠𝑟
:= Li−𝑠1,...,−𝑠𝑟

and H−
𝑦𝑠1 ...𝑦𝑠𝑟

:= H−𝑠1,...,−𝑠𝑟
.

In particular, Li−𝑦𝑟
0
(𝑧) := (𝑧/(1 − 𝑧))𝑟 and H−

𝑦𝑟
0
(𝑛) :=

(︀
𝑛
𝑟

)︀
= (𝑛)𝑟/𝑟!, where

(𝑛)𝑟 = (𝑛 + 𝑟) . . . (𝑛).
All of {Li−𝑤}𝑤∈𝑌 *

0
and {H−

𝑤}𝑤∈𝑌 *
0

are divergent at their singularities.

Theorem 3.1 ([41, 38, 42]). — (1) The following morphisms of algebras
are injective (and surjective by definition)
H∙ : (Q⟨𝑌 ⟩, , 1𝑌 *) −→ (Q{H𝑤}𝑤∈𝑌 * , ×, 1), 𝑤 ↦−→ H𝑤,

Li∙ : (Q⟨𝑋⟩, ⊔⊔ , 1𝑋*) −→ (Q{Li𝑤}𝑤∈𝑋* , ×, 1�̃�), 𝑤 ↦−→ Li𝑤
11Using (2.10), one gets the expected expression for 𝑅.
12By Lie’s theorem [15], using (2.11), one gets the expected expression for 𝑅.
13The weight of (𝑠1, . . . , 𝑠𝑟) ∈ N𝑟

+ (resp. N𝑟) is defined as the integer 𝑠1 + . . . + 𝑠𝑟 which
corresponds to the weight, denoted (𝑤), of its associated word 𝑤 ∈ 𝑌 * (resp. 𝑌 *

0 ) and, if 𝑤 ∈ 𝑌 *,
it corresponds also to the length, denoted by |𝑢|, of its associated word 𝑢 ∈ 𝑋*.
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(2) The families {H𝑤}𝑤∈𝑌 * and {Li𝑤}𝑤∈𝑋* are Q-linearly independent.
(3) The families {H𝑙}𝑙∈ℒ𝑦𝑛𝑌 and {Li𝑙}𝑙∈ℒ𝑦𝑛𝑋are Q-algebraically independent.

But at the singularities {1, +∞}, for any 𝑢 ∈ 𝑥0𝑋*𝑥1 (resp. 𝑢 ∈ 𝑌 * − 𝑦1𝑌 *)
Li𝑢 (resp. H𝑢) receives the value 𝜁(𝑣) := Li𝑣(1) (resp. 𝜁(𝑢) := H𝑢(+∞)) and are
no more linearly independent (and then the values {H𝑙(+∞)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} (resp.
{Li𝑙(1)}𝑙∈ℒ𝑦𝑛𝑋−𝑋) are no longer algebraically independent) [38, 40, 59].

There also exists a law of algebra, denoted by ⊤, in Q⟨⟨𝑌0⟩⟩ (which is not dual-
izable) [6, 31] such that

Theorem 3.2 ([21]). — Let us consider the following morphisms of algebras
(which, by definition, are surjective)

H−
∙ : (Q⟨𝑌0⟩, , 1𝑌 *

0
) −→ (Q{H−

𝑤}𝑤∈𝑌 *
0

, ×, 1), 𝑤 ↦−→ H−
𝑤 ,

Li−∙ : (Q⟨𝑌0⟩, ⊤, 1𝑌 *
0

) −→ (Q{Li−𝑤}𝑤∈𝑌 *
0

, ×, 1�̃�), 𝑤 ↦−→ Li−𝑤 .

Then ker H−
∙ = ker Li−∙ = Q⟨{𝑤 − 𝑤⊤1𝑌 *

0
|𝑤 ∈ 𝑌 *

0 }⟩ and the families {H−
𝑦𝑘

}𝑘>0 and
{Li−𝑦𝑘

}𝑘>0 are Q-linearly independent.
Moreover, let ⊤′ : Q⟨𝑌0⟩ ×Q⟨𝑌0⟩ → Q⟨𝑌0⟩ be a law such that Li−∙ is a morphism

for ⊤′ and (1𝑌 *
0

⊤′Q⟨𝑌0⟩) ∩ ker(Li−∙ ) = {0}. Then ⊤′ = 𝑔 ∘ ⊤, where 𝑔 ∈ 𝐺𝐿(Q⟨𝑌0⟩)
is such that Li−∙ ∘𝑔 = Li−∙ .

Now, for any 𝑖 ∈ N let 𝑡𝑖 ∈ C be such that | 𝑡𝑖 | < 1 and 𝑧 ∈ C satisfying |𝑧 | < 1.
Then [35] (to be compared with (1.4) and (1.5))∑︁

𝑛>0
Li𝑥𝑛

0
(𝑧) 𝑡𝑛

0 = 𝑧𝑡0 and
∑︁
𝑛>0

Li𝑥𝑛
1
(𝑧) 𝑡𝑛

1 = (1 − 𝑧)−𝑡1 . (3.1)

What precedes suggests to extend the domain of Li∙ which is, up to now and
through linear extension, restricted to C⟨𝑋⟩, to some rational series as follows.

3.2. Indexation by noncommutative rational series. Let us call Dom(Li∙)
the set of series of C⟨⟨𝑋⟩⟩

𝑆 =
∑︁
𝑛>0

𝑆𝑛 with 𝑆𝑛 :=
∑︁

|𝑤|=𝑛

⟨𝑆 | 𝑤⟩𝑤

such that the following sum converges uniformly on all compacts of �̃�∑︁
𝑛>0

Li𝑆𝑛
. (3.2)

One can check easily that [22] :
∙ The set Dom(Li∙) is closed under shuffle products.
∙ For any 𝑆, 𝑇 ∈ Dom(Li∙) one has Li𝑆 ⊔⊔ 𝑇 = Li𝑆 Li𝑇 .
∙ One has C⟨𝑋⟩ ⊔⊔ Crat⟨⟨𝑥0⟩⟩ ⊔⊔ Crat⟨⟨𝑥1⟩⟩ ⊂ Dom(Li∙).

This extension is compatible with identities between rational series such as Lazard’s
elimination [53, 58], for instance (see Appendix C) :

Li𝑆(𝑧) =
∑︁
𝑛>0

⟨𝑆 | 𝑥𝑛
0 ⟩ log𝑛(𝑧)

𝑛! +
∑︁
𝑘>1

∑︁
𝑤∈𝑥*

0 ⊔⊔ 𝑥𝑘
1

⟨𝑆 | 𝑤⟩ Li𝑤(𝑧),



14 V. Hoang Ngoc Minh

and explains that, for 𝑅 as given in (2.9), Li𝑅 is expressible as analytic composition
of log(𝑧) and log(1 − 𝑧) :

Li𝑅(𝑧) =
∑︁

𝑖0,𝑖1>0

𝑟𝑖0,𝑖1

𝑖0!𝑖1! log𝑖0(𝑧)(− log(1 − 𝑧))𝑖1 .

Example 3.3. — Consider the extension of Li∙ defined in (3.2). Then [35, 36, 37]
(1) By (3.1), Li(𝑡0𝑥0)*(𝑧) = 𝑧𝑡0 and Li(𝑡1𝑥1)*(𝑧) = (1 − 𝑧)−𝑡1 . More generally,

for any 𝑖, 𝑗 ∈ N+, one has by Lemma 2.4

Li((𝑡0𝑥0)*)⊔⊔ 𝑖
⊔⊔ ((𝑡1𝑥1)*)⊔⊔ 𝑗 (𝑧) =𝑧𝑖𝑡0(1 − 𝑧)−𝑗𝑡1 ,

Li(𝑡0𝑥0+𝑡1𝑥1)* ⊔⊔ 𝑥𝑖
0 ⊔⊔ 𝑥𝑗

1
(𝑧) = 𝑧𝑡0

(1 − 𝑧)𝑡1

log𝑖(𝑧) log𝑗((1 − 𝑧)−1)
𝑖!𝑗! .

(2) For 𝑎 ∈ C and 𝑖 ∈ N+, one has by Lemma 2.4

Li(𝑎𝑥0)*𝑖(𝑧) = 𝑧𝑎
𝑖−1∑︁
𝑘=0

(︂
𝑖 − 1

𝑘

)︂
(𝑎 log(𝑧))𝑘

𝑘! , (3.3)

Li(𝑎𝑥1)*𝑖(𝑧) = 1
(1 − 𝑧)𝑎

𝑖−1∑︁
𝑘=0

(︂
𝑖 − 1

𝑘

)︂
(−𝑎 log(1 − 𝑧))𝑘

𝑘! . (3.4)

(3) From the previous points, one has (see Lemma 2.4)

{Li𝑆}𝑆∈C[𝑥*
0 ] ⊔⊔ C[(−𝑥*

0)] ⊔⊔ C[𝑥*
1 ] = spanC{𝑧𝑎(1 − 𝑧)−𝑏}𝑎∈Z,𝑏∈N,

{Li𝑆}𝑆∈Crat⟨⟨𝑥0⟩⟩ ⊔⊔ Crat⟨⟨𝑥1⟩⟩ = spanC{𝑧𝑎(1 − 𝑧)𝑏}𝑎,𝑏∈C,

{Li𝑆}𝑆∈C⟨𝑋⟩ ⊔⊔ C[𝑥*
0 ] ⊔⊔ C[(−𝑥*

0)] ⊔⊔ C[𝑥*
1 ] = spanC

{︂
𝑧𝑎

(1 − 𝑧)𝑏
Li𝑤(𝑧)

}︂𝑤∈𝑋*

𝑎∈Z,𝑏∈N

⊂ spanC{Li𝑠1,...,𝑠𝑟 }𝑟>1
𝑠1,...,𝑠𝑟∈Z𝑟

⊕ spanC{𝑧𝑎|𝑎 ∈ Z},

{Li𝑆}𝑆∈C⟨𝑋⟩ ⊔⊔ Crat⟨⟨𝑥0⟩⟩ ⊔⊔ Crat⟨⟨𝑥1⟩⟩ = spanC
{︂

𝑧𝑎

(1 − 𝑧)𝑏
Li𝑤(𝑧)

}︂𝑤∈𝑋*

𝑎,𝑏∈C

⊂ spanC{Li𝑠1,...,𝑠𝑟 }𝑟>1
𝑠1,...,𝑠𝑟∈C𝑟

⊕ spanC{𝑧𝑎|𝑎 ∈ C},

(4) For any (𝑠1, . . . , 𝑠𝑟) ∈ N𝑟
+ and |𝑡𝑖| < 1, let

𝑊 = (𝑡1𝑥0)*𝑠1𝑥𝑠1−1
0 𝑥1 . . . (𝑡𝑟𝑥0)*𝑠𝑟 𝑥𝑠𝑟−1

0 𝑥1

(which is of the form14 (𝐹0) of Lemma 2.4). Then15

Li𝑊 (𝑧) =
∑︁

𝑛1>...>𝑛𝑟>0

𝑧𝑛1

(𝑛1 − 𝑡1)𝑠1 . . . (𝑛𝑟 − 𝑡𝑟)𝑠𝑟
.

14For the form (𝐹0) one can apply Theorems 2.3 and 2.4 of [35].
15This holds for 𝑡𝑖 ∈ C−N+, 𝑖 ∈ N, by analytic continuation [39].
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In particular, for 𝑠1 = . . . = 𝑠𝑟 = 1 one has

Li(𝑡1𝑥0)*𝑥1...(𝑡𝑟𝑥0)*𝑥1 =
∑︁

𝑛1,...,𝑛𝑟>0
Li

𝑥
𝑛1−1
0 𝑥1...𝑥𝑛𝑟−1

0 𝑥1
𝑡𝑛1−1
0 . . . 𝑡𝑛𝑟−1

𝑟

=
∑︁

𝑛1>...>𝑛𝑟>0

𝑧𝑛1

(𝑛1 − 𝑡1) . . . (𝑛𝑟 − 𝑡𝑟) .

Let 𝜕𝑧 := 𝑑/𝑑𝑧 and let us recall that, for any 𝑘 > 1,

1
(1 − 𝑧)𝑘

= 𝜕𝑘−1
𝑧

(𝑘 − 1)!

(︂
1

1 − 𝑧

)︂
and 1

𝑧𝑘
= (−1)𝑘−1 𝜕𝑘−1

𝑧

(𝑘 − 1)!

(︂
1
𝑧

)︂
and the Taylor coefficients of (1 − 𝑧)−𝑘 are expressed as follows for all 𝑛 > 1

⟨(1 − 𝑧)−𝑘 | 𝑧𝑛⟩ = Γ−1(𝑘)(𝑛 + 𝑘 − 1)𝑘−1. (3.5)

Let 𝒢 denote the group of transformations of16 𝐵 generated by {𝑧 ↦→ 1 − 𝑧, 𝑧 ↦→
1/𝑧}, permuting the singularities in {0, 1, +∞} as a copy of S3.

Let us also consider the differential rings

𝒞′
0 = C[𝑧−1], 𝒞′

1 = C[(1 − 𝑧)−1], 𝒞0 = C[𝑧, 𝑧−1],
𝒞1 = C[𝑧, (1 − 𝑧)−1], 𝒞′ = C[𝑧−1, (1 − 𝑧)−1], 𝒞 = C[𝑧, 𝑧−1, (1 − 𝑧)−1]

(considered as subrings of ℋ(𝐵)). It follows that

Lemma 3.4. — (1) The differential ring 𝒞 is closed under the action of 𝒢,
i.e. 𝐺(𝑔(𝑧)) ∈ 𝒞 for all 𝐺 ∈ 𝒞 and 𝑔 ∈ 𝒢.

(2) For any 𝐺 = 𝑝1(𝑧) + 𝑝2(𝑧−1) + 𝑝3((1 − 𝑧)−1) ∈ 𝒞, with 𝑝1, 𝑝2, 𝑝3 ∈ C[𝑧],
𝑝2(0) = 𝑝3(0) = 0 and 𝑝2, 𝑝3 ̸= 0. Letting 𝐺0(𝑧) := 𝑃2(𝑧−1) ∈ 𝒞′

0 and
𝐺1(𝑧) := 𝑃3((1 − 𝑧)−1) ∈ 𝒞′

1, one has 𝐺(𝑧) ∼0 𝐺0(𝑧) and 𝐺(𝑧) ∼1 𝐺1(𝑧).
(3) The following morphism of algebras is surjective

𝜆 : (C[𝑥*
0, (−𝑥0)*, 𝑥*

1], ⊔⊔ , 1𝑋*) −→ (𝒞, ×, 1𝐵), 𝑅 ↦−→ Li𝑅 .

Moreover, ker(𝜆) is the shuffle-ideal generated by 𝑥*
0 ⊔⊔ 𝑥*

1 − 𝑥*
1 + 1.

(4) The following morphisms of algebras are bijective

𝜆′ : (C[𝑥*
0, 𝑥*

1], ⊔⊔ , 1𝑋*) −→ (𝒞′, ×, 1𝐵), 𝑅 ↦−→ Li𝑅,

𝜆′
𝑖 : (C[𝑥*

𝑖 ], ⊔⊔ , 1𝑋*) −→ (𝒞′
𝑖, ×, 1𝐵), 𝑅 ↦−→ Li𝑅 for 𝑖 = 0, 1.

In fact, one has

Lemma 3.5 ([21]). — (1) The family {𝑥*
0, 𝑥*

1} is algebraically independent
over (C⟨𝑋⟩, ⊔⊔ , 1𝑋*) in (C⟨𝑋⟩, ⊔⊔ , 1𝑋*). In particular, the power series 𝑥*

0
and 𝑥*

1 are transcendent over C⟨𝑋⟩.
(2) The module (C⟨𝑋⟩, ⊔⊔ , 1𝑋*)[𝑥*

0, 𝑥*
1, (−𝑥0)*] is C⟨𝑋⟩-free and the family

{(𝑥*
0)⊔⊔ 𝑘 ⊔⊔(𝑥*

1)⊔⊔ 𝑙}(𝑘,𝑙)∈Z×N forms a C⟨𝑋⟩-basis of it.
Hence, {𝑤 ⊔⊔(𝑥*

0)⊔⊔ 𝑘 ⊔⊔(𝑥*
1)⊔⊔ 𝑙}(𝑘,𝑙)∈Z×N

𝑤∈𝑋* is a C-basis of it.
(3) One has Crat⟨⟨𝑥𝑖⟩⟩ = spanC{(𝑡𝑥𝑖)* ⊔⊔ C⟨𝑥𝑖⟩ | 𝑡 ∈ C} for any 𝑥𝑖 ∈ 𝑋.

16Any 𝑔 ∈ 𝒢 maps bijectively 𝐵 to itself, one can apply the Monodromy Principle to lift 𝒢 as
a group of transformations of �̃�.
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Now, let us also consider the following differential integration operators acting
on 𝒞{Li𝑤}𝑤∈𝑋* [46] :

𝜃0 : = 𝑧𝜕𝑧 and 𝜃1 := (1 − 𝑧)𝜕𝑧,

∀𝑓 ∈ 𝒞, 𝜄0(𝑓) =
∫︁ 𝑧

𝑧0

𝑓(𝑠)𝜔0(𝑠) and 𝜄1(𝑓) =
∫︁ 𝑧

0
𝑓(𝑠)𝜔1(𝑠).

The operator 𝜄0 is well-defined on 𝒞{Li𝑤}𝑤∈𝑋* (see Definition 6.5 in Appendix
D, where the choice of 𝑧0 is recalled). One can check easily

Proposition 3.6 ([22, 38, 41]). — (1) The operators {𝜃0, 𝜃1, 𝜄0, 𝜄1} satisfy

𝜃1 + 𝜃0 =
[︀
𝜃1, 𝜃0

]︀
= 𝜕𝑧 and 𝜃𝑘𝜄𝑘 = Id for 𝑘 = 0, 1,

[𝜃0𝜄1, 𝜃1𝜄0] = 0 and (𝜃0𝜄1)(𝜃1𝜄0) = (𝜃1𝜄0)(𝜃0𝜄1) = Id.

(2) The subspace 𝒞{Li𝑤}𝑤∈𝑋* is closed under the action of {𝜃0, 𝜃1} and {𝜄0, 𝜄1}.
Thus, for any 𝑤 = 𝑦𝑠1 . . . 𝑦𝑠𝑟

∈ 𝑌 * (whence 𝜋𝑋(𝑤) = 𝑥𝑠1−1
0 𝑥1 . . . 𝑥𝑠𝑟−1

0 𝑥1)
and 𝑢 = 𝑦𝑡1 . . . 𝑦𝑡𝑟

∈ 𝑌 *
0 , the functions Li𝑤 and Li−𝑢 satisfy

Li𝑤 = (𝜄𝑠1−1
0 𝜄1 . . . 𝜄𝑠𝑟−1

0 𝜄1)1Ω and Li−𝑢 = (𝜃𝑡1+1
0 𝜄1 . . . 𝜃𝑡𝑟+1

0 𝜄1)1Ω,

𝜄0 Li𝜋𝑋 (𝑤) = Li𝑥0𝜋𝑋 (𝑤) and 𝜄1 Li𝑤 = Li𝑥1𝜋𝑋 (𝑤),

𝜃0 Li𝑥0𝜋𝑋 (𝑤) = Li𝜋𝑋 (𝑤) and 𝜃1 Li𝑥1𝜋𝑋 (𝑤) = Li𝜋𝑋 (𝑤) .

(3) The bi-integro differential ring (𝒞{Li𝑤}𝑤∈𝑋* , 𝜃0, 𝜄0, 𝜃1, 𝜄1) is stable under
the action of 𝒢, i.e. for all ℎ ∈ 𝒞{Li𝑤}𝑤∈𝑋* and 𝑔 ∈ 𝒢

ℎ(𝑔(𝑧)) ∈ 𝒞{Li𝑤}𝑤∈𝑋* .

(4) 𝜃0𝜄1 and 𝜃1𝜄0 are scalar operators in 𝒞{Li𝑤}𝑤∈𝑋* , respectively with eigen-
values 𝜆 := 𝑧 → 𝑧(1 − 𝑧) and 1/𝜆. I.e. for all 𝑓 ∈ 𝒞{Li𝑤}𝑤∈𝑋* one has

(𝜃0𝜄1)𝑓 = 𝜆𝑓 and (𝜃1𝜄0)𝑓 = (1/𝜆)𝑓.

3.3. Noncommutative generating series. The graphs (typed as series) of the
isomorphisms of algebras, Li∙ and H∙, defined in Theorem 3.1, then become

Definition 3.7 ([13, 38, 40, 42]). — Let us consider the following power series

L :=
∑︁

𝑤∈𝑋*

Li𝑤 𝑤 and H :=
∑︁

𝑤∈𝑌 *

H𝑤𝑤.

With suitable structures (topological ring [8]), by (2.2) and (2.8), one can write
H = (H∙ ⊗ Id𝑌 )𝒟 and L = (Li∙ ⊗Id𝑋)𝒟𝑋 . Thus, by Theorem 3.1, one obtains

Proposition 3.8 ([38, 40, 46, 47]). — One has

Δ (H) = H ⊗ H and ⟨H | 1𝑌 *⟩ = 1,

Δ⊔⊔ (L) = L ⊗ L and ⟨L | 1𝑋*⟩ = 1,

H =
↘∏︁

𝑙∈ℒ𝑦𝑛𝑌

𝑒HΣ𝑙
Π𝑙 and L =

↘∏︁
𝑙∈ℒ𝑦𝑛𝑋

𝑒Li𝑆𝑙
𝑃𝑙 .
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Hence17, their logarithms are primitive, for the corresponding co-products, and18

log(H) =
∑︁
𝑘>1

(−1)𝑘−1

𝑘

∑︁
𝑢1,...,𝑢𝑘∈𝑌 +

H𝑢1 ... 𝑢𝑘
𝑢1 . . . 𝑢𝑘,

log(L) =
∑︁
𝑘>1

(−1)𝑘−1

𝑘

∑︁
𝑢1,...,𝑢𝑘∈𝑋+

Li𝑢1 ⊔⊔ ... ⊔⊔ 𝑢𝑘
𝑢1 . . . 𝑢𝑘.

One can then set the following :
Definition 3.9. — Let us consider the following power series

𝑍 :=
↘∏︁

𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1}

𝑒HΣ𝑙
(+∞)Π𝑙 and 𝑍⊔⊔ :=

↘∏︁
𝑙∈ℒ𝑦𝑛𝑋−𝑋

𝑒Li𝑆𝑙
(1)𝑃𝑙 .

By termwise differentiation, the power series L given in Definition 3.7 satisfies
the noncommutative differential equation (1.1) and, via the factorization form given
in Proposition 3.8, it also satisfies the boundary condition [38, 41]

L(𝑧) ∼0 𝑒𝑥0 log(𝑧) and L(𝑧) ∼1 𝑒−𝑥1 log(1−𝑧).

Equation (1.8) and Theorem 3.1 lead to
Definition 3.10. — We define 𝜁 to be the following polymorphism (which is

surjective by definition):

𝜁 : (Q1𝑋* ⊕ 𝑥0Q⟨𝑋⟩𝑥1, ⊔⊔ , 1𝑋*)
(Q1𝑌 * ⊕ (𝑌 − {𝑦1})Q⟨𝑌 ⟩, , 1𝑌 *) −� (𝒵, ×, 1),

𝑥0𝑥𝑟1−1
1 . . . 𝑥0𝑥𝑟𝑘−1

1
𝑦𝑠1 . . . 𝑦𝑠𝑘

↦−→
∑︁

𝑛1>...>𝑛𝑘>0
𝑛−𝑠1

1 . . . 𝑛−𝑠𝑘

𝑘 ,

where 𝒵 is the Q-algebra (algebraically) generated by19 {𝜁(𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋 (resp.
{𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋), or, equivalently, {𝜁(𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} (resp. {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1}).

4. Global asymptotic behaviors at singularities

4.1. The case of positive multi-indices. The analysis of singularities on the
coefficients of the noncommutative generating series of {Li𝑤}𝑤∈𝑋* , put in the fac-
torized form (see Proposition 3.8) leads to20 [38, 41]

lim
𝑧→0

L(𝑧)𝑒−𝑥0 log 𝑧 = 1 and lim
𝑧→1

𝑒𝑥1 log(1−𝑧)L(𝑧) = 𝑍⊔⊔ . (4.1)

Knowing that 𝐺0 and 𝐺1, as interpreted in (1.4), are unique and by (1.5), it turns
out that, through the interpretation given, 𝑍⊔⊔ coincides with Φ𝐾𝑍 [34, 55] and,
via an identity of type Newton-Girard [51], we obtain [14, 16, 45]

H(𝑛) ∼+∞
∑︁
𝑘>0

H𝑦𝑘
1
𝑦𝑘

1 𝜋𝑌 (𝑍⊔⊔ ) and
∑︁
𝑘>0

H𝑦𝑘
1
𝑦𝑘

1 = 𝑒

∑︀
𝑘>1

H𝑦𝑘
(𝑛)(−𝑦1)𝑘/𝑘

. (4.2)

17via Friedrich’s criterion [57] and its extension [46, 47]
18From log(L), one can extract the expression of the euleurian projector on ℋ⊔⊔ [57] and

similarly, from log(H), for the extended euleurian projector, as given in (2.3), on ℋ [46, 47].
19We will describe relations among {𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋 (resp. {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1}) by local

coordinate identification in Section 4.2.
20i.e. L(𝑧) ∼0 𝑧𝑥0 and L(𝑧) ∼1 (1 − 𝑧)−𝑥1 𝑍⊔⊔ .
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In other terms, we have the following global renormalization

Theorem 4.1 (First Abel like theorem, [14, 16, 45]). —

lim
𝑧→1

𝑒𝑦1 log(1−𝑧)𝜋𝑌 (L(𝑧)) = lim
𝑛→∞

𝑒

∑︀
𝑘>1

H𝑦𝑘
(𝑛)(−𝑦1)𝑘/𝑘H(𝑛) = 𝜋𝑌 (𝑍⊔⊔ ).

Thus, the coefficients {⟨𝑍⊔⊔ |𝑢⟩}𝑢∈𝑋* (i.e. {𝜁⊔⊔ (𝑢)}𝑢∈𝑋*) and {⟨𝑍 |𝑣⟩}𝑣∈𝑌 *

(i.e. {𝜁 (𝑣)}𝑣∈𝑌 *) represent, respectively, the finite part of the singular expansion,
in the comparison scale {(1 − 𝑧)−𝑎 log𝑏(1 − 𝑧)}𝑎,𝑏∈N, of Li𝑤 at 𝑧 = 1

f.p.𝑧→1 Li𝑤(𝑧) = 𝜁⊔⊔ (𝑤), {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N, (4.3)

and the asymptotic expansion, in {𝑛−𝑎H𝑏
1(𝑛)}𝑎,𝑏∈N, of H𝑤 for 𝑛 → +∞ :

f.p.𝑛→+∞H𝑤(𝑛) = 𝜁 (𝑤), {𝑛𝑎H𝑏
1(𝑛)}𝑎∈Z,𝑏∈N. (4.4)

For commodity, we will denote

F.P.𝑧→1L(𝑧) = 𝑍⊔⊔ , {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N, (4.5)
F.P.𝑛→+∞H(𝑛) = 𝑍 , {𝑛𝑎H𝑏

1(𝑛)}𝑎∈Z,𝑏∈N. (4.6)

On the other hand, by a transfer theorem [32], let {𝛾𝑤}𝑤∈𝑌 * be the finite part
of an asymptotic expansion, in {𝑛−𝑎 log𝑏(𝑛)}𝑎,𝑏∈N, of {H𝑤}𝑤∈𝑌 * for 𝑛 → +∞ :

f.p.𝑛→+∞H𝑤(𝑛) = 𝛾𝑤, {𝑛𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N.

Then let 𝑍𝛾 be the noncommutative generating series of {𝛾𝑤}𝑤∈𝑌 * . One has

F.P.𝑛→+∞H(𝑛) = 𝑍𝛾 :=
∑︁

𝑤∈𝑌 *

𝛾𝑤𝑤, {𝑛𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N. (4.7)

Proposition 4.2 ([46, 47]). — (1) The following map is a character

𝛾∙ : (Q⟨𝑌 ⟩, , 1𝑌 *) −→ (𝒵[𝛾], ×, 1), 𝑤 ↦−→ 𝛾𝑤.

(2) Equivalently, one has Δ (𝑍𝛾) = 𝑍𝛾 ⊗ 𝑍𝛾 and ⟨𝑍𝛾 | 1𝑌 *⟩ = 1. Hence,

𝑍𝛾 = 𝑒𝛾𝑦1

↘∏︁
𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1}

𝑒𝜁(Σ𝑙)Π𝑙 = 𝑒𝛾𝑦1𝑍

and Δ (log(𝑍𝛾)) = log(𝑍𝛾) ⊗ 1𝑌 * + 1𝑌 * ⊗ log(𝑍𝛾). It follows then

log(𝑍𝛾) =
∑︁
𝑘>1

(−1)𝑘−1

𝑘

∑︁
𝑢1,...,𝑢𝑘∈𝑌 +

𝛾𝑢1 ... 𝑢𝑘
𝑢1 . . . 𝑢𝑘.

The asymptotic behaviors on (4.2) and Proposition 4.2 lead to

Proposition 4.3 (Bridge equation, [14, 16, 45, 46, 47]). — Put21

𝐵(𝑦1) = exp
(︂

𝛾𝑦1 −
∑︁
𝑘>2

𝜁(𝑘)
𝑘

(−𝑦1)𝑘

)︂
and 𝐵′(𝑦1) = exp

(︂
−

∑︁
𝑘>2

𝜁(𝑘)
𝑘

(−𝑦1)𝑘

)︂
.

Then 𝑍𝛾 = 𝐵(𝑦1)𝜋𝑌 (𝑍⊔⊔ ), or equivalenty by cancellation, 𝑍⊔⊔ = 𝐵′(𝑦1)𝜋𝑌 (𝑍⊔⊔ ).

21The power series 𝐵(𝑦1) corresponds to the Taylor expansion of Γ−1(𝑦1 + 1).
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4.2. Structure of polyzetas. Now, via Proposition 4.3, let us draw some conse-
quences about the structure of polyzetas : by local coordinates identification in the
assertions of Proposition 4.3, one obtains two families of polynomials, homogenous
for the weight, {𝑄𝑙}𝑙∈ℒ𝑦𝑛𝑋−𝑋 and {𝑄𝑙}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} (see Example 6.2 in Appendix
A), such that [46, 47]

ℛ𝑋 := (Q{𝑄𝑙}𝑙∈ℒ𝑦𝑛𝑋−𝑋 , ⊔⊔ , 1𝑋*) = ker(𝜁),
(resp. ℛ𝑌 := (Q{𝑄𝑙}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1}, , 1𝑌 *) = ker(𝜁))

describing the kernel of 𝜁 (see Example 6.1 in Appendix A), via homogenous poly-
nomial relations for the weight, among the local coordinates of 𝑍⊔⊔ (resp. 𝑍 ),
i.e. the convergent values22 {𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋 (resp. {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1}).

Denoting 𝒳 the alphabet 𝑋 or 𝑌 , this local coordinate identification yields
algebraic generator systems (see Example 6.3 in Appendix A) as irreducible23 local
coordinates (see Example 6.4 in Appendix A)

𝒵∞
𝑖𝑟𝑟(𝒳 ) := lim

𝑝→+∞
𝒵6𝑝

𝑖𝑟𝑟 (𝒳 ) with 𝒵62
𝑖𝑟𝑟(𝒳 ) ⊂ . . . 𝒵6𝑝

𝑖𝑟𝑟 (𝒳 ) ⊂ . . . , (4.8)

such that the restriction of 𝜁 on Q[ℒ∞
𝑖𝑟𝑟(𝒳 )] is bijective [46, 47], where (see Example

6.4 in Appendix A)

ℒ∞
𝑖𝑟𝑟(𝒳 ) := lim

𝑝→+∞
ℒ6𝑝

𝑖𝑟𝑟(𝒳 ) with ℒ62
𝑖𝑟𝑟(𝒳 ) ⊂ . . . ℒ6𝑝

𝑖𝑟𝑟(𝒳 ) ⊂ . . . , (4.9)

and, for any 𝑝 > 2, ℒ6𝑝
𝑖𝑟𝑟(𝒳 ) is the inverse image of 𝒵6𝑝

𝑖𝑟𝑟 (𝒳 ).
Generated by homogenous polynomials for the weight (see Example 6.2 in Ap-

pendix A), ker(𝜁) is then graded. Moreover, since 𝒵 = Im(𝜁), one obtains

Corollary 4.4 ([46, 47]). — One has
𝒵 ∼= Q1𝑋* ⊕ 𝑥0Q⟨𝑋⟩𝑥1/ ker(𝜁),

(resp. 𝒵 ∼= Q1𝑌 * ⊕ (𝑌 − {𝑦1})Q⟨𝑌 ⟩/ ker(𝜁)).
Hence, 𝒵 is graded as the quotient of a graded algebra by a graded ideal :

𝒵 = Q1 ⊕
⨁︁
𝑝>2

𝒵𝑝,

where for any 𝑝 > 2,
𝒵𝑝 = spanQ{𝜁(𝑤)|𝑤 ∈ 𝑥0𝑋*𝑥1, |𝑤 |= 𝑝},

(resp. 𝒵𝑝 = spanQ{𝜁(𝑤)|𝑤 ∈ (𝑌 − {𝑦1})𝑌 *, (𝑤) = 𝑝}).

Remark 4.5. — Note that ℒ𝑦𝑛𝒳 is totally ordered, and so is ℒ∞
𝑖𝑟𝑟(𝒳 ), as being

extracted from ℒ𝑦𝑛𝒳 . Hence, for any fixed integer 𝑛 > 1, it is immediate that
(1) letting 𝑙 ∈ ℒ𝑦𝑛𝒳 such that (𝑙) = 𝑛, one has 𝑦𝑛 ⪯ 𝑙 (resp. 𝑥𝑛−1

0 𝑥1 ⪯ 𝑙),
(2) Σ𝑦𝑛

= 𝑦𝑛 ∈ ℒ𝑦𝑛𝑌 and 𝑆𝑥𝑛−1
0 𝑥1

= 𝑥𝑛−1
0 𝑥1 ∈ ℒ𝑦𝑛𝑋 (see Lemma 2.2),

(3) Σ𝑦2𝑛+1 = 𝑦2𝑛+1 ∈ ℒ∞
𝑖𝑟𝑟(𝑌 ) and 𝑆𝑥2𝑛

0 𝑥1 = 𝑥2𝑛
0 𝑥1 ∈ ℒ∞

𝑖𝑟𝑟(𝑋),
(4) 𝜁(2) = 𝜁(Σ𝑦2) = 𝜁(𝑆𝑥0𝑥1) is irreducible and, by Euler’s identity about the

ratio 𝜁(2𝑘)/𝜋2𝑘, one deduces that Σ𝑦2𝑘
= 𝑦2𝑘 /∈ ℒ∞

𝑖𝑟𝑟(𝑌 ) and 𝑆𝑥2𝑘−1
0 𝑥1

=
𝑥2𝑘−1

0 𝑥1 /∈ ℒ∞
𝑖𝑟𝑟(𝑋).

22Identification allows to obtain homogenous polynomial relations up to weights 12 [5].
23by means of rewriting the system.
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Note also that for any 𝑙1 ∈ ℒ𝑦𝑛𝑌 −{𝑦1} and 𝑙2 ∈ ℒ𝑦𝑛𝑋−𝑋 one has in general [46]
𝜁(𝜋𝑋(Σ𝑙1)) ̸= 𝜁(𝑆𝜋𝑋 (𝑙1)) and 𝜁(𝜋𝑌 (𝑆𝑙2)) ̸= 𝜁(Σ𝜋𝑌 (𝑙2)), while this does not occur,
due again to Lemma 2.2, for the values24 {𝜁(𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} (or {𝜁(𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋)
[2, 40, 38, 28].

With the first assertion of Proposition 4.3, we compute the generalized Euler
constants, i.e. the finite parts of divergent harmonic sums {H𝑤}𝑤∈𝑦1𝑌 * :

Corollary 4.6 ([14, 16, 45]). — For any 𝑘 > 1 and 𝑤 ∈ 𝑌 * − 𝑦1𝑌 *, one has

𝛾𝑦𝑘
1

=
∑︁

𝑠1,...,𝑠𝑘>0
𝑠1+...+𝑘𝑠𝑘=𝑘

(−1)𝑘

𝑠1! . . . 𝑠𝑘! (−𝛾)𝑠1

(︂
−𝜁(2)

2

)︂𝑠2

. . .

(︂
−𝜁(𝑘)

𝑘

)︂𝑠𝑘

,

𝛾𝑦𝑘
1 𝑤 =

𝑘∑︁
𝑖=0

𝜁(𝑥0[(−𝑥1)𝑘−𝑖
⊔⊔𝜋𝑋𝑤])

𝑖!

(︂ 𝑖∑︁
𝑗=1

𝑏𝑖,𝑗(𝛾, −𝜁(2), 2𝜁(3), . . .)
)︂

,

where the 𝑏𝑛,𝑘(𝑡1, . . . , 𝑡𝑘)’s are Bell polynomials.

See also Corollary 5.7, for the independence of 𝛾 with respect to the convergent
polyzetas.

4.3. The case of negative multi-indices. Similarly, asymptotic behaviors of
{Li−𝑤}𝑤∈𝑌 *

0
, {H−

𝑤}𝑤∈𝑌 *
0

are analyzed by

Proposition 4.7 ([21]). — For any 𝑛 ∈ N+, 𝑧 ∈ C with | 𝑧 | < 1 and 𝑤 ∈ 𝑌 *
0 ,

H−
𝑤 and Li−𝑤 are polynomial, of degree (𝑤)+|𝑤| inQ[𝑛] and Z[(1−𝑧)−1], respectively.

Hence, for any 𝑤 ∈ 𝑌 *
0 , there exists 𝐶−

𝑤 ∈ Q and 𝐵−
𝑤 ∈ N, such that

H−
𝑤(𝑛) ∼+∞ 𝑛(𝑤)+|𝑤|𝐶−

𝑤 and Li−𝑤(𝑧) ∼1 (1 − 𝑧)−(𝑤)−|𝑤|𝐵−
𝑤 .

Moreover, one has

𝐶−
𝑤 =

∏︁
𝑤=𝑢𝑣

𝑣 ̸=1𝑌 *
0

((𝑣)+ |𝑣 |)−1 and 𝐵−
𝑤 = ((𝑤)+ |𝑤 |)!𝐶−

𝑤 .

Proposition 4.8 ([21]). — Let us consider the following generating series

L− :=
∑︁

𝑤∈𝑌 *
0

Li−𝑤 𝑤, H− :=
∑︁

𝑤∈𝑌 *
0

H−
𝑤𝑤, 𝐶− :=

∑︁
𝑤∈𝑌 *

0

𝐶−
𝑤 𝑤.

Then25

⟨H− | 1𝑌 *
0

⟩ = ⟨𝐶− | 1𝑌 *
0

⟩ = 1, Δ (H−) = H− ⊗ H−

and Δ⊔⊔ (𝐶−) = 𝐶− ⊗ 𝐶−.

Moreover, analysis of singularities leads to the following global renormalization.

Theorem 4.9 (Second Abel like theorem, [21]). — One has

lim
𝑧→1

ℎ⊙−1((1 − 𝑧)−1) ⊙ L−(𝑧) = lim
𝑛→+∞

𝑔⊙−1(𝑛) ⊙ H−(𝑛) = 𝐶−,

24for which polynomial relations homogenous for the weight are obtained via double shuffle,
up to weights 10 [40, 38], 12 [2] and 16 [28].

25The series 𝐶− is group-like in (Q⟨⟨𝑌0⟩⟩, conc, 1𝑌 *
0

, Δ⊔⊔ , e).
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where the noncommutative generating series26 ℎ and 𝑔 are defined as follows

ℎ(𝑡) =
∑︁

𝑤∈𝑌 *
0

((𝑤)+ |𝑤 |)!𝑡(𝑤)+|𝑤|𝑤 and 𝑔(𝑡) =
(︂ ∑︁

𝑦∈𝑌0

𝑡(𝑦)+1𝑦

)︂*

.

Now, by Proposition 4.7 and the Taylor expansion, one deduces
Corollary 4.10. — For any 𝑤 ∈ 𝑌 *

0 there exists a unique polynomial 𝑝 ∈
(Z[𝑡], ×, 1) of degree (𝑤)+ | 𝑤 | such that27, via (3.5), for any 𝑛 ∈ N+ and 𝑧 ∈ C
with |𝑧 |< 1 one has

Li−𝑤(𝑧) =
(𝑤)+|𝑤|∑︁

𝑘=0

𝑝𝑘

(1 − 𝑧)𝑘
=

(𝑤)+|𝑤|∑︁
𝑘=0

𝑝𝑘𝑒−𝑘 log(1−𝑧) ∈ (Z[𝑒− log(1−𝑧)], ×, 1𝐵),

H−
𝑤(𝑛) =

(𝑤)+|𝑤|∑︁
𝑘=0

𝑝𝑘

(︂
𝑛 + 𝑘

𝑘

)︂
=

(𝑤)+|𝑤|∑︁
𝑘=0

𝑝𝑘

𝑘! (𝑛 + 𝑘)𝑛 ∈ (Q[(𝑛 + ∙)𝑛], ×, 1),

where (𝑛 + ∙)𝑛 : N → Q maps 𝑖 to (𝑛 + 𝑖)𝑛 = (𝑛 + 𝑖)!/𝑛! = 𝑛(𝑛 − 1) . . . (𝑛 − 𝑖 + 1)
and Q[(𝑛 + ∙)𝑛] denotes the set of polynomials in 𝑛 expanded as follows

∀𝜋 ∈ Q[(𝑛 + ∙)𝑛], deg(𝜋) = 𝑑, 𝜋 =
𝑑∑︁

𝑖=0
𝜋𝑘(𝑛 + 𝑖)𝑛 =

𝑑∑︁
𝑖=0

𝜋𝑘
(𝑛 + 𝑖)!

𝑛! .

By Corollary 4.10, denoting by 𝑝 the exponential transform of 𝑝, one also has

Li−𝑤(𝑧) = 𝑝(𝑒− log(1−𝑧)), with 𝑝(𝑡) =
(𝑤)+|𝑤|∑︁

𝑘=0
𝑝𝑘𝑡𝑘 ∈ (Z[𝑡], ×, 1), (4.10)

H−
𝑤(𝑛) = 𝑝(𝑛 + ∙)𝑛), with 𝑝(𝑡) =

(𝑤)+|𝑤|∑︁
𝑘=0

𝑝𝑘

𝑘! 𝑡𝑘 ∈ (Q[𝑡], ×, 1). (4.11)

Let us then associate also 𝑝 and 𝑝 with the polynomial28 𝑝 obtained as follows

𝑝(𝑡) =
(𝑤)+|𝑤|∑︁

𝑘=0
𝑘!𝑝𝑘𝑡𝑘 =

(𝑤)+|𝑤|∑︁
𝑘=0

𝑝𝑘𝑡⊔⊔ 𝑘 ∈ (Z[𝑡], ⊔⊔ , 1). (4.12)

Next, the previous polynomials 𝑝, 𝑝 and 𝑝 given in (4.10)–(4.12) can be deter-
mined explicitly thanks to Lemma 3.4 and to

Proposition 4.11 ([21]). — (1) The following morphism of algebras is bi-
jective

𝜒 : (Q[𝑦*
1 ], , 1𝑌 *) −→ (Q[(𝑛 + ∙)𝑛], ×, 1), 𝑆 ↦−→ H𝑆 .

26Note that 𝑔 can be view as an “exponential transform” of ℎ :

𝑔(𝑡) =
∑︁

𝑤∈𝑌 *
0

𝑡(𝑤)+|𝑤|𝑤 =
∑︁

𝑤∈𝑌 *
0

⟨ℎ | 𝑤⟩
((𝑤)+ |𝑤 |)!

𝑤.

27In other terms, for any word 𝑤 belonging to 𝑌 *
0 and integer 𝑘 verifying 0 6 𝑘 6 (𝑤)+ | 𝑤 |,

such that ⟨Li−𝑤 | (1 − 𝑧)−𝑘⟩ = 𝑘!⟨H−
𝑤 | (𝑛)𝑘⟩. One verifies in particular, for Proposition 4.7, that

⟨H−
𝑤 | (𝑛)(𝑤)+|𝑤|⟩ = 𝐶−

𝑤 and ⟨Li−𝑤 | (1 − 𝑧)−(𝑤)−|𝑤|⟩ = ((𝑤)+ |𝑤 |)!𝐶−
𝑤 .

28In other words, 𝑝 is the exponential transform of 𝑝 and, for any integer 𝑘 with 0 6 𝑘 6
(𝑤)+ |𝑤 | one has ⟨𝑝 | 𝑧𝑘⟩ = 𝑘!⟨𝑝 | 𝑧𝑘⟩ = (𝑘!)2⟨𝑝 | 𝑧𝑘⟩.
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(2) For any 𝑤 = 𝑦𝑠1 , . . . 𝑦𝑠𝑟
∈ 𝑌 *

0 , there exists a unique polynomial 𝑅𝑤 belong-
ing to (Z[𝑥*

1], ⊔⊔ , 1𝑋*) of degree (𝑤)+ |𝑤 |, such that29

Li𝑅𝑤 (𝑧) = Li−𝑤(𝑧) = 𝑝(𝑒− log(1−𝑧)) ∈ (Z[𝑒− log(1−𝑧)], ×, 1𝐵),
H𝜋𝑌 (𝑅𝑤)(𝑛) = H−

𝑤(𝑛) = 𝑝((𝑛 + ∙)𝑛) ∈ (Q[(𝑛 + ∙)𝑛], ×, 1).

In particular, via the extension by linearity of 𝑅∙ over Q⟨𝑌0⟩ and Theorem
3.2, {Li𝑅𝑦𝑘

}𝑘>0 is linear independent in Q{Li𝑅𝑤 }𝑤∈𝑌 *
0

and for all 𝑘, 𝑙 ∈ N

Li𝑅𝑦𝑘 ⊔⊔ 𝑅𝑦𝑙
= Li𝑅𝑦𝑘

Li𝑅𝑦𝑙
= Li−𝑦𝑘

Li−𝑦𝑙
= Li−𝑦𝑘⊤𝑦𝑙

= Li𝑅𝑦𝑘⊤𝑦𝑙
.

(3) For any 𝑤 ∈ 𝑌 *
0 , there exists a unique polynomial 𝑅𝑤 ∈ (Z[𝑥*

1], ⊔⊔ , 1𝑋*) of
degree (𝑤)+ |𝑤 | such that 𝑝(𝑥*

1) = 𝑅𝑤.
(4) More explicitly, for any 𝑤 = 𝑦𝑠1 , . . . 𝑦𝑠𝑟 ∈ 𝑌 *

0 , there exists a unique polyno-
mial 𝑅𝑤 belonging to (Z[𝑥*

1], ⊔⊔ , 1𝑋*) of degree (𝑤)+ |𝑤 |, given by

𝑅𝑦𝑠1 ...𝑦𝑠𝑟
=

𝑠1∑︁
𝑘1=0

𝑠1+𝑠2−𝑘1∑︁
𝑘2=0

. . .

(𝑠1+...+𝑠𝑟)−
(𝑘1+...+𝑘𝑟−1)∑︁

𝑘𝑟=0

(︂
𝑠1

𝑘1

)︂(︂
𝑠1 + 𝑠2 − 𝑘1

𝑘2

)︂
. . .(︂

𝑠1 + . . . + 𝑠𝑟 − 𝑘1 − . . . − 𝑘𝑟−1

𝑘𝑟

)︂
𝜌𝑘1 ⊔⊔ . . . ⊔⊔ 𝜌𝑘𝑟 ,

where, for any 𝑖 = 1, . . . , 𝑟, one has, if 𝑘𝑖 = 0 then 𝜌𝑘𝑖
= 𝑥*

1 − 1𝑋* else

𝜌𝑘𝑖
=

𝑘𝑖∑︁
𝑗=1

𝑆2(𝑘𝑖, 𝑗)(𝑗!)2
𝑗∑︁

𝑙=0

(−1)𝑙

𝑙!
(𝑥*

1)⊔⊔ (𝑗−𝑙+1)

(𝑗 − 𝑙)! ,

and the 𝑆2(𝑘, 𝑗)’s denote the Stirling numbers of second kind.

Using Proposition 4.11 and Lemma 3.4 (in particular, the bijectivity of the re-
striction Li∙ : (Z[𝑥*

1], ⊔⊔ , 1𝑋*) → (Z[𝑒− log(1−𝑧)], ., 1𝐵)) and also the Stirling num-
bers (of first and second kinds), one obtains

Corollary 4.12. — The morphism of algebras

𝑅∙ : (Z⟨𝑌0⟩, ⊤, 1𝑌 *
0

) → (Z[𝑥*
1], ⊔⊔ , 1𝑋*)

is bijective, mapping 𝑦0 ↦→ 𝑥*
1 − 1𝑋* and 𝑦𝑘 ↦→ 𝑥*

1 ⊔⊔ 𝑅′
𝑦𝑘

(𝑘 > 1), where

𝑅′
𝑦𝑘

=
𝑘∑︁

𝑖=0
𝑖!𝑆2(𝑘, 𝑖)(𝑥*

1 − 1)⊔⊔ 𝑖 =
𝑘∑︁

𝑖=0

𝑖∑︁
𝑗=0

𝑖!𝑆2(𝑘, 𝑖)
(︂

𝑖

𝑗

)︂
(−1)𝑖−𝑗(𝑥*

1)⊔⊔ 𝑗

and 𝑅′
∙ is extended over Z⟨𝑌 ⟩ by linearity. Conversely, one has for any 𝑘 > 1,

(𝑘𝑥1)* = 1𝑋* + 𝑅𝑦0 +
𝑘∑︁

𝑗=2

𝑆1(𝑘, 𝑗)
(𝑘 − 1)!𝑅𝑦𝑗+1 .

It follows that Li𝑅𝑦𝑘
⊙ Li𝑅𝑦𝑙

= Li𝑆 (for 𝑘, 𝑙 > 1), where

𝑆 = 𝑥*
1 ⊔⊔ 𝑅′

𝑦𝑘 𝑦𝑙
= (1𝑋* + 𝑅𝑦0) ⊔⊔(𝑅′

𝑦𝑘+𝑙
+ 𝑅′

𝑦𝑘 ⊔⊔ 𝑦𝑙
).

29Recall also that the map 𝜋𝑌 is multiplicative on Q⊕Q⟨𝑋⟩𝑥1 but not on Q⟨𝑋⟩.
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To end this section, let us recall also that, for any 𝑐 ∈ C, one has

(𝑛)𝑐 ∼+∞ 𝑛𝑐 = 𝑒𝑐 log(𝑛)

and, with the respective scales of comparison (on the right hand side), one has the
following finite parts

f.p.𝑧→1𝑐 log(1 − 𝑧) = 0, {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N, (4.13)

f.p.𝑛→+∞𝑐 log 𝑛 = 0, {𝑛𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N. (4.14)

5. A group of associators

5.1. The action of the Galois differential group.

Lemma 5.1 ([43, 44]). — Let 𝐺 and 𝐻 be solutions of (1.1) which are group-like
for Δ⊔⊔ . Then there exists 𝐶 ∈ ℒ𝑖𝑒C⟨⟨𝑋⟩⟩, independent of 𝑧, such that 𝐺 = 𝐻𝑒𝐶 .

Typically, with the notations of (1.2) and Definition 3.7, the power series 𝐶𝑧0 𝑧

and L(𝑧) satisfy the differential equation (1.1) and have the same value at 𝑧 = 𝑧0.
Then 𝐶𝑧0 𝑧 = L(𝑧)(L(𝑧0))−1 [38, 41]. Since 𝐶𝑧0 𝑧 and L(𝑧) are group-like, so is
L(𝑧0). It follows that the Hausdorff group, i.e. {𝑒𝐶 | 𝐶 ∈ ℒ𝑖𝑒C⟨⟨𝑋⟩⟩}, plays the rôle
of the differential Galois group of the equation (1.1). More precisely,

Theorem 5.2 ([43, 44]). — GalC(𝐷𝐸) = {𝑒𝐶 | 𝐶 ∈ ℒ𝑖𝑒C⟨⟨𝑋⟩⟩}.

Definition 5.3 ([46, 47]). — Let 𝐴 be a subring of C, containing Q. We put30

𝑑𝑚(𝐴) := {𝑍⊔⊔ 𝑒𝐶 | 𝐶 ∈ ℒ𝑖𝑒𝐴⟨⟨𝑋⟩⟩, ⟨𝑒𝐶 | 𝑥0⟩ = ⟨𝑒𝐶 | 𝑥1⟩ = 0}.

Then 𝑑𝑚(𝐴) = Gal>2
C (𝐷𝐸) is a strict normal subgroup of GalC(𝐷𝐸).

Now, for any 𝑒𝐶 ∈ GalC(𝐷𝐸), let31

L := L𝑒𝐶 and 𝑍⊔⊔ := 𝑍⊔⊔ 𝑒𝐶 . (5.1)

Then, by the global analysis of singularities in (4.1), the action of 𝑒𝐶 on L on the
right yields the asymptotic behavior of L [46, 47]

L(𝑧) ∼0 𝑒𝑥0 log 𝑧𝑒𝐶 and L(𝑧) ∼1 𝑒−𝑥1 log(1−𝑧)𝑍⊔⊔ (5.2)

and, via an identity of type Newton-Girard again [51], one also gets :

H(𝑛) ∼+∞ 𝑒
−

∑︀
𝑘>1

H𝑦𝑘
(𝑛)(−𝑦1)𝑘/𝑘

𝜋𝑌 (𝑍⊔⊔ ). (5.3)

In other words, we obtain the extended Abel like theorem [46, 47]

lim
𝑧→1

𝑒𝑦1 log(1−𝑧)𝜋𝑌 (L(𝑧)) = lim
𝑛→∞

𝑒

∑︀
𝑘>1

H𝑦𝑘
(𝑛)(−𝑦1)𝑘/𝑘H(𝑛) = 𝜋𝑌 (𝑍⊔⊔ ).

By (4.1) and (5.2), one then deduces

Corollary 5.4. — L is the unique solution of (𝐷𝐸) satisfying L(𝑧) ∼0 𝑒𝑥0 log(𝑧)

(i.e. for 𝑒𝐶 = 1𝑋*). It follows that Φ𝐾𝑍 = 𝑍⊔⊔ is unique.

30This group contains the group 𝐷𝑀(𝐴) introduced in [10, 55] (𝐷𝑀 for double mélange).
31Note that since (see [38, 41]) ⟨𝑍⊔⊔ | 𝑥0⟩ = ⟨𝑍⊔⊔ | 𝑥1⟩ = 0, by identification of the coefficients

one has ⟨𝑍⊔⊔ | 𝑥1⟩ = ⟨𝑒𝐶 | 𝑥1⟩ and ⟨𝑍⊔⊔ | 𝑥0⟩ = ⟨𝑒𝐶 | 𝑥0⟩ which are not 0.
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Proposition 5.5 ([46, 47]). — Let {𝛾𝑤}𝑤∈𝑌 * be the finite parts of the asymp-
totic expansions of {H𝑤}𝑤∈𝑌 * in {𝑛−𝑎 log𝑏(𝑛)}𝑎,𝑏∈N, and let 𝑍𝛾 be their noncom-
mutative generating series. Then

𝑍𝛾 :=
∑︁

𝑤∈𝑌 *

𝛾𝑤𝑤, Δ (𝑍𝛾) = 𝑍𝛾 ⊗ 𝑍𝛾 , ⟨𝑍𝛾 | 1𝑌 *⟩ = 1.

In other words, the following map is a character

𝛾∙ : (Q⟨𝑌 ⟩, , 1𝑌 *) −→ (𝒵[𝛾], ×, 1), 𝑤 ↦−→ 𝛾𝑤.

Proposition 5.6 (Extended bridge equation, [46, 47]). — Under the action of
the group GalC(𝐷𝐸), one gets32

𝑍⊔⊔ = F.P.𝑧→1L(𝑧), {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N,

𝑍 = F.P.𝑛→+∞H(𝑛), {𝑛𝑎H𝑏
1(𝑛)}𝑎∈Z,𝑏∈N,

𝑍𝛾 = F.P.𝑛→+∞H(𝑛), {𝑛𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N.

Moreover, by Proposition 5.5, the extension of MRS factorization and the ex-
tended Abel like theorem lead to 𝑍𝛾 = 𝑒𝛾𝑦1𝑍 . Hence, for any 𝑍⊔⊔ ∈ 𝑑𝑚(𝐴), by
cancellation and with expressions of 𝐵, 𝐵′ given in Proposition 4.3, one obtains

𝑍𝛾 = 𝐵(𝑦1)𝜋𝑌 (𝑍⊔⊔ ) ⇐⇒ 𝑍 = 𝐵′(𝑦1)𝜋𝑌 (𝑍⊔⊔ ).

Elements of the group 𝑑𝑚(𝐴) satisfying similar properties as Φ𝐾𝑍 are called
associators33, as regularized solutions of (𝐷𝐸) [46, 47]. Moreover, by the identifi-
cation of local coordinates in the second point of Proposition 5.6, one gets

Corollary 5.7 ([46, 47]). — If 𝛾 /∈ 𝐴 then 𝛾 is transcendent over the 𝐴-algebra
generated by convergent zeta values.

Remark 5.8. — As example of the action of the differential Galois group on the
singular expansions, we are interested in the action of their monodromy group34

[46] generated by 𝑒2i𝜋m0 and 𝑒2i𝜋m1 , where [41, 38]

m0 = 𝑥0 and m1 = 𝑍⊔⊔ 𝑒−2i𝜋𝑥1𝑍−1
⊔⊔ =

↘∏︁
𝑙∈ℒ𝑦𝑛𝑋−𝑋

𝑒−𝜁(𝑆𝑙) ad𝑃𝑙 (−𝑥1).

By Proposition 4.3 and (5.1), the actions of the monodromy group on the right
of 𝑍⊔⊔ and 𝑍𝛾 are the following

32Note that, once the scales of comparison are fixed, the coefficients {⟨𝑍⊔⊔ | 𝑤⟩}𝑤∈𝑥0𝑋*𝑥1 ,
{⟨𝑍 | 𝑤⟩}𝑤∈(𝑌 *−∖{𝑦1})𝑌 * and {⟨𝑍𝛾 | 𝑤⟩}𝑤∈(𝑌 *−∖{𝑦1})𝑌 * , as finite parts of the asymptotic
expansions of {⟨L | 𝑤⟩}𝑤∈𝑥0𝑋*𝑥*

1
and {⟨H | 𝑤⟩}𝑤∈(𝑌 *−∖{𝑦1})𝑌 * , are determined, by the extended

Abel like theorem.
33In [34, 55], associators (or Drinfel’d series) are defined as group-like series in R⟨⟨𝑋⟩⟩ satisfying

a system of algebraic relations (duality, pentagonal and hexagonal), but the authors do not produce
any associator other than Φ𝐾𝑍 , which was completely determined earlier in [40, 38] (without
divergent zeta values as local coordinates).

34A proof of linear independence of multi-valued polylogarithms is obtained via this mon-
odromy group. It can be also proved by use of the differential Galois group [12, 43, 44].

An other proof for mono-valued polylogarithm functions, as a special case of hyperlogarithms,
can be also obtained over functions field [17, 19].
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(1) If 𝑒𝐶 = 𝑒2i𝜋m0 then 𝑍⊔⊔ = 𝑍⊔⊔ 𝑒2i𝜋𝑥0 and

𝑍𝛾 = exp
(︂

𝛾𝑦1 −
∑︁
𝑘>2

𝜁(𝑘) (−𝑦1)𝑘

𝑘

)︂
𝜋𝑌 𝑍⊔⊔ = 𝑍𝛾 .

This means that the monodromy at 0 of L consists of the multiplication on
the right of 𝑍⊔⊔ by 𝑒2i𝜋𝑥0 and does not modify 𝑍𝛾 .

(2) If 𝑒𝐶 = 𝑒2i𝜋m0 then 𝑍⊔⊔ = 𝑒−2i𝜋𝑥1𝑍⊔⊔ and

𝑍𝛾 = exp
(︂

(𝛾 − 2i𝜋)𝑦1 −
∑︁
𝑘>2

𝜁(𝑘) (−𝑦1)𝑘

𝑘

)︂
𝜋𝑌 𝑍⊔⊔ = 𝑒−2i𝜋𝑦1𝑍𝛾 .

This means that the monodromy at 1 of L consists of the multiplication on
the left of 𝑍⊔⊔ and 𝑍𝛾 by, respectively, 𝑒−2i𝜋𝑥1 and 𝑒−2i𝜋𝑦1 .

Finally, the actions of the monodromy group on L does not allow, in this case,
neither to introduce 𝑒𝛾𝑥1 on the left of 𝑍⊔⊔ nor to eliminate the left factor 𝑒𝛾𝑦1 of
𝑍𝛾 [46, 47].

5.2. Associator Φ𝐾𝑍 . Now, let us examine some properties of the noncommuta-
tive generating series 𝑍 and 𝑍⊔⊔ , i.e. Φ𝐾𝑍 (see Corollary 5.4).

In a way similar to what was said of the character 𝛾∙ (see Proposition 4.2),
Definition 3.9 and Proposition 3.10 lead to

Proposition 5.9 ([14, 16, 46, 47]). — One has ⟨𝑍 | 1𝑌 *⟩ = ⟨𝑍⊔⊔ | 1𝑋*⟩ = 1
and

Δ (𝑍 ) = 𝑍 ⊗ 𝑍 , Δ (log(𝑍 )) = log(𝑍 ) ⊗ 1𝑌 * + 1𝑌 * ⊗ log(𝑍 ),
Δ⊔⊔ (𝑍⊔⊔ ) = 𝑍⊔⊔ ⊗ 𝑍⊔⊔ , Δ⊔⊔ (log(𝑍⊔⊔ )) = log(𝑍⊔⊔ ) ⊗ 1𝑋* + 1𝑋* ⊗ log(𝑍⊔⊔ ),

and

log(𝑍 ) =
∑︁
𝑘>1

(−1)𝑘−1

𝑘

∑︁
𝑢1,...,𝑢𝑘∈𝑌 +

𝜁 (𝑢1 . . . 𝑢𝑘)𝑢1 . . . 𝑢𝑘,

log(𝑍⊔⊔ ) =
∑︁
𝑘>1

(−1)𝑘−1

𝑘

∑︁
𝑢1,...,𝑢𝑘∈𝑋+

𝜁⊔⊔ (𝑢1 ⊔⊔ . . . ⊔⊔ 𝑢𝑘)𝑢1 . . . 𝑢𝑘.

Moreover, the polymorphism 𝜁 can be extended as follows

𝜁⊔⊔ : (Q⟨𝑋⟩, ⊔⊔ , 1𝑋*) −→ (𝒵, ×, 1), 𝜁 : (Q⟨𝑌 ⟩, , 1𝑌 *) −→ (𝒵, ×, 1),

according to its products and satisfying, for any 𝑙 ∈ ℒ𝑦𝑛𝑌 − {𝑦1},

𝜁⊔⊔ (𝜋𝑋(𝑙)) = 𝜁 (𝑙) = 𝛾𝑙 = 𝜁(𝑙).

and, for the generators of length (resp. weight) one, for 𝑋* (resp. 𝑌 *),

𝜁⊔⊔ (𝑥0) = 0 = f.p.𝑧→1 Li𝑥1(𝑧), {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N,

𝜁 (𝑦1) = 0 = f.p.𝑛→+∞H𝑦1(𝑛), {𝑛𝑎H𝑏
1(𝑛)}𝑎∈Z,𝑏∈N.

By Lazard’s elimination, the free Lie algebra ℒ𝑖𝑒𝐴⟨𝑋⟩, as an 𝐴-module, is
the direct sum of 𝐴𝑥0 and of a Lie ideal, denoted by 𝒥 and freely generated
by {ad𝑙

𝑥0
𝑥1}𝑙∈N. Then, by the calculations in Appendix B and by the identities

(𝑥0 ∪ 𝑥1)* = (𝑥*
0𝑥1)*𝑥*

0 and 𝑒𝑥0𝑥1𝑒−𝑥0 = 𝑒ad𝑥0 𝑥1, one has
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Proposition 5.10 (Gradation of L and 𝑍⊔⊔ , [43, 44]). — Let the operation ∘
be defined, for any 𝑙 ∈ N and 𝑃 ∈ C⟨𝑋⟩, by 𝑥1𝑥𝑙

0 ∘ 𝑃 = 𝑥1(𝑥𝑙
0 ⊔⊔ 𝑃 ). Then

L(𝑧) =
∑︁
𝑘>0

∑︁
𝑤∈𝑥*

0 ⊔⊔ 𝑥𝑘
1

Li𝑤(𝑧)𝑤

= 𝑒𝑥0 log(𝑧)
(︂

1𝑋* +
∑︁
𝑘>1

∑︁
𝑙1,··· ,𝑙𝑘>0

Li
𝑥1𝑥

𝑙1
0 ∘···∘𝑥1𝑥

𝑙𝑘
0

(𝑧)
𝑘∏︁

𝑖=1
ad𝑙𝑖

−𝑥0
𝑥1

)︂

=
∑︁
𝑘>0

∫︁ 𝑧

0
𝜔1(𝑡𝑘) · · ·

∫︁ 𝑡𝑘−1

0
𝜔1(𝑡1)𝜅𝑘(𝑧, 𝑡1, · · · , 𝑡𝑘),

𝑍⊔⊔ =
∑︁
𝑘>0

∑︁
𝑙1,··· ,𝑙𝑘>0

𝜁⊔⊔ (𝑥1𝑥𝑙1
0 ∘ · · · ∘ 𝑥1𝑥𝑙𝑘

0 )
𝑘∏︁

𝑖=0
ad𝑙𝑖

−𝑥0
𝑥1,

where supp(𝑥1𝑥𝑙1
0 ∘ · · · ∘ 𝑥1𝑥𝑙𝑘

0 ) = {𝑤 ∈ 𝑥1𝑋* ||𝑤 |𝑥1= 𝑘, |𝑤 |𝑥0= 𝑙1 + · · · + 𝑙𝑘} and
𝜅𝑘(𝑧, 𝑡1, · · · , 𝑡𝑘) for any 𝑘 > 0 is the formal power series given by

𝜅𝑘(𝑧, 𝑡1, · · · , 𝑡𝑘) = 𝑒𝑥0[log(𝑧)−log(𝑡1)]𝑥1 · · · 𝑒𝑥0[log(𝑡𝑘−1)−log(𝑡𝑘)]𝑥1𝑒𝑥0 log(𝑡𝑘)

= 𝑒𝑥0 log(𝑧)𝑒ad−𝑥0 log(𝑡1)𝑥1 · · · 𝑒ad−𝑥0 log(𝑡𝑘)𝑥1

= 𝑒𝑥0 log(𝑧)
∑︁

𝑙1,··· ,𝑙𝑘>0

𝑘∏︁
𝑖=1

log𝑙𝑖(𝑡𝑖)
𝑙𝑖!

ad𝑙𝑖
−𝑥0

𝑥1.

On the one hand, by Theorem 3.1 the morphism Li∙ is injective and the two
families {ad𝑙1

−𝑥0
𝑥1 · · · ad𝑙𝑘

−𝑥0
𝑥1}𝑙1,··· ,𝑙𝑘>0

𝑘>0 and {𝑥1𝑥𝑙1
0 ∘ · · · ∘ 𝑥1𝑥𝑙𝑘

0 }𝑙1,··· ,𝑙𝑘>0
𝑘>0 are dual

bases of, respectively, 𝒰(𝒥 ) and 𝒰(𝒥 )∨.
On the other hand, by Proposition 5.9 it turns out that 𝜁⊔⊔ corresponds to the

adjoin of the regularization proposed in [34, 52].

5.3. Associators with rational coefficients. Since for any 𝑡 ∈ C with | 𝑡 | < 1
one has Li(𝑡𝑥1)*(𝑧) = (1 − 𝑧)−𝑡, and by [16]

H𝜋𝑌 (𝑡𝑥1)* =
∑︁
𝑘>0

H𝑦𝑘
1
𝑡𝑘 = exp

(︂
−

∑︁
𝑘>1

H𝑦𝑘

(−𝑡)𝑘

𝑘

)︂
, (5.4)

by Lemma 3.5 and Proposition 5.9 we can extend the characters 𝜁⊔⊔ and 𝛾∙, over
C⟨𝑋⟩ ⊔⊔ C[𝑥*

1] and C⟨𝑌 ⟩ C[𝑦*
1 ], respectively, by using the Euler beta and gamma

functions35 and also the incomplete beta function, i.e for any 𝑧, 𝑎, 𝑏 ∈ C such that
|𝑧 | < 1, ℜ𝑎 > 0 and ℜ𝑏 > 0,

B(𝑧; 𝑎, 𝑏) :=
∫︁ 𝑧

0
𝑑𝑡 𝑡𝑎−1(1 − 𝑡)𝑏−1

and
B(1; 𝑎, 𝑏) =: B(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏) .

35Following [20], for any 𝑧 ∈ C the function Γ(𝑧) is meromorphic, admitting simple poles in
−N and satisfying Γ(𝑧) = Γ(𝑧). The function Γ−1(𝑧) is entire and admits simple zeros in −N.
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It is immediate that36

B(𝑧; 𝑎, 𝑏) = Li𝑥0[(𝑎𝑥0)* ⊔⊔ ((1−𝑏)𝑥1)*](𝑧)
= Li𝑥1[((𝑎−1)𝑥0)* ⊔⊔ (−𝑏𝑥1)*](𝑧).

Proposition 5.11. — The characters 𝜁⊔⊔ and 𝛾∙ can be extended algebraically
as follows for 𝑡 ∈ C with | 𝑡 | < 1 :

𝜁⊔⊔ : (C⟨𝑋⟩ ⊔⊔ C[𝑥*
1], ⊔⊔ , 1𝑋*) −→ (C, ×, 1C),

(𝑡𝑥1)* ↦−→ 1C,

𝛾∙ : (C⟨𝑌 ⟩ C[𝑦*
1 ], , 1𝑌 *) −→ (C, ×, 1C),

(𝑡𝑦1)* ↦−→ exp
(︂

𝛾𝑡 −
∑︁
𝑛>2

𝜁(𝑛) (−𝑡)𝑛

𝑛

)︂
= 1

Γ(1 + 𝑡) .

It follows then that
B(𝑎, 𝑏) = 𝜁⊔⊔ (𝑥0[(𝑎𝑥0)*

⊔⊔((1 − 𝑏)𝑥1)*])
= 𝜁⊔⊔ (𝑥1[((1 − 𝑎)𝑥0)*

⊔⊔(−𝑏𝑥1)*]).

Moreover, for any 𝑢, 𝑣 ∈ C such that |𝑢 | < 1, |𝑣 | < 1 and |𝑢 + 𝑣 | < 1, one has37

exp
(︂∑︁

𝑛>2
𝜁(𝑛) (𝑢 + 𝑣)𝑛 − (𝑢𝑛 + 𝑣𝑛)

𝑛

)︂
= Γ(1 − 𝑢)Γ(1 − 𝑣)

Γ(1 − 𝑢 − 𝑣)

=
𝛾(−(𝑢+𝑣)𝑦1)*

𝛾(−𝑢𝑦1)*𝛾(−𝑣𝑦1)*

=
𝛾(−(𝑢+𝑣)𝑦1)*

𝛾(−𝑢𝑦1)* (−𝑣𝑦1)*

= 𝜁⊔⊔ (𝑥0[(−𝑢𝑥0)*
⊔⊔(−(1 + 𝑣)𝑥1)*])

= 𝜁⊔⊔ (𝑥1[(−(1 + 𝑢)𝑥0)*
⊔⊔(−𝑣𝑥1)*])

and
𝜁⊔⊔ ((−(𝑢 + 𝑣)𝑥1)*) = 𝜁⊔⊔ ((−𝑢𝑥1)*

⊔⊔(−𝑣𝑥1)*)
= 𝜁⊔⊔ ((−𝑢𝑥1)*)𝜁⊔⊔ ((−𝑣𝑥1)*)
= 1.

With the notations in Corollary 4.10, the values 𝑝(1) and 𝑝(1) obtained by (4.10)
and (4.11), respectively, represent the following finite parts :

36see the form of rational series given in (𝐹2) and Lemma 2.4.
37The first equality is already presented in [25]. Moreover, since (−𝑢𝑦1)* (𝑢𝑦1)* =

(−𝑢2𝑦2)*, letting 𝑣 = −𝑢 it follows that

exp
(︁

−
∑︁
𝑛>1

𝜁(2𝑛)
𝑢2𝑛

𝑛

)︁
= Γ(1 − 𝑢)Γ(1 + 𝑢) =

1
𝛾(−𝑢𝑦1)* (𝑢𝑦1)*

=
1

𝛾(−𝑢2𝑦2)*
.

It is also a consequence obtained by expanding identities like (5.4), for any 𝑦𝑟 ∈ 𝑌 , [14, 16]

𝑦𝑘
𝑟 =

(−1)𝑘

𝑘!

∑︁
𝑠1,...,𝑠𝑘>0

𝑠1+...+𝑘𝑠𝑘=𝑘

(−𝑦𝑟) 𝑠1

1𝑠1
. . .

(−𝑦𝑘𝑟) 𝑠𝑘

𝑘𝑠𝑘
.
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Lemma 5.12. — (1) Put P𝑄(𝑧) := 𝑒− log(1−𝑧) Li𝑄(𝑧) for any
𝑄 ∈ (Z[𝑥*

0, (−𝑥0)*, 𝑥*
1], ⊔⊔ , 1𝑋*)/{𝑥*

0 ⊔⊔ 𝑥*
1 − 𝑥*

1 + 1}.

Then P𝑄 = Li𝑥*
1 ⊔⊔ 𝑄 and Li𝑄, P𝑄 ∈ Z[𝑧, 𝑧−1, 𝑒− log(1−𝑧)].

(2) By Lemma 3.4 the converse holds. Moreover, by (4.13) and (4.14) one has

f.p.𝑧→1P𝑄(𝑧) = f.p.𝑧→1 Li𝑄(𝑧) ∈ Z, {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N,

f.p.𝑛→+∞⟨P𝑄 | 𝑧𝑛⟩ = f.p.𝑛→+∞H𝜋𝑌 (𝑄)(𝑛) ∈ Q, {𝑛𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N.

(3) For any 𝑤 ∈ 𝑌 *, let 𝑅𝑤 be explicitly determined as in Proposition 4.11.
There exists a unique polynomial 𝑝 ∈ Z[𝑡] of valuation 1 and of degree
(𝑤)+ |𝑤 | such that 𝑅𝑤 = 𝑝(𝑥*

1) and

f.p.𝑧→1 Li𝑅𝑤
(𝑧) = 𝑝(1) ∈ Z, {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N,

f.p.𝑛→+∞H𝜋𝑌 (𝑅𝑤)(𝑛) = 𝑝(1) ∈ Q, {𝑛𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N,

where 𝑝 ∈ Q[𝑡] is the exponential transform of 𝑝.

As determined in Proposition 4.7, 𝐵−
∙ and 𝐶−

∙ do not realize characters for
(Q⟨𝑋⟩, ⊔⊔ , 1𝑋*) and (Q⟨𝑌 ⟩, , 1𝑌 *), respectively [21]. Hence, instead of regular-
izing the divergent sums 𝜁⊔⊔ (𝑅𝑤) and 𝜁𝛾(𝜋𝑌 (𝑅𝑤)) by 𝐵−

𝑤 and 𝐶−
𝑤 , one can use,

respectively, 𝑝(1) and 𝑝(1) (depending on 𝑤) as shown in Theorem 5.15 below which
is a consequence of Lemma 5.12, Propositions 4.11, 5.11 and Corollary 4.12 :

Definition 5.13. — Let ϒ and Λ be the noncommutative generating series of,
respectively, {H𝜋𝑌 (𝑅𝑤)}𝑤∈𝑌 * and {Li𝑅𝜋𝑌 (𝑤)}𝑤∈𝑋* (with ⟨Λ(𝑧) | 𝑥0⟩ = log(𝑧)) :

ϒ :=
∑︁

𝑤∈𝑌 *

H𝜋𝑌 (𝑅𝑤)𝑤 ∈ Q[(𝑛 + ∙)𝑛]⟨⟨𝑌 ⟩⟩,

Λ :=
∑︁

𝑤∈𝑋*

Li𝑅𝜋𝑌 (𝑤) 𝑤 ∈ Q[𝑒− log(1−𝑧)][log(𝑧)]⟨⟨𝑋⟩⟩.

Let 𝑍−
𝛾 and 𝑍−

⊔⊔ be the noncommutative generating series of38, respectively,
{𝛾𝜋𝑌 (𝑅𝑤)}𝑤∈𝑌 * and {𝜁⊔⊔ (𝑅𝜋𝑌 (𝑤))}𝑤∈𝑋* :

𝑍−
𝛾 :=

∑︁
𝑤∈𝑌 *

𝛾𝜋𝑌 (𝑅𝑤)𝑤 ∈ Q⟨⟨𝑌 ⟩⟩ and 𝑍−
⊔⊔ :=

∑︁
𝑤∈𝑋*

𝜁⊔⊔ (𝑅𝜋𝑌 (𝑤))𝑤 ∈ Z⟨⟨𝑋⟩⟩.

Via the diagonal series 𝒟 , 𝒟 given in (2.2)-(2.8), one has

Lemma 5.14. — The extension 𝑅∙ : (C[𝑥0]⟨𝑌0⟩, ⊤, 1𝑌 *
0

) → (C[𝑥0][𝑥*
1], ⊔⊔ , 1𝑋*)

is bijective. Hence :
(1) Let �̂�𝑌 be the morphism of algebras defined, over an algebraic basis, by

�̂�𝑌 𝑆𝑙 = 𝜋𝑌 𝑆𝑙 for any 𝑙 ∈ ℒ𝑦𝑛𝑋 − {𝑥0}, and �̂�𝑌 (𝑥0) = 𝑥0 (such that
Li𝑅�̂�𝑌 𝑥0

(𝑧) = log(𝑧), whence 𝜁(𝑅�̂�𝑌 𝑥0) = 0). Then

ϒ = ((H∙ ∘ 𝜋𝑌 ∘ 𝑅∙) ⊗ Id)𝒟𝑌 and Λ = ((Li∙ ∘𝑅∙ ∘ �̂�𝑌 ) ⊗ Id)𝒟𝑋 ,

𝑍−
𝛾 = ((𝛾∙ ∘ 𝜋𝑌 ∘ 𝑅∙) ⊗ Id)𝒟𝑌 and 𝑍−

⊔⊔ = ((𝜁⊔⊔ ∘ 𝑅∙ ∘ �̂�𝑌 ) ⊗ Id)𝒟𝑋 .

38Note that, on the one hand, by Proposition 5.9 one has ⟨𝑍−
⊔⊔ | 𝑥0⟩ = 𝜁⊔⊔ (𝑥0) = 0. On the

other hand, since 𝑅𝑦1 = (2𝑥1)* −𝑥*
1, one has Li𝑅𝑦1

(𝑧) = (1−𝑧)−2 −(1−𝑧)−1 and H𝜋𝑌 (𝑅𝑦1 )(𝑛) =(︀
𝑛
2

)︀
−

(︀
𝑛
1

)︀
. Hence, ⟨𝑍−

⊔⊔ | 𝑥1⟩ = 𝜁⊔⊔ (𝑅𝜋𝑌 (𝑦1)) = 0, and ⟨𝑍−
𝛾 | 𝑥1⟩ = 𝛾𝜋𝑌 (𝑅𝑦1 ) = −1/2.
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(2) For any 𝑢 ∈ 𝑋* and 𝑣 ∈ 𝑌 * one has
f.p.𝑧→1⟨Λ(𝑧) | 𝑢⟩ = ⟨𝑍−

⊔⊔ | 𝑢⟩, {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N,

f.p.𝑛→+∞⟨ϒ(𝑛) | 𝑣⟩ = ⟨𝑍−
𝛾 | 𝑣⟩, {𝑛𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N,

which means that (see also (4.5), (4.6) and (4.7))
𝑍−

𝛾 = F.P.𝑛→+∞ϒ(𝑛) and 𝑍−
⊔⊔ = F.P.𝑧→1Λ(𝑧).

Hence, by Propositions 4.11 and 5.11, Lemmas 2.4–3.5 and 5.12, one derives

Theorem 5.15. — (1) For any (𝑠1, . . . , 𝑠𝑟) ∈ N𝑟
+ associated with 𝑙 ∈ ℒ𝑦𝑛𝑌

there exists a unique 𝑝 ∈ Z[𝑡] of valuation 1 and of degree (𝑙)+| 𝑙 | such that
𝑝(𝑥*

1) = 𝑅𝑙 ∈ (Z[𝑥*
1], ⊔⊔ , 1𝑋*),

𝑝(𝑒− log(1−𝑧)) = Li𝑅𝑙
(𝑧) ∈ (Z[𝑒− log(1−𝑧)], ×, 1𝐵),

𝑝((𝑛 + ∙)𝑛) = H𝜋𝑌 (𝑅𝑙)(𝑛) ∈ (Q[(𝑛 + ∙)𝑛], ×, 1),
𝜁(−𝑠1, . . . , −𝑠𝑟) = 𝑝(1) = 𝜁⊔⊔ (𝑅𝑙) ∈ (Z, ×, 1),

𝛾−𝑠1,...,−𝑠𝑟 = 𝑝(1) = 𝛾𝜋𝑌 (𝑅𝑙) ∈ (Q, ×, 1),
where 𝑝 ∈ Q[𝑡] is the exponential transform of 𝑝, and 𝑝 is obtained as the
exponential transform of 𝑝 ∈ Z[𝑡].

(2) One has ⟨𝑍−
𝛾 | 1𝑌 *⟩ = ⟨𝑍−

⊔⊔ | 1𝑋*⟩ = 1 and

Δ (𝑍−
𝛾 ) = 𝑍−

𝛾 ⊗ 𝑍−
𝛾 and Δ⊔⊔ (𝑍−

⊔⊔ ) = 𝑍−
⊔⊔ ⊗ 𝑍−

⊔⊔ ,

𝑍−
𝛾 =

↘∏︁
𝑙∈ℒ𝑦𝑛𝑌

𝑒
𝛾𝜋𝑌 (𝑅Σ𝑙

)Π𝑙 and 𝑍−
⊔⊔ =

↘∏︁
𝑙∈ℒ𝑦𝑛𝑋

𝑒𝜁⊔⊔ (𝜋𝑌 (𝑆𝑙))𝑃𝑙 .

(3) Similarly, ⟨ϒ | 1𝑌 *⟩ = ⟨Λ | 1𝑋*⟩ = 1 and
Δ (ϒ) = ϒ ⊗ ϒ and Δ⊔⊔ (Λ) = Λ ⊗ Λ,

ϒ =
↘∏︁

𝑙∈ℒ𝑦𝑛𝑌

𝑒
H𝜋𝑌 (𝑅Σ𝑙

)Π𝑙 and Λ =
↘∏︁

𝑙∈ℒ𝑦𝑛𝑋

𝑒
Li𝑅𝜋𝑌 (𝑆𝑙) 𝑃𝑙 .

(4) Under the action of 𝒢 [35], as for L [38, 41], for any 𝑔 ∈ 𝒢 there exists a
letter substitution 𝜎𝑔 and a primitive series 𝐶 such that

Λ(𝑔(𝑧)) = 𝜎𝑔(Λ(𝑧))𝑒𝐶 and Λ(𝑧) ∼0 𝑒𝑥0 log(𝑧).

Remark 5.16. — By Corollary 5.4, Λ does not satisfy (𝐷𝐸) while 𝑍−
⊔⊔ and 𝑍−

𝛾 ,
regularizing Λ and ϒ respectively, satisfy similar properties as 𝑍⊔⊔ and 𝑍𝛾 , respec-
tively.

The series 𝑍−
⊔⊔ (or 𝑍−

𝛾 ) is not unique because in Theorem 5.15 the elements of
the family {Li𝑅𝑙

}𝑙∈ℒ𝑦𝑛𝑌 are polylogarithms with negative multiindices which are
polynomial in 𝑒− log(1−𝑧).

Indeed, for any 𝑙 ∈ ℒ𝑦𝑛𝑌 one has 𝑅𝑙 ∈ Z[𝑥*
1]. Then, letting 𝜌𝑙 be a monomial in

Z[𝑥*
0, (−𝑥0)*] with 𝜌𝑙 ̸= 0 and using Lemma 5.12, one gets the same regularized val-

ues 𝜁⊔⊔ (𝑅𝑙) and 𝛾𝜋𝑌 (𝑅𝑙) for the series 𝑅𝑙 ⊔⊔ 𝜌𝑙 ∈ Zrat⟨⟨𝑥1⟩⟩ ⊔⊔ Zrat⟨⟨𝑥0⟩⟩ = Zrat
exc⟨⟨𝑋⟩⟩,

i.e. (see Appendix C)
f.p.𝑧→1 Li𝑅𝑙 ⊔⊔ 𝜌𝑙

(𝑧) = 𝜁⊔⊔ (𝑅𝑙), {(1 − 𝑧)𝑎 log𝑏((1 − 𝑧)−1)}𝑎∈Z,𝑏∈N,

f.p.𝑛→+∞H𝜋𝑌 (𝑅𝑙 ⊔⊔ 𝜌𝑙)(𝑛) = 𝛾𝜋𝑌 (𝑅𝑙), {𝑛𝑎 log𝑏(𝑛)}𝑎∈Z,𝑏∈N.
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For example, one can take 𝜌𝑙, by substituting each letter 𝑥1 by 𝑥0 in 𝑅𝑙.

6. Conclusion

In this paper, we have surveyed our recent results concerning the resolution
of 𝐾𝑍3 via a noncommutative symbolic computation, and the algebraic combi-
natorial aspects of the polylogarithms {Li𝑠1,...,𝑠𝑟

}𝑟>1
(𝑠1,...,𝑠𝑟)∈C𝑟 , the harmonic sums

{H𝑠1,...,𝑠𝑟
}𝑟>1

(𝑠1,...,𝑠𝑟)∈C𝑟 , and the zeta functions {𝜁(𝑠1, . . . , 𝑠𝑟)}𝑟>1
(𝑠1,...,𝑠𝑟)∈C𝑟 with the

help of their commutative and noncommutative generating series.
This review is mainly based on the combinatorics on the shuffle bialgebras and

their diagonal series, i.e. 𝒟⊔⊔ , 𝒟 and 𝒟𝑋 . In particular, it used
(1) The construction of pairs of bases (Lie algebra bases and transcendence

bases) in duality (Theorem 2.1) to factorize the noncommutative ratio-
nal power series (Theorem 2.3) and to obtain the algebraic structure of
{𝜁(𝑠1, . . . , 𝑠𝑟)}𝑟>1

(𝑠1,...,𝑠𝑟)∈N𝑟
>1

(polynomial relations homogenous in weight,
and independence over a commutative extension of Q, denoted by 𝐴) by
identification of local coordinates, in infinite dimension (Corollary 4.4).

(2) The algebraic structures (Theorems 3.1 and 3.2) and the analysis of sin-
gularities (Theorems 4.1 and 4.9) of the polylogarithms and the harmonic
sums, for which the global renormalizations has been obtained via Abel
like theorems for the pairs of generating series L, H and L−, H−. In partic-
ular, the series L corresponds to the actual solution of (1.1) satisfying the
standard asymptotic behaviors as given in (1.4) (Corollary 5.4).

(3) The paper culminates with the action (Theorem 5.2) of the differential
Galois group GalC(𝐷𝐸) (containing the group of associators 𝑑𝑚(𝐴)) on the
asymptotic expansions of solutions of the equation (1.1) (see (5.2)–(5.3)).

The group 𝑑𝑚(𝐴) contains the unique associator Φ𝐾𝑍 , i.e. the series
𝑍⊔⊔ determined by asymptotic conditions (Corollary 5.4), which is also
associated with series 𝑍 and 𝑍𝛾 . All of them are, for the correspond-
ing co-products, group-like series and their logarithms are also provided
(Propositions 4.2, 4.3 and 5.9).

(4) Non trivial expressions for associators with rational coefficients, i.e. 𝑍−
⊔⊔ and

𝑍−
𝛾 , are also explicitly provided thanks to various processes of regularization

via the noncommutative generating series Λ and ϒ, which are group-like,
respectively, for Δ⊔⊔ and Δ (Theorem 5.15).

(5) Via the local coordinates of the power series 𝑍⊔⊔ , 𝑍−
⊔⊔ , 𝑍𝛾 , 𝑍−

𝛾 and 𝑍 ,
regularization maps for divergent zeta are constructed (Propositions 5.9,
5.11) over algebraic bases matching with analytical meaning : on the one
hand, the character 𝜁⊔⊔ corresponds to the regularization, obtained as the
finite parts of the singular expansions of {Li𝑠1,...,𝑠𝑟

}𝑟>1
(𝑠1,...,𝑠𝑟)∈Z𝑟 ; on the other

hand, the characters 𝜁 and 𝛾∙ correspond to the regularizations obtained
as the finite parts of the asymptotic expansions of {H𝑠1,...,𝑠𝑟

}𝑟>1
(𝑠1,...,𝑠𝑟)∈Z𝑟 ,

in different comparison scales.
In particular, the character 𝛾∙ furnished a generalization of the Euler’s

𝛾 constant, {𝛾𝑠1,...,𝑠𝑟
}𝑟>1

(𝑠1,...,𝑠𝑟)∈N𝑟
>1

(Corollary 4.6), and moreover, if 𝛾 /∈ 𝐴
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then 𝛾 is transcendent over the 𝐴-algebra generated by the convergent zeta
values {𝜁(𝑠1, . . . , 𝑠𝑟)}𝑟>1

(𝑠1,...,𝑠𝑟)∈N𝑟
>1,𝑠1>2 (Corollary 5.7).

Appendix A

By Proposition 4.3, identification of local coordinates, one obtains homoge-
nous polynomials relations among the local coordinates {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} and
{𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋 (see Example 6.1).

Example 6.1 (Homogenous polynomials relations among local coordinates39). —

Relations on {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} Relations on {𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋

3 𝜁(Σ𝑦2𝑦1 ) = 3
2 𝜁(Σ𝑦3 ) 𝜁(𝑆𝑥0𝑥2

1
) = 𝜁(𝑆𝑥2

0𝑥1 )

4 𝜁(Σ𝑦4 ) = 2
5 𝜁(Σ𝑦2 )2 𝜁(𝑆𝑥3

0𝑥1 ) = 2
5 𝜁(𝑆𝑥0𝑥1 )2

𝜁(Σ𝑦3𝑦1 ) = 3
10 𝜁(Σ𝑦2 )2 𝜁(𝑆𝑥2

0𝑥2
1
) = 1

10 𝜁(𝑆𝑥0𝑥1 )2

𝜁(Σ𝑦2𝑦2
1
) = 2

3 𝜁(Σ𝑦2 )2 𝜁(𝑆𝑥0𝑥3
1
) = 2

5 𝜁(𝑆𝑥0𝑥1 )2

5 𝜁(Σ𝑦3𝑦2 ) = 3𝜁(Σ𝑦3 )𝜁(Σ𝑦2 )−5𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥3
0𝑥2

1
) = −𝜁(𝑆𝑥2

0𝑥1 )𝜁(𝑆𝑥0𝑥1 )+2𝜁(𝑆𝑥4
0𝑥1 )

𝜁(Σ𝑦4𝑦1 ) = −𝜁(Σ𝑦3 )𝜁(Σ𝑦2 )+ 5
2 𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥2

0𝑥1𝑥0𝑥1 ) = − 3
2 𝜁(𝑆𝑥4

0𝑥1 )+𝜁(𝑆𝑥2
0𝑥1 )𝜁(𝑆𝑥0𝑥1 )

𝜁(Σ𝑦2
2𝑦1 ) = 3

2 𝜁(Σ𝑦3 )𝜁(Σ𝑦2 )− 25
12 𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥2

0𝑥3
1
) = −𝜁(𝑆𝑥2

0𝑥1 )𝜁(𝑆𝑥0𝑥1 )+2𝜁(𝑆𝑥4
0𝑥1 )

𝜁(Σ𝑦3𝑦2
1
) = 5

12 𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥0𝑥1𝑥0𝑥2
1
) = 1

2 𝜁(𝑆𝑥4
0𝑥1 )

𝜁(Σ𝑦2𝑦3
1
) = 1

4 𝜁(Σ𝑦3 )𝜁(Σ𝑦2 )+ 5
4 𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥0𝑥4

1
) = 𝜁(𝑆𝑥4

0𝑥1 )

6 𝜁(Σ𝑦6 ) = 8
35 𝜁(Σ𝑦2 )3 𝜁(𝑆𝑥5

0𝑥1 ) = 8
35 𝜁(𝑆𝑥0𝑥1 )3

𝜁(Σ𝑦4𝑦2 ) = 𝜁(Σ𝑦3 )2 − 4
21 𝜁(Σ𝑦2 )3 𝜁(𝑆𝑥4

0𝑥2
1
) = 6

35 𝜁(𝑆𝑥0𝑥1 )3 − 1
2 𝜁(𝑆𝑥2

0𝑥1 )2

𝜁(Σ𝑦5𝑦1 ) = 2
7 𝜁(Σ𝑦2 )3 − 1

2 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥3
0𝑥1𝑥0𝑥1 ) = 4

105 𝜁(𝑆𝑥0𝑥1 )3

𝜁(Σ𝑦3𝑦1𝑦2 ) = − 17
30 𝜁(Σ𝑦2 )3 + 9

4 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥3
0𝑥3

1
) = 23

70 𝜁(𝑆𝑥0𝑥1 )3 −𝜁(𝑆𝑥2
0𝑥1 )2

𝜁(Σ𝑦3𝑦2𝑦1 ) = 3𝜁(Σ𝑦3 )2 − 9
10 𝜁(Σ𝑦2 )3 𝜁(𝑆𝑥2

0𝑥1𝑥0𝑥2
1
) = 2

105 𝜁(𝑆𝑥0𝑥1 )3

𝜁(Σ𝑦4𝑦2
1
) = 3

10 𝜁(Σ𝑦2 )3 − 3
4 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥2

0𝑥2
1𝑥0𝑥1 ) = − 89

210 𝜁(𝑆𝑥0𝑥1 )3 + 3
2 𝜁(𝑆𝑥2

0𝑥1 )2

𝜁(Σ𝑦2
2𝑦2

1
) = 11

63 𝜁(Σ𝑦2 )3 − 1
4 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥2

0𝑥4
1
) = 6

35 𝜁(𝑆𝑥0𝑥1 )3 − 1
2 𝜁(𝑆𝑥2

0𝑥1 )2

𝜁(Σ𝑦3𝑦3
1
) = 1

21 𝜁(Σ𝑦2 )3 𝜁(𝑆𝑥0𝑥1𝑥0𝑥3
1
) = 8

21 𝜁(𝑆𝑥0𝑥1 )3 −𝜁(𝑆𝑥2
0𝑥1 )2

𝜁(Σ𝑦2𝑦4
1
) = 17

50 𝜁(Σ𝑦2 )3 + 3
16 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥0𝑥5

1
) = 8

35 𝜁(𝑆𝑥0𝑥1 )3

39These relations are sorted by weight and are ordered by Lyndon words.
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One obtains also two families of polynomials homogenous for the weight, de-
scribing the kernel of the polymorphism 𝜁 (see Example 6.2, {𝑄𝑙}𝑙∈ℒ𝑦𝑛𝒳 ).

Example 6.2 (Homogenous polynomials40 generating ker(𝜁)). —

{𝑄𝑙}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} {𝑄𝑙}𝑙∈ℒ𝑦𝑛𝑋−𝑋

3 𝜁(Σ𝑦2𝑦1 − 3
2 Σ𝑦3 ) = 0 𝜁(𝑆𝑥0𝑥2

1
− 𝑆𝑥2

0𝑥1 ) = 0

4 𝜁(Σ𝑦4 − 2
5 Σ 2

𝑦2 ) = 0 𝜁(𝑆𝑥3
0𝑥1 − 2

5 𝑆
⊔⊔ 2
𝑥0𝑥1 ) = 0

𝜁(Σ𝑦3𝑦1 − 3
10 Σ 2

𝑦2 ) = 0 𝜁(𝑆𝑥2
0𝑥2

1
− 1

10 𝑆
⊔⊔ 2
𝑥0𝑥1 ) = 0

𝜁(Σ𝑦2𝑦2
1

− 2
3 Σ 2

𝑦2 ) = 0 𝜁(𝑆𝑥0𝑥3
1

− 2
5 𝑆

⊔⊔ 2
𝑥0𝑥1 ) = 0

5 𝜁(Σ𝑦3𝑦2 − 3Σ𝑦3 Σ𝑦2 − 5Σ𝑦5 ) = 0 𝜁(𝑆𝑥3
0𝑥2

1
− 𝑆𝑥2

0𝑥1 ⊔⊔ 𝑆𝑥0𝑥1 + 2𝑆𝑥4
0𝑥1 ) = 0

𝜁(Σ𝑦4𝑦1 − Σ𝑦3 Σ𝑦2 ) + 5
2 Σ𝑦5 ) = 0 𝜁(𝑆𝑥2

0𝑥1𝑥0𝑥1 − 3
2 𝑆𝑥4

0𝑥1 + 𝑆𝑥2
0𝑥1 ⊔⊔ 𝑆𝑥0𝑥1 ) = 0

𝜁(Σ𝑦2
2𝑦1 − 3

2 Σ𝑦3 Σ𝑦2 − 25
12 Σ𝑦5 ) = 0 𝜁(𝑆𝑥2

0𝑥3
1

− 𝑆𝑥2
0𝑥1 ⊔⊔ 𝑆𝑥0𝑥1 + 2𝑆𝑥4

0𝑥1 ) = 0

𝜁(Σ𝑦3𝑦2
1

− 5
12 Σ𝑦5 ) = 0 𝜁(𝑆𝑥0𝑥1𝑥0𝑥2

1
− 1

2 𝑆𝑥4
0𝑥1 ) = 0

𝜁(Σ𝑦2𝑦3
1

− 1
4 Σ𝑦3 Σ𝑦2 ) + 5

4 Σ𝑦5 ) = 0 𝜁(𝑆𝑥0𝑥4
1

− 𝑆𝑥4
0𝑥1 ) = 0

6 𝜁(Σ𝑦6 − 8
35 Σ 3

𝑦2 ) = 0 𝜁(𝑆𝑥5
0𝑥1 − 8

35 𝑆
⊔⊔ 3
𝑥0𝑥1 ) = 0

𝜁(Σ𝑦4𝑦2 − Σ 2
𝑦3 − 4

21 Σ 3
𝑦2 ) = 0 𝜁(𝑆𝑥4

0𝑥2
1

− 6
35 𝑆

⊔⊔ 3
𝑥0𝑥1 − 1

2 𝑆
⊔⊔ 2
𝑥2

0𝑥1
) = 0

𝜁(Σ𝑦5𝑦1 − 2
7 Σ 3

𝑦2 − 1
2 Σ 2

𝑦3 ) = 0 𝜁(𝑆𝑥3
0𝑥1𝑥0𝑥1 − 4

105 𝑆
⊔⊔ 3
𝑥0𝑥1 ) = 0

𝜁(Σ𝑦3𝑦1𝑦2 − 17
30 Σ 3

𝑦2 + 9
4 Σ 2

𝑦3 ) = 0 𝜁(𝑆𝑥3
0𝑥3

1
− 23

70 𝑆
⊔⊔ 3
𝑥0𝑥1 − 𝑆

⊔⊔ 2
𝑥2

0𝑥1
) = 0

𝜁(Σ𝑦3𝑦2𝑦1 − 3Σ 2
𝑦3 − 9

10 Σ 3
𝑦2 ) = 0 𝜁(𝑆𝑥2

0𝑥1𝑥0𝑥2
1

− 2
105 𝑆

⊔⊔ 3
𝑥0𝑥1 ) = 0

𝜁(Σ𝑦4𝑦2
1

− 3
10 Σ 2

𝑦2 − 3
4 Σ 2

𝑦3 ) = 0 𝜁(𝑆𝑥2
0𝑥2

1𝑥0𝑥1 − 89
210 𝑆

⊔⊔ 3
𝑥0𝑥1 + 3

2 𝑆
⊔⊔ 2
𝑥2

0𝑥1
) = 0

𝜁(Σ𝑦2
2𝑦2

1
− 11

63 Σ 2
𝑦2 − 1

4 Σ 2
𝑦3 ) = 0 𝜁(𝑆𝑥2

0𝑥4
1

− 6
35 𝑆

⊔⊔ 3
𝑥0𝑥1 − 1

2 𝑆
⊔⊔ 2
𝑥2

0𝑥1
) = 0

𝜁(Σ𝑦3𝑦3
1

− 1
21 Σ 3

𝑦2 ) = 0 𝜁(𝑆𝑥0𝑥1𝑥0𝑥3
1

− 8
21 𝑆

⊔⊔ 3
𝑥0𝑥1 − 𝑆

⊔⊔ 2
𝑥2

0𝑥1
) = 0

𝜁(Σ𝑦2𝑦4
1

− 17
50 Σ 3

𝑦2 + 3
16 Σ 2

𝑦3 ) = 0 𝜁(𝑆𝑥0𝑥5
1

− 8
35 𝑆

⊔⊔ 3
𝑥0𝑥1 ) = 0

By substituting “=” by “→” in the previous homogenous polynomial relations
one obtains a Noetherian rewriting system without critical pairs among local coor-
dinates {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} (resp. {𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋) (see Example 6.3).

40These polynomials are sorted by weight and are ordered by Lyndon words.
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Example 6.3 (Noetherian homogenous rewriting system among local coordi-
nates41). —

Rewriting on {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 −{𝑦1} Rewriting on {𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋−𝑋

3 𝜁(Σ𝑦2𝑦1 ) → 3
2 𝜁(Σ𝑦3 ) 𝜁(𝑆𝑥0𝑥2

1
) → 𝜁(𝑆𝑥2

0𝑥1 )

4 𝜁(Σ𝑦4 ) → 2
5 𝜁(Σ𝑦2 )2 𝜁(𝑆𝑥3

0𝑥1 ) → 2
5 𝜁(𝑆𝑥0𝑥1 )2

𝜁(Σ𝑦3𝑦1 ) → 3
10 𝜁(Σ𝑦2 )2 𝜁(𝑆𝑥2

0𝑥2
1
) → 1

10 𝜁(𝑆𝑥0𝑥1 )2

𝜁(Σ𝑦2𝑦2
1
) → 2

3 𝜁(Σ𝑦2 )2 𝜁(𝑆𝑥0𝑥3
1
) → 2

5 𝜁(𝑆𝑥0𝑥1 )2

5 𝜁(Σ𝑦3𝑦2 ) → 3𝜁(Σ𝑦3 )𝜁(Σ𝑦2 )−5𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥3
0𝑥2

1
) → −𝜁(𝑆𝑥2

0𝑥1 )𝜁(𝑆𝑥0𝑥1 )+2𝜁(𝑆𝑥4
0𝑥1 )

𝜁(Σ𝑦4𝑦1 ) → −𝜁(Σ𝑦3 )𝜁(Σ𝑦2 )+ 5
2 𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥2

0𝑥1𝑥0𝑥1 ) → − 3
2 𝜁(𝑆𝑥4

0𝑥1 )+𝜁(𝑆𝑥2
0𝑥1 )𝜁(𝑆𝑥0𝑥1 )

𝜁(Σ𝑦2
2𝑦1 ) → 3

2 𝜁(Σ𝑦3 )𝜁(Σ𝑦2 )− 25
12 𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥2

0𝑥3
1
) → −𝜁(𝑆𝑥2

0𝑥1 )𝜁(𝑆𝑥0𝑥1 )+2𝜁(𝑆𝑥4
0𝑥1 )

𝜁(Σ𝑦3𝑦2
1
) → 5

12 𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥0𝑥1𝑥0𝑥2
1
) → 1

2 𝜁(𝑆𝑥4
0𝑥1 )

𝜁(Σ𝑦2𝑦3
1
) → 1

4 𝜁(Σ𝑦3 )𝜁(Σ𝑦2 )+ 5
4 𝜁(Σ𝑦5 ) 𝜁(𝑆𝑥0𝑥4

1
) → 𝜁(𝑆𝑥4

0𝑥1 )

6 𝜁(Σ𝑦6 ) → 8
35 𝜁(Σ𝑦2 )3 𝜁(𝑆𝑥5

0𝑥1 ) → 8
35 𝜁(𝑆𝑥0𝑥1 )3

𝜁(Σ𝑦4𝑦2 ) → 𝜁(Σ𝑦3 )2− 4
21 𝜁(Σ𝑦2 )3 𝜁(𝑆𝑥4

0𝑥2
1
) → 6

35 𝜁(𝑆𝑥0𝑥1 )3− 1
2 𝜁(𝑆𝑥2

0𝑥1 )2

𝜁(Σ𝑦5𝑦1 ) → 2
7 𝜁(Σ𝑦2 )3− 1

2 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥3
0𝑥1𝑥0𝑥1 ) → 4

105 𝜁(𝑆𝑥0𝑥1 )3

𝜁(Σ𝑦3𝑦1𝑦2 ) → − 17
30 𝜁(Σ𝑦2 )3+ 9

4 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥3
0𝑥3

1
) → 23

70 𝜁(𝑆𝑥0𝑥1 )3−𝜁(𝑆𝑥2
0𝑥1 )2

𝜁(Σ𝑦3𝑦2𝑦1 ) → 3𝜁(Σ𝑦3 )2− 9
10 𝜁(Σ𝑦2 )3 𝜁(𝑆𝑥2

0𝑥1𝑥0𝑥2
1
) → 2

105 𝜁(𝑆𝑥0𝑥1 )3

𝜁(Σ𝑦4𝑦2
1
) → 3

10 𝜁(Σ𝑦2 )3− 3
4 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥2

0𝑥2
1𝑥0𝑥1 ) → − 89

210 𝜁(𝑆𝑥0𝑥1 )3+ 3
2 𝜁(𝑆𝑥2

0𝑥1 )2

𝜁(Σ𝑦2
2𝑦2

1
) → 11

63 𝜁(Σ𝑦2 )3− 1
4 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥2

0𝑥4
1
) → 6

35 𝜁(𝑆𝑥0𝑥1 )3− 1
2 𝜁(𝑆𝑥2

0𝑥1 )2

𝜁(Σ𝑦3𝑦3
1
) → 1

21 𝜁(Σ𝑦2 )3 𝜁(𝑆𝑥0𝑥1𝑥0𝑥3
1
) → 8

21 𝜁(𝑆𝑥0𝑥1 )3−𝜁(𝑆𝑥2
0𝑥1 )2

𝜁(Σ𝑦2𝑦4
1
) → 17

50 𝜁(Σ𝑦2 )3+ 3
16 𝜁(Σ𝑦3 )2 𝜁(𝑆𝑥0𝑥5

1
) → 8

35 𝜁(𝑆𝑥0𝑥1 )3

This means that for any 𝑙 ∈ ℒ𝑦𝑛𝑌 − {𝑦1} (resp. 𝑙 ∈ ℒ𝑦𝑛𝑋 − 𝑋), the element
𝜁(Σ𝑙) (resp. 𝜁(𝑆𝑙)) is rewritten in a unique way as polynomials (normal forms) with
coeffients in Q in irreducible local coordinates 𝒵∞

𝑖𝑟𝑟(𝑌 ) (resp. 𝒵∞
𝑖𝑟𝑟(𝑋)) forming an

algebraic generator system for 𝒵 (see Example 6.4).

Example 6.4. — At weight 12 one has

Σ𝑦2 = 𝑦2, Σ𝑦3 = 𝑦3, Σ𝑦5 = 𝑦5, Σ𝑦7 = 𝑦7, Σ𝑦9 = 𝑦9, Σ𝑦11 = 𝑦11

41These rules are sorted by weight and are ordered by Lyndon words.
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and
𝑆𝑥0𝑥1 = 𝑥0𝑥1, 𝑆𝑥2

0𝑥1 = 𝑥2
0𝑥1, 𝑆𝑥4

0𝑥1 = 𝑥4
0𝑥1,

𝑆𝑥6
0𝑥1 = 𝑥6

0𝑥1, 𝑆𝑥8
0𝑥1 = 𝑥8

0𝑥1, 𝑆𝑥10
0 𝑥1 = 𝑥10

0 𝑥1.

The identification of local coordinates leads to the irreducible polyzetas (see [47]
for a short discussion)

𝒵612
𝑖𝑟𝑟 (𝑌 ) = {𝜁(Σ𝑦2), 𝜁(Σ𝑦3), 𝜁(Σ𝑦5), 𝜁(Σ𝑦7), 𝜁(Σ𝑦3𝑦5

1
), 𝜁(Σ𝑦9),

𝜁(Σ𝑦3𝑦7
1
), 𝜁(Σ𝑦11), 𝜁(Σ𝑦2𝑦9

1
), 𝜁(Σ𝑦3𝑦9

1
), 𝜁(Σ𝑦2

2𝑦8
1
)}.

ℒ612
𝑖𝑟𝑟 (𝑌 ) = {Σ𝑦2 , Σ𝑦3 , Σ𝑦5 , Σ𝑦7 , Σ𝑦3𝑦5

1
, Σ𝑦9 , Σ𝑦3𝑦7

1
, Σ𝑦11 , Σ𝑦2𝑦9

1
, Σ𝑦3𝑦9

1
, Σ𝑦2

2𝑦8
1
}.

𝒵612
𝑖𝑟𝑟 (𝑋) = {𝜁(𝑆𝑥0𝑥1), 𝜁(𝑆𝑥2

0𝑥1), 𝜁(𝑆𝑥4
0𝑥1), 𝜁(𝑆𝑥6

0𝑥1), 𝜁(𝑆𝑥0𝑥2
1𝑥0𝑥4

1
), 𝜁(𝑆𝑥8

0𝑥1),
𝜁(𝑆𝑥0𝑥2

1𝑥0𝑥6
1
), 𝜁(𝑆𝑥10

0 𝑥1), 𝜁(𝑆𝑥0𝑥3
1𝑥0𝑥7

1
), 𝜁(𝑆𝑥0𝑥2

1𝑥0𝑥8
1
), 𝜁(𝑆𝑥0𝑥4

1𝑥0𝑥6
1
)}.

ℒ612
𝑖𝑟𝑟 (𝑋) = {𝑆𝑥0𝑥1 , 𝑆𝑥2

0𝑥1 , 𝑆𝑥4
0𝑥1 , 𝑆𝑥6

0𝑥1 , 𝑆𝑥0𝑥2
1𝑥0𝑥4

1
, 𝑆𝑥8

0𝑥1 , 𝑆𝑥0𝑥2
1𝑥0𝑥6

1
,

𝑆𝑥10
0 𝑥1 , 𝑆𝑥0𝑥3

1𝑥0𝑥7
1
, 𝑆𝑥0𝑥2

1𝑥0𝑥8
1
, 𝑆𝑥0𝑥4

1𝑥0𝑥6
1
}.

Appendix B∑︁
𝑤∈𝑥*

0

Li𝑤(𝑧)𝑤 = 𝑒𝑥0 log(𝑧),

∑︁
𝑤∈𝑥*

0 ⊔⊔ 𝑥1

Li𝑤(𝑧)𝑤 =
∫︁ 𝑧

0
𝑒𝑥0[log(𝑧)−log(𝑡)]𝑥1𝜔1(𝑡)𝑒𝑥0 log(𝑡) =

∫︁ 𝑧

0
𝜔1(𝑡)𝜅1(𝑧, 𝑡),

where
𝜅1(𝑧, 𝑡) = 𝑒𝑥0[log(𝑧)−log(𝑡)]𝑥1𝑒𝑥0 log(𝑡) = 𝑒𝑥0 log(𝑧)𝑒ad−𝑥0 log(𝑡)𝑥1.∑︁

𝑤∈𝑥*
0 ⊔⊔ 𝑥2

1

Li𝑤(𝑧)𝑤 =
∫︁ 𝑧

0
𝑒𝑥0[log(𝑧)−log(𝑡1)]𝑥1𝜔1(𝑡1)

∫︁ 𝑡1

0
𝑒𝑥0[log(𝑡1)−log(𝑡2)]𝑥1𝜔1(𝑡2)𝑒𝑥0 log(𝑡2)

=
∫︁ 𝑧

0
𝜔1(𝑡1)

∫︁ 𝑡1

0
𝜔1(𝑡2)𝜅2(𝑧, 𝑡1, 𝑡2),

where
𝜅2(𝑧, 𝑡1, 𝑡2) = 𝑒𝑥0[log(𝑧)−log(𝑡1)]𝑥1𝑒𝑥0[log(𝑡1)−log(𝑡2)]𝑥1𝑒𝑥0 log(𝑡2)

= 𝑒𝑥0 log(𝑧)𝑒ad−𝑥0 log(𝑡1)𝑥1𝑒ad−𝑥0 log(𝑡2)𝑥1,∑︁
𝑤∈𝑥*

0 ⊔⊔ 𝑥3
1

Li𝑤(𝑧)𝑤 =
∫︁ 𝑧

0
𝜔1(𝑡1)

∫︁ 𝑡1

0
𝜔1(𝑡2)

∫︁ 𝑡2

0
𝜔1(𝑡3)𝜅3(𝑧, 𝑡1, 𝑡2, 𝑡3),

where
𝜅3(𝑧, 𝑡1, 𝑡2, 𝑡3) = 𝑒𝑥0[log(𝑧)−log(𝑡1)]𝑥1𝑒𝑥0[log(𝑡1)−log(𝑡2)]𝑥1𝑒𝑥0[log(𝑡2)−log(𝑡3)]𝑥1𝑒𝑥0 log(𝑡3)

= 𝑒𝑥0 log(𝑧)𝑒ad−𝑥0 log(𝑡1)𝑥1𝑒ad−𝑥0 log(𝑡2)𝑥1𝑒ad−𝑥0 log(𝑡3)𝑥1,

...∑︁
𝑤∈𝑥*

0 ⊔⊔ 𝑥𝑘
1

Li𝑤(𝑧)𝑤 =
∫︁ 𝑧

0
𝜔1(𝑡1) · · ·

∫︁ 𝑘−1

0
𝜔1(𝑡𝑘)𝜅𝑘(𝑧, 𝑡1, · · · , 𝑡𝑘),
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where

𝜅𝑘(𝑧, 𝑡1, · · · , 𝑡𝑘) = 𝑒𝑥0[log(𝑧)−log(𝑡1)]𝑥1 · · · 𝑒𝑥0[log(𝑡𝑘−1)−log(𝑡𝑘)]𝑥1𝑒𝑥0 log(𝑡𝑘)

= 𝑒𝑥0 log(𝑧)𝑒ad−𝑥0 log(𝑡1)𝑥1 · · · 𝑒ad−𝑥0 log(𝑡𝑘)𝑥1

= 𝑒𝑥0 log(𝑧)
∑︁

𝑙1,··· ,𝑙𝑘>0

𝑘∏︁
𝑖=1

log𝑙𝑖(𝑡𝑖)
𝑙𝑖!

ad𝑙𝑖
−𝑥0

𝑥1.

Hence (see the notations of Proposition 5.10) [43, 44],∑︁
𝑤∈𝑥*

0 ⊔⊔ 𝑥𝑘
1

Li𝑤(𝑧)𝑤 = 𝑒𝑥0 log(𝑧)
∑︁

𝑙1,··· ,𝑙𝑘>0

∫︁ 𝑧

0
𝜔1(𝑡1) log𝑙1(𝑡1)

𝑙1! · · ·

∫︁ 𝑡𝑘−1

0
𝜔1(𝑡𝑘) log𝑙𝑘 (𝑡𝑘)

𝑙𝑘!

𝑘∏︁
𝑖=1

ad𝑙𝑖
−𝑥0

𝑥1

= 𝑒𝑥0 log(𝑧)
∑︁

𝑙1,··· ,𝑙𝑘>0
Li

𝑥1𝑥
𝑙1
0 ∘···∘𝑥1𝑥

𝑙𝑘
0

(𝑧)
𝑘∏︁

𝑖=1
ad𝑙𝑖

−𝑥0
𝑥1.

See also Example 3.3 and Appendix C, for the commutative generating series of
polylogarithms.

Appendix C

For 𝑘 > 0 and | 𝑡 | < 1 let us define 𝑉𝑘 = (𝑡𝑥*
0) ⊔⊔ 𝑥𝑘

1 and 𝑊𝑘 = (𝑡𝑥*
1) ⊔⊔ 𝑥𝑘

0 . By
(3.4) one has [35, 36, 37]

Li𝑉𝑘
(𝑧) = 𝑧𝑡 (− log(1 − 𝑧))𝑘

𝑘! and Li𝑊𝑘
(𝑧) = (1 − 𝑧)−𝑡 log𝑘(𝑧)

𝑘! .

Hence [35, 36, 37],

Li(𝑡𝑥*
0) ⊔⊔ 𝑥*

1
(𝑧) =

∑︁
𝑘>0

Li𝑉𝑘
(𝑧) = 𝑧𝑡

1 − 𝑧
,

Li𝑥*
0 ⊔⊔ (𝑡𝑥*

1)(𝑧) =
∑︁
𝑘>0

Li𝑊𝑘
(𝑧) = 𝑧

(1 − 𝑧)𝑡
,

and then (see Remark 5.16)

𝜁⊔⊔ ((𝑡𝑥*
1) ⊔⊔ 𝑥*

0) =
∑︁
𝑘>0

𝜁⊔⊔ (𝑊𝑘) = 1, 𝜁⊔⊔ ((𝑡𝑥*
0) ⊔⊔ 𝑥*

1) =
∑︁
𝑘>0

𝜁⊔⊔ (𝑉𝑘) = 1

and 𝛾𝜋𝑌 ((𝑡𝑥*
1) ⊔⊔ 𝑥*

0) = 1
Γ(1 + 𝑡) .

By (3.4), for any 𝑘 > 1 one also has [35, 36, 37]

Li(𝑡𝑥1)*𝑖+1−(𝑡𝑥1)*𝑖(𝑧) = 𝑡(1 − 𝑧)𝑡 log(1 − 𝑧)
𝑖−1∑︁
𝑘=0

(︂
𝑖 − 1

𝑘

)︂
(−𝑡 log(1 − 𝑧))𝑘

𝑘! .

More generally, as in Theorem 2.3, let 𝑆 belong to Crat⟨⟨𝑋⟩⟩ and be of linear
representation (𝛽, 𝜇, 𝜂) of dimension 𝑛 > 1. Then the following matrix is nothing
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else than the “Dyson series” [36, 37]

𝑅(𝑧) =
∑︁

𝑤∈𝑋*

Li𝑤(𝑧)𝜇(𝑤) =
↘∏︁

𝑙∈ℒ𝑦𝑛𝑋

𝑒Li𝑆𝑙
(𝑧)𝜇(𝑃𝑙).

If 𝑆 is exchangeable, i.e. [𝜇(𝑥0), 𝜇(𝑥1)] = 0, then 𝑅 reduces to (see Lemma 2.4)
[36, 37]

𝑅(𝑧) = 𝑒log(𝑧)𝜇(𝑥0)−log(1−𝑧)𝜇(𝑥1).

The matrix 𝑅 belongs to ℳ𝑛,𝑛(C[log(𝑧), log(1 − 𝑧)][𝑧𝑎, (1 − 𝑧)𝑏]𝑎,𝑏∈C) and if 𝜇(𝑥0)
and 𝜇(𝑥1) are diagonal matrices, then 𝑅 ∈ ℳ𝑛,𝑛(C[𝑧𝑎, (1 − 𝑧)𝑏]𝑎,𝑏∈C) [36, 37]. On
the one hand, for | 𝑡0 | < 1 and | 𝑡1 | < 1, let us introduce the concatenation morphism
𝜏1, mapping 𝑥0 to 1 and 𝑥1 to 𝑡. Similarly, let 𝜏0 map 𝑥1 to 1 and 𝑥0 to 𝑡. It follows
then (see Appendix B)

𝜏1(L(𝑧)) = Li(𝑡𝑥*
1) ⊔⊔ 𝑥*

0
(𝑧) = 𝑧

(1 − 𝑧)𝑡
and 𝜏0(L(𝑧)) = Li(𝑡𝑥*

0) ⊔⊔ 𝑥*
1
(𝑧) = 𝑧𝑡

1 − 𝑧
.

On the other hand, let 𝜏 map 𝑥1 to 𝑡0 and 𝑥0 to 𝑡1. Then

𝜏(L(𝑧)) = Li(𝑡0𝑥0)* ⊔⊔ (𝑡1𝑥1)*(𝑧) = 𝑧𝑡0

(1 − 𝑧)𝑡1
.

Appendix D

The algebra ℋ(Ω) is endowed with the topology of compact convergence whose
seminorms are indexed by compact subsets of Ω, and defined by

𝑝𝐾(𝑓) := ||𝑓 ||𝐾 = sup
𝑠∈𝐾

|𝑓(𝑠)|.

Of course, 𝑝𝐾1∪𝐾2 = sup(𝑝𝐾1 , 𝑝𝐾2), and therefore the same topology is defined
by extracting a fundamental subset of seminorms, which here can be chosen denu-
merable. As ℋ(Ω) is complete in this topology, it is a Frechet space and even, as
𝑝𝐾(𝑓𝑔) 6 𝑝𝐾(𝑓)𝑝𝐾(𝑔), it is a Frechet algebra (even more, as 𝑝𝐾(1Ω) = 1, a Frechet
algebra with unit).

With the standard topology above, an operator 𝜑 ∈ End(ℋ(Ω)) is continuous if
and only if, with 𝐾𝑖 compacts of Ω,

(∀𝐾2)(∃𝐾1)(∃𝑀21 > 0)(∀𝑓 ∈ ℋ(Ω))(||𝜑(𝑓)||𝐾2 6𝑀21||𝑓 ||𝐾1),

the algebra 𝒞{Li𝑤}𝑤∈𝑋* (and ℋ(Ω) ) is closed under the operators 𝜃𝑖 for 𝑖 = 0, 1.
We will first build sections of them, then see that they are continuous and, propose
(discontinuous) sections more adapted to renormalisation and the computation of
associators.

For 𝑧0 ∈ Ω, let us define 𝜄𝑧0
𝑖 ∈ End(ℋ(Ω)) by

𝜄𝑧0
0 (𝑓) =

∫︁ 𝑧

𝑧0

𝑓(𝑠)𝜔0(𝑠) and 𝜄𝑧0
1 (𝑓) =

∫︁ 𝑧

𝑧0

𝑓(𝑠)𝜔1(𝑠).

It is easy to check that 𝜃𝑖𝜄
𝑧0
𝑖 = Idℋ(Ω) and that they are continuous on ℋ(Ω) (for

the topology of compact convergence), because for all 𝐾 ⊂compact Ω we have

|𝑝𝐾(𝜄𝑧0
𝑖 (𝑓)| 6 𝑝𝐾(𝑓)[sup

𝑧∈𝐾
|
∫︁ 𝑧

𝑧0

𝜔𝑖(𝑠)|],
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and this is sufficient to prove continuity. The operators 𝜄𝑧0
𝑖 are also well defined on

𝒞{Li𝑤}𝑤∈𝑋* , and it is easy to check that
𝜄𝑧0
𝑖 (𝒞{Li𝑤}𝑤∈𝑋*) ⊂ 𝒞{Li𝑤}𝑤∈𝑋* .

Due to the decomposition of ℋ(Ω) into a direct sum of closed subspaces
ℋ(Ω) = ℋ𝑧0 ↦→0(Ω) ⊕ C1Ω,

it is not hard to see that the graphs of 𝜃𝑖 are closed. Thus the 𝜃𝑖 are also continuous.
Much more interesting (and adapted to the explicit computation of associators),
we have the operator 𝜄𝑖 (without superscripts), mentioned in the introduction and
(more rigorously) defined by means of a C-basis of

𝒞{Li𝑤}𝑤∈𝑋* = 𝒞 ⊗C C{Li𝑤}𝑤∈𝑋* .

As C{Li𝑤}𝑤∈𝑋* ∼= C[ℒ𝑦𝑛(𝑋)], one can partition the alphabet of this polynomial
algebra in (ℒ𝑦𝑛(𝑋) ∩ 𝑋*𝑥1) ⊔ {𝑥0} and obtain the decomposition

𝒞{Li𝑤}𝑤∈𝑋* ≃ 𝒞 ⊗C C{Li𝑤}𝑤∈𝑋*𝑥1 ⊗C C{Li𝑤}𝑤∈𝑥*
0
.

Due to the following identity [35],

𝑢𝑥1𝑥𝑛
0 = 𝑢𝑥1 ⊔⊔ 𝑥𝑛

0 −
𝑛∑︁

𝑘=1
(𝑢 ⊔⊔ 𝑥𝑘

0)𝑥1𝑥𝑛−𝑘
0 ,

we have an algorithm to convert Li𝑢𝑥1𝑥𝑛
0

as

Li𝑢𝑥1𝑥𝑛
0
(𝑧) =

∑︁
𝑚6𝑛

𝑃𝑚(𝑧) log𝑚(𝑧) =
∑︁

𝑚6𝑛,𝑤∈𝑋*𝑥1

⟨𝑃𝑚(𝑧) | 𝑤⟩ Li𝑤(𝑧) log𝑚(𝑧).

This means that
ℬ := (𝑧𝑘 Li𝑢𝑥1(𝑧) Li𝑥𝑛

0
(𝑧))(𝑘,𝑛,𝑢)∈Z×N×𝑋* ⊔ (𝑧𝑘 Li𝑥𝑛

0
(𝑧))(𝑘,𝑛)∈Z×N

⊔ ((1 − 𝑧)−𝑙 Li𝑢𝑥1(𝑧) Li𝑥𝑛
0
(𝑧))(𝑙,𝑛,𝑢)∈N+×N×𝑋* ⊔ ((1 − 𝑧)−𝑙 Li𝑥𝑛

0
(𝑧))(𝑙,𝑛)∈N+×N,

is a C-basis of 𝒞{Li𝑤}𝑤∈𝑋* . With this basis, we can define 𝜄0 as follows.

Definition 6.5 ([22]). — Define the index map ind : ℬ → Z by
ind(𝑧𝑘(1 − 𝑧)−𝑙 Li𝑥𝑛

0
(𝑧)) = 𝑘 and ind(𝑧𝑘(1 − 𝑧)−𝑙 Li𝑢𝑥1(𝑧) log𝑛(𝑧)) = 𝑘 + |𝑢𝑥1|.

Then 𝜄0 is computed as follows

𝜄0(𝑏) =

⎧⎪⎨⎪⎩
∫︁ 𝑧

0
𝑏(𝑠)𝜔0(𝑠), if ind(𝑏) > 1,∫︁ 𝑧

1
𝑏(𝑠)𝜔0(𝑠), if ind(𝑏) 6 0.

To show discontinuity of 𝜄0, one of the possibilities consists in exhibiting two
sequences 𝑓𝑛, 𝑔𝑛 ∈ C{Li𝑤}𝑤∈𝑋* converging to the same limit but such that

lim 𝜄0(𝑓𝑛) ̸= lim 𝜄0(𝑔𝑛).
Here, we choose the function 𝑧 to be approximated in a twofold way, and if 𝜄0 were
continuous, we would have equality of the limits of the image-sequences (which is
not the case). We first remark that

𝑧 =
∑︁
𝑛>0

log𝑛(𝑧)
𝑛! =

∑︁
𝑛>1

(−1)𝑛+1 log𝑚((1 − 𝑧)−1

𝑛!
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Set

𝑓𝑛 =
∑︁

06𝑚6𝑛

log𝑚(𝑧)
𝑚! and 𝑔𝑛 =

∑︁
16𝑚6𝑛

(−1)𝑚+1 log𝑚((1 − 𝑧)−1))
𝑚!

(these two sequences are in C{Li𝑤}𝑤∈𝑋*). It is easily seen that 𝜄0(𝑓𝑛) = 𝑓𝑛+1 − 1,
and then lim

𝑛→+∞
𝜄0(𝑓𝑛)(𝑧) = 𝑧 − 1. Now, for any 𝑠 ∈ [0, 𝑧] with 𝑧 ∈]0, 1[ one has

|𝑔(𝑠) |=|
𝑛∑︁

𝑚=1
(−1)𝑚+1 log𝑛(1 − 𝑠)

𝑚! |6 𝑠

1 − 𝑠
.

In order to exchange limits, we apply Lebesgue’s dominated convergence theorem to
the measure space (]0, 𝑧], ℬ, 𝑑𝑧/𝑧) (ℬ is the usual Borel 𝜎-algebra) and the function
𝑝(𝑥) = 𝑠(1−𝑠)−1 which is — as are the functions 𝑔𝑛 — integrable on ]0, 𝑧] for every
𝑧 ∈]0, 1[. Then

lim(𝜄0(𝑔𝑛)) = lim
𝑛→+∞

𝑧∫︁
0

𝑔𝑛(𝑠)𝑑𝑠

𝑠
=

𝑧∫︁
0

lim
𝑛→+∞

𝑔𝑛(𝑠)𝑑𝑠

𝑠
=

𝑧∫︁
0

𝑠
𝑑𝑠

𝑠
= 𝑧.

Hence, for 𝑧 ∈]0, 1[ we obtain lim(𝜄0(𝑓𝑛)) = 𝑧−1 ̸= 𝑧 = lim(𝜄0(𝑔𝑛)) which completes
the proof.
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