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ON THE SOLUTIONS OF THE UNIVERSAL DIFFERENTIAL
EQUATION WITH THREE REGULAR SINGULARITIES
(ON SOLUTIONS OF KZ3)

VINCEL HOANG NGOC MINH

Abstract. This review concerns the resolution of a special case of Knizhnik-Zamolodchikov
equations (K Z3) and our recent results on combinatorial aspects of zeta functions on several
variables.

In particular, we describe the action of the differential Galois group of KZs3 on the
asymptotic expansions of its solutions leading to a group of associators which contains the
unique Drinfel’d associator (or Drinfel’d series). Non trivial expressions of an associator
with rational coefficients are also explicitly provided, based on the algebraic structure and
the singularity analysis of the multi-indexed polylogarithms and harmonic sums.
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1. KNIZHNIK-ZAMOLODCHIKOV EQUATIONS AND DRINFEL'D SERIES

In this paper, we survey our recent results which pertain to an in-depth combi-
natorial study of the several complex variables zeta functions defined as follows

Vr > 1, Cr i Hr — R, ($1,.-+,8p) — Z ny"tooong T,
ni>...>nEp>0
where H, = {(s1,...,8,) € C" | Ym = 1,...,7,R(s1) + ... + R(sm) > m} [29,
30]. They appear in the regularization of solutions of the following fuchsian first
order differential equation without initial condition, with regular singularities in
{0,1, 400} and noncommutative indeterminates in X = {xg,z1} :

(DE)  dG(z) = <xodj+w11dz >G(z). (1.1)

Let us denote by H () the ring of holomorphic functions over the simply connected
domain Q := C\ (] — 00,0] U [1, +o0[, with 1o :  — H () as the neutral element
(z = 1). Let us also introduce the following differential forms
dz dz

wo(z) = . and wi(z) := T
This equation can be considered as the universal fuchsian first order differential
equation with three regular singularities. Here, the notation has become essentially
classical since Drinfel’d’s papers [24, 25] which emphasized the importance of (1.1).
After some elementary transformations [24, 25] one also finds that (1.1) is (equiv-
alent to) the first non trivial Knizhnik-Zamolodchikov K Z3. This is connected to
the fact that the colored braid group on three strands P5 is the direct product of
its cyclic center with a copy of the free group on two generators. Although this
interpretation of (1.1) does not play an explicit role below, it should be kept in
mind with a view towards applications.

We may now return to (1.1) for which a solution can be obtained, as already
pointed out by Poincaré, and done for the systems of ordinary linear differential
equations with regular singularities in [18, 26, 37, 50], via Picard’s iterative approzx-
imation. The differential Galois group of (1.1) is nothing else than the Hausdorff
group, set of exponentials of Lie series in Lieg({(X)) (see Section 5). In this way, on
the completion of H(2)(X), one obtains the so-called Chen series, over wy and wy
along the path zyp ~ z on £, defined by [9, 33] :

Crpmz 1= Z ol (ww € Hm), (1.2)

weX*

where X* is the free monoid, generated by X [1, 58] (1x~ is the neutral element),
aZ (1x~) equals 1 and, for subdivisions (2o, 21 ...,2k,2) of zo ~ z and for w =
Ty, -1y, € X*X, the coefficient o (x4, - - x4, is defined by

(o) = ) [ wnla) € HE) (13

zZ0 Z0
and satisfies the shuffle relation o (uw v) = o (u)aZ (v), for u,v € X* [11].
By termwise differentiation, the power series C,, ., satisfies (1.1), with initial
condition Cysry = 1x+. From a theorem due to Ree [56], there exists a primitive
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series L, sy € Hm) such that ef=0~= = C, ..., meaning that C,, .. is group-
like. The challenge is then to determine explicitly L, ..., via the Magnus’ Lie-
integral-functional expansion [54] and to regularize, effectively, Cp..; and Lg..1
(although a lot of iterated integrals be divergent). On the other hand, essentially
interested in the solutions of (1.1) over the interval ]0,1[ and using the involution
z = 1 — z, Drinfel’d stated that (1.1) admits a unique solution Gy (resp. Gi)
satisfying the following asymptotic behaviors [24, 25] :

Go(z) ~p 2% and Gi(z) ~1 (1 —2)7 "L (1.4)

In particular, since Gy and G; are group-like, there is a unique group-like series
Dy € R{X)), called the Drinfel’d associator [55] (or Drinfel’d series [34]), such
that [24, 25]

Gy =G1Pkz. (1.5)

Drinfel’d proved also the existence of group-like series in Q{(X)) satisfying similar
properties of @i, but he neither constructed such an expression nor made explicit
Go and G; (similarly for log(Go),log(G1) and log(Pk z)).

After that, Lé and Murakami expressed, in particular, the divergent coefficients

) L >1 .
of k7 as linear combinations of {(.(s1,.. ., ST)}Z51 S)ENT sy 320 Via a regular-
©Sr >1517

ization based on representation of the chord diagram algebras [52].

One has two ways of considering, for any (s1,...,s,) € H,, the quantities
¢r(s1,.-.,8r) as limits fulfilling identities (see Section 3) [13, 16, 46, 47]. Firstly,
they are limits at z = 1 of polylogarithms, and secondly, as truncated sums, they
are limits of harmonic sums when the upper bound tends to +oo :

Lis, . s, (2) := Z ny*oon R 2™, for z € C,|z|< 1, (1.6)
ni>...>nk >0
Hi, . s.(n) = Z ny Tt ong ok, forn € IN,. (1.7)

ny>...>nk >0

More precisely, if (s1,...,s,) € H, then!, after a theorem by Abel, one has

;1_>m1 Lis, ... s.(2) = nh_}rr;@ Hs, . s.(n) =Co(51,. .., 8K)- (1.8)
This does not hold for (s1,...,s.) ¢ H,, while (1.6) is well defined over {z € C,|z]|
< 1} and so are (1.7) as Taylor coefficients of the following function
Li, ,.. ,sk

ZHsl, Lse(m)z", for z € C, |z < 1. (1.9)

n=1

Poys(2) = 12

The coefficients in (1.3) are single valued over 2 ; alternatively they can be
analytically continued and appear as multivalued functions over B := C — {0, 1}.
In fact, we have mappings from the universal cover of B, denoted by B, i.e. we
choose a universal covering (B, B, p), where p : B — B is the covering map [9].

This second point of view will be adopted in the sequel. In this respect, let
H(B) (resp. H(B)) denote the ring of holomorphic functions over B (resp. B),
with 15 : B — C (resp. 15 : B — C) as the neutral element (z — 1).

1C1 (s1) is nothing else than the Riemann zeta function. It is convenient to set (o to 1g.
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Let s : Q — B be a lifting of the canonical embedding j : Q < B
B
Q c—> B

In particular, for any g : B — B and 2,y € B such that g(p(z)) = p(y) there
exists a unique lifting § (depending on (z, y)) such that g(x) = y) and the following
commutes [9]

B--94 B
J{P P
B2+ B

The work presented in this survey will concern our recent results about polylog-
arithms, harmonic sums and zeta values, involved in the coefficients of C,.., and
L,,.. belonging to H(B){(X)).

We will base our work essentially on

(1) The isomorphisms of the Cauchy and Hadamard algebras of polylogarith-
mic functions, as defined in (1.6) and (1.9), respectively, with the shuffle
(C(X),w,1x~) and the quasi-shuffle algebras (C(Y), w ,1ly~) admitting
Lyndon words as pure transcendence bases (recalled in Section 2),

(2) The isomorphisms of the bialgebras

(A(X), ,1x-,AL,e) and (A(Y), ., ly«, A, e)

with, respectively, the enveloping algebras of their primitive elements, lead-
ing to the constructions of the pairs of bases in duality to factorize the diag-
onal series thanks to the Cartier-Quillen-Milnor-Moore (CQMM, in short)
and Poincaré-Birkhoff-Witt (PBW, in short) theorems (recalled in Section
2),

(3) The use of commutative and noncommutative generating series to estab-

lish combinatorial algebraic and analytical aspects of the polylogarithms
r>1

. >1 .
{LISthr}Zsl,...,s,.)eC“ the harmonic sums {Hslwwsr}(sl,...,s,.)EC’"’ and the
zeta functions {(.(s1,. .., ST)}?il syecr (recalled in Sections 3-5).

In the sequel, for simplification, we will adopt the notation ( for (., € IN.
We will examine the following problems :

P1. The renormalization which consists of finding counter terms to eliminate
the divergence of the polylogarithms {Lis, .. gT}T>1 at z =1, and

(815,87 )EZT
of the harmonic sums {Hsls};il smyezr for m— +00 (see Theorems
4.1 and 4.9 below).

For this, a theorem due to Abel is extended to treat, simultaneously, all
convergent cases as well as all divergent cases via their generating series.

P2. The regularization which consists of evaluating analytically the finite parts

(involved in the coefficients of Cy.,1 and Lg..1) of the singular expansions

of the polylogarithms {Lis, . s, }7(";1 Deny, at z = 1 with respect to the

,,,,,

comparison scale {(1—z) % log (l—z)}a’bem, and the asymptotic expansions
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r>1

of the harmonic sums {Hg, . ST}(Sl Jeny,

for n — 400 in the scales

{n="10g"(n) }a.pew and {n"H%(n )}a,be]N, via combinatorial aspects of their

noncommutative generating series (see Proposition 5.9 below).

For this, the definition of the regularization characters over the algebraic
bases of noncommutative polynomial algebras have to be reduced to match

with their analytical meanings.

P3. For any multiindex (—s1,...,—sg) in IN" | since the polylogarithms (resp.
harmonic sums) are polynomial in e~ '°8(1=2) for | z| < 1 (resp. in n € IN)

with coefficients in Z (resp. Q) (see Propositions 4.7 and 4.11 below) :

r+s1+...+sk

Licgy s (2) = D pre PO8077) = p(em108072)), (1.10)

k=0
r4+s1+...+sg Di
Hewomn )= Y0 Ttk =p(n). (1.11)

k=0

Hence, Li_g, . s, (1) (vesp. H_g,, . _s, (+00)), as divergent sums, can be
regularized (see Lemma 5.12 below) by the value p(1) € Z (resp. p(1) €
Q) admitting generating series as rational associators (see Theorem 5.15

below).

This way, the previous regularizations are extended algebraically (i.e.
by transcendent extension over a subalgebra of noncommutative rational
series, see Proposition 5.11 below) and analytically (i.e. by evaluation of
their finite parts within the comparison scales {(1 — 2z)~*log”(1 — 2)}a.ben
and {n~%log’(n)}acz.pen, see Lemma 5.12 below), allowing to regularize,
in particular, the iterated integrals and their Taylor coefficients associated
with the rational series in (C[z7],w,1x+) and?® (C[yj], w ,1y«), i.e. the

following sums with divergent coefficients (see Theorem 5.15 below)

ZLll 1(1) " and ZHl 00) ™.

n>0 n>=0
n tlmes n tlmes

P4. For any multiindex (s1,...,s;) in IN%,, by expanding (1 — 2)~! the poly-
logarithms as in (1.6) can be obtained as iterated integrals over the differ-
ential forms wy and w; along the path 0 ~» z associated with the words

Spr—

8171
o Zy1...-Tg

Y21 over X*z1, as in (1.3). They induce shuffle relations

while the Taylor coefficients as in (1.7) induce quasi-shuffle relations among

convergent zeta values, as obtained in (1.8) (see Theorem 3.1 below).

In fact, the polynomial relations (homogenous in weight) over a com-
mutative Q-extension, denoted by A, among convergent zeta values, are
relations obtained at singularities among elements of a transcendence basis
of the algebra of polylogarithms (or harmonic sums, see Proposition 4.3 be-
low). These relations are not due to but imply the double-shuffle relations
and do not need any regularization. Moreover, if Euler’s constant v ¢ A,

then they are algebraically independent of v (see Corollary 5.7 below).

2Here7 Y = {yr}r>1 and & is the quasi-shuffle (or stuffle, for sticky shuffle) product.
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The organization of this paper is as follows :

e In Section 2, the algebraic combinatorial framework is introduced. In par-
ticular, we will give an explicit isomorphism ¢, from the shuffle bialgebra
to the quasi-shuffle bialgebra (Theorem 2.1).

Working with ¢, , the construction by Mélancon-Reutenauer-Schiitzen-
berger (MRS, in short), initially elaborated in the shuffle bialgebra and use-
ful to factorize the group-like series and then rational power series (Theorem
2.3), will be extended in the quasi-shuffle bialgebra for the similar factor-
izations via the constructions of pairs of bases in duality (see (2.6)—(2.7)).

e In Section 3, to study their structure via generating series, polylogarithms
and harmonic sums at integral multiindices will be encoded by words over
various alphabets (Theorems 3.1, 3.2 and Lemmas 2.4-3.5). In particu-
lar, the bi-integro differential algebra of polylogarithms will be examined
(Proposition 3.6) and their noncommutative generating series will be put
in the MRS form (their logarithms will be also provided, Proposition 3.8).

Concerning the polylogarithms at positive indices, we will insist on the
fact that their noncommutative generating series is the actual solution of
(1.1), and the noncommutative generating series of the finite parts of their
singular expansions corresponds to the associator ®x» which will be also
put in MRS form without divergent zeta values as local coordinates.

e In Section 4, with noncommutative generating series, the global renormal-
izations of polylogarithms and harmonic sums will provide associators (The-
orems 4.1 and 4.9). In particular, using the bridge equations connecting
shuffle structures (Propositions 4.2 and 4.3), the enumerable families of
irreducible zetas values will be implemented (see (4.8)—(4.9)) and Euler’s
~ constant will be generalized as finite parts of harmonic sums (Corollary
4.6). This will be achieved by identifying the local coordinates in infinite
dimension and by obtaining algebraic relations among zeta values.

With commutative generating series, many functions (algebraic functions
with singularities in {0, 1, +00}, see Example 3.3) forgotten in the straight
algebra of polylogarithms, at positive indices, will be recovered.

e In Section 5, the elements of the differential Galois group Galg(DFE) con-
taining the groups of monodromy and of associators will be considered as
reqularized solutions of (1.1). The actions of Galg(DE) on the singular
expansions of the solutions of (1.1) will be then discussed (Theorem 5.2) :
on the one hand, since the group of associators contains itself @y, and the
local coordinates of each associator are homogenous in weight polynomials
on zeta values over A, the independence of the convergent zeta values with
respect to y will be discussed according to A (Corollary 5.7), and log(®x )
will be also expressed (Proposition 5.9); on the other hand, since the poly-
logarithms at negative indices are polynomial in (1 — 2)~! with coefficients
in Z (Propositions 4.7-4.11), the generating series of the finite parts of their
singular expansions will specify the regularization characters (Propositions
5.6-5.11) and give examples of rational associators (Theorem 5.15).
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2. COMBINATORIAL FRAMEWORK

2.1. Shuffle and quasi-shuffle algebras. Let A be a commutative and associa-
tive Q-algebra with unit.

Let X = {zg,z1} (resp. Yy = {ys}s>0) be an alphabet equipped with the total
order xg < x1 (resp. yo > y1 > y2 > ...) and let Y = Yy — {yo}. The free monoid
generated by X (resp. Y, or Yp) is denoted by X* (resp. Y*, or Y;") and admits
the empty word, 1x- (resp. 1y« and ly;) as unit [1].

The sets of polynomials and formal power series over X* (resp. Y* or ) with
coefficients in A are denoted respectively by A(X) (resp. A(Y) or A(Yy)) and A{X))
(resp. A{Y) or A{(Yo)) [1]. The sets of polynomials are A-modules admitting
{whwex~ (resp. {w}yey+ and {w}y,eyy) as linear bases, i.e.

AX) = AIX], AY) AN, AYD) = AV (2.1

Therefore, their full duals are

A(X) =AY A(Y) = AT, Afyp) = A
and the natural pairing is given by the scalar product

(S|P)y=> SuPu) with Ze{X,Y,Yp},

uezZ*

where, S(u) and P(u) are the coefficients® of u in the series S and the polynomial
P, respectively.

As algebras (see (2.1)) the A-modules A(X) (resp. A(Y) and A(Yp)) come
equipped with the associative concatenation product and

(1) in A(X), the associative commutative shuffle product [11, 27, 56] is defined,
for any u,v,w € X* and z,y € X, as follows [33]

wwlys =lxsww=w and zuwyv=z(uwyv)+ y(ruwv),

(2) in A(Y) and A(Yp), the associative commutative quasi-shuffle product [49]
is defined for all y;,y; € Yo and u, v, w € Y as follows [48]

W lyy =1y« ww =w,
yiu e y;v = yi(uw yo) + y;(yiv s o) + yiy, (v s v).

Their associated coproducts, A,,, and A, are defined for uy,v1,w; € X* and
Uz, V2, wa € Yy as follows

(ur wvr [wr) = (ur @v1 | Ay, (wr)),
(ug Vg | we) = (us @ v | Ay (w2)).
These operators are morphisms for the concatenation defined on the letters z € X
and yi € Yp by
A (z)=1@z+2®1,
Aw(ys) = 1@y +y @1+ Y 40y,
itj=k
The algebras (A(X),w,1x+) and (A(Y), w ,1y+) admit the sets of Lyndon
words denoted, respectively, by LynX and LynY, as pure transcendence bases [57]

3This coefficient is then (S | u) and (P | u).
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(resp. [46, 47]). A pair of Lyndon words (I1,l2) is called the standard factorization
of [ if I = l3ly and Iy is the smallest nontrivial proper right factor of ! (for the
lexicographic order) or, equivalently, its (Lyndon) longest such [53].

2.2. Diagonal series on bialgebras. Let Lies(X) and Lie (X)) denote the sets
of, respectively, Lie polynomials and Lie series over X with coefficients in A [53, 57].

The CQMM theorem [7] guarantees that the connected IN-graded, co-commu-
tative Hopf algebra® is the enveloping algebra of its primitive elements (hence,
A(X) =U(Lies(X))). Classically, the pair of dual bases, { Py, }wex+ expanded over
the basis { P, }iecynx of Liea(X) and {Sy }wex+ containing the pure transcendence
basis of the shuffle algebra denoted by {S;}icynx, permits an expression of the
diagonal series as follows [57]

¢
Dx:i= Y we@w= » 8,8P,= [[ " (2.2)
weX* weX* leLynX

We also get two other connected IN-graded, co-commutative Hopf algebras isomor-
phic to the enveloping algebras of their Lie algebras of their primitive elements :

Ho = (ALY), 1y, AL e) ZU(Liea(Y)),
Huw = (AY), 1y, A, e) ZUPrim(H w ),

where Prim(H ) = Im(m) = spany{m(w) | w € Y*} and m is the extended
eulerian projector defined, for any w € Y*, by [46, 47]

(w) k—1
-1
Trl(w):w—}—z% Z (wug . U UL - U (2.3)
k=2 Ul,...,up €Y+
Denoting by (I1,12) the standard factorization of [ € LynY — Y, let us consider
(1) The PBW basis {py }wey~ of U(Lies(Y)) constructed recursively as follows
[57]
Dy, = Yns for y, €Y,
o= [pi,p,),  forle LynY =Y, st(l) = (I1,12),

po=p...pF, forw=I{ . F withly,.... Iy € LynY, Iy > ... > I

(2.4)
(2) and, by duality®, the basis {s, }wey~ of (A(Y),w, 1y+), d.e.
(Du | Sv) =0y forall u,v e Y™,
This linear basis can be computed recursively as follows [57].
Sy, = Ys» for UYn € K
81 = YnSu, for | = ypu € LynY,
Wi i - (2.5)
g = ey for w=17" ...} with
w g Dyl € LynY, > > U

4Here, e denotes the counit defined by e(P) = (P | 1x+) (for any P € A(Y)).

5The dual family, i.e. the set of coordinates forms, is linearly free (but not a basis in general)
in the algebraic dual which is the space of noncommutative series, but as the enveloping algebra
under consideration is graded in finite dimension by multidegree. In Fact it consists of multi-
homogeneous polynomials.
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As in (2.2), let D, be the diagonal series on H,,,. Then [57]

\
D, = Zw@w: st®pw= H eS1oPL,
weY'* weY leLynY

THEOREM 2.1 ([47]). — Let @r, : (AY),.,1y-) = (A(Y),.,1y~) be the endo-
morphism of algebras mapping yy, to w1 (yx). Then @, is an automorphism of A(Y")
and it realizes an isomorphism from the bialgebra H , to the bialgebra H s . In
particular, the following diagram is commutative

Ay,

QYY) —=Q(Y) ® Q(Y)

Py l i‘ﬂn QP

QYY) T Q)2 Q()

A1)
and
Hew 2UPrim(Hw)) and HY, 2UPrim(Hw))Y.
Moreover, the bases {Il,, }wey+ and {Xy, }wey~ of, respectively, U(Prim(H 1))
and U(Prim(H s ))Y, are images by ¢, and gb;ll of {py twey* and {Sy fwey*.

Algorithmically®, the families {I,} ey~ and {Zy }wey~ of polynomials homoge-
nous for the weight can be constructed directly and recursively as follows [3, 46, 47]

(1) The PBW basis {II, }wey= of U(Prim(H v )) :
I, = mi(ys), for y, €Y,
I, =[I,,10,], forle LynY =Y, st(l) = (Iy,12),
I, =T .. 00, for w =1} .0} withly,...,lx € LynY, Iy > ... > .

(2.6)
(2) and, by duality, i.e.
(IL, | ) = 0y forall u,v e Y™,
the basis {Zy bwey= of (Q(Y), w,1y+) :
ZyS = Ys, for Ys € Y,
1

¥ = Z Eyskl‘*‘---*‘ski i, forl=vys ...ys € LynY,

O (2.7)
g Sn e w BT for =i, with

v il dg! ’ li,..., k. € LynY, Iy > ... > .

In (%), the sum is taken over all {kq,...,k;} C {1,...,k}andly > ... >,
such that (ys,,...,¥s,) < (Ysay - -+ s Ysi, s 115+ -5 1), where <& denotes the
transitive closure of the relation on standard sequences, denoted by < [3].

6In [4], other pairs of bases in duality for H 141 are also proposed.
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Let D = D,,, be the diagonal series” on Y. One has [46, 47]

N
D= Y wow= Yy By@M,= [[ &M (2.8)

weyY ' * weY* leLynY

More generally, under suitable conditions® these factorizations still hold for the
p-deformed shuffle product, thanks to an extension of Theorem 2.1 [6, 7, 31].
Now, let us consider the following morphism

75 (Al @ A(X)ar,.) — (AY),.),

s1—1 Sp—

1
xo' T Ty X1 Ysy - .- Ys,, forr>1,

and 75 (a) = a for any a € A. The extension of 7§ over A(X) is the map 7y :
(A(X),.) = (A(Y),.) satisfying my (p) = 0 for any p € A(X)zo. Hence, kermy =
A(X )z and Im(my ) = A(Y). Let mx be the inverse of 7§ :

mx  (A(Y), ) — (A® A(X)1, ),

8171

Sr—1
Ysi -+ Ys, —> o' T1...x5" x1, forr>=1.

For the scalar products, the projectors mx and 7y are then mutually adjoints :
Vpe Ad A(X)zy, Vge AY), (my(p)|q) = {p|7mx(q))
We have my omx = Idy. But mx omy # Idy. It is an orthogonal projector of
A(X) on A@ A(X )z, parallel to A A(X)xo. Indeed ker(rx omy) = A(X)xo and
Im(mx omy) = A(Y).
The map 7x is a morphism of associative algebras with unity (AAU) and the
map 7y is multiplicative on A.1x+ ® A(X)x; but not on A(X). For example,

0 = my (xo)my (21) # Ty (Rox1) = Ty (Zoz1) = Yo.
These can be extended by linearity and continuity over A{(X)) and A{Y)), respec-
tively.
LEMMA 2.2 ([53, 58]). — I € LynX — {xo} if and only if my () € LynY .

2.3. Exchangeable and noncommutative rational series. Recall that a for-
mal power series R is exchangeable if and only if two words have the same coeffi-
cient in R € A{(X)) whenever they have the same commutative image, i.e. for any
u,v € X*, if |u|,=|v]|; for any z € X then (R | u) = (R | v) [33]. It follows that
an exchangeable series R takes the following form [33]

L %o L

. . T T
[ 7 0 1
R = g Tig,ir T W T = E Tigin— W — (2.9)
’Lo! 21!

10,9120 10,1120

The set of exchangeable series is denoted by Aexc (X ).
Let A™"(( X)) denote the closure, of A(X) in A{(X)) under® {+,.,*}. It is closed
under shuffle [1]. A power series R € A™"((X)) is said to be rational.

"The set-theoretical object is the same, but the different indexing here expresses the fact that
they will be considered as living in different algebras.

8In fact associative commutative dualizable and moderate, see [6, 7, 31].

9Let R € A(X)) be such that (R|1x+)=0. Then R* = 1x+ + R+ R2+--- ..
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Let R € A™'(X)). By the Kleene-Schiitzenberger theorem [1] there exists a
linear representation (B, u,n) of dimension n > 1, where
/8 S Mn,l(A)a Mo X*— Mn,n(A)7 RS Ml,n(A) (210)
such that

R= 3 (utom) w=5( 3 plos) .

weX zeX
Hence, letting M(z) := p(x)x for x € X, one has M(X) = M(xo) + M(x1) as
morphism of monoids, and, using Lazard’s elimination [53, 58], one gets
M(X™) = (M(x7)M(x0))* M (x]) = (M ()M (x1))" M (x;).

Via the diagonal series Dx given in (2.2), the Kleene-Schiitzenberger theorem
[1] can also be extended as follows

THEOREM 2.3 ([36, 37, 43]). — A series R € A(X)) is rational if and only if
there exists a linear representation (3, u,n), of dimension n > 1, where
BEMu1(A), p: X" — Mpyn(A), n€ Min(A)

such that
o

Rl wpxyn=a( J[ )y

leLynX

Now, let (3,u,n) be a minimal'® linear representation of R € A™(X)) [1],
and let £(p) be the Lie algebra generated by {u(z)}zex. Moreover, if the ma-
trices {p(z)}rex are triangular, then there are diagonal and nilpotent matrices,
{D(z)}zex and {N(z)}zex in M, ,(AX) such that M(X) = D(X) + N(X).
Hence, again by Lazard’s elimination, one also gets

M(X™) = (D(X7)T(X))"D(X7)). (2.11)

The set of exchangeable rational series, i.e. A™(X)) N Aexc (X)), is denoted by

At (X)), As examples, one can consider the following forms (Fp), (Fy) and (F)

exc

of rational series in C***((X)) [35, 36, 37] :
(Fo) Erwy, ...Ejx; Ejpq, where x;,,...,x;, € X and Ey, ..., E; € C™((x)
(F\) By, ...Ejx; Ej1, where z;,,...,x;, € X and Ey, ..., E; € C™((x1))
(F2) Eixi, ...Ejx; Ej1q, where a;,,...,x;, € X and Ey, ..., E; € CZL(X)).
One has
LEMMA 2.4. — (1) Let k € Ny, tg,t; € C. Then ()™ * = (kx;)*,
(toxo + t121)" = (toxo)* w(t1z1)* and (tixi)*k = (t;z;)* w(l — tixi)k_l.

(2) The series of form (Fy), (F1) and (F») generate sub-bialgebras of (C**(( X)),
) 1X* ) Aconca e)-

(3) Let (B, p,m) be a minimal linear representation of R € C*** (X)) and L(u)
be the Lie algebra generated by {u(x)}yex. Since R = M (X*)n,

)
)

1ONOW, A is supposed to be a field.



12 V. Hoang Ngoc Minh

(a) R is a linear combination of expressions of the form (Fy) (resp. (F1))
if and only if M (x%)M (zo) (resp. M (x§)M (1)) is nilpotent'!. Hence,
if R € C™" (o)) wo C(X) (resp. C**"{(x1)) w C(X)) then M (z})M (zo)
(resp. M (x§)M (x1)) is nilpotent.

(b) R is a linear combination of expressions of the form (Fy) if and only
if L£(p) is solvable'?>. Hence, if R € C:2 (X)) w C(X) then L(u) is
solvable.

(¢) R € C(X) if and only if for any P € Liec(X) the matrix u(P),
belonging to L(u), is nilpotent.

(d) Re CRL(X) + [ulwo), ulz1)] = 0 R € O (ag)) s € (ay).

To end this section, let us note that for any R € C™*((X)) of minimal linear
representation (3, p,n) of dimension n and, for any =,y € X one has

(8 | wy) = Bule)n(y)n = Y (Bule)es) (e uly)n) = 3 (S |08 |u),
i=1 i=1
where e; is the vector such that el = (0 ... 0 1 0 ... 0). Hence S’i(l) (resp.

SZ@) admits (3, 1, e;) (resp. (el', p,m)) as a linear representation, and
(Crat <<X>>a ) 1x~ 5 Aconca e)
is nothing but the Sweedler dual of the bialgebra (C(X), conc, 1x+, A ,,e) [57].

3. INDEXATION BY WORDS AND GENERATING SERIES

3.1. Indexation by words. For any r € IN, any multiindex(sy,...,s,) € N,
can be associated with the words ajf)lflxl . xé"71m1 € X*xy U {lx~}. Similarly,
any'® (s1,...,s,.) € IN" can be associated with the word ys, ...y, € Yg. Put

Lizr(2) := (log(2))"/r!.
(1) Let Lig, ... s, and Hy, s, be indexed by words [38, 39] :

leglflxlu.xgr—lxl = Li,, .. and Hyﬁ“_yw =Hy, s,

(2) Let Li_,, . s, and H_,,  _g, be indexed by words [21, 22] :

Llysl-“ysr :=Li_g, and Hys =H_g, . —s-

seey TSP 1Ysy

In particular, Li . (2) := (2/(1 — 2))" and H;O(n) = (7) = (n),/r!, where
(n)r=(n+r)...(n).
All of {Li,, }weyy and {H }ueyy are divergent at their singularities.

THEOREM 3.1 ([41, 38, 42]). — (1) The following morphisms of algebras
are injective (and surjective by definition)
H, : (Q<Y>7 G, ]-Y*) - (Q{Hw}wGY*a X, 1)7 w Hwa
Li. : (Q<X>1LL’71X*) H(Q{Liw}wGX*vxa]-B)u w'—>L1w

11Using (2.10), one gets the expected expression for R.

12By Lie’s theorem [15], using (2.11), one gets the expected expression for R.

13The weight of (s1,...,8r) € ]NTJr (resp. IN") is defined as the integer s1 + ...+ s, which
corresponds to the weight, denoted (w), of its associated word w € Y* (resp. Y{) and, if w € Y*,
it corresponds also to the length, denoted by |ul, of its associated word u € X*.
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(2) The families {Hy, }wey+ and {Liy }wex+ are Q-linearly independent.
(3) The families {H; }ie£yny and {Li; }ic cynx are Q-algebraically independent.

But at the singularities {1,400}, for any v € xqX*z; (resp. u € Y* — y1Y*)
Li, (resp. H,) receives the value ((v) := Li,(1) (resp. ((u) := H,(+00)) and are
no more linearly independent (and then the values {H;(+00)}icryny —{y,} (resp.
{Li;(1) hiecynx—x) are no longer algebraically independent) [38, 40, 59].

There also exists a law of algebra, denoted by T, in Q{(Ys)) (which is not dual-
izable) [6, 31] such that

THEOREM 3.2 ([21]). — Let us consider the following morphisms of algebras
(which, by definition, are surjective)
Hy - (Q<Y0>7 L, 1Y0*) — (Q{H;}wEYO’W X 1)7 wr— H;’
Li, : (Q(Yo), T, lyy) — (Q{Li, }uwevy, X, 13), w— Li,

Then ker Hy = ker Li, = Q({w —wTly;
{Li,, }x>0 are Q-linearly independent.

Moreover, let T': Q(Yy) x Q(Yo) — Q(Yy) be a law such that Li, is a morphism
for T" and (1y; T'Q(Yo)) Nker(Li, ) = {0}. Then T' = go T, where g € GL(Q(Yo))
is such that Li, og = Li, .

w € Yy'}) and the families {H;, }1>0 and

Now, for any ¢ € IN let ¢; € C be such that |¢;| < 1 and z € C satisfying | z| < 1.
Then [35] (to be compared with (1.4) and (1.5))

Z Lizn(2) tg = 2 and Z Lign (2) t7 = (1 —z)7". (3.1)
n>0 n=0
What precedes suggests to extend the domain of Li, which is, up to now and

through linear extension, restricted to C(X), to some rational series as follows.

3.2. Indexation by noncommutative rational series. Let us call Dom(Li,)
the set of series of C{(X))

S = ZS” with S, = Z (S | w)w
n>0 lw|=n
such that the following sum converges uniformly on all compacts of B
> Lis, . (3.2)
n>=0
One can check easily that [22] :

e The set Dom(Li,) is closed under shuffle products.
e For any S,T € Dom(Li,) one has Lig,, 7 = Lig Lir.
e One has C(X ) C™((xq)) w C*** (1)) C Dom(Li,).

This extension is compatible with identities between rational series such as Lazard’s
elimination [53, 58], for instance (see Appendix C):

Lis) = Y8 1) 2 & LS ST (5| w) Lin(),

n=0 k2lwery i of
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and explains that, for R as given in (2.9), Lig is expressible as analytic composition
of log(z) and log(1 — z2) :
Lin(z) = > =25 log™(2)(~ log(1 — 2))".

igl71!
ig,iz>0 O

Example 3.3. — Consider the extension of Li, defined in (3.2). Then [35, 36, 37]

(1) By (3.1), Lijtyag)+(2) = 2% and Lit, 2+ (2) = (1 — z)~t. More generally,
for any i,j € INy, one has by Lemma 2.4

i ) ) _ it —jt
Ll((towo)*)u"luJ((t1a:1)*)uJJ(Z) =z 0(1 —Z) J 1,

2 log'(z)log’ (1 — 27

(tozo+tiz1)* L of L @] (2) = (1—2)h 115!

Li

(2) For a € C and i € Ny, one has by Lemma 2.4

e alog(z))¥
Li(aa:o)*i(z) =z Z ( k 1> %v (3.3)

k=0
_ 1 i1\ (—alog(l — 2))*
Ll(am)*i(z):(l_z)a’;)< 3 )wé,)) (3.4)

(3) From the previous points, one has (see Lemma 2.4)

{Lis}seces) w o/(—e2)] w clzr] = spang{z*(1 — 2) " Yuez pen,

{Lis}secrat (ao) wo oot oy = spang{z®(1 — 2)"}apec,

—_— Liw(z)}
—z)° a€Z.bEN

. r>1
- SpanC{Llsl7~--73r}sl,...,sT€ZT

® spang{z®la € Z},

a weX™
{Lis}sec(x) w oz] w Cl(—22)] o Clat] = Spanc{ {

a weX™

{LiS}SG(D(X) L Crat (o)) Ly Crat (zq)) — Spanc{(lz)b Liw (Z)}
a,beC
C SpanC{Li517~--7sT}:12,.1..787‘6@7'

® spang{z*|a € C},
(4) For any (si,...,s,) € N, and [t;| <1, let
W = (tlxo)*slxgrlxl . (trxo)*“xf{*lxl

(which is of the form!* (Fy) of Lemma 2.4). Then!®
ny

Liw(z)= > (n1—t1) ... (np — ty)*r

ny>...>n.>0

MFor the form (Fp) one can apply Theorems 2.3 and 2.4 of [35].
15This holds for ¢; € C — N4, ¢ € IN, by analytic continuation [39].
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In particular, for sy = ... = s, = 1 one has

Li(tlzo)*xl...(trmo)*ml = Z Li m 1

Let 0, := d/dz and let us recall that, for any k > 1,

§ _1z)k - (lff—i)! <1iz> and zlk - (l)kl(lff—i)! C;)

and the Taylor coefficients of (1 — z)~" are expressed as follows for all n > 1
(A=2)"F |2y =T Y k)Y n+k—1)p_1. (3.5)
Let G denote the group of transformations of'® B generated by {z +— 1 — 2,z

1/z}, permuting the singularities in {0,1, 400} as a copy of G3.
Let us also consider the differential rings

Cy=C[z1], C,=C[1-2)"1, Co = Clz,27Y],
C=Cl,(1-2)7", ' =C7"01-27" C=Ckz""01-2)7"]
(considered as subrings of H(B)). It follows that

LEMMA 3.4. — (1) The differential ring C is closed under the action of G,
i.e. G(g(z)) € C forall GeC and g € G.

(2) For any G = pi(2) + p2(27") + ps((1 — 2)7") € C, with p1,p2,p3 € Clz],
p2(0) = p3(0) = 0 and pa,p3 # 0. Letting Go(2) := Pa(z7') € C} and
G1(z) := P3((1 — 2)71) € Cf, one has G(z) ~g Go(z) and G(z) ~1 G1(2).

(3) The following morphism of algebras is surjective

A (Clzg, (—mo)*, 27],w, 1x+) — (C, x,1p), R+ Lig.
Moreover, ker()) is the shuffle-ideal generated by xf w x7 — a7 + 1.
(4) The following morphisms of algebras are bijective
N (Clzs, z7], 0, 1x+) — (C', x,1p), R +— Lig,
PV (Clz}],w,1x+) — (C}, x,15),  R+— Lig for i =0, 1.

In fact, one has

LeMMA 3.5 ([21]). — (1) The family {x§,z3} is algebraically independent
over (C(X),w,1x+) in (C(X),w,1x+). In particular, the power series x;,
and x7 are transcendent over C(X).
(2) The module (C(X),w, 1x=)[x, x5, (—x0)*] is C(X)-free and the family
{(xg) = w(zf) 2 HRDEZXN forms a C(X)-basis of it.
Hence, {w w (z§)™ F o (af)™ Z}Efélg(e*zxm is a C-basis of it.
(3) One has C***((z;)) = spang{(tz;)* w C(z;) | t € C} for any z; € X.

16Any g € G maps bijectively B to itself, one can apply the Monodromy Principle to lift G as
a group of transformations of B.
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Now, let us also consider the following differential integration operators acting
on C{Liy }wex~ [46] :

and 01 :=(1— 2)0;,

VieC, w(f)= /Z:f(S)wo(S) and / F(s)on(s

The operator ¢q is well-defined on C{Liy, }wex+ (see Definition 6.5 in Appendix
D, where the choice of zq is recalled). One can check easily

PROPOSITION 3.6 ([22, 38, 41]). — (1) The operators {6y, 01, 10,11} satisty
0+ 6y = [91,90] =0, and Okt =1d for k=10,1,
[eobl, elbo] =0 and (90L1)(91L0) = (91L0)(90L1) =Id.

(2) The subspace C{Liy }wex~ is closed under the action of {0y, 61 } and {¢¢, t1}.
Thus, for any w = ys, ...ys, € V* (whence m(w) = a3 'z1...a5~ a1)

and u =1y, ...y, €Yy, the functions Li,, and Li,, satisfy

Li, = (1*~ Ly Lf{_lbl)lg and Li, = (961+1L1 . 06T+1L1)1Q7
Lo Llﬂ.X (w) Lllo‘ﬂ'x (w) and L1 Liw = Li(L‘17TX(’LU)7
90 Lil’oﬂ'x (w) = Llﬂ.x (w) and 91 Lizlﬂ'x(w) = Liﬂ‘x(w) .

(3) The bi-integro differential ring (C{Liy }wex=, 6o, to,01,t1) is stable under
the action of G, i.e. for all h € C{Liy }wex~ and g € G

h(g(z)) € C{Liy bwex~-

(4) oty and ;1 are scalar operators in C{Liy, }wex+, respectively with eigen-
values A\ := z — z(1 — z) and 1/\. Le. for all f € C{Liy }wex+ one has

(00L1)f = )\f and (91L0)f = (1/)\)f

3.3. Noncommutative generating series. The graphs (typed as series) of the
isomorphisms of algebras, Li, and H,, defined in Theorem 3.1, then become

DEFINITION 3.7 ([13, 38, 40, 42]). — Let us consider the following power series
= Z Li,w and H:= Z H,w.
weX* wey*

With suitable structures (topological ring [8]), by (2.2) and (2.8), one can write
H= H, ® Idy)Dw and L = (Li, ®1dx)Dx. Thus, by Theorem 3.1, one obtains

PROPOSITION 3.8 ([38, 40, 46, 47]). — One has

Ay(H) =HeH and (H| 1y«) =1,
A, (L)=Le®L and (L]lx«)=1,
N N

H= H =1l and L= H ekisi P,

leLynY leLynX
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Hence'”, their logarithms are primitive, for the corresponding co-products, and'®

1 k—1
IOg(H) :Z% Z Hultiltiluk Uy ... Uk,

k21 UL,y U €Y T

1 L) = (_1)k_1 2: Li

Og( )_ZT lug e ug U1 - Uk
k21 UL,y up EX T

One can then set the following :

DEFINITION 3.9. — Let us consider the following power series
N N
Ty = H e (Foo)ll g 7 = H oLis, (VP
leLynY —{y1} leLynX—X

By termwise differentiation, the power series L given in Definition 3.7 satisfies
the noncommutative differential equation (1.1) and, via the factorization form given
in Proposition 3.8, it also satisfies the boundary condition [38, 41]

L(z) ~q e*° log(2)  and L(z) ~q g1 log(1=2)
Equation (1.8) and Theorem 3.1 lead to

DEFINITION 3.10. — We define ¢ to be the following polymorphism (which is
surjective by definition):

(Qlx- ® 2oQ(X)x1, s, 1x+)
: —> Z, X, 1 s
Q8 (V- {pn Q) w1y E0D
ri—1 rr—1
Toxy' ...Toxy s sk
— n ...n s
Ysi -+ - Ysy Z ! 4§

ny>...>n; >0

where Z is the Q-algebra (algebraically) generated by'® {¢(I)}iecynx—x (resp.
{C(Sl)}leﬁynX—X), or, equivalent1Y7 {C(l)}leﬁan—{yl} (resp. {C(El)}leﬁanf{yl})'

4. GLOBAL ASYMPTOTIC BEHAVIORS AT SINGULARITIES

4.1. The case of positive multi-indices. The analysis of singularities on the
coefficients of the noncommutative generating series of {Li, }wex+, put in the fac-
torized form (see Proposition 3.8) leads to®° [38, 41]

lim L(z)e @082 =1 and lim ™20 =2)L(2) = Z,, . (4.1)
z—0 z—1

Knowing that Gy and G, as interpreted in (1.4), are unique and by (1.5), it turns
out that, through the interpretation given, Z,, coincides with ®x [34, 55] and,
via an identity of type Newton-Girard [51], we obtain [14, 16, 45]

k k_ Hy, (n)(=y1)* /k
H(n) ~oo S Hyeobmy (Za) and S0 Hyeyh = e2ons o L (42)
k>0 )
17yia Friedrich’s criterion [57] and its extension [46, 47]
18From log(L), one can extract the expression of the euleurian projector on #H,, [57] and
similarly, from log(H), for the extended euleurian projector, as given in (2.3), on H 1 [46, 47].
19%e will describe relations among {¢(SD hecynx—x (resp. {C(E)}tiecyny —{y}) by local
coordinate identification in Section 4.2.
20i.e. L(z) ~0 270 and L(z) ~1 (1 —2)"%1Z,,,.
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In other terms, we have the following global renormalization

THEOREM 4.1 (First Abel like theorem, [14, 16, 45]). —

Nk
lim e¥11°80=2) 1y (L(2)) = lim ezk>1Hy’“ ()=o) /kH(n) =my(Z.).
z—1 n—00
Thus, the coefficients {(Z_,|u)}uex+ (i.e. {{u (u)}uex~) and {{Zw |v)}pey~
(i.e. {Cw (v) }yey~) represent, respectively, the finite part of the singular expansion,
in the comparison scale {(1 — 2)~*log"(1 — 2)}a.pew, of Li, at z =1

£.p.. 1 Liw(2) = Gy (w), (1= 2)"10g"((1 ~ 2)7")}aez.pen, (4.3)
and the asymptotic expansion, in {n=H}(n)}4pen, of Hy for n — +oo :
EPensiocHu(n) = Cas (w),  {n"HI(m)}oez,ven (44)
For commodity, we will denote
FP. ,L(z)=Z., {(1-2)%0g"((1-2)"Y}eezpen, (4.5)
FP.,iooHn) =Zuw, {n"HY(n)}aczpen (4.6)

On the other hand, by a transfer theorem [32], let {7y }wey+ be the finite part
of an asymptotic expansion, in {n=? logb(n)}a)bem, of {Hy }wey~ for n — +oo :

f~p'n%+oon(n) = TYw; {na IOgb(n)}an,b@N‘

Then let Z, be the noncommutative generating series of {7y }wey+. One has

FP.nsyocH(n) =2, = Z YW, {n® logb(n)}an}be]N. (4.7)
weY*
PROPOSITION 4.2 ([46, 47]). — (1) The following map is a character

Ve (Q<Y>7 ttl,ly*)—)(Z[’Y],X,l), W > Y-
(2) Equivalently, one has A (Zy) = Zy ® Zy and (Z, | 1y~) = 1. Hence,

N
Z, = e H eSCEL — vz
leLynY —{y1}

and A (log(Z,)) =log(Zy) ® 1y« + 1y- ®log(Z,). It follows then
(~1)+?
log(Z,) = ZT Z Vauy L o i UL - - U
k>1 UL, up€Y T
The asymptotic behaviors on (4.2) and Proposition 4.2 lead to
PROPOSITION 4.3 (Bridge equation, [14, 16, 45, 46, 47]). — Put*!
¢(k) k / (k) k
B = — == (- d B = — == (- .

(1) exr><vy1 ;2 -yt ) and B'(y1) = exp ];2 (=)

Then Z., = B(y1)my (Z.,,), or equivalenty by cancellation, Z,,, = B'(y1)ny(Z.,).

21The power series B(y1) corresponds to the Taylor expansion of T~ (y; + 1).
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4.2. Structure of polyzetas. Now, via Proposition 4.3, let us draw some conse-
quences about the structure of polyzetas : by local coordinates identification in the
assertions of Proposition 4.3, one obtains two families of polynomials, homogenous
for the weight, {Q:}iecynx—x and {Qi}icryny—{y,} (see Example 6.2 in Appendix
A), such that [46, 47]

x = (Q{Qi}iecynx—x,w,1x+) = ker({),
(resp. Ry = (Q{Qi}iccyny —{m}> &, 1y+) = ker(())

describing the kernel of ¢ (see Example 6.1 in Appendix A), via homogenous poly-
nomial relations for the weight, among the local coordinates of Z,, (resp. Z ),
i.e. the convergent values®® {¢(S)) hiecynx—x (resp. {C(Z0) ecyny —{m1})-

Denoting X the alphabet X or Y, this local coordinate identification yields
algebraic generator systems (see Example 6.3 in Appendix A) as irreducible?® local
coordinates (see Example 6.4 in Appendix A)

Z5(X) = lim zjf()c) with ZS2(X) C...Z3P(X) ..., (4.8)

such that the restriction of ¢ on Q[L2

6.4 in Appendix A)
L£2(X):= lim LIP(X) with L32(X)C...LSP(X)C..., (4.9)

p*)+ wrr wrr wrr

X)] is bijective [46, 47], where (see Example

irr (

and, for any p > 2, L3P (X) is the inverse image of Z5F(X).

wmrr rr

Generated by homogenous polynomials for the weight (see Example 6.2 in Ap-
pendix A), ker(¢) is then graded. Moreover, since Z = Im((), one obtains

COROLLARY 4.4 ([46, 47]). — One has
Z = Qlx- ® 2oQ(X)x1/ ker((),
(resp. 2= Qly- & (Y — {11 })Q(Y)/ ker(¢)).
Hence, Z is graded as the quotient of a graded algebra by a graded ideal :
z=Qladpz,
p=2
where for any p > 2,
2P = spanqg{((w)|w € zo X x1, |w|= p},
(resp. 27 = spang{C(w)|w € (Y —{m })Y", (w) = p}).

Remark 4.5. — Note that LynX is totally ordered, and so is £32.(X), as being
extracted from LynX. Hence, for any fixed integer n > 1, it is 1mmcd1atc that
(1) letting I € LynX such that (I) = n, one has y,, <1 (resp. zf ‘2, < 1),
(2) ¥y, =yn € LynY and Swgflml =20 'z € LynX (see Lemma 2.2),
(3) Eyzn+1 = Yon+1 € ﬁffT(Y) and SI%"I1 = 33‘0 Ty € L’er( )7
(4) ¢(2) = ¢(Zy,) = ¢(Spyz,) is irreducible and, by Euler’s identity about the
ratio ((2k)/7%*, one deduces that %,,, = yor ¢ £°.(Y) and Smgk—lz =

2k 1:1;1 ¢ £l77"( )

221dentification allows to obtain homogenous polynomial relations up to weights 12 [5].
23by means of rewriting the system.
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Note also that for any I; € LynY —{y1} and ls € LynX —X one has in general [46]
C(mx(21,)) # C(Srxy)) and ((my (Si,)) # ((Ery (1)), while this does not occur,
due again to Lemma 2.2, for the values®* {C(1)}iezyny —{y1 (or {C(1)hecynx—x)
[2, 40, 38, 28).

With the first assertion of Proposition 4.3, we compute the generalized Euler
constants, i.e. the finite parts of divergent harmonic sums {Hy, }yey, v+ :

COROLLARY 4.6 ([14, 16, 45]). — For any k > 1 and w € Y* — y1Y*, one has

e T LU ()

S1,...,55 >0 :
s14-.+ksp=Fk

b Tol(—Z1 k*"uﬂ' w :
%WZE:qOK é! X”(X}mwﬁamaawwq)
i=0 j=1

where the by, 1 (t1,...,t,)’s are Bell polynomials.

See also Corollary 5.7, for the independence of v with respect to the convergent
polyzetas.

4.3. The case of negative multi-indices. Similarly, asymptotic behaviors of
{Li, }wevy, {Hy Jweyy are analyzed by

PROPOSITION 4.7 ([21]). — For anyn € N, z € C with |z| < 1 and w € Y,
H;, and Li,, are polynomial, of degree (w)+|w| in Q[n] and Z[(1—2)~!], respectively.
Hence, for any w € Y, there exists C; € Q and B,, € IN, such that

Hy (n) ~joo nWTMHCS and  Lig(2) ~p (1 —2)~ (WM pB—
Moreover, one has

Co= [ (+[v)™" and By = ((w)+ |w])Cy.

w=uv

u#lyg
PROPOSITION 4.8 ([21]). — Let us consider the following generating series
L™= Z Li,w, H™ = Z Hyw, ¢ := Z C,w.
weyYy WEYy weyYy

Then?
(H | 1y) = (€ | ly) = LA (H ) = H o H-
and A, (CT)=C"®@C".
Moreover, analysis of singularities leads to the following global renormalization.
THEOREM 4.9 (Second Abel like theorem, [21]). — One has
. o-1 . -1 — _ . o-—1 — _ -
lm A7 H((1 = 2)7) OL7(2) = lim ¢ (n) O H"(n) =C",

24for which polynomial relations homogenous for the weight are obtained via double shuffle,
up to weights 10 [40, 38], 12 [2] and 16 [28].
25The series C~ is group-like in (Q((Yo)), conc, lyg, Ay, e).
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where the noncommutative generating series*® h and g are defined as follows

h(t) = Z (w)+ |w|) (W)+kly,  and g(t <Z )+l ) '

weYy y€Yo

Now, by Proposition 4.7 and the Taylor expansion, one deduces

COROLLARY 4.10. — For any w € Yy there exists a unique polynomial p €
(Z[t], x,1) of degree (w)+ |w| such that*", via (3.5), for any n € N} and z € C
with |z|< 1 one has

(w)+uf - (w)+
s — _ —klog(1—=2) —log(1—2)
Llw(z)_ Z (].—Z)k Z bre G( [ ]7xalB)a

k=0

(w)+ (w)Hw\
o= > n("1") = X Bern, c@nrolx,

k=0 k=0
where (n+ @), : IN — Q mapsi to (n+1i), = (n+)!/n'=nn—1)...(n—i+1)
and Q[(n + e),,] denotes the set of polynomia]s in n expanded as follows

V€ Q[(n+e),], deg(r)=d, W—Z?Tk n+1i), Zﬂ'k TH_Z
By Corollary 4.10, denoting by p the exponentlal transform of p, one also has
(w)+hd
Liy(z) = p(e”'°81=2))  with Z pith € %, 1), (4.10)
(w)+hv\ »
H (n) = p(n + o)), with  p(t) = k’j t e (Q[t], x,1).  (4.11)
k=0

Let us then associate also p and p with the polynomial?®  obtained as follows

(w)+hef (w)+hul
Pty =Y kpth = > ptk e (Z]t], w,1). (4.12)
k=0 k=0

Next, the previous polynomials p,p and p given in (4.10)—(4.12) can be deter-
mined explicitly thanks to Lemma 3.4 and to

PRroPOSITION 4.11 ([21]). — (1) The following morphism of algebras is bi-
jective

X:(Q[yﬂa tﬂaly*) —)(Q[(TL—F.)n],X,l), S+— Hs.

26Note that g can be view as an “exponential transform” of h :

w _ (h | w)
0= 2 = Y i
weYF

weYy 0

27In other terms, for any word w belonging to Y and integer k verifying 0 < k < (w)+ |w],
such that (Lig | (1 — 2)~%) = k/(Hy | (n)g). One verifies in particular, for Proposition 4.7, that
(Hy | () (w)pug) = Cw and (Liy; | (1 —2)~ =) = ((w)+ [w])!Cy .

In other words, p is the exponential transform of p and, for any integer k with 0 < k <

(w)+ [w] one has (p | 2*) = kl(p | 2¥) = (k1)*(p | 2*).
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2) For any w = y,,,...Ys, € Yy, there exists a unique polynomial R,, belong-
1 r 0
ing to (Z[zt],w, 1x-) of degree (w)+ |w|, such that®

Lig, (2) = Liy (2) = p(e™ 81 72)) € (Z[e~ 21 =%)] x, 1p),
Hry (r,)(n) = Hy(n) = p((n + o)) € (Q(n + o)n), x,1).
In particular, via the extension by linearity of Re over Q(Yy) and Theorem
3.2, {LiRyk }i>o Is linear independent in Q{Lig, }weyo* and for all k,l € N

LlRyk w Ry, = LlRyk LlRyl = Llyk Llyl = LlykTyz = LlRykTyl, .

(3) For any w € Y, there exists a unique polynomial Ry, € (Z[x}],w,1x«) of
degree (w)+ |w| such that p(z7) = Ry,.

(4) More explicitly, for any w = ys, ,...ys,. € Yy, there exists a unique polyno-
mial R,, belonging to (Z[z}], w,1x+) of degree (w)+ |w]|, given by

(s1+...+spr)—
s1 s1+s2—k1 (k14 +kpr_1) s s1+ 89 kl
1 _
m X S ()
k1=0 k2=0 k.=0
81+...+8T—]€1—...—I€7‘,1
k pleu...\_upkM
where, for any i = 1,...,r, one has, if k; = 0 then p, = 7 — 1x~ else
ki J U\ (G—1+1)
Ry (=1) ()Y
Pk; :ZSQ(]CHJ)(j')QZ [T 1(._1)‘ )
j=1 1=0 ’ J ’

and the So(k, j)’s denote the Stirling numbers of second kind.

Using Proposition 4.11 and Lemma 3.4 (in particular, the bijectivity of the re-
striction Li, : (Z[z}],w,1x+) — (Zle~'°8(0=2)] 13)) and also the Stirling num-
bers (of first and second kinds), one obtains

COROLLARY 4.12. — The morphism of algebras
Re : (Z(Y0), T, 1yy) = (Z[a1], o, 1x+)
is bijective, mapping yo + 7 — 1x- and yy = 27 w R (k > 1), where

k

ki .
Ry, = ilSy(k, i) (@} — 1) =Y ilSy(k,i) <;) (=1)7 (z)

i=0 i=0 j=0
and R}, is extended over Z{Y') by linearity. Conversely, one has for any k > 1,

Sl (ka])
(b — 1) v

k
(k‘iEl)* =1x~+ Ry, + Z
J=2

It follows that Lig, ©Lig, = Lig (for k,1 > 1), where

S=aiw Ry gy, = (e + Ry ) w (B + Ry y,):

29Recall also that the map 7y is multiplicative on Q @ Q(X)x1 but not on Q(X).
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To end this section, let us recall also that, for any ¢ € C, one has

(n)c ~ioo né = eclog(n)

and, with the respective scales of comparison (on the right hand side), one has the
following finite parts

f.p.. clog(l—2)=0, {(1—2)%og"((1—-2)"Y}eezpen, (4.13)
fponsiocclogn =0, {n” logb(n)}aez,bem. (4.14)

5. A GROUP OF ASSOCIATORS
5.1. The action of the Galois differential group.

LEMMA 5.1 ([43, 44]). — Let G and H be solutions of (1.1) which are group-like
for A.,,. Then there exists C' € Liec((X)), independent of z, such that G = HeC.

Typically, with the notations of (1.2) and Definition 3.7, the power series C,, ...
and L(z) satisfy the differential equation (1.1) and have the same value at z = z.
Then C,, .. = L(2)(L(20))"! [38, 41]. Since C,, .., and L(z) are group-like, so is
L(zp). It follows that the Hausdorff group, i.e. {¢¢ | C € Liec((X )}, plays the role
of the differential Galois group of the equation (1.1). More precisely,

THEOREM 5.2 ([43, 44]). — Galg(DE) = {e¢ | C € Liec(X))}.
DEFINITION 5.3 ([46, 47]). — Let A be a subring of C, containing Q. We put®°
dm(A) == {Z,, e | C € Liea(X), (e | z0) = (e | z1) = 0}.

Then dm(A) = Gal%Q(DE) is a strict normal subgroup of Galg(DE).
Now, for any e € Galg(DE), let3!

L:=Le’ and Z, :=Z,¢€°. (5.1)

Then, by the global analysis of singularities in (4.1), the action of ¢ on L on the
right yields the asymptotic behavior of L [46, 47]

L(2) ~o e®0'82eC  and TL(z) ~y e @tlos=27 (5.2)
and, via an identity of type Newton-Girard again [51], one also gets :
ﬁ(n) ~ oo e Ek>1H?/k(n)(_yl)k/kﬂ_y(zm)' (53)

In other words, we obtain the extended Abel like theorem [46, 47]
— VR _
lim e¥! log(1_Z)7ry(L(z)) = lim eZWlHy’“( )= /kH(n) =my(Z.,).
z—1 n—00

By (4.1) and (5.2), one then deduces

COROLLARY 5.4. — L is the unique solution of (DE) satisfying L(z) ~q e*01°8(2)
(i.e. for e¢ = 1x-). It follows that ®xz = Z,,, is unique.

30This group contains the group DM (A) introduced in [10, 55] (DM for double mélange).
3INote that since (see [38, 41]) (Z.,, | zo) = (Z,, | #1) = 0, by identification of the coefficients
one has (Z,,, | #1) = (€ | #1) and (Z,,, | o) = (€€ | zo) which are not 0.
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PROPOSITION 5.5 ([46, 47]). — Let {7, fwey~ be the finite parts of the asymp-
totic expansions of {Hy, }uwey+ in {n~*log’(n)}a.pew, and let Z., be their noncom-
mutative generating series. Then

Zy = Z T, Aw(Zy)=2Zy®Zy, (Zy|1ly-)=1.
weyY™*

In other words, the following map is a character
Yo : (QY), w1, 1y+) — (Z[7], x,1), wr—7,.

PROPOSITION 5.6 (Extended bridge equation, [46, 47]). — Under the action of
the group Galg(DE), one gets>

Z,, =F.P..1L(2), {(1 = 2)%1og’(1 = 2) ™Y }aczpen,
Z s = F~P'n~>+ooﬁ(n)v {naHl{(n)}an,belN»
Zv =F.P.,100H(n), {n® logb(n)}aezybem.

Moreover, by Proposition 5.5, the extension of MRS factorization and the ex-
tended Abel like theorem lead to Z., = €"¥* Z 1,. Hence, for any Z ,, € dm(A), by
cancellation and with expressions of B, B’ given in Proposition 4.3, one obtains

Zy=By)ry(Z2.,) == Zw =B'(y)ry(Z.,).

Elements of the group dm(A) satisfying similar properties as ® g, are called
associators®®, as regularized solutions of (DE) [46, 47]. Moreover, by the identifi-
cation of local coordinates in the second point of Proposition 5.6, one gets

COROLLARY 5.7 ([46, 47]). — If~ ¢ A then vy is transcendent over the A-algebra
generated by convergent zeta values.

Remark 5.8. — As example of the action of the differential Galois group on the
singular expansions, we are interested in the action of their monodromy group®*
[46] generated by %™ and 2™ where [41, 38]

mg=x9 and m; =27, e‘mle;l = H e~ ¢Sy adp (—2x1).
leLynX —X

By Proposition 4.3 and (5.1), the actions of the monodromy group on the right
of Z,, and Z, are the following

32Note that, once the scales of comparison are fized, the coefficients {(Z,, | W) hwewo X *my s
{(Zww | w>}we(7Y*f\{y1})Y* and {<Z'Yl W) bwe(y*—\{y:1})Y=* as finite parts of the asymptotic
expansions of {(L | w) }yezyxrzr and {{H | w)}we(y*—\{y,})y*, are determined, by the extended

1
Abel like theorem.

33In [34, 55], associators (or Drinfel’d series) are defined as group-like series in R{(X)) satisfying
a system of algebraic relations (duality, pentagonal and hexagonal), but the authors do not produce
any associator other than ® k7, which was completely determined earlier in [40, 38] (without
divergent zeta values as local coordinates).

34p proof of linear independence of multi-valued polylogarithms is obtained via this mon-
odromy group. It can be also proved by use of the differential Galois group [12, 43, 44].

An other proof for mono-valued polylogarithm functions, as a special case of hyperlogarithms,
can be also obtained over functions field [17, 19].
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(1) If ¢ = e%™0 then 7, = Z,,, %0 and

Zy = exp(wl - ZC(k)(

k>2

y1)"
& )7’1’}/ZLIJ = Z’Y'

This means that the monodromy at 0 of L consists of the multiplication on
the right of Z,,, by €*™° and does not modify Z.,.
(2) If ¥ = %™ then Z,,, = eiQileLu and

Z., = exp( — 2im)y1 — ZC ) Ty Z,, = e_2i”y1Z7.

k>2

This means that the monodromy at 1 of L consists of the multiplication on
the left of Z,, and Z., by, respectively, =271 and e =271,

Finally, the actions of the monodromy group on L does not allow, in this case,
neither to introduce €¥®* on the left of Z_, nor to eliminate the left factor e?¥* of
~ [46, 47].

5.2. Associator ®x,. Now, let us examine some properties of the noncommuta-
tive generating series Zw and Z,,,, i.e. Pxz (see Corollary 5.4).

In a way similar to what was said of the character 7, (see Proposition 4.2),
Definition 3.9 and Proposition 3.10 lead to

PROPOSITION 5.9 ([14, 16, 46, 47]). — One has (Zw | 1y~) =(Z, | 1x+) =1
and
A\_u (ZLU) = Z\_u ® Zu_vv A\_u (log(Zu_r)) = log(Zu_r) ®@1x +1x-® log(Zu_v)a
and

(-1
1og(Zm):ZT Z C (ug w1 o wug)ug - .. Uk,

k>1 UL,y U €Y T

k>1 Uy, up€XF

~—
>

|
-

Moreover, the polymorphism ( can be extended as follows
G (Q(X), w, 1x+) — (2, x,1), Qo+ (QY), w1, 1y+) — (2, %, 1),
according to its products and satisfying, for any [ € LynY — {y1},
G (mx (1)) = Cuas (1) = m = C(D).
and, for the generators of length (resp. weight) one, for X* (resp. Y*),
G (o) =0 =1f.p..,; Liz, (2), {(1 = 2)"10g"((1 = 2)7")}acz e,
Cus (1) =0=1f.p. o JHy (n), {n"Hi(n)}aczpen.
By Lazard’s elimination, the free Lie algebra Lies(X), as an A-module, is
the direct sum of Axy and of a Lie ideal, denoted by J and freely generated

by {adfﬁ , Z1}iew. Then, by the calculations in Appendix B and by the identities

(moUzy)* = (zpx1)*z) and e0ze” = =0z, one has
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PROPOSITION 5.10 (Gradation of L and Z,,,, [43, 44]). — Let the operation o
be defined, for any | € N and P € C(X), by 12} 0 P = z;(z}, .w P). Then

Z Z Liy (2)w

k20 wexs wu af

— %o log(z) <]-X* + Z Z Li T1Té o orlr Had_mo >

k=111, ,1>0

—Z/ wn (t) - /71w1(t1)m(z,t1,~-~,tk),

k>0

_ U1
Z, = Co (1 o oxlxo ]__[ad_z0 1,

where supp(z12 o - o xy2h) = {w € 11 X* ||w]p, =k, |W|ey=l + --- + I} and
k(2 t1, - tk) for any k > 0 is the formal power series given by

Hk(z, t, - atk) — eaxco[log;(z)—log(h)]‘%,1 cg®o [log(tk,l)—log(tk)]xle;co log(tk)

— ®olog(z) gad 4 log(t1) gy - - - -z log(tk) 1y

=e" tos() Z H logl | dl—xo

I, lp>04=1

On the one hand, by Theorem 3.1 the morphism Li, is injective and the two

0 I 8 T, 120 b Iy 1k >0
families {ad”, zi---adX, 21};)50"*7" and {z125 o--- 0 Tz "t *7 are dual

bases of, respectively, U(J) and U(T)" .
On the other hand, by Proposition 5.9 it turns out that {,, corresponds to the
adjoin of the regularization proposed in [34, 52].

5.3. Associators with rational coefficients. Since for any ¢t € C with |¢]|< 1
one has Lig,,y+(2) = (1 — 2)~*, and by [16]

)k
Hﬂy(tml)* = ZHyTtk = exp ( ZHyk(k))’ (5.4)
k=0 k>1

by Lemma 3.5 and Proposition 5.9 we can extend the characters (,,, and ~y,, over
C(X) w Clzt] and C(Y) w Cly;], respectively, by using the Euler beta and gamma
functions®® and also the incomplete beta function, i.e for any z,a,b € C such that
|z| <1, Ra >0 and £b > 0,

B(z;a,b) ::/ dt to= (1 — )b !
0
and
B(1;a,b) =: B(a,b) =

35Follovving [20], for any z € C the function I'(z) is meromorphic, admitting simple poles in

—IN and satisfying T'(Z) = I'(z). The function T'~1(2) is entire and admits simple zeros in —IN.
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It is immediate that3®

B(z;a,b) = Ligy[(aze)* i (1=b)z1)*] (2)
= Lig, [((a=1)z0)* s (~ba1)*] (2)-

PROPOSITION 5.11. — The characters (,,, and v, can be extended algebraically
as follows for t € C with |[t| <1 :

Cus + (C(X) w Cfz], w0, 1x+) — (€, %, 1¢),
(tzy)* — 1g,
Yo : (C{Y) = Clyj], v, 1y+) — (C, x, 1¢),
. (=" 1
(ty1) |—>eXp(vt—Z((n) - ) = L

n=2

It follows then that
B(a,b) = (., (wo[(azo)” w ((1 = b)z1)"])
= G (@ [((1 = a)z0)™ v (=bx1)"]).
Moreover, for any u,v € C such that |u| < 1, |v|< 1 and |u+v| < 1, one has®"

= n M(l—wu—vw)

_ M= (utv)yn)*
V(—uy)* V(—vy1)*
_ V(= (utv)y1)*
V(—uy1)* @ (—oy1)*
= Cu (@o[(—uwo)" o (=(1 + v)a1)"])
= Cu (21 [(= (1 + u)o)™ wo (—vz1)"])

and
G ((=(utv)z1)™) = (o ((—uzy)* w(—vzy)")
= (u ((muz1) )¢, ((—vze)")
=1.

With the notations in Corollary 4.10, the values p(1) and p(1) obtained by (4.10)
and (4.11), respectively, represent the following finite parts :

36see the form of rational series given in (F2) and Lemma 2.4.

37The first equality is already presented in [25]. Moreover, since (—uy1)* & (uy1)* =
(—u?y2)*, letting v = —u it follows that

exp(—ZC(Qn)%) =T(1 - )1 +u) = ! -1

1 V(—uyr)* = (uy1)* V(—u2yz)*

It is also a consequence obtained by expanding identities like (5.4), for any y, € Y, [14, 16]
sy Lt sg

K _ (=DF ) (=yr) o (T

Yr il 1s1 : ook

STy sp>0
s1+...+ksp=k
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LEMMA 5.12. — (1) Put Pg(2) := e~ 19801=2) Lig(2) for any
Q € (Zlxg, (—w0)™, w1], 00, 1x+) {ag w21 — a1 + 1}
Then Pg = Liy» ., ¢ and Lig,Pq € Z[z, 271, e~ los(1=2)],
(2) By Lemma 3.4 the converse holds. Moreover, by (4.13) and (4.14) one has
£p.1Po(2) = £p. Lig(2) € Z, {(1—2)"1og"((1 = 2) ™) }aezpen,
f'p‘n—>+oo <PQ | Zn> = f'p'n—H—ooHﬂ'Y(Q) (n) € Q7 {na logb(n)}GEZJ)E]N'

(3) For any w € Y*, let R,, be explicitly determined as in Proposition 4.11.
There exists a unique polynomial p € Z[t] of valuation 1 and of degree
(w)+ |w]| such that R,, = p(z}) and

£.p.. 1 Lin, (2) =p(1) € Z, {(1-2)"1og"((1 = 2) )} aezpen,
f‘p'n%+ooH7ry(Rw)(n) = ﬁ(l) € Qa {na logb(n)}aGZ,bG]Na

where p € Q[t] is the exponential transform of p.

As determined in Proposition 4.7, B, and C, do not realize characters for
(Q(X),w,1x+) and (Q(Y), w,1y+), respectively [21]. Hence, instead of regular-
izing the divergent sums {, (R,) and {,(my(Ry)) by B, and C,;, one can use,
respectively, p(1) and p(1) (depending on w) as shown in Theorem 5.15 below which
is a consequence of Lemma 5.12, Propositions 4.11, 5.11 and Corollary 4.12 :

DEFINITION 5.13. — Let YT and A be the noncommutative generating series of,
respectively, {Hr, (r,,)}wey+ and {Lir__ ., bwex+ (With (A(2) | zo) =log(2)) :

T = 3 Hyy (ryw € Q[+ )] (Y)),

weY *
A= " Lin,_, we Qe 5" log(2)](X)).
weX*
Let Z; and Z_, be the noncommutative generating series of38, respectively,
{’77ry(Rw)}w€Y* and {C\_u (Rﬂ'y(w))}wEX* :
Z7 =Y ey oW €QUY) and Z7 = Y (o (Ray(w))w € Z(X)).
weY* weX*
Via the diagonal series D1y, Dy given in (2.2)-(2.8), one has
LEMMA 5.14. — The extension Re : (Clzo](Yo), T, 1yy) — (Clxo][x7], v, 1x+)
is bijective. Hence :

(1) Let #y be the morphism of algebras defined, over an algebraic basis, by
Ty S = wyS; for any | € LynX — {xo}, and 7y (z9) = xo (such that
Lig,, ., (2) =log(z), whence ((Riyx,) =0). Then

YT = ((Hy oy 0 Ry) ® Id)Dy and A = ((Lis oRs 0 7ty ) ® Id)Dx,

Z, =((veomy oRe) @Id)Dy and Z = ((Cu o Re o7y)®1d)Dx.

38Note that, on the one hand, by Proposition 5.9 one has (Z7, | zo) = ¢, (o) = 0. On the
other hand, since Ry, = (2z1)* —=7, one has Lig, (z) = (1-2)"2—(1—2)"! and HWY(Ryl)(n) =

(5) = (1) Hence, (27, | 1) = (s (Ray (4,)) = 0, and (Z5 | 21) = Yy (r,,) = —1/2.
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(2) For any v € X* and v € Y™ one has
£y (AG) ) = (25, Tu), (1= 2)og"((1 — 2) ) }aczven,
EDusoo(X(0) [ 0) = (Z5 [0, {n®10g"(n)}uczsen,
which means that (see also (4.5), (4.6) and (4.7))
Z, = FPhotiocX(n) and Z =FP..1A(2).
Hence, by Propositions 4.11 and 5.11, Lemmas 2.4-3.5 and 5.12, one derives

THEOREM 5.15. — (1) Forany (si,...,s,) € N’ associated withl € LynY

there exists a unique p € Z[t] of valuation 1 and of degree (1)+|1| such that
p(x7) € (Z[x)lk]v‘-ule*)v

ple”1eli=2)) = ( ) € (Zem 507, %, 1p),

) =

)

p((n+ o) r)(n) € (Q[(n + o)n], x,1),
C(_317"' _57"): ( _Cu_v(Rl) € (Z7X71)7
Y—s1,...,—s *p(l) PYTry(Rl) S (Qa X71)7
where p € Q[t] is the exponential transform of p, and p is obtained as the

exponential transform of p € Z[t].
(2) One has (Z7 |1y-) =(Z7, | 1x-) =1 and

Aw(Z))=2, @27 and A, (Z )=2 ®Z,
\ ¢
Z; = H oy st o g Z7, = H oS (my (S1) P
leLynY leLynX
(3) Similarly, (Y | 1y+) = (A | 1x+) =1 and
Ag(M =TT and A (A)=ARA,
~ N
T = H ety (eIt g A= H e Py s Tt
leLynY leLynX

(4) Under the action of G [35], as for L [38, 41], for any g € G there exists a
letter substitution o4 and a primitive series C' such that

Ag(2)) = 0g(A(2))e”  and  A(z) ~g €™ =),

Remark 5.16. — By Corollary 5.4, A does not satisfy (DE) while Z~, and zy,
regularizing A and Y respectively, satisfy similar properties as Z,, and Z,, respec-
tively.

The series Z7, (or Z) is not unique because in Theorem 5.15 the elements of
the family {Lig, }iecyny are polylogarithms with negative multiindices which are
polynomial in e~ 1o8(1=2)

Indeed, for any ! € LynY one has R; € Z[z}]. Then, letting p; be a monomial in
Z[xy, (—x0)*] with p; # 0 and using Lemma 5.12, one gets the same regularized val-
ues (., (R;) and 7z, (g,) for the series Ry w p; € Z (1)) wo " (o)) = ZZE (X)),
i.e. (see Appendix C)

£.p-1 Lk i (2) = G (R, {(1=2)"log"((1 = 2) ) haezpens,

f'p'na+ooH7ry (Ryw p1) (n) = ’Yﬂ'y(Rl)7 {na logb(n)}aEZ,belN~
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For example, one can take p;, by substituting each letter x1 by x¢ in R;.

6. CONCLUSION

In this paper, we have surveyed our recent results concerning the resolution
of KZ3 via a noncommutative symbolic computation, and the algebraic combi-
natorial aspects of the polylogarithms {Li, . }/>" the harmonic sums

(317- 137)ECT’
{Hy, ..o )20 o and the zeta functions {((s1,... s,,)}r>1 with the

S (s1,0.0,80)€ (81 ~~~~~ )ecr
help of their commutative and noncommutative generating series.
This review is mainly based on the combinatorics on the shuffle bialgebras and

their diagonal series, i.e. D,,,, D and Dx. In particular, it used

(1) The construction of pairs of bases (Lie algebra bases and transcendence
bases) in duality (Theorem 2.1) to factorize the noncommutative ratio-
nal power series (Theorem 2.3) and to obtain the algebraic structure of

{¢(s1,.- sr)}’(zl L5 )EN (polynomial relations homogenous in weight,

and independence over a commutative extension of @, denoted by A) by
identification of local coordinates, in infinite dimension (Corollary 4.4).

(2) The algebraic structures (Theorems 3.1 and 3.2) and the analysis of sin-
gularities (Theorems 4.1 and 4.9) of the polylogarithms and the harmonic
sums, for which the global renormalizations has been obtained via Abel
like theorems for the pairs of generating series L, H and L~ , H™. In partic-
ular, the series L corresponds to the actual solution of (1.1) satisfying the
standard asymptotic behaviors as given in (1.4) (Corollary 5.4).

(3) The paper culminates with the action (Theorem 5.2) of the differential
Galois group Galg(DE) (containing the group of associators dm(A)) on the
asymptotic expansions of solutions of the equation (1.1) (see (5.2)—(5.3)).

The group dm(A) contains the unique associator ® k7, i.e. the series
Z,,, determined by asymptotic conditions (Corollary 5.4), which is also
associated with series Z and Z,. All of them are, for the correspond-
ing co-products, group-like series and their logarithms are also provided
(Propositions 4.2, 4.3 and 5.9).

(4) Non trivial expressions for associators with rational coefficients, i.e. Z7, and
Z , are also explicitly provided thanks to various processes of regularization
via the noncommutative generating series A and Y, which are group-like,
respectively, for A, and Ay, (Theorem 5.15).

(5) Via the local coordinates of the power series Z,,,,Z7,Z,, Z, and Z,
regularization maps for divergent zeta are constructed (Propositions 5.9,
5.11) over algebraic bases matching with analytical meaning : on the one

hand, the character { ,, corresponds to the regularization, obtained as the
finite parts of the singular expansions of {Liy, . . };;1 """" ez
hand, the characters {4, and ~, correspond to the regularlzatlons obtained

as the finite parts of the asymptotic expansions of {Hj, . gr}gl ez

on the other

in different comparison scales.
In particular, the character ~, furnished a generalization of the Euler’s

v constant, {'7817---75r}zi,l...,sr)elN;l (Corollary 4.6), and moreover, if v ¢ A
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then + is transcendent over the A-algebra generated by the convergent zeta
values {((s1,.. sr)}?>1 S)ENE | 0132 (Corollary 5.7).

.....

APPENDIX A

By Proposition 4.3, identification of local coordinates, one obtains homoge-
nous polynomials relations among the local coordinates {¢(X;)}iecyny —{y,} and
{C(S1) hiecynx—x (see Example 6.1).

Example 6.1 (Homogenous polynomials relations among local coordinates®?). —

Relations on {¢(20) e cyny —{u1} Relations on {¢(S1) hiecynx —x
3 C(Bau) = 5¢(S0) ((Spa2) = C(S224,)
4 () = 3((8y,)° C(Saze,) = 3C(Sroar)
((Cyan) = 15¢(Zy)” C(S84202) = 75¢(S021)?

((Bysp2) = 5¢(30) C(Sagez) = 2C(Sapmr)”

5 C(Syava) =3¢(Sua)C(B0a) =5C(Zs) | C(Sagaz) = —C(Sa20,)C(Srowr) +2((Saia, )
C(Byan) = —C(E0)C(E02) + 3(E0s) [¢(Sa20r0001) = = 5C(Satay) +¢(Sa20, ) (Seoar)
((Zy200) = 3C(E0a)C(T) = BC(S0s) | C(Su209) = =C(Si22, ) (Swowr ) +2( (S,

((Bypy2) = 136 (Bys) (Saprragr) = 5C(Szta;)
€(Dy008) = $C(E0a)C(Z0) + 5¢(Sus) | CSagat) = C(Sitay)
6| C(Sue) = 35¢(S)’ ((Suz0y) = 35C(Sapar)?
((Brane) = C(E0a)* = 51¢(Sn) ((Srt2) = 55C(Sape1)” = 5C(Sazs, )
C(Busnn) = 2T = 3¢(Z00)®  [C(Saaraper) = 125 C(Se001)?
CBysne) = =556 (Bp2)” + §C(Sys)? ((Sa303) = 25 ¢(Snoar)® —((S525,)°

<(2y3y2y1) = 3<(2y3)2 - %C(Eyz)d C(SIQzlzoz%) = %C(Sﬂvozl )d

0

C(Z'y4y%):%C(ZUZ)S_%g(EUS)Z C(Szgzzzozl): 28190 (Sﬁfoxl) + C( z2 11)2

C(Ey%y%) = % (Eyz)g - iC(EyS)Q C(ngac‘ll) 35 C.o.(SIOIl)3 é (ngx1)2
C(Eygy?) = %C(EyZ)d C(Szozlmgz‘f) = %C(Slozl)s 7C(Szgzl)2
g(zyzy%) = %C(Zyz)g + %C(Zy3)2 C(choz“;’) = %C(Sﬂfoml)s

39These relations are sorted by weight and are ordered by Lyndon words.
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One obtains also two families of polynomials homogenous for the weight, de-
scribing the kernel of the polymorphism ¢ (see Example 6.2, {Q;}iccynx)-

Example 6.2 (Homogenous polynomials®® generating ker(¢)). —

{Qihiecyny — (1) {Qi}ticcynx—x
3 ((Byays — §5p5) =0 C(Spga2 = Sp24,) =0
4 ((Byy - 28, =0 C(Su3ay — 2Sh0r1) =0
((Buann — 16%55 0) =0 C(Siz03 — F5Stoar) =0
(D~ 352D =0 ((Suas — 25552) =0
5| C(Syays — 38ys 1%y, —55,,) =0 ((Sage? = SuzayiSeozy +25344,) = 0
C(Byayy — Byg Xy, ) + %Eys) =0 C(nga:lacoazl - %Sacgwl + Sa:garl‘—u woxy) = 0
((Zyzy, — $80 w8y, — B5y;) =0 ((Sa208 = SuzaysSeoay +25,44,) =0
C(Bygy2 = 15505) =0 (Sagaroon? = 3%0,) =0
(B8 — 7803 W By,) + §35y5) =0 C(Spgat = Spaz,) =0
6 ((Sye — 520, %) =0 C(Su30y — 2 Sr0r1) =0
(Syaps — S22 Axs) g C(Spa2 — S0, — %S%jl) =0
C(Bysyn — 28,57 = 35,59 =0 C(Suarzgzs — 195 Se0a1) =0
C(Sravrve — 5550 >+ §54577) =0 C(Sagag — HSages — Sz, ) =0
((Suavam =355 7 — 6245 ) =0 C(Su2010002 — 125 S5001) = 0
((Byay? = 1650 -~ §8u ) =0 $(Suzatage: — B65w0m +55,5,,) =0
((Ez2 — 550 - — 1% ) =0 C(Sa201 — 2 Sooar — %ngfl) =0
C(Eygyp = 215 1) =0 C(Sagarzont — 35 Sm0m — Sz ) =0
C(Sypyt = 5650+ 1650 ) =0 C(Supas = 35 Sm0m) =0

By substituting “=" by “—” in the previous homogenous polynomial relations

one obtains a Noetherian rewriting system without critical pairs among local coor-
dinates {{(31) hiecyny —fy} (resp. {C(S1) hiecynx—x) (see Example 6.3).

40T hese polynomials are sorted by weight and are ordered by Lyndon words.
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Example 6.3 (Noetherian homogenous rewriting system among local coordi-
nates?!). —

Rewriting on {¢(20) hie cyny — {v1} Rewriting on {¢(S1) hiecynx—x
3] C(Byam) = 3C(3ys) ((Sage2) = C(Sa24,)
A ((Sy) = 2C(By,)? ((Ss22,) = 3C(Szoar)?
(Susnn) = BC(0)? C(Sa202) = £5C(Srors)?
((Zyep2) = (S’ C(Saga2) = 2C(Sapar)?
51 C(Byaya) = 3C(Ey3)C(By,) —5¢(Xy5) C(Sa322) = —=C(S,25, ) (Saoz1)+2¢(Sya5, )

0

C(Eygyl) - %C(Eyd)c( 2) 12C( ) C(S 2 3) - C(SLQZl)C(Slofl)+2C(S¢ngl)

((Byy2) = 15¢(Ss) C(Saperaoaz) = 3C(Sitz,)
((Byoys) = 1C(E0a)C(T0)+5C(S0s) | C(Sapat) = C(Sits,)
6| ((Sye) = 356(3y)? ((Segar) = 35¢(Sapar)’?
C(Byar) = C(Z4a)* = 55¢(Br)? C(Sp102) = 35C(Sapa1)*~3C(S02,,)
((Syan) = 3C(202)* = 3C(20a)* |C(Sagarmomr) = 105 (S’
CBusmvn) = —35¢(50:)*+5¢(55)? C(Su303) = Z2¢(Sw001)>—C(Su2,,)?

C(Zysyzyl) - 3C(Ey3)2_1%(:(2y2)3 C(ngxlmgxf) — ﬁzg)q(smm)?)

C(Ey4y%)_>%C(Eyz)d_%C(EyS)Q C(SIngzgzl)_}—% (51‘011) +3 C( z2 11)2

0

g(zyzy%) - % (292)3_i4(2y’%)2 C(Sz z ) 35C( 103”1) _% (Sa:(?)zl)Q
C(Eysyi") — %C(E?m)?) C(Sxoxlmox ) 271 C( z011) _C(ngacl)2
C(Eygy%) — % ( yz) 16(( ) C(Sasgz ) 35(( z02‘/1)

This means that for any | € LynY — {y;1} (resp. | € LynX — X), the element
C(%;) (resp. ¢(S;)) is rewritten in a unique way as polynomials (normal forms) with

coeffients in @ in irreducible local coordinates Z2° (V') (resp. Z25.(X)) forming an

algebraic generator system for Z (see Example 6.4).
Example 6.4. — At weight 12 one has

Zyg = Y2, Zyg = Y3, Ey5 = Y5, Ey7 = Y7, Zyg = Y9, Zyn = Y11

41These rules are sorted by weight and are ordered by Lyndon words.
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and
2 4
Seow, = Tol1, Se2e, = Tol1, Saizy = ToT1,
_ .6 _ .8 _ .10
Srgml = Ty, Smgxl = Ty, Smé“zl =Ty L1-

The identification of local coordinates leads to the irreducible polyzetas (see [47]
for a short discussion)

Zﬁi2(Y) = {C(E?ﬂ)a C(Ey3)u C(Eyz’))a C(Ey7)7 C(Zygy‘;’)v C(Eyg)v
C(Eygyz)a C(Eyu)a C(Zyzyi’)a C(Eygy?)a C(2y§y§)}
£<12(Y) = {Ey272y3,2y5,2y7,2 s Dy s DiyayT Eyll,Eyw?,Eysy?,Eygy?}.

rr ysyf Y3y,

mel? (X) = {C(Sﬂﬁom )7 C(Swgwl)a C(Swgm )7 C(Swgwl)a C(Szozfxox‘ll)v C(Swgzl)v
C(Saoa2anzt)s C(Sz102,)s C(Sepazzoa)s C(Saoa2agat)s C(Spoztzeas) -

<12
‘Cz\n (X) = {Szorla Sﬂcgwla Szézla Szgzla S:vowf:vow‘lla Swgwl y Swomfmom?,

Sz(l’omla S{I}(){II?ZK()ZEZ? Smomfxox’fa Sxox‘llxgx?}'

APPENDIX B

K1 (Z, t) _ ezo[log(Z)*log(t)]xlezo log(t) _ eo log(z)ead,mo 108(6) 7, .

z t
Z Liy(2)w :/eﬂio[log(z)—log(tl)]mlwl(tl)/ lewo[log(tl)—log(tz)]xlwl(t2)ewo log(t2)
0 0

:/Ozwl(tl)/otl wi(t2)k2(2, 11, t2),

where
Ka(z, 1, o) = €% log(2)—log(t1)] 5, grollog(t1)—log(t2)] . oo log(ta)

— %0108(2) pad _zg 10g(t1) T e3d—g los(t2) T,

> 3Liw(z)w = /OZ w1(t1) /Otl M(h)/ot2 wi(t3)rs(z,t1,t2,3),

WETYH L TY
where
Iig(Z, t1, to, tg) _ ewo[log(z)flog(h)]xle:ro [log(tl)flog(tQ)]xle:ro [log(tQ)flog(tg,)]xlemo log(ts)

= %o log(z) eadfl'o log(t1) 1 ead*wo log(tg) T ead*wo log(tg) T,

z k—1
> Llw(z)wz/o w1(t1)"'/0 wi(te)rr(z, 1, tr),

* k
WETG L Ty
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where

k(2 b1, tg) = eac()[log(Z)—log(h)]301 . 6370[log(tk—l)_l‘)g(tk)]xlemo log(tx)

— %o log(z) pad_a log(t1) gy - - - -z o (tx) 20

= o8 Z Hlog ad', z1.

l1,,lx=0i=1

Hence (see the notations of Proposition 5.10) [43, 44],

l
Z Llw( )w — %0 log(z) Z / Wi tl Og )

wezy Ly T =0
t’“l log
o Ot

= ¢Polog() E Li Had_w
zlzo o- oa:la:O 0

i, 5120

See also Example 3.3 and Appendix C, for the commutative generating series of
polylogarithms.
APPENDIX C

For k > 0 and |t|< 1 let us define Vi = (tz}) w 2% and Wy, = (ta}) w 2. By
(3.4) one has [35, 36, 37)

(= log(1 — 2))*

k
Liy, (2) = 2* and Liw, (2) = (1 - z)_thg (Z)

k! k!
Hence [35, 36, 37],
. zt

Ll(tzo )z Z Lle = — Z’

k>0
z

Lizs o\, (tap)(2) = ) Liw, (2 o

k>0

and then (see Remark 5.16)
Cultad)wag) =3 G W) =1, Gu((tag)wal) = > (Vi) =
k>0 k>0

1

and Ty ((tz) o zf) = m

y (3.4), for any k > 1 one also has [35, 36, 37]

i—1 .
] i—1\ (—tlog(l — 2))*
Li (1, ) i+1— (12« (2) = (1 — 2)" log(1 — 2) Z ( J )(g;'))
k=0 '

More generally, as in Theorem 2.3, let S belong to C™* (X)) and be of linear
representation (3, u,n) of dimension n > 1. Then the following matrix is nothing
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else than the “Dyson series” [36, 37]

¢
R(z) = Z Liy (2)pu(w) = H elis (2In(Pr),

weX* leLynX

If S is exchangeable, i.e. [p(xo), u(z1)] = 0, then R reduces to (see Lemma 2.4)
(36, 37]
R(z) = elog(u(zo)—log(1—2)p (1)

The matrix R belongs to M., ,(C[log(2),log(1 — 2)][2%, (1 — 2)%]a.pec) and if p(z)
and p(z1) are diagonal matrices, then R € M., ,,(C[z%, (1 — 2)%]apec) [36, 37]. On
the one hand, for |tp| < 1 and |#1 | < 1, let us introduce the concatenation morphism
T1, mapping xg to 1 and z; to ¢t. Similarly, let 79 map z1 to 1 and zq to t. It follows
then (see Appendix B)

¢

z ) z
= and  79(L(2)) = Liraz) 1 2 (2) = Tt

On the other hand, let 7 map z; to tg and zg to t;. Then

71 (L(2)) = Ligtar) w23 (2) =

. Zto
T(L(Z)) = Ll(towo)* uJ(t1JJ1)*(Z) = m

APPENDIX D

The algebra H() is endowed with the topology of compact convergence whose
seminorms are indexed by compact subsets of (2, and defined by

pi(f) = lIfllx = sup | f(s)].
seK

Of course, px,ux, = sup(pk,,Pk,), and therefore the same topology is defined
by extracting a fundamental subset of seminorms, which here can be chosen denu-
merable. As H(2) is complete in this topology, it is a Frechet space and even, as
pr(f9) < pr(f)pi(g), it is a Frechet algebra (even more, as px(1g) = 1, a Frechet
algebra with unit).

With the standard topology above, an operator ¢ € End(#(f2)) is continuous if
and only if, with K; compacts of €,

(VE2)(3K1)(IM21 > 0)(Vf € H(Q))([lo()l x, < Mor|lfllx,)s

the algebra C{Liy }wex+ (and H(2) ) is closed under the operators 6; for ¢ = 0, 1.
We will first build sections of them, then see that they are continuous and, propose
(discontinuous) sections more adapted to renormalisation and the computation of

associators.
For zp € Q, let us define ¢° € End(H(2)) by

W (f) = /Z f(s)wo(s) and °(f) = /Z f(8)wi(s).

It is easy to check that 6;.;° = Idy ) and that they are continuous on H(€2) (for
the topology of compact convergence), because for all K Ccompact €2 we have

z

P (15" ()] < px(f)[zsgfgl wi(s)ll;
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and this is sufficient to prove continuity. The operators ¢;° are also well defined on
C{Liy }wex~, and it is easy to check that

Lfo (C{Liw}wGX*) c C{Liw}wEX* .
Due to the decomposition of H () into a direct sum of closed subspaces
H(Q) = HZOH()(Q) @ Clg,

it is not hard to see that the graphs of 8; are closed. Thus the 6; are also continuous.
Much more interesting (and adapted to the explicit computation of associators),
we have the operator ¢; (without superscripts), mentioned in the introduction and
(more rigorously) defined by means of a C-basis of

C{Liw}wex* = C ®C C{Liw}wEX*'
As C{Liy twex+ = C[Lyn(X)], one can partition the alphabet of this polynomial
algebra in (Lyn(X) N X*z1) U {x0} and obtain the decomposition
C{Liw}wEX* ~C ¢ C{Liw}weX*xl ¢ C{Liw}w€x3~
Due to the following identity [35],

n
UTLTY = UT] W T — Z(um i) ral ",
k=1
we have an algorithm to convert Limlzn as
Livg,ap(2) = Y Pu(2)log™(z) = > (Pn(2) | w)Liy(2)log™(2).
m<n m<n,weX*x

This means that
B := (2" Liua, (2) Liaz (2)) (ki ezxnxx = U (2" Liag (2)) (km) ez
U ((1 = 2) " Liyg, (2) Lizn (2)) (1n,u)en+t xvxx+ U (1 — z)7! Lizz (2))(1,n)en+ xIN
is a C-basis of C{Liy }wex+. With this basis, we can define ¢y as follows.
DEFINITION 6.5 ([22]). — Define the index map ind : B — Z by
ind(zF(1 — 2)7! Lizn(2)) =k and ind(2"(1 — 2) 7! Liya, (2) log™(2)) = k + |uzy].

Then ¢ is computed as follows
/ b(s)wo(s), if ind(b) =1

b(s)wo(s), if ind(b) <O.
1
To show discontinuity of ¢y, one of the possibilities consists in exhibiting two
sequences fn, gn € C{Liy }wex+ converging to the same limit but such that

lim ¢o(fr) # lim eo(gn)-

Here, we choose the function z to be approximated in a twofold way, and if ¢y were
continuous, we would have equality of the limits of the image-sequences (which is
not the case). We first remark that

_ Z log"(2) _ Z(_l)n+l log" ((1 —2)~1

n! n!
n=0 n>1
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Set

e 3O g s T el (=)

m! m!
os<m<n 1<m<n

(these two sequences are in C{Liy, }wex~). It is easily seen that to(fn) = fri1 — 1,
and then lirf to(fn)(2) =z — 1. Now, for any s € [0, z] with z €]0, 1] one has
n—r—+0o0

o) |=1 Y (- U= o

m! -5
m=1

In order to exchange limits, we apply Lebesque’s dominated convergence theorem to
the measure space (|0, z], B,dz/z) (B is the usual Borel o-algebra) and the function
p(r) = s(1—s)~! which is — as are the functions g,, — integrable on ]0, z] for every
z €]0,1[. Then

. . f ds i . ds ; ds
0 0 0

Hence, for z €]0, 1] we obtain lim(to(fr,)) = 2—1 # z = lim(to(gs)) which completes
the proof.
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