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ON THE SOLUTIONS OF THE UNIVERSAL DIFFERENTIAL EQUATION WITH THREE REGULAR SINGULARITIES (ON SOLUTIONS OF 𝐾𝑍 3 )

This review concerns the resolution of a special case of Knizhnik-Zamolodchikov equations (𝐾𝑍 3 ) and our recent results on combinatorial aspects of zeta functions on several variables.

In particular, we describe the action of the differential Galois group of 𝐾𝑍 3 on the asymptotic expansions of its solutions leading to a group of associators which contains the unique Drinfel'd associator (or Drinfel'd series). Non trivial expressions of an associator with rational coefficients are also explicitly provided, based on the algebraic structure and the singularity analysis of the multi-indexed polylogarithms and harmonic sums.

Knizhnik-Zamolodchikov equations and Drinfel'd series

In this paper, we survey our recent results which pertain to an in-depth combinatorial study of the several complex variables zeta functions defined as follows where ℋ 𝑟 = {(𝑠 1 , . . . , 𝑠 𝑟 ) ∈ C 𝑟 | ∀𝑚 = 1, . . . , 𝑟, ℜ(𝑠 1 ) + . . . + ℜ(𝑠 𝑚 ) > 𝑚} [START_REF] Enjalbert | Analytic and combinatorial aspects of Hurwitz polyzêtas[END_REF][START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF]. They appear in the regularization of solutions of the following fuchsian first order differential equation without initial condition, with regular singularities in {0, 1, +∞} and noncommutative indeterminates in 𝑋 = {𝑥 0 , 𝑥 1 } : This equation can be considered as the universal fuchsian first order differential equation with three regular singularities. Here, the notation has become essentially classical since Drinfel'd's papers [START_REF] Drinfel | Quasi-Hopf Algebras[END_REF][START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal( Q/Q)[END_REF] which emphasized the importance of (1.1).

(𝐷𝐸) 𝑑𝐺(𝑧) = (︂ 𝑥 0 𝑑𝑧 𝑧 + 𝑥 1 𝑑𝑧 1 -𝑧 )︂ 𝐺(𝑧). ( 1 
After some elementary transformations [START_REF] Drinfel | Quasi-Hopf Algebras[END_REF][START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal( Q/Q)[END_REF] one also finds that (1.1) is (equivalent to) the first non trivial Knizhnik-Zamolodchikov 𝐾𝑍 3 . This is connected to the fact that the colored braid group on three strands 𝑃 3 is the direct product of its cyclic center with a copy of the free group on two generators. Although this interpretation of (1.1) does not play an explicit role below, it should be kept in mind with a view towards applications.

We may now return to (1.1) for which a solution can be obtained, as already pointed out by Poincaré, and done for the systems of ordinary linear differential equations with regular singularities in [START_REF] Deligne | Equations Différentielles à Points Singuliers Réguliers[END_REF][START_REF] Dyson | The radiation theories of Tomonaga, Schwinger and Feynman[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF][START_REF] Lappo-Danilevsky | Théorie des systèmes des équations différentielles linéaires[END_REF], via Picard's iterative approximation. The differential Galois group of (1.1) is nothing else than the Hausdorff group, set of exponentials of Lie series in ℒ𝑖𝑒 C ⟨⟨𝑋⟩⟩ (see Section 5). In this way, on the completion of ℋ(Ω)⟨𝑋⟩, one obtains the so-called Chen series, over 𝜔 0 and 𝜔 1 along the path 𝑧 0 𝑧 on Ω, defined by [START_REF] Cartier | Jacobiennes généralisées, monodromie unipotente et intégrales itérées[END_REF][START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF] :

𝐶 𝑧0 𝑧 := ∑︁ 𝑤∈𝑋 * 𝛼 𝑧 𝑧0 (𝑤)𝑤 ∈ ℋ(Ω)⟨𝑋⟩, (1.2) 
where 𝑋 * is the free monoid, generated by 𝑋 [START_REF] Berstel | Rational series and their languages[END_REF][START_REF] Viennot | Algèbres de Lie libres et monoïdes libres[END_REF] (1 𝑋 * is the neutral element), 𝛼 𝑧 𝑧0 (1 𝑋 * ) equals 1 Ω and, for subdivisions (𝑧 0 , 𝑧 1 . . . , 𝑧 𝑘 , 𝑧) of 𝑧 0 𝑧 and for 𝑤 =

𝑥 𝑖1 • • • 𝑥 𝑖 𝑘 ∈ 𝑋 * 𝑋, the coefficient 𝛼 𝑧 𝑧0 (𝑥 𝑖1 • • • 𝑥 𝑖 𝑘 ) is defined by 𝛼 𝑧 𝑧0 (𝑥 𝑖1 • • • 𝑥 𝑖 𝑘 ) := ∫︁ 𝑧 𝑧0
𝜔 𝑖1 (𝑧 1 ) . . .

∫︁ 𝑧 𝑘-1 𝑧0 𝜔 𝑖 𝑘 (𝑧 𝑘 ) ∈ ℋ(Ω) (1.3)
and satisfies the shuffle relation 𝛼 𝑧 𝑧0 (𝑢 ⊔⊔ 𝑣) = 𝛼 𝑧 𝑧0 (𝑢)𝛼 𝑧 𝑧0 (𝑣), for 𝑢, 𝑣 ∈ 𝑋 * [START_REF] Chen | Iterated integrals and exponential homomorphisms[END_REF]. By termwise differentiation, the power series 𝐶 𝑧0 𝑧 satisfies (1.1), with initial condition 𝐶 𝑧0 𝑧0 = 1 𝑋 * . From a theorem due to Ree [START_REF] Ree | Lie elements and an algebra associated with shuffles Ann[END_REF], there exists a primitive series 𝐿 𝑧0 𝑧 ∈ ℋ(Ω)⟨𝑋⟩ such that 𝑒 𝐿𝑧 0 𝑧 = 𝐶 𝑧0 𝑧 , meaning that 𝐶 𝑧0 𝑧 is grouplike. The challenge is then to determine explicitly 𝐿 𝑧0 𝑧 , via the Magnus' Lieintegral-functional expansion [START_REF] Magnus | On the exponential solution of differential equations for a linear operator[END_REF] and to regularize, effectively, 𝐶 0 1 and 𝐿 0 1 (although a lot of iterated integrals be divergent). On the other hand, essentially interested in the solutions of (1.1) over the interval ]0, 1[ and using the involution 𝑧 ↦ → 1 -𝑧, Drinfel'd stated that (1.1) admits a unique solution 𝐺 0 (resp. 𝐺 1 ) satisfying the following asymptotic behaviors [START_REF] Drinfel | Quasi-Hopf Algebras[END_REF][START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal( Q/Q)[END_REF] : 𝐺 0 (𝑧) ∼ 0 𝑧 𝑥0 and 𝐺 1 (𝑧) ∼ 1 (1 -𝑧) -𝑥1 .

(1.4)

In particular, since 𝐺 0 and 𝐺 1 are group-like, there is a unique group-like series Φ 𝐾𝑍 ∈ R⟨⟨𝑋⟩⟩, called the Drinfel'd associator [START_REF] Racinet | Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel[END_REF] (or Drinfel'd series [START_REF] Gonzalez-Lorca | Série de Drinfel'd, monodromie et algèbres de Hecke[END_REF]), such that [START_REF] Drinfel | Quasi-Hopf Algebras[END_REF][START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal( Q/Q)[END_REF] 𝐺 0 = 𝐺 1 Φ 𝐾𝑍 .

(1.5)

Drinfel'd proved also the existence of group-like series in Q⟨⟨𝑋⟩⟩ satisfying similar properties of Φ 𝐾𝑍 , but he neither constructed such an expression nor made explicit 𝐺 0 and 𝐺 1 (similarly for log(𝐺 0 ), log(𝐺 1 ) and log(Φ 𝐾𝑍 )).

After that, Lê and Murakami expressed, in particular, the divergent coefficients of Φ 𝐾𝑍 as linear combinations of {𝜁 𝑟 (𝑠 1 , . . . , 𝑠 𝑟 )} 𝑟1 (𝑠1,...,𝑠𝑟)∈N 𝑟 1 ,𝑠1 2 , via a regularization based on representation of the chord diagram algebras [START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF].

One has two ways of considering, for any (𝑠 1 , . . . , 𝑠 𝑟 ) ∈ ℋ 𝑟 , the quantities 𝜁 𝑟 (𝑠 1 , . . . , 𝑠 𝑟 ) as limits fulfilling identities (see Section 3) [START_REF] Costermans | Algorithmic and combinatoric aspects of multiple harmonic sums[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]. Firstly, they are limits at 𝑧 = 1 of polylogarithms, and secondly, as truncated sums, they are limits of harmonic sums when the upper bound tends to +∞ : (1.9)

The coefficients in (1.3) are single valued over Ω ; alternatively they can be analytically continued and appear as multivalued functions over 𝐵 := C -{0, 1}. In fact, we have mappings from the universal cover of 𝐵, denoted by B, i.e. we choose a universal covering (𝐵, B, 𝑝), where 𝑝 : B → 𝐵 is the covering map [START_REF] Cartier | Jacobiennes généralisées, monodromie unipotente et intégrales itérées[END_REF].

This second point of view will be adopted in the sequel. In this respect, let ℋ(𝐵) (resp. ℋ( B)) denote the ring of holomorphic functions over 𝐵 (resp. B), with 1 𝐵 : 𝐵 → C (resp. 1 B : B → C) as the neutral element (𝑧 ↦ → 1). The work presented in this survey will concern our recent results about polylogarithms, harmonic sums and zeta values, involved in the coefficients of 𝐶 𝑧0 𝑧 and 𝐿 𝑧0 𝑧 belonging to ℋ(𝐵)⟨⟨𝑋⟩⟩.

We will base our work essentially on [START_REF] Berstel | Rational series and their languages[END_REF] The isomorphisms of the Cauchy and Hadamard algebras of polylogarithmic functions, as defined in (1.6) and (1.9), respectively, with the shuffle (C⟨𝑋⟩, ⊔⊔ , 1 𝑋 * ) and the quasi-shuffle algebras (C⟨𝑌 ⟩, , 1 𝑌 * ) admitting Lyndon words as pure transcendence bases (recalled in Section 2), [START_REF] Bigotte | Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF] The isomorphisms of the bialgebras (𝐴⟨𝑋⟩, ., 1 𝑋 * , Δ ⊔⊔ , e) and (𝐴⟨𝑌 ⟩, ., 1 𝑌 * , Δ , e) with, respectively, the enveloping algebras of their primitive elements, leading to the constructions of the pairs of bases in duality to factorize the diagonal series thanks to the Cartier-Quillen-Milnor-Moore (CQMM, in short) and Poincaré-Birkhoff-Witt (PBW, in short) theorems (recalled in Section 2), [START_REF] Bui | Schützenberger's factorization on the (completed) Hopf algebra of 𝑞-stuffle product[END_REF] The use of commutative and noncommutative generating series to establish combinatorial algebraic and analytical aspects of the polylogarithms {Li 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈C 𝑟 , the harmonic sums {H 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈C 𝑟 , and the zeta functions {𝜁 𝑟 (𝑠 1 , . . . , 𝑠 𝑟 )} 𝑟 1 (𝑠1,...,𝑠𝑟)∈C 𝑟 (recalled in Sections 3-5). In the sequel, for simplification, we will adopt the notation 𝜁 for 𝜁 𝑟 , 𝑟 ∈ N.

We will examine the following problems : P1. The renormalization which consists of finding counter terms to eliminate the divergence of the polylogarithms {Li 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈Z 𝑟 at 𝑧 = 1, and of the harmonic sums {H 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈Z 𝑟 for 𝑛 → +∞ (see Theorems 4.1 and 4.9 below).

For this, a theorem due to Abel is extended to treat, simultaneously, all convergent cases as well as all divergent cases via their generating series. P2. The regularization which consists of evaluating analytically the finite parts (involved in the coefficients of 𝐶 0 1 and 𝐿 0 1 ) of the singular expansions of the polylogarithms {Li 𝑠1,...,𝑠𝑟 } 𝑟 For this, the definition of the regularization characters over the algebraic bases of noncommutative polynomial algebras have to be reduced to match with their analytical meanings. P3. For any multiindex (-𝑠 1 , . . . , -𝑠 𝑘 ) in N 𝑟 -, since the polylogarithms (resp. harmonic sums) are polynomial in 𝑒 -log(1-𝑧) for | 𝑧 | < 1 (resp. in 𝑛 ∈ N) with coefficients in Z (resp. Q) (see Propositions 4.7 and 4.11 below) : This way, the previous regularizations are extended algebraically (i.e. by transcendent extension over a subalgebra of noncommutative rational series, see Proposition 5.11 below) and analytically (i.e. by evaluation of their finite parts within the comparison scales {(1 -𝑧) -𝑎 log 𝑏 (1 -𝑧)} 𝑎,𝑏∈N and {𝑛 -𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N , see Lemma 5.12 below), allowing to regularize, in particular, the iterated integrals and their Taylor coefficients associated with the rational series in (C[𝑥 P4. For any multiindex (𝑠 1 , . . . , 𝑠 𝑟 ) in N 𝑟 1 , by expanding (1 -𝑧) -1 the polylogarithms as in (1.6) can be obtained as iterated integrals over the differential forms 𝜔 0 and 𝜔 1 along the path 0 𝑧 associated with the words (1.3). They induce shuffle relations while the Taylor coefficients as in (1.7) induce quasi-shuffle relations among convergent zeta values, as obtained in (1.8) (see Theorem 3.1 below).

Li -𝑠1,...,-𝑠 𝑘 (𝑧) = 𝑟+𝑠1+...+𝑠 𝑘 ∑︁ 𝑘=0 𝑝 𝑘 𝑒 -𝑘 log(1-𝑧) = 𝑝(𝑒 -log(1-𝑧) ), (1.
𝑥 𝑠1-1 0 𝑥 1 . . . 𝑥 𝑠𝑟-1 0 𝑥 1 over 𝑋 * 𝑥 1 , as in
In fact, the polynomial relations (homogenous in weight) over a commutative Q-extension, denoted by 𝐴, among convergent zeta values, are relations obtained at singularities among elements of a transcendence basis of the algebra of polylogarithms (or harmonic sums, see Proposition 4.3 below). These relations are not due to but imply the double-shuffle relations and do not need any regularization. Moreover, if Euler's constant 𝛾 / ∈ 𝐴, then they are algebraically independent of 𝛾 (see Corollary 5.7 below).

The organization of this paper is as follows :

• In Section 2, the algebraic combinatorial framework is introduced. In particular, we will give an explicit isomorphism 𝜙 𝜋1 from the shuffle bialgebra to the quasi-shuffle bialgebra (Theorem 2.1). Working with 𝜙 𝜋1 , the construction by Mélançon-Reutenauer-Schützenberger (MRS, in short), initially elaborated in the shuffle bialgebra and useful to factorize the group-like series and then rational power series (Theorem 2.3), will be extended in the quasi-shuffle bialgebra for the similar factorizations via the constructions of pairs of bases in duality (see (2.6)-(2.7)).

• In Section 3, to study their structure via generating series, polylogarithms and harmonic sums at integral multiindices will be encoded by words over various alphabets (Theorems 3.1, 3.2 and Lemmas 2.4-3.5). In particular, the bi-integro differential algebra of polylogarithms will be examined (Proposition 3.6) and their noncommutative generating series will be put in the MRS form (their logarithms will be also provided, Proposition 3.8).

Concerning the polylogarithms at positive indices, we will insist on the fact that their noncommutative generating series is the actual solution of (1.1), and the noncommutative generating series of the finite parts of their singular expansions corresponds to the associator Φ 𝐾𝑍 which will be also put in MRS form without divergent zeta values as local coordinates.

• In Section 4, with noncommutative generating series, the global renormalizations of polylogarithms and harmonic sums will provide associators (Theorems 4.1 and 4.9). In particular, using the bridge equations connecting shuffle structures (Propositions 4.2 and 4.3), the enumerable families of irreducible zetas values will be implemented (see (4.8)-(4.9)) and Euler's 𝛾 constant will be generalized as finite parts of harmonic sums (Corollary 4.6). This will be achieved by identifying the local coordinates in infinite dimension and by obtaining algebraic relations among zeta values.

With commutative generating series, many functions (algebraic functions with singularities in {0, 1, +∞}, see Example 3.3) forgotten in the straight algebra of polylogarithms, at positive indices, will be recovered.

• In Section 5, the elements of the differential Galois group Gal C (𝐷𝐸) containing the groups of monodromy and of associators will be considered as regularized solutions of (1.1). The actions of Gal C (𝐷𝐸) on the singular expansions of the solutions of (1.1) will be then discussed (Theorem 5.2) : on the one hand, since the group of associators contains itself Φ 𝐾𝑍 and the local coordinates of each associator are homogenous in weight polynomials on zeta values over 𝐴, the independence of the convergent zeta values with respect to 𝛾 will be discussed according to 𝐴 (Corollary 5.7), and log(Φ 𝐾𝑍 ) will be also expressed (Proposition 5.9); on the other hand, since the polylogarithms at negative indices are polynomial in (1 -𝑧) -1 with coefficients in Z (Propositions 4.7-4.11), the generating series of the finite parts of their singular expansions will specify the regularization characters (Propositions 5. 6-5.11) and give examples of rational associators (Theorem 5.15).

Combinatorial framework

2.1. Shuffle and quasi-shuffle algebras. Let 𝐴 be a commutative and associative Q-algebra with unit.

Let 𝑋 = {𝑥 0 , 𝑥 1 } (resp. 𝑌 0 = {𝑦 𝑠 } 𝑠 0 ) be an alphabet equipped with the total order 𝑥 0 < 𝑥 1 (resp. 𝑦 0 > 𝑦 1 > 𝑦 2 > . . .) and let 𝑌 = 𝑌 0 -{𝑦 0 }. The free monoid generated by 𝑋 (resp. 𝑌 , or 𝑌 0 ) is denoted by 𝑋 * (resp. 𝑌 * , or 𝑌 * 0 ) and admits the empty word, 1 𝑋 * (resp. 1 𝑌 * and 1 𝑌 * 0 ) as unit [START_REF] Berstel | Rational series and their languages[END_REF]. The sets of polynomials and formal power series over 𝑋 * (resp. 𝑌 * or 𝑌 * 0 ) with coefficients in 𝐴 are denoted respectively by 𝐴⟨𝑋⟩ (resp. 𝐴⟨𝑌 ⟩ or 𝐴⟨𝑌 0 ⟩) and 𝐴⟨⟨𝑋⟩⟩ (resp. 𝐴⟨⟨𝑌 ⟩⟩ or 𝐴⟨⟨𝑌 0 ⟩⟩) [START_REF] Berstel | Rational series and their languages[END_REF]. The sets of polynomials are 𝐴-modules admitting {𝑤} 𝑤∈𝑋 * (resp. {𝑤} 𝑤∈𝑌 * and {𝑤} 𝑤∈𝑌 * 0 ) as linear bases, i.e.

𝐴⟨𝑋⟩ ∼ = 𝐴[𝑋 * ], 𝐴⟨𝑌 ⟩ ∼ = 𝐴[𝑌 * ], 𝐴⟨𝑌 0 ⟩ ∼ = 𝐴[𝑌 * 0 ]. (2.1)
Therefore, their full duals are

𝐴⟨⟨𝑋⟩⟩ = 𝐴 𝑋 * , 𝐴⟨⟨𝑌 ⟩⟩ = 𝐴 𝑌 * , 𝐴⟨⟨𝑌 0 ⟩⟩ = 𝐴 𝑌 * 0
and the natural pairing is given by the scalar product

⟨𝑆 | 𝑃 ⟩ = ∑︁ 𝑢∈𝑍 * 𝑆(𝑢)𝑃 (𝑢) with 𝑍 ∈ {𝑋, 𝑌, 𝑌 0 },
where, 𝑆(𝑢) and 𝑃 (𝑢) are the coefficients3 of 𝑢 in the series 𝑆 and the polynomial 𝑃 , respectively. As algebras (see (2.1)) the 𝐴-modules 𝐴⟨𝑋⟩ (resp. 𝐴⟨𝑌 ⟩ and 𝐴⟨𝑌 0 ⟩) come equipped with the associative concatenation product and

(1) in 𝐴⟨𝑋⟩, the associative commutative shuffle product [START_REF] Chen | Iterated integrals and exponential homomorphisms[END_REF][START_REF] Eilenberg | On the groups H(Π, n) I[END_REF][START_REF] Ree | Lie elements and an algebra associated with shuffles Ann[END_REF] is defined, for any 𝑢, 𝑣, 𝑤 ∈ 𝑋 * and 𝑥, 𝑦 ∈ 𝑋, as follows [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF] 𝑤 ⊔⊔ 1 𝑋 * = 1 𝑋 * ⊔⊔ 𝑤 = 𝑤 and 𝑥𝑢 ⊔⊔ 𝑦𝑣 = 𝑥(𝑢 ⊔⊔ 𝑦𝑣) + 𝑦(𝑥𝑢 ⊔⊔ 𝑣),

(2) in 𝐴⟨𝑌 ⟩ and 𝐴⟨𝑌 0 ⟩, the associative commutative quasi-shuffle product [START_REF] Knutson | 𝜆-rings and the representation theory of the symmetric group[END_REF] is defined for all 𝑦 𝑖 , 𝑦 𝑗 ∈ 𝑌 0 and 𝑢, 𝑣, 𝑤 ∈ 𝑌 * 0 as follows [START_REF] Hoffman | Quasi-shuffle products[END_REF] 

𝑤 1 𝑌 * 0 = 1 𝑌 * 𝑤 = 𝑤, 𝑦 𝑖 𝑢 𝑦 𝑗 𝑣 = 𝑦 𝑖 (𝑢 𝑦 𝑗 𝑣) + 𝑦 𝑗 (𝑦 𝑖 𝑢 𝑣) + 𝑦 𝑖+𝑗 (𝑢 𝑣).
Their associated coproducts, Δ ⊔⊔ and Δ , are defined for 𝑢 1 , 𝑣 1 , 𝑤 1 ∈ 𝑋 * and 𝑢 2 , 𝑣 2 , 𝑤 2 ∈ 𝑌 * 0 as follows

⟨𝑢 1 ⊔⊔ 𝑣 1 | 𝑤 1 ⟩ = ⟨𝑢 1 ⊗ 𝑣 1 | Δ ⊔⊔ (𝑤 1 )⟩, ⟨𝑢 2 𝑣 2 | 𝑤 2 ⟩ = ⟨𝑢 2 ⊗ 𝑣 2 | Δ (𝑤 2 )⟩.
These operators are morphisms for the concatenation defined on the letters 𝑥 ∈ 𝑋 and 𝑦 𝑘 ∈ 𝑌 0 by

Δ ⊔⊔ (𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1, Δ (𝑦 𝑘 ) = 1 ⊗ 𝑦 𝑘 + 𝑦 𝑘 ⊗ 1 + ∑︁ 𝑖+𝑗=𝑘 𝑦 𝑖 ⊗ 𝑦 𝑗 .
The algebras (𝐴⟨𝑋⟩, ⊔⊔ , 1 𝑋 * ) and (𝐴⟨𝑌 ⟩, , 1 𝑌 * ) admit the sets of Lyndon words denoted, respectively, by ℒ𝑦𝑛𝑋 and ℒ𝑦𝑛𝑌 , as pure transcendence bases [START_REF] Reutenauer | Free Lie Algebras[END_REF] (resp. [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]). A pair of Lyndon words (𝑙 1 , 𝑙 2 ) is called the standard factorization of 𝑙 if 𝑙 = 𝑙 1 𝑙 2 and 𝑙 2 is the smallest nontrivial proper right factor of 𝑙 (for the lexicographic order) or, equivalently, its (Lyndon) longest such [START_REF] Lothaire | Combinatorics on Words, Encyclopedia of Mathematics and its Applications[END_REF].

Diagonal series on bialgebras.

Let ℒ𝑖𝑒 𝐴 ⟨𝑋⟩ and ℒ𝑖𝑒 𝐴 ⟨⟨𝑋⟩⟩ denote the sets of, respectively, Lie polynomials and Lie series over 𝑋 with coefficients in 𝐴 [START_REF] Lothaire | Combinatorics on Words, Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Reutenauer | Free Lie Algebras[END_REF].

The CQMM theorem [START_REF] Bui | Pure) transcendence bases in 𝜙-deformed shuffle bialgebras[END_REF] guarantees that the connected N-graded, co-commutative Hopf algebra 4 is the enveloping algebra of its primitive elements (hence, 𝐴⟨𝑋⟩ = 𝒰(ℒ𝑖𝑒 𝐴 ⟨𝑋⟩)). Classically, the pair of dual bases, {𝑃 𝑤 } 𝑤∈𝑋 * expanded over the basis {𝑃 𝑙 } 𝑙∈ℒ𝑦𝑛𝑋 of ℒ𝑖𝑒 𝐴 ⟨𝑋⟩ and {𝑆 𝑤 } 𝑤∈𝑋 * containing the pure transcendence basis of the shuffle algebra denoted by {𝑆 𝑙 } 𝑙∈ℒ𝑦𝑛𝑋 , permits an expression of the diagonal series as follows [START_REF] Reutenauer | Free Lie Algebras[END_REF] 𝒟 𝑋 := ∑︁

𝑤∈𝑋 * 𝑤 ⊗ 𝑤 = ∑︁ 𝑤∈𝑋 * 𝑆 𝑤 ⊗ 𝑃 𝑤 = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑋 𝑒 𝑆 𝑙 ⊗𝑃 𝑙 . (2.2)
We also get two other connected N-graded, co-commutative Hopf algebras isomorphic to the enveloping algebras of their Lie algebras of their primitive elements :

ℋ ⊔⊔ := (𝐴⟨𝑌 ⟩, ., 1 𝑌 * , Δ ⊔⊔ , e) ∼ = 𝒰(ℒ𝑖𝑒 𝐴 ⟨𝑌 ⟩), ℋ := (𝐴⟨𝑌 ⟩, ., 1 𝑌 * , Δ , e) ∼ = 𝒰(Prim(ℋ )),
where Prim(ℋ ) = Im(𝜋 This linear basis can be computed recursively as follows [START_REF] Reutenauer | Free Lie Algebras[END_REF].

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝑠 𝑦𝑛 = 𝑦 𝑠 , for 𝑦 𝑛 ∈ 𝑌, 𝑠 𝑙 = 𝑦 𝑛 𝑠 𝑢 , for 𝑙 = 𝑦 𝑛 𝑢 ∈ ℒ𝑦𝑛𝑌, 𝑠 𝑤 = 𝑠 ⊔⊔ 𝑖1 𝑙1 ⊔⊔ . . . ⊔⊔ 𝑠 ⊔⊔ 𝑖 𝑘 𝑙 𝑘 𝑖 1 ! . . . 𝑖 𝑘 ! , for 𝑤 = 𝑙 𝑖1 1 . . . 𝑙 𝑖 𝑘 𝑘 with 𝑙 1 , . . . , 𝑙 𝑘 ∈ ℒ𝑦𝑛𝑌, 𝑙 1 > . . . > 𝑙 𝑘 .
(2.5) 4 Here, e denotes the counit defined by e(𝑃 ) = ⟨𝑃 | 1 𝑋 * ⟩ (for any 𝑃 ∈ 𝐴⟨𝑌 ⟩). 5 The dual family, i.e. the set of coordinates forms, is linearly free (but not a basis in general) in the algebraic dual which is the space of noncommutative series, but as the enveloping algebra under consideration is graded in finite dimension by multidegree. In Fact it consists of multihomogeneous polynomials.

As in (2.2), let 𝒟 ⊔⊔ be the diagonal series on ℋ ⊔⊔ . Then [START_REF] Reutenauer | Free Lie Algebras[END_REF] 𝒟 ⊔⊔ := ∑︁ [START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]). -Let 𝜙 𝜋1 : (𝐴⟨𝑌 ⟩, ., 1 𝑌 * ) → (𝐴⟨𝑌 ⟩, ., 1 𝑌 * ) be the endomorphism of algebras mapping 𝑦 𝑘 to 𝜋 1 (𝑦 𝑘 ). Then 𝜙 𝜋1 is an automorphism of 𝐴⟨𝑌 ⟩ and it realizes an isomorphism from the bialgebra ℋ ⊔⊔ to the bialgebra ℋ . In particular, the following diagram is commutative

𝑤∈𝑌 * 𝑤 ⊗ 𝑤 = ∑︁ 𝑤∈𝑌 * 𝑠 𝑤 ⊗ 𝑝 𝑤 = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑌 𝑒 𝑠 𝑙 ⊗𝑝 𝑙 . Theorem 2.1 ([
Q⟨ Ȳ ⟩ Δ ⊔⊔ / / 𝜙𝜋 1 Q⟨ Ȳ ⟩ ⊗ Q⟨ Ȳ ⟩ 𝜙𝜋 1 ⊗𝜙𝜋 1 Q⟨𝑌 ⟩ Δ / / Q⟨𝑌 ⟩ ⊗ Q⟨𝑌 ⟩ . and ℋ ∼ = 𝒰(Prim(ℋ )) and ℋ ∨ ∼ = 𝒰(Prim(ℋ )) ∨ .
Moreover, the bases {Π 𝑤 } 𝑤∈𝑌 * and {Σ 𝑤 } 𝑤∈𝑌 * of, respectively, 𝒰(Prim(ℋ )) and 𝒰(Prim(ℋ )) ∨ , are images by 𝜙 𝜋1 and φ-1

𝜋1 of {𝑝 𝑤 } 𝑤∈𝑌 * and {𝑠 𝑤 } 𝑤∈𝑌 * .
Algorithmically6 , the families {Π 𝑤 } 𝑤∈𝑌 * and {Σ 𝑤 } 𝑤∈𝑌 * of polynomials homogenous for the weight can be constructed directly and recursively as follows [START_REF] Bui | Schützenberger's factorization on the (completed) Hopf algebra of 𝑞-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] (1) The PBW basis {Π 𝑤 } 𝑤∈𝑌 * of 𝒰(Prim(ℋ )) :

⎧ ⎪ ⎨ ⎪ ⎩ Π 𝑦𝑠 = 𝜋 1 (𝑦 𝑠 ),
for 𝑦 𝑠 ∈ 𝑌,

Π 𝑙 = [Π 𝑙1 , Π 𝑙2 ],
for 𝑙 ∈ ℒ𝑦𝑛𝑌 -𝑌, 𝑠𝑡(𝑙) = (𝑙 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Σ 𝑦𝑠 = 𝑦 𝑠 ,
for 𝑦 𝑠 ∈ 𝑌, Let 𝒟 = 𝒟 ⊔⊔ be the diagonal series 7 on 𝑌 . One has [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] 

Σ 𝑙 = ∑︁ (*)
𝒟 := ∑︁ 𝑤∈𝑌 * 𝑤 ⊗ 𝑤 = ∑︁ 𝑤∈𝑌 * Σ 𝑤 ⊗ Π 𝑤 = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑌 𝑒 Σ 𝑙 ⊗Π 𝑙 . (2.8)
More generally, under suitable conditions 8 these factorizations still hold for the 𝜙-deformed shuffle product, thanks to an extension of Theorem 2.1 [START_REF] Bui | Combinatorics on the 𝜑-deformed stuffle product[END_REF][START_REF] Bui | Pure) transcendence bases in 𝜙-deformed shuffle bialgebras[END_REF][START_REF] Enjalbert | The contrivances of shuffle products and their siblings[END_REF]. Now, let us consider the following morphism

𝜋 ∘ 𝑌 : (𝐴 1 𝑋 * ⊕ 𝐴⟨𝑋⟩𝑥 1 , .) -→ (𝐴⟨𝑌 ⟩, .), 𝑥 𝑠1-1 0 𝑥 1 . . . 𝑥 𝑠𝑟-1 0 𝑥 1 ↦ -→ 𝑦 𝑠1 . . . 𝑦 𝑠𝑟 , for 𝑟 1,
and 𝜋 ∘ 𝑌 (𝑎) = 𝑎 for any 𝑎 ∈ 𝐴. The extension of 𝜋 ∘ 𝑌 over 𝐴⟨𝑋⟩ is the map 𝜋 𝑌 : (𝐴⟨𝑋⟩, .) → (𝐴⟨𝑌 ⟩, .) satisfying 𝜋 𝑌 (𝑝) = 0 for any 𝑝 ∈ 𝐴⟨𝑋⟩𝑥 0 . Hence, ker 𝜋 𝑌 = 𝐴⟨𝑋⟩𝑥 0 and Im(𝜋 𝑌 ) = 𝐴⟨𝑌 ⟩. Let 𝜋 𝑋 be the inverse of 𝜋 ∘ 𝑌 :

𝜋 𝑋 : (𝐴⟨𝑌 ⟩, .) -→ (𝐴 ⊕ 𝐴⟨𝑋⟩𝑥 1 , .), 𝑦 𝑠1 . . . 𝑦 𝑠𝑟 ↦ -→ 𝑥 𝑠1-1 0 𝑥 1 . . . 𝑥 𝑠𝑟-1 0 𝑥 1 , for 𝑟 1.
For the scalar products, the projectors 𝜋 𝑋 and 𝜋 ∘ 𝑌 are then mutually adjoints :

∀𝑝 ∈ 𝐴 ⊕ 𝐴⟨𝑋⟩𝑥 1 , ∀𝑞 ∈ 𝐴⟨𝑌 ⟩, ⟨𝜋 ∘ 𝑌 (𝑝) | 𝑞⟩ = ⟨𝑝 | 𝜋 𝑋 (𝑞)⟩. We have 𝜋 𝑌 ∘ 𝜋 𝑋 = Id 𝑋 . But 𝜋 𝑋 ∘ 𝜋 𝑌 ̸ = Id 𝑌 . It is an orthogonal projector of 𝐴⟨𝑋⟩ on 𝐴 ⊕ 𝐴⟨𝑋⟩𝑥 1 parallel to 𝐴 ⊕ 𝐴⟨𝑋⟩𝑥 0 . Indeed ker(𝜋 𝑋 ∘ 𝜋 𝑌 ) = 𝐴⟨𝑋⟩𝑥 0 and Im(𝜋 𝑋 ∘ 𝜋 𝑌 ) = 𝐴⟨𝑌 ⟩.
The map 𝜋 𝑋 is a morphism of associative algebras with unity (AAU) and the map 𝜋 𝑌 is multiplicative on 𝐴.1 𝑋 * ⊕ 𝐴⟨𝑋⟩𝑥 1 but not on 𝐴⟨𝑋⟩. For example,

0 = 𝜋 𝑌 (𝑥 0 )𝜋 𝑌 (𝑥 1 ) ̸ = 𝜋 𝑌 (𝑥 0 𝑥 1 ) = 𝜋 ∘ 𝑌 (𝑥 0 𝑥 1 ) = 𝑦 2 .
These can be extended by linearity and continuity over 𝐴⟨⟨𝑋⟩⟩ and 𝐴⟨⟨𝑌 ⟩⟩, respectively.

Lemma 2.2 ( [START_REF] Lothaire | Combinatorics on Words, Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Viennot | Algèbres de Lie libres et monoïdes libres[END_REF]). -𝑙 ∈ ℒ𝑦𝑛𝑋 -{𝑥 0 } if and only if 𝜋 𝑌 (𝑙) ∈ ℒ𝑦𝑛𝑌 .

Exchangeable and noncommutative rational series.

Recall that a formal power series 𝑅 is exchangeable if and only if two words have the same coefficient in 𝑅 ∈ 𝐴⟨⟨𝑋⟩⟩ whenever they have the same commutative image, i.e. for any [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF]. It follows that an exchangeable series 𝑅 takes the following form [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF] 

𝑢, 𝑣 ∈ 𝑋 * , if | 𝑢 | 𝑥 =| 𝑣 | 𝑥 for any 𝑥 ∈ 𝑋 then ⟨𝑅 | 𝑢⟩ = ⟨𝑅 | 𝑣⟩
𝑅 = ∑︁ 𝑖0,𝑖1 0 𝑟 𝑖0,𝑖1 𝑥 𝑖0 0 ⊔⊔ 𝑥 𝑖1 1 = ∑︁ 𝑖0,𝑖1 0 𝑟 𝑖0,𝑖1 𝑥 ⊔⊔ 𝑖0 0 𝑖 0 ! ⊔⊔ 𝑥 ⊔⊔ 𝑖1 1 𝑖 1 ! . (2.9)
The set of exchangeable series is denoted by 𝐴 exc ⟨⟨𝑋⟩⟩.

Let 𝐴 rat ⟨⟨𝑋⟩⟩ denote the closure, of 𝐴⟨𝑋⟩ in 𝐴⟨⟨𝑋⟩⟩ under 9 {+, ., * }. It is closed under shuffle [START_REF] Berstel | Rational series and their languages[END_REF]. A power series 𝑅 ∈ 𝐴 rat ⟨⟨𝑋⟩⟩ is said to be rational. 7 The set-theoretical object is the same, but the different indexing here expresses the fact that they will be considered as living in different algebras. 8 In fact associative commutative dualizable and moderate, see [START_REF] Bui | Combinatorics on the 𝜑-deformed stuffle product[END_REF][START_REF] Bui | Pure) transcendence bases in 𝜙-deformed shuffle bialgebras[END_REF][START_REF] Enjalbert | The contrivances of shuffle products and their siblings[END_REF]. 9 Let 𝑅 ∈ 𝐴⟨⟨𝑋⟩⟩ be such that

⟨𝑅 | 1 𝑋 * ⟩ = 0. Then 𝑅 * = 1 𝑋 * + 𝑅 + 𝑅 2 + • • • ..
Let 𝑅 ∈ 𝐴 rat ⟨⟨𝑋⟩⟩. By the Kleene-Schützenberger theorem [START_REF] Berstel | Rational series and their languages[END_REF] there exists a linear representation (𝛽, 𝜇, 𝜂) of dimension 𝑛 1, where

𝛽 ∈ ℳ 𝑛,1 (𝐴), 𝜇 : 𝑋 * -→ ℳ 𝑛,𝑛 (𝐴), 𝜂 ∈ ℳ 1,𝑛 (𝐴) (2.10) such that 𝑅 = ∑︁ 𝑤∈𝑋 * (𝛽𝜇(𝑤)𝜂) 𝑤 = 𝛽 (︂ ∑︁ 𝑥∈𝑋 𝜇(𝑥)𝑥 )︂ * 𝜂.
Hence, letting 𝑀 (𝑥) := 𝜇(𝑥)𝑥 for 𝑥 ∈ 𝑋, one has 𝑀 (𝑋) = 𝑀 (𝑥 0 ) + 𝑀 (𝑥 1 ) as morphism of monoids, and, using Lazard's elimination [START_REF] Lothaire | Combinatorics on Words, Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Viennot | Algèbres de Lie libres et monoïdes libres[END_REF], one gets

𝑀 (𝑋 * ) = (𝑀 (𝑥 * 1 )𝑀 (𝑥 0 )) * 𝑀 (𝑥 * 1 ) = (𝑀 (𝑥 * 0 )𝑀 (𝑥 1 )) * 𝑀 (𝑥 * 0 ). Via the diagonal series 𝒟 𝑋 given in (2.
2), the Kleene-Schützenberger theorem [START_REF] Berstel | Rational series and their languages[END_REF] can also be extended as follows Theorem 2.3 ([36,[START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF][START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF]). -A series 𝑅 ∈ 𝐴⟨⟨𝑋⟩⟩ is rational if and only if there exists a linear representation (𝛽, 𝜇, 𝜂), of dimension 𝑛 1, where

𝛽 ∈ ℳ 𝑛,1 (𝐴), 𝜇 : 𝑋 * -→ ℳ 𝑛,𝑛 (𝐴), 𝜂 ∈ ℳ 1,𝑛 (𝐴) such that 𝑅 = 𝛽((Id ⊗ 𝜇)𝒟 𝑋 )𝜂 = 𝛽 (︂ ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑋 𝑒 𝑆 𝑙 𝜇(𝑃 𝑙 ) )︂ 𝜂.
Now, let (𝛽, 𝜇, 𝜂) be a minimal 10 linear representation of 𝑅 ∈ 𝐴 rat ⟨⟨𝑋⟩⟩ [START_REF] Berstel | Rational series and their languages[END_REF], and let ℒ(𝜇) be the Lie algebra generated by {𝜇(𝑥)} 𝑥∈𝑋 . Moreover, if the matrices {𝜇(𝑥)} 𝑥∈𝑋 are triangular, then there are diagonal and nilpotent matrices, {𝐷(𝑥)} 𝑥∈𝑋 and {𝑁 (𝑥)} 𝑥∈𝑋 in ℳ 𝑛,𝑛 (𝐴𝑋) such that 𝑀 (𝑋) = 𝐷(𝑋) + 𝑁 (𝑋). Hence, again by Lazard's elimination, one also gets

𝑀 (𝑋 * ) = ((𝐷(𝑋 * )𝑇 (𝑋)) * 𝐷(𝑋 * )).
(2.11)

The set of exchangeable rational series, i.e. 𝐴 rat ⟨⟨𝑋⟩⟩ ∩ 𝐴 exc ⟨⟨𝑋⟩⟩, is denoted by 𝐴 rat exc ⟨⟨𝑋⟩⟩. As examples, one can consider the following forms (𝐹 0 ), (𝐹 1 ) and (𝐹 2 ) of rational series in C rat ⟨⟨𝑋⟩⟩ [START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF][START_REF] Ngoc | Fonctions de Dirichlet d'ordre 𝑛 et de paramètre 𝑡[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF] :

(𝐹 0 ) 𝐸 1 𝑥 𝑖1 . . . 𝐸 𝑗 𝑥 𝑖𝑗 𝐸 𝑗+1 , where 𝑥 𝑖1 , . . . , 𝑥 𝑖𝑗 ∈ 𝑋 and 𝐸 1 , . . . , 𝐸 𝑗 ∈ C rat ⟨⟨𝑥 0 ⟩⟩, (𝐹 1 ) 𝐸 1 𝑥 𝑖1 . . . 𝐸 𝑗 𝑥 𝑖𝑗 𝐸 𝑗+1 , where 𝑥 𝑖1 , . . . , 𝑥 𝑖𝑗 ∈ 𝑋 and 𝐸 1 , . . . , 𝐸 𝑗 ∈ C rat ⟨⟨𝑥 1 ⟩⟩, (𝐹 2 ) 𝐸 1 𝑥 𝑖1 . . . 𝐸 𝑗 𝑥 𝑖𝑗 𝐸 𝑗+1 , where 𝑥 𝑖1 , . . . , 𝑥 𝑖𝑗 ∈ 𝑋 and 𝐸 1 , . . . , 𝐸 𝑗 ∈ C rat exc ⟨⟨𝑋⟩⟩. One has Lemma 2.4. - (1) Let 𝑘 ∈ N + , 𝑡 0 , 𝑡 1 ∈ C. Then (𝑥 * 𝑖 ) ⊔⊔ 𝑘 = (𝑘𝑥 𝑖 ) * , (𝑡 0 𝑥 0 + 𝑡 1 𝑥 1 ) * = (𝑡 0 𝑥 0 ) * ⊔⊔ (𝑡 1 𝑥 1 ) * and (𝑡 𝑖 𝑥 𝑖 ) *𝑘 = (𝑡 𝑖 𝑥 𝑖 ) * ⊔⊔ (1 -𝑡 𝑖 𝑥 𝑖 ) 𝑘-1 . (2)
The series of form (𝐹 0 ), (𝐹 1 ) and (𝐹 2 ) generate sub-bialgebras of (C rat ⟨⟨𝑋⟩⟩, ⊔⊔ , 1 𝑋 * , Δ conc , e). (3) Let (𝛽, 𝜇, 𝜂) be a minimal linear representation of 𝑅 ∈ C rat ⟨⟨𝑋⟩⟩ and ℒ(𝜇) be the Lie algebra generated by {𝜇(𝑥)} 𝑥∈𝑋 . Since 𝑅 = 𝛽𝑀 (𝑋 * )𝜂, 10 Now, 𝐴 is supposed to be a field.

(a) 𝑅 is a linear combination of expressions of the form

(𝐹 0 ) (resp. (𝐹 1 )) if and only if 𝑀 (𝑥 * 1 )𝑀 (𝑥 0 ) (resp. 𝑀 (𝑥 * 0 )𝑀 (𝑥 1 )) is nilpotent 11 . Hence, if 𝑅 ∈ C rat ⟨⟨𝑥 0 ⟩⟩ ⊔⊔ C⟨𝑋⟩ (resp. C rat ⟨⟨𝑥 1 ⟩⟩ ⊔⊔ C⟨𝑋⟩) then 𝑀 (𝑥 * 1 )𝑀 (𝑥 0 ) (resp. 𝑀 (𝑥 * 0 )𝑀 (𝑥 1 )) is nilpotent. (b) 𝑅 is a linear combination of expressions of the form (𝐹 2 ) if and only if ℒ(𝜇) is solvable 12 . Hence, if 𝑅 ∈ C rat exc ⟨⟨𝑋⟩⟩ ⊔⊔ C⟨𝑋⟩ then ℒ(𝜇) is solvable. (c) 𝑅 ∈ C⟨𝑋⟩ if and only if for any 𝑃 ∈ ℒ𝑖𝑒 C ⟨𝑋⟩ the matrix 𝜇(𝑃 ), belonging to ℒ(𝜇), is nilpotent. (d) 𝑅 ∈ C rat exc ⟨⟨𝑋⟩⟩ ⇔ [𝜇(𝑥 0 ), 𝜇(𝑥 1 )] = 0 ⇔ 𝑅 ∈ C rat ⟨⟨𝑥 0 ⟩⟩ ⊔⊔ C rat ⟨⟨𝑥 1 ⟩⟩.
To end this section, let us note that for any 𝑅 ∈ C rat ⟨⟨𝑋⟩⟩ of minimal linear representation (𝛽, 𝜇, 𝜂) of dimension 𝑛 and, for any 𝑥, 𝑦 ∈ 𝑋 one has

⟨𝑆 | 𝑥𝑦⟩ = 𝛽𝜇(𝑥)𝜇(𝑦)𝜂 = 𝑛 ∑︁ 𝑖=1 (𝛽𝜇(𝑥)𝑒 𝑖 )(𝑒 𝑇 𝑖 𝜇(𝑦)𝜂) = 𝑛 ∑︁ 𝑖=1 ⟨𝑆 (1) 𝑖 | 𝑥⟩⟨𝑆 (2) 𝑖 | 𝑦⟩,
where 𝑒 𝑖 is the vector such that

𝑒 𝑇 𝑖 = (︀ 0 . . . 0 1 0 . . . 0 )︀ . Hence 𝑆 (1) 𝑖 (resp. 𝑆 (2)
𝑖 ) admits (𝛽, 𝜇, 𝑒 𝑖 ) (resp. (𝑒 𝑇 𝑖 , 𝜇, 𝜂)) as a linear representation, and

(C rat ⟨⟨𝑋⟩⟩, ⊔⊔ , 1 𝑋 * , Δ conc , e)
is nothing but the Sweedler dual of the bialgebra (C⟨𝑋⟩, conc, 1 𝑋 * , Δ ⊔⊔ , e) [START_REF] Reutenauer | Free Lie Algebras[END_REF]. (1) Let Li 𝑠1,...,𝑠 𝑘 and H 𝑠1,...,𝑠 𝑘 be indexed by words [START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang Ngoc Minh | De l'algèbre des 𝜁 de Riemann multivariées à l'algèbre des 𝜁 de Hurwitz multivariées[END_REF] :

Indexation by words and generating series

Li 𝑥 𝑠 1 -1 0 𝑥1...𝑥 𝑠𝑟 -1 0 𝑥1 := Li 𝑠1,...,𝑠𝑟 and H 𝑦𝑠 1 ...𝑦𝑠 𝑟 := H 𝑠1,...,𝑠𝑟 .
(2) Let Li -𝑠1,...,-𝑠 𝑘 and H -𝑠1,...,-𝑠 𝑘 be indexed by words [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF][START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF] : Li - 𝑦𝑠 1 ...𝑦𝑠 𝑟 := Li -𝑠1,...,-𝑠𝑟 and H - 𝑦𝑠 1 ...𝑦𝑠 𝑟 := H -𝑠1,...,-𝑠𝑟 .

In particular, Li -

𝑦 𝑟 0 (𝑧) := (𝑧/(1 -𝑧)) 𝑟 and H - 𝑦 𝑟 0 (𝑛) := (︀ 𝑛 𝑟 )︀ = (𝑛) 𝑟 /𝑟!, where (𝑛) 𝑟 = (𝑛 + 𝑟) . . . (𝑛). All of {Li - 𝑤 } 𝑤∈𝑌 * 0 and {H - 𝑤 } 𝑤∈𝑌 * 0 are divergent at their singularities. Theorem 3.1 ([41, 38, 42]). - (1)
The following morphisms of algebras are injective (and surjective by definition) 11 Using (2.10), one gets the expected expression for 𝑅.

H • : (Q⟨𝑌 ⟩, , 1 𝑌 * ) -→ (Q{H 𝑤 } 𝑤∈𝑌 * , ×, 1), 𝑤 ↦ -→ H 𝑤 , Li • : (Q⟨𝑋⟩, ⊔⊔ , 1 𝑋 * ) -→ (Q{Li 𝑤 } 𝑤∈𝑋 * , ×, 1 B ), 𝑤 ↦ -→ Li 𝑤
12 By Lie's theorem [START_REF] Chevalley | Fundamental Concepts of Algebra[END_REF], using (2.11), one gets the expected expression for 𝑅. 13 The weight of (𝑠 1 , . . . , 𝑠𝑟) ∈ N 𝑟 + (resp. N 𝑟 ) is defined as the integer 𝑠 1 + . . . + 𝑠𝑟 which corresponds to the weight, denoted (𝑤), of its associated word 𝑤 ∈ 𝑌 * (resp. 𝑌 * 0 ) and, if 𝑤 ∈ 𝑌 * , it corresponds also to the length, denoted by |𝑢|, of its associated word 𝑢 ∈ 𝑋 * .

(2) The families {H 𝑤 } 𝑤∈𝑌 * and {Li 𝑤 } 𝑤∈𝑋 * are Q-linearly independent.

(3) The families {H 𝑙 } 𝑙∈ℒ𝑦𝑛𝑌 and {Li 𝑙 } 𝑙∈ℒ𝑦𝑛𝑋 are Q-algebraically independent.

But at the singularities {1, +∞}, for any 𝑢 ∈ 𝑥 0 𝑋 * 𝑥 1 (resp. 𝑢 ∈ 𝑌 * -𝑦 1 𝑌 * ) Li 𝑢 (resp. H 𝑢 ) receives the value 𝜁(𝑣) := Li 𝑣 (1) (resp. 𝜁(𝑢) := H 𝑢 (+∞)) and are no more linearly independent (and then the values {H 𝑙 (+∞)} 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} (resp. {Li 𝑙 (1)} 𝑙∈ℒ𝑦𝑛𝑋-𝑋 ) are no longer algebraically independent) [START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang Ngoc Minh | Lyndon words, polylogarithmic functions and the Riemann 𝜁 function[END_REF][START_REF] Zagier | Values of zeta functions and their applications[END_REF].

There also exists a law of algebra, denoted by ⊤, in Q⟨⟨𝑌 0 ⟩⟩ (which is not dualizable) [START_REF] Bui | Combinatorics on the 𝜑-deformed stuffle product[END_REF][START_REF] Enjalbert | The contrivances of shuffle products and their siblings[END_REF] such that Theorem 3.2 ( [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF]). -Let us consider the following morphisms of algebras (which, by definition, are surjective)

H - • : (Q⟨𝑌 0 ⟩, , 1 𝑌 * 0 ) -→ (Q{H - 𝑤 } 𝑤∈𝑌 * 0 , ×, 1), 𝑤 ↦ -→ H - 𝑤 , Li - • : (Q⟨𝑌 0 ⟩, ⊤, 1 𝑌 * 0 ) -→ (Q{Li - 𝑤 } 𝑤∈𝑌 * 0 , ×, 1 B ), 𝑤 ↦ -→ Li - 𝑤 .
Then ker

H - • = ker Li - • = Q⟨{𝑤 -𝑤⊤1 𝑌 * 0 |𝑤 ∈ 𝑌 * 0 }⟩ and the families {H - 𝑦 𝑘 } 𝑘 0 and {Li - 𝑦 𝑘 } 𝑘 0 are Q-linearly independent. Moreover, let ⊤ ′ : Q⟨𝑌 0 ⟩ × Q⟨𝑌 0 ⟩ → Q⟨𝑌 0 ⟩ be a law such that Li - • is a morphism for ⊤ ′ and (1 𝑌 * 0 ⊤ ′ Q⟨𝑌 0 ⟩) ∩ ker(Li - • ) = {0}. Then ⊤ ′ = 𝑔 ∘ ⊤, where 𝑔 ∈ 𝐺𝐿(Q⟨𝑌 0 ⟩) is such that Li - • ∘𝑔 = Li - • . Now, for any 𝑖 ∈ N let 𝑡 𝑖 ∈ C be such that | 𝑡 𝑖 | < 1 and 𝑧 ∈ C satisfying | 𝑧 | < 1.
Then [START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF] (to be compared with (1.4) and (1.5))

∑︁ 𝑛 0 Li 𝑥 𝑛 0 (𝑧) 𝑡 𝑛 0 = 𝑧 𝑡0 and ∑︁ 𝑛 0 Li 𝑥 𝑛 1 (𝑧) 𝑡 𝑛 1 = (1 -𝑧) -𝑡1 . (3.1)
What precedes suggests to extend the domain of Li • which is, up to now and through linear extension, restricted to C⟨𝑋⟩, to some rational series as follows. One can check easily that [START_REF] Duchamp | Kleene stars of the plane, polylogarithms and symmetries[END_REF] :

• The set Dom(Li • ) is closed under shuffle products. • For any 𝑆, 𝑇 ∈ Dom(Li • ) one has Li 𝑆 ⊔⊔ 𝑇 = Li 𝑆 Li 𝑇 . • One has C⟨𝑋⟩ ⊔⊔ C rat ⟨⟨𝑥 0 ⟩⟩ ⊔⊔ C rat ⟨⟨𝑥 1 ⟩⟩ ⊂ Dom(Li • ).
This extension is compatible with identities between rational series such as Lazard's elimination [START_REF] Lothaire | Combinatorics on Words, Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Viennot | Algèbres de Lie libres et monoïdes libres[END_REF], for instance (see Appendix C) :

Li 𝑆 (𝑧) = ∑︁ 𝑛 0 ⟨𝑆 | 𝑥 𝑛 0 ⟩ log 𝑛 (𝑧) 𝑛! + ∑︁ 𝑘 1 ∑︁ 𝑤∈𝑥 * 0 ⊔⊔ 𝑥 𝑘 1 ⟨𝑆 | 𝑤⟩ Li 𝑤 (𝑧),
and explains that, for 𝑅 as given in (2.9), Li 𝑅 is expressible as analytic composition of log(𝑧) and log(1 -𝑧) :

Li 𝑅 (𝑧) = ∑︁ 𝑖0,𝑖1 0 𝑟 𝑖0,𝑖1 𝑖 0 !𝑖 1 ! log 𝑖0 (𝑧)(-log(1 -𝑧)) 𝑖1 . Example 3.3.
-Consider the extension of Li • defined in (3.2). Then [START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF][START_REF] Ngoc | Fonctions de Dirichlet d'ordre 𝑛 et de paramètre 𝑡[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF] (1) By (3.1), Li (𝑡0𝑥0) * (𝑧) = 𝑧 𝑡0 and Li (𝑡1𝑥1) * (𝑧) = (1 -𝑧) -𝑡1 . More generally, for any 𝑖, 𝑗 ∈ N + , one has by Lemma 2.4

Li

((𝑡0𝑥0) * ) ⊔⊔ 𝑖 ⊔⊔ ((𝑡1𝑥1) * ) ⊔⊔ 𝑗 (𝑧) = 𝑧 𝑖𝑡0 (1 -𝑧) -𝑗𝑡1 , Li (𝑡0𝑥0+𝑡1𝑥1) * ⊔⊔ 𝑥 𝑖 0 ⊔⊔ 𝑥 𝑗 1 (𝑧) = 𝑧 𝑡0 (1 -𝑧) 𝑡1 log 𝑖 (𝑧) log 𝑗 ((1 -𝑧) -1 )
𝑖!𝑗! .

(2) For 𝑎 ∈ C and 𝑖 ∈ N + , one has by Lemma 2.4

Li (𝑎𝑥0) *𝑖 (𝑧) = 𝑧 𝑎 𝑖-1 ∑︁ 𝑘=0 (︂ 𝑖 -1 𝑘 )︂ (𝑎 log(𝑧)) 𝑘 𝑘! , (3.3) Li (𝑎𝑥1) *𝑖 (𝑧) = 1 (1 -𝑧) 𝑎 𝑖-1 ∑︁ 𝑘=0 (︂ 𝑖 -1 𝑘 )︂ (-𝑎 log(1 -𝑧)) 𝑘 𝑘! . ( 3.4) 
(3) From the previous points, one has (see Lemma 2.4)

{Li 𝑆 } 𝑆∈C[𝑥 * 0 ] ⊔⊔ C[(-𝑥 * 0 )] ⊔⊔ C[𝑥 * 1 ] = span C {𝑧 𝑎 (1 -𝑧) -𝑏 } 𝑎∈Z,𝑏∈N , {Li 𝑆 } 𝑆∈C rat ⟨⟨𝑥0⟩⟩ ⊔⊔ C rat ⟨⟨𝑥1⟩⟩ = span C {𝑧 𝑎 (1 -𝑧) 𝑏 } 𝑎,𝑏∈C , {Li 𝑆 } 𝑆∈C⟨𝑋⟩ ⊔⊔ C[𝑥 * 0 ] ⊔⊔ C[(-𝑥 * 0 )] ⊔⊔ C[𝑥 * 1 ] = span C {︂ 𝑧 𝑎 (1 -𝑧) 𝑏 Li 𝑤 (𝑧) }︂ 𝑤∈𝑋 * 𝑎∈Z,𝑏∈N ⊂ span C {Li 𝑠1,...,𝑠𝑟 } 𝑟 1 𝑠1,...,𝑠𝑟∈Z 𝑟 ⊕ span C {𝑧 𝑎 |𝑎 ∈ Z}, {Li 𝑆 } 𝑆∈C⟨𝑋⟩ ⊔⊔ C rat ⟨⟨𝑥0⟩⟩ ⊔⊔ C rat ⟨⟨𝑥1⟩⟩ = span C {︂ 𝑧 𝑎 (1 -𝑧) 𝑏 Li 𝑤 (𝑧) }︂ 𝑤∈𝑋 * 𝑎,𝑏∈C ⊂ span C {Li 𝑠1,...,𝑠𝑟 } 𝑟 1 𝑠1,...,𝑠𝑟∈C 𝑟 ⊕ span C {𝑧 𝑎 |𝑎 ∈ C}, (4) For any (𝑠 1 , . . . , 𝑠 𝑟 ) ∈ N 𝑟 + and |𝑡 𝑖 | < 1, let 𝑊 = (𝑡 1 𝑥 0 ) *𝑠1 𝑥 𝑠1-1 0 𝑥 1 . . . (𝑡 𝑟 𝑥 0 ) *𝑠𝑟 𝑥 𝑠𝑟-1 0 𝑥 1
(which is of the form 14 (𝐹 0 ) of Lemma 2.4). Then 15

Li 𝑊 (𝑧) = ∑︁ 𝑛1>...>𝑛𝑟>0

𝑧 𝑛1 (𝑛 1 -𝑡 1 ) 𝑠1 . . . (𝑛 𝑟 -𝑡 𝑟 ) 𝑠𝑟 . 14 For the form (𝐹 0 ) one can apply Theorems 2.3 and 2.4 of [START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF]. 15 This holds for 𝑡 𝑖 ∈ C -N + , 𝑖 ∈ N, by analytic continuation [START_REF] Hoang Ngoc Minh | De l'algèbre des 𝜁 de Riemann multivariées à l'algèbre des 𝜁 de Hurwitz multivariées[END_REF].

In particular, for 𝑠 1 = . . . = 𝑠 𝑟 = 1 one has

Li (𝑡1𝑥0) * 𝑥1...(𝑡𝑟𝑥0) * 𝑥1 = ∑︁ 𝑛1,...,𝑛𝑟>0 Li 𝑥 𝑛 1 -1 0 𝑥1...𝑥 𝑛𝑟 -1 0 𝑥1 𝑡 𝑛1-1 0 . . . 𝑡 𝑛𝑟-1 𝑟 = ∑︁ 𝑛1>...>𝑛𝑟>0 𝑧 𝑛1 (𝑛 1 -𝑡 1 ) . . . (𝑛 𝑟 -𝑡 𝑟 )
.

Let 𝜕 𝑧 := 𝑑/𝑑𝑧 and let us recall that, for any 𝑘 1,

1 (1 -𝑧) 𝑘 = 𝜕 𝑘-1 𝑧 (𝑘 -1)! (︂ 1 1 -𝑧 )︂ and 1 𝑧 𝑘 = (-1) 𝑘-1 𝜕 𝑘-1 𝑧 (𝑘 -1)! (︂ 1 𝑧 )︂
and the Taylor coefficients of (1 -𝑧) -𝑘 are expressed as follows for all 𝑛 1

⟨(1 -𝑧) -𝑘 | 𝑧 𝑛 ⟩ = Γ -1 (𝑘)(𝑛 + 𝑘 -1) 𝑘-1 . (3.5)
Let 𝒢 denote the group of transformations of 16 𝐵 generated by {𝑧 ↦ → 1 -𝑧, 𝑧 ↦ → 1/𝑧}, permuting the singularities in {0, 1, +∞} as a copy of S 3 .

Let us also consider the differential rings

𝒞 ′ 0 = C[𝑧 -1 ], 𝒞 ′ 1 = C[(1 -𝑧) -1 ], 𝒞 0 = C[𝑧, 𝑧 -1 ], 𝒞 1 = C[𝑧, (1 -𝑧) -1 ], 𝒞 ′ = C[𝑧 -1 , (1 -𝑧) -1 ], 𝒞 = C[𝑧, 𝑧 -1 , (1 -𝑧) -1 ]
(considered as subrings of ℋ(𝐵)). It follows that

Lemma 3.4. - (1) 
The differential ring 𝒞 is closed under the action of 𝒢, i.e. 𝐺(𝑔(𝑧)) ∈ 𝒞 for all 𝐺 ∈ 𝒞 and 𝑔 ∈ 𝒢.

(2) For any

𝐺 = 𝑝 1 (𝑧) + 𝑝 2 (𝑧 -1 ) + 𝑝 3 ((1 -𝑧) -1 ) ∈ 𝒞, with 𝑝 1 , 𝑝 2 , 𝑝 3 ∈ C[𝑧],
𝑝 2 (0) = 𝑝 3 (0) = 0 and 𝑝 2 , 𝑝 3 ̸ = 0. Letting 𝐺 0 (𝑧) := 𝑃 2 (𝑧 -1 ) ∈ 𝒞 ′ 0 and 𝐺 1 (𝑧) := 𝑃 3 ((1 -𝑧) -1 ) ∈ 𝒞 ′ 1 , one has 𝐺(𝑧) ∼ 0 𝐺 0 (𝑧) and 𝐺(𝑧) ∼ 1 𝐺 1 (𝑧). (3) The following morphism of algebras is surjective

𝜆 : (C[𝑥 * 0 , (-𝑥 0 ) * , 𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) -→ (𝒞, ×, 1 𝐵 ), 𝑅 ↦ -→ Li 𝑅 . Moreover, ker(𝜆) is the shuffle-ideal generated by 𝑥 * 0 ⊔⊔ 𝑥 * 1 -𝑥 * 1 + 1. (4)
The following morphisms of algebras are bijective

𝜆 ′ : (C[𝑥 * 0 , 𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) -→ (𝒞 ′ , ×, 1 𝐵 ), 𝑅 ↦ -→ Li 𝑅 , 𝜆 ′ 𝑖 : (C[𝑥 * 𝑖 ], ⊔⊔ , 1 𝑋 * ) -→ (𝒞 ′ 𝑖 , ×, 1 𝐵 ), 𝑅 ↦ -→ Li 𝑅 for 𝑖 = 0, 1.
In fact, one has

Lemma 3.5 ([21]). - (1) 
The family {𝑥 * 0 , 𝑥 * 1 } is algebraically independent over (C⟨𝑋⟩, ⊔⊔ , 1 𝑋 * ) in (C⟨𝑋⟩, ⊔⊔ , 1 𝑋 * ). In particular, the power series 𝑥 * 0 and 𝑥 * 1 are transcendent over C⟨𝑋⟩. 16 Any 𝑔 ∈ 𝒢 maps bijectively 𝐵 to itself, one can apply the Monodromy Principle to lift 𝒢 as a group of transformations of B. Now, let us also consider the following differential integration operators acting on 𝒞{Li 𝑤 } 𝑤∈𝑋 * [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] :

(2) The module (C⟨𝑋⟩, ⊔⊔ , 1 𝑋 * )[𝑥 * 0 , 𝑥 * 1 , (-𝑥 0 ) * ] is C⟨𝑋⟩-free and the family {(𝑥 * 0 ) ⊔⊔ 𝑘 ⊔⊔ (𝑥 * 1 ) ⊔⊔ 𝑙 } (𝑘,𝑙)∈Z×N forms a C⟨𝑋⟩-basis of it. Hence, {𝑤 ⊔⊔ (𝑥 * 0 ) ⊔⊔ 𝑘 ⊔⊔ (𝑥 * 1 ) ⊔⊔ 𝑙 } (𝑘,𝑙)∈Z×N 𝑤∈𝑋 * is a C-basis of it. (3) One has C rat ⟨⟨𝑥 𝑖 ⟩⟩ = span C {(𝑡𝑥 𝑖 ) * ⊔⊔ C⟨𝑥 𝑖 ⟩ | 𝑡 ∈ C} for any 𝑥 𝑖 ∈ 𝑋.
𝜃 0 : = 𝑧𝜕 𝑧 and 𝜃 1 := (1 -𝑧)𝜕 𝑧 , ∀𝑓 ∈ 𝒞, 𝜄 0 (𝑓 ) = ∫︁ 𝑧 𝑧0 𝑓 (𝑠)𝜔 0 (𝑠) and 𝜄 1 (𝑓 ) = ∫︁ 𝑧 0 𝑓 (𝑠)𝜔 1 (𝑠).
The operator 𝜄 0 is well-defined on 𝒞{Li 𝑤 } 𝑤∈𝑋 * (see Definition 6.5 in Appendix D, where the choice of 𝑧 0 is recalled). One can check easily Proposition 3.6 ([22, 38, 41]). -

The operators {𝜃 0 , 𝜃 1 , 𝜄 0 , 𝜄 1 } satisfy

𝜃 1 + 𝜃 0 = [︀ 𝜃 1 , 𝜃 0 ]︀ = 𝜕 𝑧 and 𝜃 𝑘 𝜄 𝑘 = Id for 𝑘 = 0, 1, [𝜃 0 𝜄 1 , 𝜃 1 𝜄 0 ] = 0 and (𝜃 0 𝜄 1 )(𝜃 1 𝜄 0 ) = (𝜃 1 𝜄 0 )(𝜃 0 𝜄 1 ) = Id.
( 

) 2 
Li 𝑤 = (𝜄 𝑠1-1 0 𝜄 1 . . . 𝜄 𝑠𝑟-1 0 𝜄 1 )1 Ω and Li - 𝑢 = (𝜃 𝑡1+1 0 𝜄 1 . . . 𝜃 𝑡𝑟+1 0 𝜄 1 )1 Ω , 𝜄 0 Li 𝜋 𝑋 (𝑤) = Li 𝑥0𝜋 𝑋 (𝑤) and 𝜄 1 Li 𝑤 = Li 𝑥1𝜋 𝑋 (𝑤) , 𝜃 0 Li 𝑥0𝜋 𝑋 (𝑤) = Li 𝜋 𝑋 (𝑤) and 𝜃 1 Li 𝑥1𝜋 𝑋 (𝑤) = Li 𝜋 𝑋 (𝑤) .
(3) The bi-integro differential ring (𝒞{Li 𝑤 } 𝑤∈𝑋 * , 𝜃 0 , 𝜄 0 , 𝜃 

Δ (H) = H ⊗ H and ⟨H | 1 𝑌 * ⟩ = 1, Δ ⊔⊔ (L) = L ⊗ L and ⟨L | 1 𝑋 * ⟩ = 1, H = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑌 𝑒 H Σ 𝑙 Π 𝑙 and L = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑋 𝑒 Li 𝑆 𝑙 𝑃 𝑙 .
Hence 17 , their logarithms are primitive, for the corresponding co-products, and One can then set the following : Definition 3.9. -Let us consider the following power series

𝑍 := ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} 𝑒 H Σ 𝑙 (+∞)Π 𝑙 and 𝑍 ⊔⊔ := ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑋-𝑋 𝑒 Li 𝑆 𝑙 (1)𝑃 𝑙 .
By termwise differentiation, the power series L given in Definition 3.7 satisfies the noncommutative differential equation (1.1) and, via the factorization form given in Proposition 3.8, it also satisfies the boundary condition [START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang Ngoc Minh | Polylogarithms and Shuffle Algebra[END_REF] L(𝑧) ∼ 0 𝑒 𝑥0 log(𝑧) and L(𝑧) ∼ 1 𝑒 -𝑥1 log(1-𝑧) .

Equation (1.8) and Theorem 3.1 lead to Definition 3.10. -We define 𝜁 to be the following polymorphism (which is surjective by definition):

𝜁 : (Q1 𝑋 * ⊕ 𝑥 0 Q⟨𝑋⟩𝑥 1 , ⊔⊔ , 1 𝑋 * ) (Q1 𝑌 * ⊕ (𝑌 -{𝑦 1 })Q⟨𝑌 ⟩, , 1 𝑌 * ) -(𝒵, × , 1) 
,

𝑥 0 𝑥 𝑟1-1 1 . . . 𝑥 0 𝑥 𝑟 𝑘 -1 1 𝑦 𝑠1 . . . 𝑦 𝑠 𝑘 ↦ -→ ∑︁ 𝑛1>...>𝑛 𝑘 >0 𝑛 -𝑠1 1 . . . 𝑛 -𝑠 𝑘 𝑘 ,
where 𝒵 is the Q-algebra (algebraically) generated by 19 Knowing that 𝐺 0 and 𝐺 1 , as interpreted in (1.4), are unique and by (1.5), it turns out that, through the interpretation given, 𝑍 ⊔⊔ coincides with Φ 𝐾𝑍 [START_REF] Gonzalez-Lorca | Série de Drinfel'd, monodromie et algèbres de Hecke[END_REF][START_REF] Racinet | Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel[END_REF] and, via an identity of type Newton-Girard [START_REF] Lascoux | Fonctions symétriques[END_REF], we obtain [START_REF] Costermans | Some Results à l'Abel Obtained by Use of Techniques à la Hopf[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Ngoc | Algebraic Combinatoric Aspects of Asymptotic Analysis of Nonlinear Dynamical System with Singular Inputs[END_REF]]

H(𝑛) ∼ +∞ ∑︁ 𝑘 0 H 𝑦 𝑘 1 𝑦 𝑘 1 𝜋 𝑌 (𝑍 ⊔⊔ ) and ∑︁ 𝑘 0 H 𝑦 𝑘 1 𝑦 𝑘 1 = 𝑒 ∑︀ 𝑘 1
H𝑦 𝑘 (𝑛)(-𝑦1) 𝑘 /𝑘 . (4.2)

17 via Friedrich's criterion [START_REF] Reutenauer | Free Lie Algebras[END_REF] and its extension [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] 18 From log(L), one can extract the expression of the euleurian projector on ℋ ⊔⊔ [START_REF] Reutenauer | Free Lie Algebras[END_REF] and similarly, from log(H), for the extended euleurian projector, as given in (2.3), on ℋ [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]. 19 We will describe relations among {𝜁(𝑆 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑋-𝑋 (resp. {𝜁(Σ 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦 1 } ) by local coordinate identification in Section 4.2.

20 i.e. L(𝑧) ∼ 0 𝑧 𝑥 0 and L(𝑧

) ∼ 1 (1 -𝑧) -𝑥 1 𝑍 ⊔⊔ .
In other terms, we have the following global renormalization Theorem 4.1 (First Abel like theorem, [START_REF] Costermans | Some Results à l'Abel Obtained by Use of Techniques à la Hopf[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Ngoc | Algebraic Combinatoric Aspects of Asymptotic Analysis of Nonlinear Dynamical System with Singular Inputs[END_REF]).

-

lim 𝑧→1 𝑒 𝑦1 log(1-𝑧) 𝜋 𝑌 (L(𝑧)) = lim 𝑛→∞ 𝑒 ∑︀ 𝑘 1 H𝑦 𝑘 (𝑛)(-𝑦1) 𝑘 /𝑘 H(𝑛) = 𝜋 𝑌 (𝑍 ⊔⊔ ).
Thus, the coefficients {⟨𝑍 ⊔⊔ |𝑢⟩} 𝑢∈𝑋 * (i.e. {𝜁 ⊔⊔ (𝑢)} 𝑢∈𝑋 * ) and {⟨𝑍 |𝑣⟩} 𝑣∈𝑌 * (i.e. {𝜁 (𝑣)} 𝑣∈𝑌 * ) represent, respectively, the finite part of the singular expansion, in the comparison scale

{(1 -𝑧) -𝑎 log 𝑏 (1 -𝑧)} 𝑎,𝑏∈N , of Li 𝑤 at 𝑧 = 1 f.p. 𝑧→1 Li 𝑤 (𝑧) = 𝜁 ⊔⊔ (𝑤), {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , (4.3) 
and the asymptotic expansion, in

{𝑛 -𝑎 H 𝑏 1 (𝑛)} 𝑎,𝑏∈N , of H 𝑤 for 𝑛 → +∞ : f.p. 𝑛→+∞ H 𝑤 (𝑛) = 𝜁 (𝑤), {𝑛 𝑎 H 𝑏 1 (𝑛)} 𝑎∈Z,𝑏∈N . (4.4)
For commodity, we will denote

F.P. 𝑧→1 L(𝑧) = 𝑍 ⊔⊔ , {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , (4.5) 
F.P. 𝑛→+∞ H(𝑛) = 𝑍 , {𝑛 𝑎 H 𝑏 1 (𝑛)} 𝑎∈Z,𝑏∈N . (4.6)
On the other hand, by a transfer theorem [START_REF] Flajolet | Analytic combinatorics[END_REF], let {𝛾 𝑤 } 𝑤∈𝑌 * be the finite part of an asymptotic expansion, in {𝑛 -𝑎 log 𝑏 (𝑛)} 𝑎,𝑏∈N , of {H 𝑤 } 𝑤∈𝑌 * for 𝑛 → +∞ :

f.p. 𝑛→+∞ H 𝑤 (𝑛) = 𝛾 𝑤 , {𝑛 𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N .
Then let 𝑍 𝛾 be the noncommutative generating series of {𝛾 𝑤 } 𝑤∈𝑌 * . One has 

The following map is a character

𝛾 • : (Q⟨𝑌 ⟩, , 1 𝑌 * ) -→ (𝒵[𝛾], ×, 1), 𝑤 ↦ -→ 𝛾 𝑤 .
(2) Equivalently, one has Δ (𝑍 𝛾 ) = 𝑍 𝛾 ⊗ 𝑍 𝛾 and ⟨𝑍 𝛾 | 1 𝑌 * ⟩ = 1. Hence, 

𝑍 𝛾 = 𝑒 𝛾𝑦1 ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} 𝑒 𝜁(Σ 𝑙 )Π 𝑙 = 𝑒 𝛾𝑦1 𝑍 and Δ (log(𝑍 𝛾 )) = log(𝑍 𝛾 ) ⊗ 1 𝑌 * + 1 𝑌 * ⊗ log(𝑍 𝛾 ). It follows then log(𝑍 𝛾 ) = ∑︁ 𝑘 1 (-1)
ℒ ∞ 𝑖𝑟𝑟 (𝒳 ) := lim 𝑝→+∞ ℒ 𝑝 𝑖𝑟𝑟 (𝒳 ) with ℒ 2 𝑖𝑟𝑟 (𝒳 ) ⊂ . . . ℒ 𝑝 𝑖𝑟𝑟 (𝒳 ) ⊂ . . . , (4.9) 
and, for any 𝑝 2, ℒ 𝑝 𝑖𝑟𝑟 (𝒳 ) is the inverse image of 𝒵 𝑝 𝑖𝑟𝑟 (𝒳 ). Generated by homogenous polynomials for the weight (see Example 6.2 in Appendix A), ker(𝜁) is then graded. Moreover, since 𝒵 = Im(𝜁), one obtains Hence, 𝒵 is graded as the quotient of a graded algebra by a graded ideal :

𝒵 = Q1 ⊕ ⨁︁ 𝑝 2 𝒵 𝑝 ,
where for any 𝑝 2,

𝒵 𝑝 = span Q {𝜁(𝑤)|𝑤 ∈ 𝑥 0 𝑋 * 𝑥 1 , | 𝑤 |= 𝑝}, (resp. 𝒵 𝑝 = span Q {𝜁(𝑤)|𝑤 ∈ (𝑌 -{𝑦 1 })𝑌 * , (𝑤) = 𝑝}).
Remark 4.5. -Note that ℒ𝑦𝑛𝒳 is totally ordered, and so is ℒ ∞ 𝑖𝑟𝑟 (𝒳 ), as being extracted from ℒ𝑦𝑛𝒳 . Hence, for any fixed integer 𝑛 1, it is immediate that (1) letting 𝑙 ∈ ℒ𝑦𝑛𝒳 such that (𝑙) = 𝑛, one has 𝑦 𝑛 ⪯ 𝑙 (resp. 𝑥 𝑛-1

0 𝑥 1 ⪯ 𝑙), (2) Σ 𝑦𝑛 = 𝑦 𝑛 ∈ ℒ𝑦𝑛𝑌 and 𝑆 𝑥 𝑛-1 0 𝑥1 = 𝑥 𝑛-1 0 𝑥 1 ∈ ℒ𝑦𝑛𝑋 (see Lemma 2.2), (3) Σ 𝑦2𝑛+1 = 𝑦 2𝑛+1 ∈ ℒ ∞ 𝑖𝑟𝑟 (𝑌 ) and 𝑆 𝑥 2𝑛 0 𝑥1 = 𝑥 2𝑛 0 𝑥 1 ∈ ℒ ∞ 𝑖𝑟𝑟 (𝑋), (4) 𝜁(2) = 𝜁(Σ 𝑦2 ) = 𝜁(𝑆 𝑥0𝑥1
) is irreducible and, by Euler's identity about the ratio 𝜁(2𝑘)/𝜋 2𝑘 , one deduces that

Σ 𝑦 2𝑘 = 𝑦 2𝑘 / ∈ ℒ ∞ 𝑖𝑟𝑟 (𝑌 ) and 𝑆 𝑥 2𝑘-1 0 𝑥1 = 𝑥 2𝑘-1 0 𝑥 1 / ∈ ℒ ∞ 𝑖𝑟𝑟 (𝑋).
22 Identification allows to obtain homogenous polynomial relations up to weights 12 [START_REF] Bui | Structure of Polyzetas and Explicit Representation on Transcendence Bases of Shuffle and Stuffle Algebras[END_REF]. 23 by means of rewriting the system.

Note also that for any 𝑙 1 ∈ ℒ𝑦𝑛𝑌 -{𝑦 1 } and 𝑙 2 ∈ ℒ𝑦𝑛𝑋-𝑋 one has in general [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] 𝜁(𝜋 𝑋 (Σ 𝑙1 )) ̸ = 𝜁(𝑆 𝜋 𝑋 (𝑙1) ) and 𝜁(𝜋 𝑌 (𝑆 𝑙2 )) ̸ = 𝜁(Σ 𝜋 𝑌 (𝑙2) ), while this does not occur, due again to Lemma 2.2, for the values 24 {𝜁(𝑙)} 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} (or {𝜁(𝑙)} 𝑙∈ℒ𝑦𝑛𝑋-𝑋 ) [START_REF] Bigotte | Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF][START_REF] Hoang Ngoc Minh | Lyndon words, polylogarithmic functions and the Riemann 𝜁 function[END_REF][START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF]28].

With the first assertion of Proposition 4.3, we compute the generalized Euler constants, i.e. the finite parts of divergent harmonic sums {H 𝑤 } 𝑤∈𝑦1𝑌 * : Corollary 4.6 ([14, 16, 45]). -For any 𝑘 1 and 𝑤 ∈ 𝑌 * -𝑦 1 𝑌 * , one has 

𝛾 𝑦 𝑘 1 = ∑︁ 𝑠 1 ,...,𝑠 𝑘 >0 𝑠 1 +...+𝑘𝑠 𝑘 =𝑘 (-1) 𝑘 𝑠 1 ! . . . 𝑠 𝑘 ! (-𝛾) 𝑠1 (︂ - 𝜁(2) 2 )︂ 𝑠2 . . . (︂ - 𝜁(𝑘) 𝑘 )︂ 𝑠 𝑘 , 𝛾 𝑦 𝑘 1 𝑤 = 𝑘 ∑︁ 𝑖=0 𝜁(𝑥 0 [(-𝑥 1 ) 𝑘-𝑖 ⊔⊔ 𝜋 𝑋 𝑤]) 𝑖! (︂ 𝑖 ∑︁ 𝑗=1 𝑏 𝑖,𝑗 (𝛾, -𝜁(2), 2𝜁 (3) 
L -:= ∑︁ 𝑤∈𝑌 * 0 Li - 𝑤 𝑤, H -:= ∑︁ 𝑤∈𝑌 * 0 H - 𝑤 𝑤, 𝐶 -:= ∑︁ 𝑤∈𝑌 * 0 𝐶 - 𝑤 𝑤. Then 25 ⟨H -| 1 𝑌 * 0 ⟩ = ⟨𝐶 -| 1 𝑌 * 0 ⟩ = 1, Δ (H -) = H -⊗ H - and Δ ⊔⊔ (𝐶 -) = 𝐶 -⊗ 𝐶 -.
Moreover, analysis of singularities leads to the following global renormalization. Theorem 4.9 (Second Abel like theorem, [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF]). -One has 24 for which polynomial relations homogenous for the weight are obtained via double shuffle, up to weights 10 [START_REF] Hoang Ngoc Minh | Lyndon words, polylogarithmic functions and the Riemann 𝜁 function[END_REF][START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF], 12 [START_REF] Bigotte | Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF] and 16 [28]. 25 The series 𝐶 -is group-like in (Q⟨⟨𝑌 0 ⟩⟩, conc,

lim 𝑧→1 ℎ ⊙-1 ((1 -𝑧) -1 ) ⊙ L -(𝑧) = lim 𝑛→+∞ 𝑔 ⊙-1 (𝑛) ⊙ H -(𝑛) = 𝐶 -,
1 𝑌 * 0 , Δ ⊔⊔ , e).
where the noncommutative generating series 26 

Li - 𝑤 (𝑧) = (𝑤)+|𝑤| ∑︁ 𝑘=0 𝑝 𝑘 (1 -𝑧) 𝑘 = (𝑤)+|𝑤| ∑︁ 𝑘=0 𝑝 𝑘 𝑒 -𝑘 log(1-𝑧) ∈ (Z[𝑒 -log(1-𝑧) ], ×, 1 𝐵 ), H - 𝑤 (𝑛) = (𝑤)+|𝑤| ∑︁ 𝑘=0 𝑝 𝑘 (︂ 𝑛 + 𝑘 𝑘 )︂ = (𝑤)+|𝑤| ∑︁ 𝑘=0 𝑝 𝑘 𝑘! (𝑛 + 𝑘) 𝑛 ∈ (Q[(𝑛 + •) 𝑛 ], × , 1) 
,

where (𝑛 + •) 𝑛 : N → Q maps 𝑖 to (𝑛 + 𝑖) 𝑛 = (𝑛 + 𝑖)!/𝑛! = 𝑛(𝑛 -1) . . . (𝑛 -𝑖 + 1)
and Q[(𝑛 + •) 𝑛 ] denotes the set of polynomials in 𝑛 expanded as follows

∀𝜋 ∈ Q[(𝑛 + •) 𝑛 ], deg(𝜋) = 𝑑, 𝜋 = 𝑑 ∑︁ 𝑖=0 𝜋 𝑘 (𝑛 + 𝑖) 𝑛 = 𝑑 ∑︁ 𝑖=0 𝜋 𝑘 (𝑛 + 𝑖)! 𝑛! .
By Corollary 4.10, denoting by p the exponential transform of 𝑝, one also has 

Li - 𝑤 (𝑧) = 𝑝(𝑒 -log(1-𝑧) ), with 𝑝(𝑡) = (𝑤)+|𝑤| ∑︁ 𝑘=0 𝑝 𝑘 𝑡 𝑘 ∈ (Z[𝑡], × , 1), (4.10) 
The following morphism of algebras is bijective

𝜒 : (Q[𝑦 * 1 ], , 1 𝑌 * ) -→ (Q[(𝑛 + •) 𝑛 ], ×, 1), 𝑆 ↦ -→ H 𝑆 .
26 Note that 𝑔 can be view as an "exponential transform" of ℎ : (2) For any 𝑤 = 𝑦 𝑠1 , . . . 𝑦 𝑠𝑟 ∈ 𝑌 * 0 , there exists a unique polynomial

𝑔(𝑡) = ∑︁ 𝑤∈𝑌 * 0 𝑡 (𝑤)+|𝑤| 𝑤 = ∑︁ 𝑤∈𝑌 * 0 ⟨ℎ | 𝑤⟩ ((𝑤)+ | 𝑤 |)! 𝑤.
𝑅 𝑤 belong- ing to (Z[𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) of degree (𝑤)+ | 𝑤 |, such that 29 Li 𝑅𝑤 (𝑧) = Li - 𝑤 (𝑧) = 𝑝(𝑒 -log(1-𝑧) ) ∈ (Z[𝑒 -log(1-𝑧) ], ×, 1 𝐵 ), H 𝜋 𝑌 (𝑅𝑤) (𝑛) = H - 𝑤 (𝑛) = p((𝑛 + •) 𝑛 ) ∈ (Q[(𝑛 + •) 𝑛 ], ×, 1).
In particular, via the extension by linearity of 𝑅 • over Q⟨𝑌 0 ⟩ and Theorem 3.2, {Li 𝑅𝑦 𝑘 } 𝑘 0 is linear independent in Q{Li 𝑅𝑤 } 𝑤∈𝑌 * 0 and for all 𝑘, 𝑙 ∈ N 

Li 𝑅𝑦 𝑘 ⊔⊔ 𝑅𝑦 𝑙 = Li 𝑅𝑦 𝑘 Li 𝑅𝑦 𝑙 = Li - 𝑦 𝑘 Li - 𝑦 𝑙 = Li - 𝑦 𝑘 ⊤𝑦 𝑙 = Li 𝑅 𝑦 𝑘 ⊤𝑦 𝑙 . ( 3 
∑︁ 𝑘𝑟=0 (︂ 𝑠 1 𝑘 1 )︂(︂ 𝑠 1 + 𝑠 2 -𝑘 1 𝑘 2 )︂ . . . (︂ 𝑠 1 + . . . + 𝑠 𝑟 -𝑘 1 -. . . -𝑘 𝑟-1 𝑘 𝑟 )︂ 𝜌 𝑘1 ⊔⊔ . . . ⊔⊔ 𝜌 𝑘𝑟 ,
where, for any 𝑖 = 1, . . . , 𝑟, one has, if

𝑘 𝑖 = 0 then 𝜌 𝑘𝑖 = 𝑥 * 1 -1 𝑋 * else 𝜌 𝑘𝑖 = 𝑘𝑖 ∑︁ 𝑗=1 𝑆 2 (𝑘 𝑖 , 𝑗)(𝑗!) 2 𝑗 ∑︁ 𝑙=0 (-1) 𝑙 𝑙! (𝑥 * 1 ) ⊔⊔ (𝑗-𝑙+1) (𝑗 -𝑙)! ,
and the 𝑆 2 (𝑘, 𝑗)'s denote the Stirling numbers of second kind.

Using Proposition 4.11 and Lemma 3.4 (in particular, the bijectivity of the restriction Li

• : (Z[𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) → (Z[𝑒 -log(1-𝑧) ],
., 1 𝐵 )) and also the Stirling numbers (of first and second kinds), one obtains Corollary 4.12. -The morphism of algebras

𝑅 • : (Z⟨𝑌 0 ⟩, ⊤, 1 𝑌 * 0 ) → (Z[𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) is bijective, mapping 𝑦 0 ↦ → 𝑥 * 1 -1 𝑋 * and 𝑦 𝑘 ↦ → 𝑥 * 1 ⊔⊔ 𝑅 ′ 𝑦 𝑘 (𝑘 1)
, where

𝑅 ′ 𝑦 𝑘 = 𝑘 ∑︁ 𝑖=0 𝑖!𝑆 2 (𝑘, 𝑖)(𝑥 * 1 -1) ⊔⊔ 𝑖 = 𝑘 ∑︁ 𝑖=0 𝑖 ∑︁ 𝑗=0 𝑖!𝑆 2 (𝑘, 𝑖) (︂ 𝑖 𝑗 )︂ (-1) 𝑖-𝑗 (𝑥 * 1 ) ⊔⊔ 𝑗
and 𝑅 ′ • is extended over Z⟨𝑌 ⟩ by linearity. Conversely, one has for any 𝑘 1,

(𝑘𝑥 1 ) * = 1 𝑋 * + 𝑅 𝑦0 + 𝑘 ∑︁ 𝑗=2 𝑆 1 (𝑘, 𝑗) (𝑘 -1)! 𝑅 𝑦𝑗+1 .
It follows that Li 𝑅𝑦 𝑘 ⊙ Li 𝑅𝑦 𝑙 = Li 𝑆 (for 𝑘, 𝑙 1), where

𝑆 = 𝑥 * 1 ⊔⊔ 𝑅 ′ 𝑦 𝑘 𝑦 𝑙 = (1 𝑋 * + 𝑅 𝑦0 ) ⊔⊔ (𝑅 ′ 𝑦 𝑘+𝑙 + 𝑅 ′ 𝑦 𝑘 ⊔⊔ 𝑦 𝑙 ).
To end this section, let us recall also that, for any 𝑐 ∈ C, one has

(𝑛) 𝑐 ∼ +∞ 𝑛 𝑐 = 𝑒 𝑐 log(𝑛)
and, with the respective scales of comparison (on the right hand side), one has the following finite parts f.p. [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF][START_REF] Ngoc | Shuffle algebra and differential Galois group of colored polylogarithms[END_REF]). -Let 𝐺 and 𝐻 be solutions of (1.1) which are group-like for Δ ⊔⊔ . Then there exists 𝐶 ∈ ℒ𝑖𝑒 C ⟨⟨𝑋⟩⟩, independent of 𝑧, such that 𝐺 = 𝐻𝑒 𝐶 .

𝑧→1 𝑐 log(1 -𝑧) = 0, {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , ( 4 
Typically, with the notations of (1.2) and Definition 3.7, the power series 𝐶 𝑧0 𝑧 and L(𝑧) satisfy the differential equation (1.1) and have the same value at 𝑧 = 𝑧 0 . Then 𝐶 𝑧0 𝑧 = L(𝑧)(L(𝑧 0 )) -1 [START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang Ngoc Minh | Polylogarithms and Shuffle Algebra[END_REF]. Since 𝐶 𝑧0 𝑧 and L(𝑧) are group-like, so is L(𝑧 0 ). It follows that the Hausdorff group, i.e. {𝑒 𝐶 | 𝐶 ∈ ℒ𝑖𝑒 C ⟨⟨𝑋⟩⟩}, plays the rôle of the differential Galois group of the equation (1.1). More precisely, Theorem 5.2 ( [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF][START_REF] Ngoc | Shuffle algebra and differential Galois group of colored polylogarithms[END_REF]). [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]). -Let 𝐴 be a subring of C, containing Q. We put 30

-Gal C (𝐷𝐸) = {𝑒 𝐶 | 𝐶 ∈ ℒ𝑖𝑒 C ⟨⟨𝑋⟩⟩}. Definition 5.3 ([

𝑑𝑚(𝐴)

:= {𝑍 ⊔⊔ 𝑒 𝐶 | 𝐶 ∈ ℒ𝑖𝑒 𝐴 ⟨⟨𝑋⟩⟩, ⟨𝑒 𝐶 | 𝑥 0 ⟩ = ⟨𝑒 𝐶 | 𝑥 1 ⟩ = 0}.
Then 𝑑𝑚(𝐴) = Gal 2 C (𝐷𝐸) is a strict normal subgroup of Gal C (𝐷𝐸). Now, for any 𝑒 𝐶 ∈ Gal C (𝐷𝐸), let 31L := L𝑒 𝐶 and 𝑍 ⊔⊔ := 𝑍 ⊔⊔ 𝑒 𝐶 .

(5.1)

Then, by the global analysis of singularities in (4.1), the action of 𝑒 𝐶 on L on the right yields the asymptotic behavior of L [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] L(𝑧) ∼ 0 𝑒 𝑥0 log 𝑧 𝑒 𝐶 and L(𝑧)

∼ 1 𝑒 -𝑥1 log(1-𝑧) 𝑍 ⊔⊔ (5.2)
and, via an identity of type Newton-Girard again [START_REF] Lascoux | Fonctions symétriques[END_REF], one also gets :

H(𝑛) ∼ +∞ 𝑒 - ∑︀ 𝑘 1
H𝑦 𝑘 (𝑛)(-𝑦1) 𝑘 /𝑘 𝜋 𝑌 (𝑍 ⊔⊔ ).

(5.3)

In other words, we obtain the extended Abel like theorem [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] lim

𝑧→1 𝑒 𝑦1 log(1-𝑧) 𝜋 𝑌 (L(𝑧)) = lim 𝑛→∞ 𝑒 ∑︀ 𝑘 1 H𝑦 𝑘 (𝑛)(-𝑦1) 𝑘 /𝑘 H(𝑛) = 𝜋 𝑌 (𝑍 ⊔⊔ ).
By (4.1) and (5.2), one then deduces Corollary 5.4. -L is the unique solution of (𝐷𝐸) satisfying L(𝑧) ∼ 0 𝑒 𝑥0 log(𝑧) (i.e. for 𝑒 𝐶 = 1 𝑋 * ). It follows that Φ 𝐾𝑍 = 𝑍 ⊔⊔ is unique. Proposition 5.5 ([46, 47]). -Let {𝛾 𝑤 } 𝑤∈𝑌 * be the finite parts of the asymptotic expansions of {H 𝑤 } 𝑤∈𝑌 * in {𝑛 -𝑎 log 𝑏 (𝑛)} 𝑎,𝑏∈N , and let 𝑍 𝛾 be their noncommutative generating series. Then

𝑍 𝛾 := ∑︁ 𝑤∈𝑌 * 𝛾 𝑤 𝑤, Δ (𝑍 𝛾 ) = 𝑍 𝛾 ⊗ 𝑍 𝛾 , ⟨𝑍 𝛾 | 1 𝑌 * ⟩ = 1.
In other words, the following map is a character

𝛾 • : (Q⟨𝑌 ⟩, , 1 𝑌 * ) -→ (𝒵[𝛾], ×, 1), 𝑤 ↦ -→ 𝛾 𝑤 .
Proposition 5.6 (Extended bridge equation, [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]). -Under the action of the group Gal C (𝐷𝐸), one gets 32

𝑍 ⊔⊔ = F.P. 𝑧→1 L(𝑧), {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , 𝑍 = F.P. 𝑛→+∞ H(𝑛), {𝑛 𝑎 H 𝑏 1 (𝑛)} 𝑎∈Z,𝑏∈N , 𝑍 𝛾 = F.P. 𝑛→+∞ H(𝑛), {𝑛 𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N .
Moreover, by Proposition 5.5, the extension of MRS factorization and the extended Abel like theorem lead to 𝑍 𝛾 = 𝑒 𝛾𝑦1 𝑍 . Hence, for any 𝑍 ⊔⊔ ∈ 𝑑𝑚(𝐴), by cancellation and with expressions of 𝐵, 𝐵 ′ given in Proposition 4.3, one obtains

𝑍 𝛾 = 𝐵(𝑦 1 )𝜋 𝑌 (𝑍 ⊔⊔ ) ⇐⇒ 𝑍 = 𝐵 ′ (𝑦 1 )𝜋 𝑌 (𝑍 ⊔⊔ ).
Elements of the group 𝑑𝑚(𝐴) satisfying similar properties as Φ 𝐾𝑍 are called associators 33 , as regularized solutions of (𝐷𝐸) [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]. Moreover, by the identification of local coordinates in the second point of Proposition 5.6, one gets Corollary 5.7 ( [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]). -If 𝛾 / ∈ 𝐴 then 𝛾 is transcendent over the 𝐴-algebra generated by convergent zeta values. Remark 5.8. -As example of the action of the differential Galois group on the singular expansions, we are interested in the action of their monodromy group 34 [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] generated by 𝑒 2i𝜋m0 and 𝑒 2i𝜋m1 , where [START_REF] Hoang Ngoc Minh | Polylogarithms and Shuffle Algebra[END_REF][START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF] 

m 0 = 𝑥 0 and m 1 = 𝑍 ⊔⊔ 𝑒 -2i𝜋𝑥1 𝑍 -1 ⊔⊔ = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑋-𝑋 𝑒 -𝜁(𝑆 𝑙 ) ad 𝑃 𝑙 (-𝑥 1 )
.

By Proposition 4.3 and (5.1), the actions of the monodromy group on the right of 𝑍 ⊔⊔ and 𝑍 𝛾 are the following 32 Note that, once the scales of comparison are fixed, the coefficients 33 In [START_REF] Gonzalez-Lorca | Série de Drinfel'd, monodromie et algèbres de Hecke[END_REF][START_REF] Racinet | Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel[END_REF], associators (or Drinfel'd series) are defined as group-like series in R⟨⟨𝑋⟩⟩ satisfying a system of algebraic relations (duality, pentagonal and hexagonal), but the authors do not produce any associator other than Φ 𝐾𝑍 , which was completely determined earlier in [START_REF] Hoang Ngoc Minh | Lyndon words, polylogarithmic functions and the Riemann 𝜁 function[END_REF][START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF] (without divergent zeta values as local coordinates). 34 A proof of linear independence of multi-valued polylogarithms is obtained via this monodromy group. It can be also proved by use of the differential Galois group [START_REF] Costermans | Calcul non nommutatif : analyse des constantes d'arbre de fouille[END_REF][START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF][START_REF] Ngoc | Shuffle algebra and differential Galois group of colored polylogarithms[END_REF]]. An other proof for mono-valued polylogarithm functions, as a special case of hyperlogarithms, can be also obtained over functions field [START_REF] Deneufchâtel | Intégrales itérées et physique combinatoire[END_REF][START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF].

{⟨𝑍 ⊔⊔ | 𝑤⟩} 𝑤∈𝑥 0 𝑋 * 𝑥 1 , {⟨𝑍 | 𝑤⟩} 𝑤∈(𝑌 * -∖{𝑦 1 })𝑌 * and {⟨𝑍𝛾 | 𝑤⟩} 𝑤∈(𝑌 * -∖{𝑦 1 })𝑌 * ,
(1) If 𝑒 𝐶 = 𝑒 2i𝜋m0 then 𝑍 ⊔⊔ = 𝑍 ⊔⊔ 𝑒 2i𝜋𝑥0 and

𝑍 𝛾 = exp (︂ 𝛾𝑦 1 - ∑︁ 𝑘 2 𝜁(𝑘) (-𝑦 1 ) 𝑘 𝑘 )︂ 𝜋 𝑌 𝑍 ⊔⊔ = 𝑍 𝛾 .
This means that the monodromy at 0 of L consists of the multiplication on the right of 𝑍 ⊔⊔ by 𝑒 2i𝜋𝑥0 and does not modify 𝑍 𝛾 . (2) If 𝑒 𝐶 = 𝑒 2i𝜋m0 then 𝑍 ⊔⊔ = 𝑒 -2i𝜋𝑥1 𝑍 ⊔⊔ and

𝑍 𝛾 = exp (︂ (𝛾 -2i𝜋)𝑦 1 - ∑︁ 𝑘 2 𝜁(𝑘) (-𝑦 1 ) 𝑘 𝑘 )︂ 𝜋 𝑌 𝑍 ⊔⊔ = 𝑒 -2i𝜋𝑦1 𝑍 𝛾 .
This means that the monodromy at 1 of L consists of the multiplication on the left of 𝑍 ⊔⊔ and 𝑍 𝛾 by, respectively, 𝑒 -2i𝜋𝑥1 and 𝑒 -2i𝜋𝑦1 . Finally, the actions of the monodromy group on L does not allow, in this case, neither to introduce 𝑒 𝛾𝑥1 on the left of 𝑍 ⊔⊔ nor to eliminate the left factor 𝑒 𝛾𝑦1 of 𝑍 𝛾 [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]. 5.2. Associator Φ 𝐾𝑍 . Now, let us examine some properties of the noncommutative generating series 𝑍 and 𝑍 ⊔⊔ , i.e. Φ 𝐾𝑍 (see Corollary 5.4). In a way similar to what was said of the character 𝛾 • (see Proposition 4.2), Definition 3.9 and Proposition 3.10 lead to Proposition 5.9 ([14, 16, 46, 47]).

-One has ⟨𝑍 | 1 𝑌 * ⟩ = ⟨𝑍 ⊔⊔ | 1 𝑋 * ⟩ = 1 and Δ (𝑍 ) = 𝑍 ⊗ 𝑍 , Δ (log(𝑍 )) = log(𝑍 ) ⊗ 1 𝑌 * + 1 𝑌 * ⊗ log(𝑍 ), Δ ⊔⊔ (𝑍 ⊔⊔ ) = 𝑍 ⊔⊔ ⊗ 𝑍 ⊔⊔ , Δ ⊔⊔ (log(𝑍 ⊔⊔ )) = log(𝑍 ⊔⊔ ) ⊗ 1 𝑋 * + 1 𝑋 * ⊗ log(𝑍 ⊔⊔ ), and 
log(𝑍 ) = ∑︁ 𝑘 1 (-1) 𝑘-1 𝑘 ∑︁ 𝑢1,...,𝑢 𝑘 ∈𝑌 + 𝜁 (𝑢 1 . . . 𝑢 𝑘 )𝑢 1 . . . 𝑢 𝑘 , log(𝑍 ⊔⊔ ) = ∑︁ 𝑘 1 (-1) 𝑘-1 𝑘 ∑︁ 𝑢1,...,𝑢 𝑘 ∈𝑋 + 𝜁 ⊔⊔ (𝑢 1 ⊔⊔ . . . ⊔⊔ 𝑢 𝑘 )𝑢 1 . . . 𝑢 𝑘 .
Moreover, the polymorphism 𝜁 can be extended as follows

𝜁 ⊔⊔ : (Q⟨𝑋⟩, ⊔⊔ , 1 𝑋 * ) -→ (𝒵, ×, 1), 𝜁 : (Q⟨𝑌 ⟩, , 1 𝑌 * ) -→ (𝒵, ×, 1),
according to its products and satisfying, for any 𝑙 ∈ ℒ𝑦𝑛𝑌 -{𝑦 1 },

𝜁 ⊔⊔ (𝜋 𝑋 (𝑙)) = 𝜁 (𝑙) = 𝛾 𝑙 = 𝜁(𝑙).
and, for the generators of length (resp. weight) one, for 𝑋 * (resp. 𝑌 * ),

𝜁 ⊔⊔ (𝑥 0 ) = 0 = f.p. 𝑧→1 Li 𝑥1 (𝑧), {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , 𝜁 (𝑦 1 ) = 0 = f.p. 𝑛→+∞ H 𝑦1 (𝑛), {𝑛 𝑎 H 𝑏 1 (𝑛)} 𝑎∈Z,𝑏∈N
. By Lazard's elimination, the free Lie algebra ℒ𝑖𝑒 𝐴 ⟨𝑋⟩, as an 𝐴-module, is the direct sum of 𝐴𝑥 0 and of a Lie ideal, denoted by 𝒥 and freely generated by {ad 𝑙 𝑥0 𝑥 1 } 𝑙∈N . Then, by the calculations in Appendix B and by the identities (𝑥 0 ∪ 𝑥 1 ) * = (𝑥 * 0 𝑥 1 ) * 𝑥 * 0 and 𝑒 𝑥0 𝑥 1 𝑒 -𝑥0 = 𝑒 ad𝑥 0 𝑥 1 , one has Proposition 5.10 (Gradation of L and 𝑍 ⊔⊔ , [START_REF] Ngoc | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF][START_REF] Ngoc | Shuffle algebra and differential Galois group of colored polylogarithms[END_REF]). -Let the operation ∘ be defined, for any 𝑙 ∈ N and 𝑃 ∈ C⟨𝑋⟩, by

𝑥 1 𝑥 𝑙 0 ∘ 𝑃 = 𝑥 1 (𝑥 𝑙 0 ⊔⊔ 𝑃 ). Then L(𝑧) = ∑︁ 𝑘 0 ∑︁ 𝑤∈𝑥 * 0 ⊔⊔ 𝑥 𝑘 1 Li 𝑤 (𝑧)𝑤 = 𝑒 𝑥0 log(𝑧) (︂ 1 𝑋 * + ∑︁ 𝑘 1 ∑︁ 𝑙1,••• ,𝑙 𝑘 0 Li 𝑥1𝑥 𝑙 1 0 ∘•••∘𝑥1𝑥 𝑙 𝑘 0 (𝑧) 𝑘 ∏︁ 𝑖=1 ad 𝑙𝑖 -𝑥0 𝑥 1 )︂ = ∑︁ 𝑘 0 ∫︁ 𝑧 0 𝜔 1 (𝑡 𝑘 ) • • • ∫︁ 𝑡 𝑘-1 0 𝜔 1 (𝑡 1 )𝜅 𝑘 (𝑧, 𝑡 1 , • • • , 𝑡 𝑘 ), 𝑍 ⊔⊔ = ∑︁ 𝑘 0 ∑︁ 𝑙1,••• ,𝑙 𝑘 0 𝜁 ⊔⊔ (𝑥 1 𝑥 𝑙1 0 ∘ • • • ∘ 𝑥 1 𝑥 𝑙 𝑘 0 ) 𝑘 ∏︁ 𝑖=0 ad 𝑙𝑖 -𝑥0 𝑥 1 ,
where supp(𝑥

1 𝑥 𝑙1 0 ∘ • • • ∘ 𝑥 1 𝑥 𝑙 𝑘 0 ) = {𝑤 ∈ 𝑥 1 𝑋 * || 𝑤 | 𝑥1 = 𝑘, | 𝑤 | 𝑥0 = 𝑙 1 + • • • + 𝑙 𝑘 } and 𝜅 𝑘 (𝑧, 𝑡 1 , • • • , 𝑡 𝑘 )
for any 𝑘 0 is the formal power series given by

𝜅 𝑘 (𝑧, 𝑡 1 , • • • , 𝑡 𝑘 ) = 𝑒 𝑥0[log(𝑧)-log(𝑡1)] 𝑥 1 • • • 𝑒 𝑥0[log(𝑡 𝑘-1 )-log(𝑡 𝑘 )] 𝑥 1 𝑒 𝑥0 log(𝑡 𝑘 ) = 𝑒 𝑥0 log(𝑧) 𝑒 ad -𝑥 0 log(𝑡 1 ) 𝑥 1 • • • 𝑒 ad -𝑥 0 log(𝑡 𝑘 ) 𝑥 1 = 𝑒 𝑥0 log(𝑧) ∑︁ 𝑙1,••• ,𝑙 𝑘 0 𝑘 ∏︁ 𝑖=1 log 𝑙𝑖 (𝑡 𝑖 ) 𝑙 𝑖 ! ad 𝑙𝑖 -𝑥0 𝑥 1 .
On the one hand, by Theorem 3.1 the morphism Li • is injective and the two families

{ad 𝑙1 -𝑥0 𝑥 1 • • • ad 𝑙 𝑘 -𝑥0 𝑥 1 } 𝑙1,••• ,𝑙 𝑘 0 𝑘 0 and {𝑥 1 𝑥 𝑙1 0 ∘ • • • ∘ 𝑥 1 𝑥 𝑙 𝑘 0 } 𝑙1,••• ,𝑙 𝑘 0 𝑘 0
are dual bases of, respectively, 𝒰(𝒥 ) and 𝒰(𝒥 )

∨ . On the other hand, by Proposition 5.9 it turns out that 𝜁 ⊔⊔ corresponds to the adjoin of the regularization proposed in [START_REF] Gonzalez-Lorca | Série de Drinfel'd, monodromie et algèbres de Hecke[END_REF][START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF].

Associators with rational coefficients. Since for any 𝑡

∈ C with | 𝑡 | < 1 one has Li (𝑡𝑥1) * (𝑧) = (1 -𝑧) -𝑡
, and by [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] 

H 𝜋 𝑌 (𝑡𝑥1) * = ∑︁ 𝑘 0 H 𝑦 𝑘 1 𝑡 𝑘 = exp (︂ - ∑︁ 𝑘 1 H 𝑦 𝑘 (-𝑡) 𝑘 𝑘 )︂ , ( 5.4) 
by Lemma 3.5 and Proposition 5.9 we can extend the characters 𝜁 ⊔⊔ and 𝛾 • , over

C⟨𝑋⟩ ⊔⊔ C[𝑥 * 1 ] and C⟨𝑌 ⟩ C[𝑦 * 1 ]
, respectively, by using the Euler beta and gamma functions 35 and also the incomplete beta function, i.e for any 𝑧, 𝑎, 𝑏 ∈ C such that

| 𝑧 | < 1, ℜ𝑎 > 0 and ℜ𝑏 > 0, B(𝑧; 𝑎, 𝑏) := ∫︁ 𝑧 0 𝑑𝑡 𝑡 𝑎-1 (1 -𝑡) 𝑏-1 and B(1; 𝑎, 𝑏) =: B(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏) Γ(𝑎 + 𝑏) .
35 Following [START_REF] Dieudonné | Calcul infinitésimal[END_REF], for any 𝑧 ∈ C the function Γ(𝑧) is meromorphic, admitting simple poles in -N and satisfying Γ(𝑧) = Γ(𝑧). The function Γ -1 (𝑧) is entire and admits simple zeros in -N.

It is immediate that 36

B(𝑧; 𝑎, 𝑏) = Li 𝑥0[(𝑎𝑥0) * ⊔⊔ ((1-𝑏)𝑥1) * ] (𝑧) = Li 𝑥1[((𝑎-1)𝑥0) * ⊔⊔ (-𝑏𝑥1) * ] (𝑧).
Proposition 5.11. -The characters 𝜁 ⊔⊔ and 𝛾 • can be extended algebraically as follows for 𝑡 ∈ C with | 𝑡 | < 1 :

𝜁 ⊔⊔ : (C⟨𝑋⟩ ⊔⊔ C[𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) -→ (C, ×, 1 C ), (𝑡𝑥 1 ) * ↦ -→ 1 C , 𝛾 • : (C⟨𝑌 ⟩ C[𝑦 * 1 ], , 1 𝑌 * ) -→ (C, ×, 1 C ), (𝑡𝑦 1 ) * ↦ -→ exp (︂ 𝛾𝑡 - ∑︁ 𝑛 2 𝜁(𝑛) (-𝑡) 𝑛 𝑛 )︂ = 1 Γ(1 + 𝑡) .
It follows then that

B(𝑎, 𝑏) = 𝜁 ⊔⊔ (𝑥 0 [(𝑎𝑥 0 ) * ⊔⊔ ((1 -𝑏)𝑥 1 ) * ]) = 𝜁 ⊔⊔ (𝑥 1 [((1 -𝑎)𝑥 0 ) * ⊔⊔ (-𝑏𝑥 1 ) * ]).
Moreover, for any

𝑢, 𝑣 ∈ C such that | 𝑢 | < 1, | 𝑣 | < 1 and | 𝑢 + 𝑣 | < 1, one has 37 exp (︂ ∑︁ 𝑛 2 𝜁(𝑛) (𝑢 + 𝑣) 𝑛 -(𝑢 𝑛 + 𝑣 𝑛 ) 𝑛 )︂ = Γ(1 -𝑢)Γ(1 -𝑣) Γ(1 -𝑢 -𝑣) = 𝛾 (-(𝑢+𝑣)𝑦1) * 𝛾 (-𝑢𝑦1) * 𝛾 (-𝑣𝑦1) * = 𝛾 (-(𝑢+𝑣)𝑦1) * 𝛾 (-𝑢𝑦1) * (-𝑣𝑦1) * = 𝜁 ⊔⊔ (𝑥 0 [(-𝑢𝑥 0 ) * ⊔⊔ (-(1 + 𝑣)𝑥 1 ) * ]) = 𝜁 ⊔⊔ (𝑥 1 [(-(1 + 𝑢)𝑥 0 ) * ⊔⊔ (-𝑣𝑥 1 ) * ]) and 𝜁 ⊔⊔ ((-(𝑢 + 𝑣)𝑥 1 ) * ) = 𝜁 ⊔⊔ ((-𝑢𝑥 1 ) * ⊔⊔ (-𝑣𝑥 1 ) * ) = 𝜁 ⊔⊔ ((-𝑢𝑥 1 ) * )𝜁 ⊔⊔ ((-𝑣𝑥 1 ) * ) = 1.
With the notations in Corollary 4.10, the values 𝑝(1) and p(1) obtained by (4.10) and (4.11), respectively, represent the following finite parts :

36 see the form of rational series given in (𝐹 2 ) and Lemma 2.4. 37 The first equality is already presented in [START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal( Q/Q)[END_REF]. Moreover, since (-𝑢𝑦 1 ) * (𝑢𝑦

1 ) * = (-𝑢 2 𝑦 2 ) * , letting 𝑣 = -𝑢 it follows that exp (︁ - ∑︁ 𝑛 1 𝜁(2𝑛) 𝑢 2𝑛 𝑛 )︁ = Γ(1 -𝑢)Γ(1 + 𝑢) = 1 𝛾 (-𝑢𝑦 1 ) * (𝑢𝑦 1 ) * = 1 𝛾 (-𝑢 2 𝑦 2 ) * .
It is also a consequence obtained by expanding identities like (5.4), for any 𝑦𝑟 ∈ 𝑌 , [START_REF] Costermans | Some Results à l'Abel Obtained by Use of Techniques à la Hopf[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF]]

𝑦 𝑘 𝑟 = (-1) 𝑘 𝑘! ∑︁ 𝑠 1 ,...,𝑠 𝑘 >0 𝑠 1 +...+𝑘𝑠 𝑘 =𝑘 (-𝑦𝑟) 𝑠 1 1 𝑠 1 . . . (-𝑦 𝑘𝑟 ) 𝑠 𝑘 𝑘 𝑠 𝑘 .
Lemma 5.12. -(1) Put P 𝑄 (𝑧) := 𝑒 -log(1-𝑧) Li 𝑄 (𝑧) for any

𝑄 ∈ (Z[𝑥 * 0 , (-𝑥 0 ) * , 𝑥 * 1 ], ⊔⊔ , 1 𝑋 * )/{𝑥 * 0 ⊔⊔ 𝑥 * 1 -𝑥 * 1 + 1}. Then P 𝑄 = Li 𝑥 * 1 ⊔⊔ 𝑄 and Li 𝑄 , P 𝑄 ∈ Z[𝑧, 𝑧 -1 , 𝑒 -log(1-𝑧) ].
(2) By Lemma 3.4 the converse holds. Moreover, by (4.13) and (4.14) one has

f.p. 𝑧→1 P 𝑄 (𝑧) = f.p. 𝑧→1 Li 𝑄 (𝑧) ∈ Z, {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , f.p. 𝑛→+∞ ⟨P 𝑄 | 𝑧 𝑛 ⟩ = f.p. 𝑛→+∞ H 𝜋 𝑌 (𝑄) (𝑛) ∈ Q, {𝑛 𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N .
(3) For any 𝑤 ∈ 𝑌 * , let 𝑅 𝑤 be explicitly determined as in Proposition 4.11.

There exists a unique polynomial 𝑝 ∈ Z[𝑡] of valuation 1 and of degree

(𝑤)+ | 𝑤 | such that 𝑅 𝑤 = p(𝑥 * 1 ) and f.p. 𝑧→1 Li 𝑅𝑤 (𝑧) = 𝑝(1) ∈ Z, {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , f.p. 𝑛→+∞ H 𝜋 𝑌 (𝑅𝑤) (𝑛) = p(1) ∈ Q, {𝑛 𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N , where p ∈ Q[𝑡] is the exponential transform of 𝑝.
As determined in Proposition 4.7, 𝐵 -

• and 𝐶 - • do not realize characters for (Q⟨𝑋⟩, ⊔⊔ , 1 𝑋 * ) and (Q⟨𝑌 ⟩, , 1 𝑌 * ), respectively [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF]. Hence, instead of regularizing the divergent sums 𝜁 ⊔⊔ (𝑅 𝑤 ) and 𝜁 𝛾 (𝜋 𝑌 (𝑅 𝑤 )) by 𝐵 - 𝑤 and 𝐶 - 𝑤 , one can use, respectively, 𝑝(1) and p(1) (depending on 𝑤) as shown in Theorem 5.15 below which is a consequence of Lemma 5.12, Propositions 4.11, 5.11 and Corollary 4.12 : Definition 5.13. -Let ϒ and Λ be the noncommutative generating series of, respectively, {H 𝜋 𝑌 (𝑅𝑤) } 𝑤∈𝑌 * and {Li 𝑅 𝜋 𝑌 (𝑤) } 𝑤∈𝑋 * (with ⟨Λ(𝑧) | 𝑥 0 ⟩ = log(𝑧)) :

ϒ := ∑︁ 𝑤∈𝑌 * H 𝜋 𝑌 (𝑅𝑤) 𝑤 ∈ Q[(𝑛 + •) 𝑛 ]⟨⟨𝑌 ⟩⟩, Λ := ∑︁ 𝑤∈𝑋 * Li 𝑅 𝜋 𝑌 (𝑤) 𝑤 ∈ Q[𝑒 -log(1-𝑧) ][log(𝑧)]⟨⟨𝑋⟩⟩.
Let 𝑍 - 𝛾 and 𝑍 - ⊔⊔ be the noncommutative generating series of 

: (C[𝑥 0 ]⟨𝑌 0 ⟩, ⊤, 1 𝑌 * 0 ) → (C[𝑥 0 ][𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) is bijective. Hence :
(1) Let π𝑌 be the morphism of algebras defined, over an algebraic basis, by π𝑌 𝑆 𝑙 = 𝜋 𝑌 𝑆 𝑙 for any 𝑙 ∈ ℒ𝑦𝑛𝑋 -{𝑥 0 }, and π𝑌 (𝑥 0 ) = 𝑥 0 (such that Li 𝑅 π𝑌 𝑥 0 (𝑧) = log(𝑧), whence 𝜁(𝑅 π𝑌 𝑥0 ) = 0). Then

ϒ = ((H • ∘ 𝜋 𝑌 ∘ 𝑅 • ) ⊗ Id)𝒟 𝑌 and Λ = ((Li • ∘𝑅 • ∘ π𝑌 ) ⊗ Id)𝒟 𝑋 , 𝑍 - 𝛾 = ((𝛾 • ∘ 𝜋 𝑌 ∘ 𝑅 • ) ⊗ Id)𝒟 𝑌 and 𝑍 - ⊔⊔ = ((𝜁 ⊔⊔ ∘ 𝑅 • ∘ π𝑌 ) ⊗ Id)𝒟 𝑋 .
38 Note that, on the one hand, by Proposition 5.9 one has ⟨𝑍 - ⊔⊔ | 𝑥 0 ⟩ = 𝜁 ⊔⊔ (𝑥 0 ) = 0. On the other hand, since 𝑅𝑦 1 = (2𝑥 

p(𝑥 * 1 ) = 𝑅 𝑙 ∈ (Z[𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ), 𝑝(𝑒 -log(1-𝑧) ) = Li 𝑅 𝑙 (𝑧) ∈ (Z[𝑒 -log(1-𝑧) ], ×, 1 𝐵 ), p((𝑛 + •) 𝑛 ) = H 𝜋 𝑌 (𝑅 𝑙 ) (𝑛) ∈ (Q[(𝑛 + •) 𝑛 ], ×, 1), 𝜁(-𝑠 1 , . . . , -𝑠 𝑟 ) = 𝑝(1) = 𝜁 ⊔⊔ (𝑅 𝑙 ) ∈ (Z, ×, 1), 𝛾 -𝑠1,...,-𝑠𝑟 = p(1) = 𝛾 𝜋 𝑌 (𝑅 𝑙 ) ∈ (Q, ×, 1)
,

where p ∈ Q[𝑡]
is the exponential transform of 𝑝, and 𝑝 is obtained as the exponential transform of

p ∈ Z[𝑡]. (2) One has ⟨𝑍 - 𝛾 | 1 𝑌 * ⟩ = ⟨𝑍 - ⊔⊔ | 1 𝑋 * ⟩ = 1 and Δ (𝑍 - 𝛾 ) = 𝑍 - 𝛾 ⊗ 𝑍 - 𝛾 and Δ ⊔⊔ (𝑍 - ⊔⊔ ) = 𝑍 - ⊔⊔ ⊗ 𝑍 - ⊔⊔ , 𝑍 - 𝛾 = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑌 𝑒 𝛾 𝜋 𝑌 (𝑅 Σ 𝑙 ) Π 𝑙 and 𝑍 - ⊔⊔ = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑋 𝑒 𝜁 ⊔⊔ (𝜋 𝑌 (𝑆 𝑙 ))𝑃 𝑙 .
( (4) Under the action of 𝒢 [START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF], as for L [START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang Ngoc Minh | Polylogarithms and Shuffle Algebra[END_REF], for any 𝑔 ∈ 𝒢 there exists a letter substitution 𝜎 𝑔 and a primitive series 𝐶 such that Λ(𝑔(𝑧)) = 𝜎 𝑔 (Λ(𝑧))𝑒 𝐶 and Λ(𝑧) ∼ 0 𝑒 𝑥0 log(𝑧) .

Remark For example, one can take 𝜌 𝑙 , by substituting each letter 𝑥 1 by 𝑥 0 in 𝑅 𝑙 .

Conclusion

In this paper, we have surveyed our recent results concerning the resolution of 𝐾𝑍 3 via a noncommutative symbolic computation, and the algebraic combinatorial aspects of the polylogarithms {Li 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈C 𝑟 , the harmonic sums {H 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈C 𝑟 , and the zeta functions {𝜁(𝑠 1 , . . . , 𝑠 𝑟 )} 𝑟 1 (𝑠1,...,𝑠𝑟)∈C 𝑟 with the help of their commutative and noncommutative generating series.

This review is mainly based on the combinatorics on the shuffle bialgebras and their diagonal series, i.e. 𝒟 ⊔⊔ , 𝒟 and 𝒟 𝑋 . In particular, it used The group 𝑑𝑚(𝐴) contains the unique associator Φ 𝐾𝑍 , i.e. the series 𝑍 ⊔⊔ determined by asymptotic conditions (Corollary 5.4), which is also associated with series 𝑍 and 𝑍 𝛾 . All of them are, for the corresponding co-products, group-like series and their logarithms are also provided (Propositions 4.2, 4.3 and 5.9). (4) Non trivial expressions for associators with rational coefficients, i.e. 𝑍 - ⊔⊔ and 𝑍 - 𝛾 , are also explicitly provided thanks to various processes of regularization via the noncommutative generating series Λ and ϒ, which are group-like, respectively, for Δ ⊔⊔ and Δ (Theorem 5.15). ( 5) Via the local coordinates of the power series 𝑍 ⊔⊔ , 𝑍 - ⊔⊔ , 𝑍 𝛾 , 𝑍 - 𝛾 and 𝑍 , regularization maps for divergent zeta are constructed (Propositions 5.9, 5.11) over algebraic bases matching with analytical meaning : on the one hand, the character 𝜁 ⊔⊔ corresponds to the regularization, obtained as the finite parts of the singular expansions of {Li 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈Z 𝑟 ; on the other hand, the characters 𝜁 and 𝛾 • correspond to the regularizations obtained as the finite parts of the asymptotic expansions of {H 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈Z 𝑟 , in different comparison scales.

In particular, the character One obtains also two families of polynomials homogenous for the weight, describing the kernel of the polymorphism 𝜁 (see Example 6.2, {𝑄 𝑙 } 𝑙∈ℒ𝑦𝑛𝒳 ). Example 6.2 (Homogenous polynomials 40 generating ker(𝜁)). -

{𝑄 𝑙 } 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦 1 } {𝑄 𝑙 } 𝑙∈ℒ𝑦𝑛𝑋-𝑋 3 𝜁(Σ𝑦 2 𝑦 1 -3 2 Σ𝑦 3 ) = 0 𝜁(𝑆 𝑥 0 𝑥 2 1 -𝑆 𝑥 2 0 𝑥 1 ) = 4 𝜁(Σ𝑦 4 -2 5 Σ 2 𝑦 2 ) = 0 𝜁(𝑆 𝑥 3 0 𝑥 1 -2 5 𝑆 ⊔⊔ 2 𝑥 0 𝑥 1 ) = 𝜁(Σ𝑦 3 𝑦 1 -3 10 Σ 2 𝑦 2 ) = 0 𝜁(𝑆 𝑥 2 0 𝑥 2 1 -1 10 𝑆 ⊔⊔ 2 𝑥 0 𝑥 1 ) = 𝜁(Σ 𝑦 2 𝑦 2 1 -2 3 Σ 2 𝑦 2 ) = 0 𝜁(𝑆 𝑥 0 𝑥 3 1 -2 5 𝑆 ⊔⊔ 2 𝑥 0 𝑥 1 ) = 5 𝜁(Σ𝑦 3 𝑦 2 -3Σ𝑦 3 Σ𝑦 2 -5Σ𝑦 5 ) = 0 𝜁(𝑆 𝑥 3 0 𝑥 2 1 -𝑆 𝑥 2 0 𝑥 1 ⊔⊔ 𝑆𝑥 0 𝑥 1 + 2𝑆 𝑥 4 0 𝑥 1 ) = 𝜁(Σ𝑦 4 𝑦 1 -Σ𝑦 3 Σ𝑦 2 ) + 5 2 Σ𝑦 5 ) = 0 𝜁(𝑆 𝑥 2 0 𝑥 1 𝑥 0 𝑥 1 -3 2 𝑆 𝑥 4 0 𝑥 1 + 𝑆 𝑥 2 0 𝑥 1 ⊔⊔ 𝑆𝑥 0 𝑥 1 ) = 𝜁(Σ 𝑦 2 2 𝑦 1 -3 2 Σ𝑦 3 Σ𝑦 2 -25 12 Σ𝑦 5 ) = 0 𝜁(𝑆 𝑥 2 0 𝑥 3 1 -𝑆 𝑥 2 0 𝑥 1 ⊔⊔ 𝑆𝑥 0 𝑥 1 + 2𝑆 𝑥 4 0 𝑥 1 ) = 𝜁(Σ 𝑦 3 𝑦 2 1 -5 12 Σ𝑦 5 ) = 0 𝜁(𝑆 𝑥 0 𝑥 1 𝑥 0 𝑥 2 1 -1 2 𝑆 𝑥 4 0 𝑥 1 ) = 𝜁(Σ 𝑦 2 𝑦 3 1 -1 4 Σ𝑦 3 Σ𝑦 2 ) + 5 4 Σ𝑦 5 ) = 0 𝜁(𝑆 𝑥 0 𝑥 4 1 -𝑆 𝑥 4 0 𝑥 1 ) = 6 𝜁(Σ𝑦 6 -8 35 Σ 3 𝑦 2 ) = 0 𝜁(𝑆 𝑥 5 0 𝑥 1 -8 35 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 ) = 𝜁(Σ𝑦 4 𝑦 2 -Σ 2 𝑦 3 -4 21 Σ 3 𝑦 2 ) = 0 𝜁(𝑆 𝑥 4 0 𝑥 2 1 -6 35 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 -1 2 𝑆 ⊔⊔ 2 𝑥 2 0 𝑥 1 ) = 𝜁(Σ𝑦 5 𝑦 1 -2 7 Σ 3 𝑦 2 -1 2 Σ 2 𝑦 3 ) = 0 𝜁(𝑆 𝑥 3 0 𝑥 1 𝑥 0 𝑥 1 -4 105 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 ) = 𝜁(Σ𝑦 3 𝑦 1 𝑦 2 -17 30 Σ 3 𝑦 2 + 9 4 Σ 2 𝑦 3 ) = 0 𝜁(𝑆 𝑥 3 0 𝑥 3 1 -23 70 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 -𝑆 ⊔⊔ 2 𝑥 2 0 𝑥 1 ) = 𝜁(Σ𝑦 3 𝑦 2 𝑦 1 -3Σ 2 𝑦 3 -9 10 Σ 3 𝑦 2 ) = 0 𝜁(𝑆 𝑥 2 0 𝑥 1 𝑥 0 𝑥 2 1 -2 105 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 ) = 𝜁(Σ 𝑦 4 𝑦 2 1 -3 10 Σ 2 𝑦 2 -3 4 Σ 2 𝑦 3 ) = 0 𝜁(𝑆 𝑥 2 0 𝑥 2 1 𝑥 0 𝑥 1 -89 210 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 + 3 2 𝑆 ⊔⊔ 2 𝑥 2 0 𝑥 1 ) = 𝜁(Σ 𝑦 2 2 𝑦 2 1 -11 63 Σ 2 𝑦 2 -1 4 Σ 2 𝑦 3 ) = 0 𝜁(𝑆 𝑥 2 0 𝑥 4 1 -6 35 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 -1 2 𝑆 ⊔⊔ 2 𝑥 2 0 𝑥 1 ) = 𝜁(Σ 𝑦 3 𝑦 3 1 -1 21 Σ 3 𝑦 2 ) = 0 𝜁(𝑆 𝑥 0 𝑥 1 𝑥 0 𝑥 3 1 -8 21 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 -𝑆 ⊔⊔ 2 𝑥 2 0 𝑥 1 ) = 𝜁(Σ 𝑦 2 𝑦 4 1 -17 50 Σ 3 𝑦 2 + 3 16 Σ 2 𝑦 3 ) = 0 𝜁(𝑆 𝑥 0 𝑥 5 1 -8 35 𝑆 ⊔⊔ 3 𝑥 0 𝑥 1 ) =
By substituting "=" by "→" in the previous homogenous polynomial relations one obtains a Noetherian rewriting system without critical pairs among local coordinates {𝜁(Σ 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} (resp. {𝜁(𝑆 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑋-𝑋 ) (see Example 6.3). Example 6.3 (Noetherian homogenous rewriting system among local coordinates 41 ). -

Rewriting on {𝜁(Σ 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦 1 } Rewriting on {𝜁(𝑆 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑋-𝑋 3 𝜁(Σ𝑦 2 𝑦 1 ) → 𝜁(Σ𝑦 3 ) 𝜁(𝑆 𝑥 0 𝑥 2 1 ) → 𝜁(𝑆 𝑥 2 0 𝑥 1 ) 4 𝜁(Σ𝑦 4 ) → 𝜁(Σ𝑦 2 ) 2 𝜁(𝑆 𝑥 3 0 𝑥 1 ) → 2 5 𝜁(𝑆𝑥 0 𝑥 1 ) 2 𝜁(Σ𝑦 3 𝑦 1 ) → 3 𝜁(Σ𝑦 2 ) 2 𝜁(𝑆 𝑥 2 0 𝑥 2 1 ) → 1 10 𝜁(𝑆𝑥 0 𝑥 1 ) 2 𝜁(Σ 𝑦 2 𝑦 2 1 ) → 𝜁(Σ𝑦 2 ) 2 𝜁(𝑆 𝑥 0 𝑥 3 1 ) → 2 5 𝜁(𝑆𝑥 0 𝑥 1 ) 2 5 𝜁(Σ𝑦 3 𝑦 2 ) → 3𝜁(Σ𝑦 3 )𝜁(Σ𝑦 2 )-5𝜁(Σ𝑦 5 ) 𝜁(𝑆 𝑥 3 0 𝑥 2 1 ) → -𝜁(𝑆 𝑥 2 0 𝑥 1 )𝜁(𝑆𝑥 0 𝑥 1 )+2𝜁(𝑆 𝑥 4 0 𝑥 1 ) 𝜁(Σ𝑦 4 𝑦 1 ) → -𝜁(Σ𝑦 3 )𝜁(Σ𝑦 2 )+ 5 2 𝜁(Σ𝑦 5 ) 𝜁(𝑆 𝑥 2 0 𝑥 1 𝑥 0 𝑥 1 ) → -3 2 𝜁(𝑆 𝑥 4 0 𝑥 1 )+𝜁(𝑆 𝑥 2 0 𝑥 1 )𝜁(𝑆𝑥 0 𝑥 1 ) 𝜁(Σ 𝑦 2 2 𝑦 1 ) → 𝜁(Σ𝑦 3 )𝜁(Σ𝑦 2 )-25 12 𝜁(Σ𝑦 5 ) 𝜁(𝑆 𝑥 2 0 𝑥 3 1 ) → -𝜁(𝑆 𝑥 2 0 𝑥 1 )𝜁(𝑆𝑥 0 𝑥 1 )+2𝜁(𝑆 𝑥 4 0 𝑥 1 ) 𝜁(Σ 𝑦 3 𝑦 2 1 ) → 5 𝜁(Σ𝑦 5 ) 𝜁(𝑆 𝑥 0 𝑥 1 𝑥 0 𝑥 2 1 ) → 1 2 𝜁(𝑆 𝑥 4 0 𝑥 1 ) 𝜁(Σ 𝑦 2 𝑦 3 1 ) → 𝜁(Σ𝑦 3 )𝜁(Σ𝑦 2 )+ 5 4 𝜁(Σ𝑦 5 ) 𝜁(𝑆 𝑥 0 𝑥 4 1 ) → 𝜁(𝑆 𝑥 4 0 𝑥 1 ) 6 𝜁(Σ𝑦 6 ) → 8 𝜁(Σ𝑦 2 ) 3 𝜁(𝑆 𝑥 5 0 𝑥 1 ) → 8 35 𝜁(𝑆𝑥 0 𝑥 1 ) 3 𝜁(Σ𝑦 4 𝑦 2 ) → 𝜁(Σ𝑦 3 ) 2 -4 21 𝜁(Σ𝑦 2 ) 3 𝜁(𝑆 𝑥 4 0 𝑥 2 1 ) → 6 35 𝜁(𝑆𝑥 0 𝑥 1 ) 3 -1 2 𝜁(𝑆 𝑥 2 0 𝑥 1 ) 2 𝜁(Σ𝑦 5 𝑦 1 ) → 𝜁(Σ𝑦 2 ) 3 -1 2 𝜁(Σ𝑦 3 ) 2 𝜁(𝑆 𝑥 3 0 𝑥 1 𝑥 0 𝑥 1 ) → 4 105 𝜁(𝑆𝑥 0 𝑥 1 ) 3 𝜁(Σ𝑦 3 𝑦 1 𝑦 2 ) → -17 30 𝜁(Σ𝑦 2 ) 3 + 9 4 𝜁(Σ𝑦 3 ) 2 𝜁(𝑆 𝑥 3 0 𝑥 3 1 ) → 23 70 𝜁(𝑆𝑥 0 𝑥 1 ) 3 -𝜁(𝑆 𝑥 2 0 𝑥 1 ) 2 𝜁(Σ𝑦 3 𝑦 2 𝑦 1 ) → 3𝜁(Σ𝑦 3 ) 2 -9 10 𝜁(Σ𝑦 2 ) 3 𝜁(𝑆 𝑥 2 0 𝑥 1 𝑥 0 𝑥 2 1 ) → 2 105 𝜁(𝑆𝑥 0 𝑥 1 ) 3 𝜁(Σ 𝑦 4 𝑦 2 1 ) → 3 𝜁(Σ𝑦 2 ) 3 -3 4 𝜁(Σ𝑦 3 ) 2 𝜁(𝑆 𝑥 2 0 𝑥 2 1 𝑥 0 𝑥 1 ) → -89 210 𝜁(𝑆𝑥 0 𝑥 1 ) 3 + 3 2 𝜁(𝑆 𝑥 2 0 𝑥 1 ) 2 𝜁(Σ 𝑦 2 2 𝑦 2 1 ) → 𝜁(Σ𝑦 2 ) 3 -1 4 𝜁(Σ𝑦 3 ) 2 𝜁(𝑆 𝑥 2 0 𝑥 4 1 ) → 6 35 𝜁(𝑆𝑥 0 𝑥 1 ) 3 -1 2 𝜁(𝑆 𝑥 2 0 𝑥 1 ) 2 𝜁(Σ 𝑦 3 𝑦 3 1 ) → 1 𝜁(Σ𝑦 2 ) 3 𝜁(𝑆 𝑥 0 𝑥 1 𝑥 0 𝑥 3 1 ) → 8 21 𝜁(𝑆𝑥 0 𝑥 1 ) 3 -𝜁(𝑆 𝑥 2 0 𝑥 1 ) 2 𝜁(Σ 𝑦 2 𝑦 4 1 ) → 𝜁(Σ𝑦 2 ) 3 + 3 16 𝜁(Σ𝑦 3 ) 2 𝜁(𝑆 𝑥 0 𝑥 5 1 ) → 8 35 𝜁(𝑆𝑥 0 𝑥 1 ) 3 
This means that for any 𝑙 ∈ ℒ𝑦𝑛𝑌 -{𝑦 1 } (resp. 𝑙 ∈ ℒ𝑦𝑛𝑋 -𝑋), the element 𝜁(Σ 𝑙 ) (resp. 𝜁(𝑆 𝑙 )) is rewritten in a unique way as polynomials (normal forms) with coeffients in Q in irreducible local coordinates 𝒵 ∞ 𝑖𝑟𝑟 (𝑌 ) (resp. 𝒵 ∞ 𝑖𝑟𝑟 (𝑋)) forming an algebraic generator system for 𝒵 (see Example 6.4). 41 These rules are sorted by weight and are ordered by Lyndon words.

Σ 𝑦2 = 𝑦 2 , Σ 𝑦3 = 𝑦 3 , Σ 𝑦5 = 𝑦 5 , Σ 𝑦7 = 𝑦 7 , Σ 𝑦9 = 𝑦 9 , Σ 𝑦11 = 𝑦 11
and

𝑆 𝑥0𝑥1 = 𝑥 0 𝑥 1 , 𝑆 𝑥 2 0 𝑥1 = 𝑥 2 0 𝑥 1 , 𝑆 𝑥 4 0 𝑥1 = 𝑥 4 0 𝑥 1 , 𝑆 𝑥 6 0 𝑥1 = 𝑥 6 0 𝑥 1 , 𝑆 𝑥 8 0 𝑥1 = 𝑥 8 0 𝑥 1 , 𝑆 𝑥 10 0 𝑥1 = 𝑥 10 0 𝑥 1 .
The identification of local coordinates leads to the irreducible polyzetas (see [START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] for a short discussion)

𝒵 12 𝑖𝑟𝑟 (𝑌 ) = {𝜁(Σ 𝑦2 ), 𝜁(Σ 𝑦3 ), 𝜁(Σ 𝑦5 ), 𝜁(Σ 𝑦7 ), 𝜁(Σ 𝑦3𝑦 5 1 ), 𝜁(Σ 𝑦9 ), 𝜁(Σ 𝑦3𝑦 7 1 ), 𝜁(Σ 𝑦11 ), 𝜁(Σ 𝑦2𝑦 9 1 ), 𝜁(Σ 𝑦3𝑦 9 1 ), 𝜁(Σ 𝑦 2 2 𝑦 8 1 )}. ℒ 12 𝑖𝑟𝑟 (𝑌 ) = {Σ 𝑦2 , Σ 𝑦3 , Σ 𝑦5 , Σ 𝑦7 , Σ 𝑦3𝑦 5 1 , Σ 𝑦9 , Σ 𝑦3𝑦 7 1 , Σ 𝑦11 , Σ 𝑦2𝑦 9 1 , Σ 𝑦3𝑦 9 1 , Σ 𝑦 2 2 𝑦 8 1 }. 𝒵 12 𝑖𝑟𝑟 (𝑋) = {𝜁(𝑆 𝑥0𝑥1 ), 𝜁(𝑆 𝑥 2 0 𝑥1 ), 𝜁(𝑆 𝑥 4 0 𝑥1 ), 𝜁(𝑆 𝑥 6 0 𝑥1 ), 𝜁(𝑆 𝑥0𝑥 2 1 𝑥0𝑥 4 1 ), 𝜁(𝑆 𝑥 8 0 𝑥1 ), 𝜁(𝑆 𝑥0𝑥 2 1 𝑥0𝑥 6 1 ), 𝜁(𝑆 𝑥 10 0 𝑥1 ), 𝜁(𝑆 𝑥0𝑥 3 1 𝑥0𝑥 7 1 ), 𝜁(𝑆 𝑥0𝑥 2 1 𝑥0𝑥 8 1 ), 𝜁(𝑆 𝑥0𝑥 4 1 𝑥0𝑥 6 1 )}. ℒ 12 𝑖𝑟𝑟 (𝑋) = {𝑆 𝑥0𝑥1 , 𝑆 𝑥 2 0 𝑥1 , 𝑆 𝑥 4 0 𝑥1 , 𝑆 𝑥 6 0 𝑥1 , 𝑆 𝑥0𝑥 2 1 𝑥0𝑥 4 1 , 𝑆 𝑥 8 0 𝑥1 , 𝑆 𝑥0𝑥 2 1 𝑥0𝑥 6 1 , 𝑆 𝑥 10 0 𝑥1 , 𝑆 𝑥0𝑥 3 1 𝑥0𝑥 7 1 , 𝑆 𝑥0𝑥 2 1 𝑥0𝑥 8 1 , 𝑆 𝑥0𝑥 4 1 𝑥0𝑥 6 1 }. Appendix B ∑︁ 𝑤∈𝑥 * 0 Li 𝑤 (𝑧)𝑤 = 𝑒 𝑥0 log(𝑧) , ∑︁ 𝑤∈𝑥 * 0 ⊔⊔ 𝑥1 Li 𝑤 (𝑧)𝑤 = ∫︁ 𝑧 0 𝑒 𝑥0[log(𝑧)-log(𝑡)] 𝑥 1 𝜔 1 (𝑡)𝑒 𝑥0 log(𝑡) = ∫︁ 𝑧 0 𝜔 1 (𝑡)𝜅 1 (𝑧, 𝑡),
where 𝜅 1 (𝑧, 𝑡) = 𝑒 𝑥0[log(𝑧)-log(𝑡)] 𝑥 1 𝑒 𝑥0 log(𝑡) = 𝑒 𝑥0 log(𝑧) 𝑒 ad -𝑥 0 log(𝑡) 𝑥 1 .

∑︁ 𝑤∈𝑥 * 0 ⊔⊔ 𝑥 2 1 Li 𝑤 (𝑧)𝑤 = ∫︁ 𝑧 0 𝑒 𝑥0[log(𝑧)-log(𝑡1)] 𝑥 1 𝜔 1 (𝑡 1 ) ∫︁ 𝑡1 0 𝑒 𝑥0[log(𝑡1)-log(𝑡2)] 𝑥 1 𝜔 1 (𝑡 2 )𝑒 𝑥0 log(𝑡2) = ∫︁ 𝑧 0 𝜔 1 (𝑡 1 ) ∫︁ 𝑡1 0 𝜔 1 (𝑡 2 )𝜅 2 (𝑧, 𝑡 1 , 𝑡 2 ),
where

𝜅 2 (𝑧, 𝑡 1 , 𝑡 2 ) = 𝑒 𝑥0[log(𝑧)-log(𝑡1)] 𝑥 1 𝑒 𝑥0[log(𝑡1)-log(𝑡2)] 𝑥 1 𝑒 𝑥0 log(𝑡2) = 𝑒 𝑥0 log(𝑧) 𝑒 ad -𝑥 0 log(𝑡 1 ) 𝑥 1 𝑒 ad -𝑥 0 log(𝑡 2 ) 𝑥 1 , ∑︁ 𝑤∈𝑥 * 0 ⊔⊔ 𝑥 3 1 Li 𝑤 (𝑧)𝑤 = ∫︁ 𝑧 0 𝜔 1 (𝑡 1 ) ∫︁ 𝑡1 0 𝜔 1 (𝑡 2 ) ∫︁ 𝑡2 0 𝜔 1 (𝑡 3 )𝜅 3 (𝑧, 𝑡 1 , 𝑡 2 , 𝑡 3 ),
where

𝜅 3 (𝑧, 𝑡 1 , 𝑡 2 , 𝑡 3 ) = 𝑒 𝑥0[log(𝑧)-log(𝑡1)] 𝑥 1 𝑒 𝑥0[log(𝑡1)-log(𝑡2)] 𝑥 1 𝑒 𝑥0[log(𝑡2)-log(𝑡3)] 𝑥 1 𝑒 𝑥0 log(𝑡3)
= 𝑒 𝑥0 log(𝑧) 𝑒 ad -𝑥 0 log(𝑡 1 ) 𝑥 1 𝑒 ad -𝑥 0 log(𝑡 2 ) 𝑥 1 𝑒 ad -𝑥 0 log(𝑡 3 ) 𝑥 1 , . . .

∑︁ 𝑤∈𝑥 * 0 ⊔⊔ 𝑥 𝑘 1 Li 𝑤 (𝑧)𝑤 = ∫︁ 𝑧 0 𝜔 1 (𝑡 1 ) • • • ∫︁ 𝑘-1 0 𝜔 1 (𝑡 𝑘 )𝜅 𝑘 (𝑧, 𝑡 1 , • • • , 𝑡 𝑘 ),
where 𝜅 𝑘 (𝑧, 𝑡 1 , • • • , 𝑡 𝑘 ) = 𝑒 𝑥0[log(𝑧)-log(𝑡1)] 𝑥 1 • • • 𝑒 𝑥0[log(𝑡 𝑘-1 )-log(𝑡 𝑘 )] 𝑥 1 𝑒 𝑥0 log(𝑡 𝑘 )

= 𝑒 𝑥0 log(𝑧) 𝑒 ad -𝑥 0 log(𝑡 1 ) 𝑥 See also Example 3.3 and Appendix C, for the commutative generating series of polylogarithms.

Appendix C

For 𝑘 0 and | 𝑡 | < 1 let us define 𝑉 𝑘 = (𝑡𝑥 * 0 ) ⊔⊔ 𝑥 𝑘 1 and 𝑊 𝑘 = (𝑡𝑥 * 1 ) ⊔⊔ 𝑥 𝑘 0 . By (3.4) one has [START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF][START_REF] Ngoc | Fonctions de Dirichlet d'ordre 𝑛 et de paramètre 𝑡[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF] Li 𝑉 𝑘 (𝑧) = 𝑧 𝑡 (-log(1 -𝑧)) 𝑘 𝑘! and Li 𝑊 𝑘 (𝑧) = (1 -𝑧) -𝑡 log 𝑘 (𝑧) 𝑘! .

Hence [START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF][START_REF] Ngoc | Fonctions de Dirichlet d'ordre 𝑛 et de paramètre 𝑡[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF],

Li By (3.4), for any 𝑘 1 one also has [START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF][START_REF] Ngoc | Fonctions de Dirichlet d'ordre 𝑛 et de paramètre 𝑡[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF] Li More generally, as in Theorem 2.3, let 𝑆 belong to C rat ⟨⟨𝑋⟩⟩ and be of linear representation (𝛽, 𝜇, 𝜂) of dimension 𝑛 1. Then the following matrix is nothing else than the "Dyson series" [START_REF] Ngoc | Fonctions de Dirichlet d'ordre 𝑛 et de paramètre 𝑡[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF] 𝑅(𝑧) = ∑︁ If 𝑆 is exchangeable, i.e. [𝜇(𝑥 0 ), 𝜇(𝑥 1 )] = 0, then 𝑅 reduces to (see Lemma 2.4) [START_REF] Ngoc | Fonctions de Dirichlet d'ordre 𝑛 et de paramètre 𝑡[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF] 𝑅(𝑧) = 𝑒 log(𝑧)𝜇(𝑥0)-log(1-𝑧)𝜇(𝑥1) . Of course, 𝑝 𝐾1∪𝐾2 = sup(𝑝 𝐾1 , 𝑝 𝐾2 ), and therefore the same topology is defined by extracting a fundamental subset of seminorms, which here can be chosen denumerable. As ℋ(Ω) is complete in this topology, it is a Frechet space and even, as 𝑝 𝐾 (𝑓 𝑔) 𝑝 𝐾 (𝑓 )𝑝 𝐾 (𝑔), it is a Frechet algebra (even more, as 𝑝 𝐾 (1 Ω ) = 1, a Frechet algebra with unit).

With the standard topology above, an operator 𝜑 ∈ End(ℋ(Ω)) is continuous if and only if, with 𝐾 𝑖 compacts of Ω, To show discontinuity of 𝜄 0 , one of the possibilities consists in exhibiting two sequences 𝑓 𝑛 , 𝑔 𝑛 ∈ C{Li 𝑤 } 𝑤∈𝑋 * converging to the same limit but such that lim 𝜄 0 (𝑓 𝑛 ) ̸ = lim 𝜄 0 (𝑔 𝑛 ).

Here, we choose the function 𝑧 to be approximated in a twofold way, and if 𝜄 0 were continuous, we would have equality of the limits of the image-sequences (which is not the case). We first remark that 𝑧 = ∑︁ In order to exchange limits, we apply Lebesgue's dominated convergence theorem to the measure space (]0, 𝑧], ℬ, 𝑑𝑧/𝑧) (ℬ is the usual Borel 𝜎-algebra) and the function 𝑝(𝑥) = 𝑠(1 -𝑠) -1 which is -as are the functions 𝑔 𝑛 -integrable on ]0, 𝑧] for every 𝑧 ∈]0, 1[. Then 

∀𝑟 1 ,𝑠1 1 .

 11 𝜁 𝑟 : ℋ 𝑟 -→ R, (𝑠 1 , . . . , 𝑠 𝑟 ) ↦ -→ ∑︁ 𝑛1>...>𝑛 𝑘 >0 𝑛 -. . 𝑛 -𝑠𝑟 𝑘 ,

. 1 )

 1 Let us denote by ℋ(Ω) the ring of holomorphic functions over the simply connected domain Ω := C ∖ (] -∞, 0] ∪ [1, +∞[, with 1 Ω : Ω → ℋ(Ω) as the neutral element (𝑧 ↦ → 1). Let us also introduce the following differential forms 𝜔 0 (𝑧) := 𝑑𝑧 𝑧 and 𝜔 1 (𝑧) := 𝑑𝑧 1 -𝑧 .

Let

  𝑠 : Ω → B be a lifting of the canonical embedding 𝑗 : Ω ˓→ 𝐵 for any 𝑔 : 𝐵 → 𝐵 and 𝑥, 𝑦 ∈ B such that 𝑔(𝑝(𝑥)) = 𝑝(𝑦) there exists a unique lifting g (depending on (𝑥, 𝑦)) such that g(𝑥) = 𝑦) and the following commutes

3. 1 . 1 0 1 0𝑥 1 ∈

 1111 Indexation by words. For any 𝑟 ∈ N, any multiindex(𝑠 1 , . . . , 𝑠 𝑟 ) ∈ N 𝑟 + can be associated with the words 𝑥 𝑠1-𝑥 1 . . . 𝑥 𝑠𝑟-𝑋 * 𝑥 1 ⊔ {1 𝑋 * }. Similarly, any13 (𝑠 1 , . . . , 𝑠 𝑟 ) ∈ N 𝑟 can be associated with the word 𝑦 𝑠1 . . . 𝑦 𝑠𝑟 ∈ 𝑌 * 0 . Put Li 𝑥 𝑟 0 (𝑧) := (log(𝑧)) 𝑟 /𝑟!.

3. 2 .

 2 Indexation by noncommutative rational series. Let us call Dom(Li • ) the set of series of C⟨⟨𝑋⟩⟩ 𝑆 = ∑︁ 𝑛 0 𝑆 𝑛 with 𝑆 𝑛 := ∑︁ |𝑤|=𝑛 ⟨𝑆 | 𝑤⟩𝑤 such that the following sum converges uniformly on all compacts of B ∑︁ 𝑛 0 Li 𝑆𝑛 . (3.2)

4 . 1 .

 41 {𝜁(𝑙)} 𝑙∈ℒ𝑦𝑛𝑋-𝑋 (resp. {𝜁(𝑆 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑋-𝑋 ), or, equivalently, {𝜁(𝑙)} 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} (resp. {𝜁(Σ 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} ). Global asymptotic behaviors at singularities 4.The case of positive multi-indices. The analysis of singularities on the coefficients of the noncommutative generating series of {Li 𝑤 } 𝑤∈𝑋 * , put in the factorized form (see Proposition 3.8) leads to 20 [38, 41] lim 𝑧→0 L(𝑧)𝑒 -𝑥0 log 𝑧 = 1 and lim 𝑧→1 𝑒 𝑥1 log(1-𝑧) L(𝑧) = 𝑍 ⊔⊔ . (4.1)

F. 7 )

 7 .P. 𝑛→+∞ H(𝑛) = 𝑍 𝛾 := ∑︁ 𝑤∈𝑌 * 𝛾 𝑤 𝑤, {𝑛 𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N . (4Proposition 4.2 ([46, 47]). -

Corollary 4 . 4 (

 44 [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]). -One has 𝒵 ∼ = Q1 𝑋 * ⊕ 𝑥 0 Q⟨𝑋⟩𝑥 1 / ker(𝜁), (resp. 𝒵 ∼ = Q1 𝑌 * ⊕ (𝑌 -{𝑦 1 })Q⟨𝑌 ⟩/ ker(𝜁)).

  ℎ and 𝑔 are defined as follows ℎ(𝑡) = ∑︁ 𝑤∈𝑌 * 0 ((𝑤)+ | 𝑤 |)!𝑡 (𝑤)+|𝑤| 𝑤 and 𝑔(𝑡) Proposition 4.7 and the Taylor expansion, one deduces Corollary 4.10. -For any 𝑤 ∈ 𝑌 * 0 there exists a unique polynomial 𝑝 ∈ (Z[𝑡], ×, 1) of degree (𝑤)+ | 𝑤 | such that 27 , via (3.5), for any 𝑛 ∈ N + and 𝑧 ∈ C with | 𝑧 |< 1 one has

  𝑘 ∈ (Q[𝑡], ×, 1).(4.11) Let us then associate also 𝑝 and p with the polynomial 28 p obtained as followsp(𝑡) = (𝑤)+|𝑤| ∑︁ 𝑘=0 𝑘!𝑝 𝑘 𝑡 𝑘 = (𝑤)+|𝑤| ∑︁ 𝑘=0 𝑝 𝑘 𝑡 ⊔⊔ 𝑘 ∈ (Z[𝑡], ⊔⊔ , 1). (4.12)Next, the previous polynomials 𝑝, p and p given in (4.10)-(4.12) can be determined explicitly thanks to Lemma 3.4 and toProposition 4.11 ([21]). -

27

  In other terms, for any word 𝑤 belonging to 𝑌 * 0 and integer 𝑘 verifying 0 𝑘 (𝑤)+ | 𝑤 |, such that ⟨Li - 𝑤 | (1 -𝑧) -𝑘 ⟩ = 𝑘!⟨H - 𝑤 | (𝑛) 𝑘 ⟩. One verifies in particular, for Proposition 4.7, that ⟨H - 𝑤 | (𝑛) (𝑤)+|𝑤| ⟩ = 𝐶 - 𝑤 and ⟨Li - 𝑤 | (1 -𝑧) -(𝑤)-|𝑤| ⟩ = ((𝑤)+ | 𝑤 |)!𝐶 - 𝑤 . 28 In other words, 𝑝 is the exponential transform of p and, for any integer 𝑘 with 0 𝑘 (𝑤)+ | 𝑤 | one has ⟨p | 𝑧 𝑘 ⟩ = 𝑘!⟨𝑝 | 𝑧 𝑘 ⟩ = (𝑘!) 2 ⟨p | 𝑧 𝑘 ⟩.

5 . A group of associators 5 . 1 .

 551 .13) f.p. 𝑛→+∞ 𝑐 log 𝑛 = 0, {𝑛 𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N . (4.14) The action of the Galois differential group. Lemma 5.1 ([

  as finite parts of the asymptotic expansions of {⟨L | 𝑤⟩} 𝑤∈𝑥 0 𝑋 * 𝑥 * 1 and {⟨H | 𝑤⟩} 𝑤∈(𝑌 * -∖{𝑦 1 })𝑌 * , are determined, by the extended Abel like theorem.

)H

  Similarly, ⟨ϒ | 1 𝑌 * ⟩ = ⟨Λ | 1 𝑋 * ⟩ = 1 and Δ (ϒ) = ϒ ⊗ ϒ and Δ ⊔⊔ (Λ) = Λ ⊗ Λ, 𝜋 𝑌 (𝑅 Σ 𝑙 ) Π 𝑙 and Λ = ↘ ∏︁ 𝑙∈ℒ𝑦𝑛𝑋 𝑒 Li 𝑅 𝜋 𝑌 (𝑆 𝑙 ) 𝑃 𝑙 .

( 1 ) 1 (

 11 The construction of pairs of bases (Lie algebra bases and transcendence bases) in duality (Theorem 2.1) to factorize the noncommutative rational power series (Theorem 2.3) and to obtain the algebraic structure of {𝜁(𝑠 1 , . . . , 𝑠 𝑟 )} 𝑟 1 (𝑠1,...,𝑠𝑟)∈N 𝑟 polynomial relations homogenous in weight, and independence over a commutative extension of Q, denoted by 𝐴) by identification of local coordinates, in infinite dimension (Corollary 4.4).(2) The algebraic structures (Theorems 3.1 and 3.2) and the analysis of singularities (Theorems 4.1 and 4.9) of the polylogarithms and the harmonic sums, for which the global renormalizations has been obtained via Abel like theorems for the pairs of generating series L, H and L -, H -. In particular, the series L corresponds to the actual solution of (1.1) satisfying the standard asymptotic behaviors as given in (1.4) (Corollary 5.4). (3) The paper culminates with the action (Theorem 5.2) of the differential Galois group Gal C (𝐷𝐸) (containing the group of associators 𝑑𝑚(𝐴)) on the asymptotic expansions of solutions of the equation (1.1) (see (5.2)-(5.3)).

Example 6 . 4 .

 64 -At weight 12 one has

1 )

 1 (𝑡𝑥 * 0 ) ⊔⊔ 𝑥 * 1 (𝑧) = ∑︁ 𝑘 0 Li 𝑉 𝑘 (𝑧) = 𝑧 𝑡 1 -𝑧 , Li 𝑥 * 0 ⊔⊔ (𝑡𝑥 * 1 ) (𝑧) = ∑︁ 𝑘 0 Li 𝑊 𝑘 (𝑧) = 𝑧 (1 -𝑧) 𝑡 ,and then (see Remark 5.16)𝜁 ⊔⊔ ((𝑡𝑥 * 1 ) ⊔⊔ 𝑥 * 0 ) = ∑︁ 𝑘 0 𝜁 ⊔⊔ (𝑊 𝑘 ) = 1, 𝜁 ⊔⊔ ((𝑡𝑥 * 0 ) ⊔⊔ 𝑥 * 1 ) = ∑︁ 𝑘 0 𝜁 ⊔⊔ (𝑉 𝑘 ) = 1and 𝛾 𝜋 𝑌 ((𝑡𝑥 * ⊔⊔ 𝑥 *

  𝑡𝑥1) *𝑖+1 -(𝑡𝑥1) *𝑖 (𝑧) = 𝑡(1 -𝑧) 𝑡 log(1 -𝑧) log(1 -𝑧)) 𝑘 𝑘! .

𝑒

  Li 𝑆 𝑙 (𝑧)𝜇(𝑃 𝑙 ) .

  The matrix 𝑅 belongs to ℳ 𝑛,𝑛 (C[log(𝑧), log(1 -𝑧)][𝑧 𝑎 , (1 -𝑧) 𝑏 ] 𝑎,𝑏∈C ) and if 𝜇(𝑥 0 ) and 𝜇(𝑥 1 ) are diagonal matrices, then 𝑅 ∈ ℳ 𝑛,𝑛 (C[𝑧 𝑎 , (1 -𝑧) 𝑏 ] 𝑎,𝑏∈C )[START_REF] Ngoc | Fonctions de Dirichlet d'ordre 𝑛 et de paramètre 𝑡[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF]. On the one hand, for | 𝑡 0 | < 1 and | 𝑡 1 | < 1, let us introduce the concatenation morphism 𝜏 1 , mapping 𝑥 0 to 1 and 𝑥 1 to 𝑡. Similarly, let 𝜏 0 map 𝑥 1 to 1 and 𝑥 0 to 𝑡. It follows then (see Appendix B)𝜏 1 (L(𝑧)) = Li (𝑡𝑥 * 1 ) ⊔⊔ 𝑥 * 0 (𝑧) = 𝑧 (1 -𝑧) 𝑡 and 𝜏 0 (L(𝑧)) = Li (𝑡𝑥 * 0 ) ⊔⊔ 𝑥 * 1 (𝑧) = 𝑧 𝑡 1 -𝑧 .On the other hand, let 𝜏 map 𝑥 1 to 𝑡 0 and 𝑥 0 to 𝑡 1 . Then𝜏 (L(𝑧)) = Li (𝑡0𝑥0) * ⊔⊔ (𝑡1𝑥1) * (𝑧) = 𝑧 𝑡0 (1 -𝑧) 𝑡1 .Appendix DThe algebra ℋ(Ω) is endowed with the topology of compact convergence whose seminorms are indexed by compact subsets of Ω, and defined by 𝑝 𝐾 (𝑓 ) := ||𝑓 || 𝐾 = sup 𝑠∈𝐾 |𝑓 (𝑠)|.

(∀𝐾 2 ,

 2 )(∃𝐾 1 )(∃𝑀 21 > 0)(∀𝑓 ∈ ℋ(Ω))(||𝜑(𝑓 )|| 𝐾2 𝑀 21 ||𝑓 || 𝐾1 ),the algebra 𝒞{Li 𝑤 } 𝑤∈𝑋 * (and ℋ(Ω) ) is closed under the operators 𝜃 𝑖 for 𝑖 = 0, 1. We will first build sections of them, then see that they are continuous and, propose (discontinuous) sections more adapted to renormalisation and the computation of associators.For 𝑧 0 ∈ Ω, let us define 𝜄 𝑧0 𝑖 ∈ End(ℋ(Ω)) by𝜄 𝑧0 0 (𝑓 ) = ∫︁ 𝑧 𝑧0 𝑓 (𝑠)𝜔 0 (𝑠) and 𝜄 𝑧0 1 (𝑓 ) = ∫︁ 𝑧 𝑧0 𝑓 (𝑠)𝜔 1 (𝑠).It is easy to check that 𝜃 𝑖 𝜄 𝑧0 𝑖 = Id ℋ(Ω) and that they are continuous on ℋ(Ω) (for the topology of compact convergence), because for all 𝐾 ⊂ compact Ω we have|𝑝 𝐾 (𝜄 𝑧0 𝑖 (𝑓 )| 𝑝 𝐾 (𝑓 )[sup 𝑧∈𝐾 | ∫︁ 𝑧 𝑧0 𝜔 𝑖 (𝑠)|],and this is sufficient to prove continuity. The operators 𝜄 𝑧0 𝑖 are also well defined on 𝒞{Li 𝑤 } 𝑤∈𝑋 * , and it is easy to check that𝜄 𝑧0 𝑖 (𝒞{Li 𝑤 } 𝑤∈𝑋 * ) ⊂ 𝒞{Li 𝑤 } 𝑤∈𝑋 * . Due to the decomposition of ℋ(Ω) into a direct sum of closed subspaces ℋ(Ω) = ℋ 𝑧0↦ →0 (Ω) ⊕ C1 Ω ,it is not hard to see that the graphs of 𝜃 𝑖 are closed. Thus the 𝜃 𝑖 are also continuous. Much more interesting (and adapted to the explicit computation of associators), we have the operator 𝜄 𝑖 (without superscripts), mentioned in the introduction and (more rigorously) defined by means of a C-basis of𝒞{Li 𝑤 } 𝑤∈𝑋 * = 𝒞 ⊗ C C{Li 𝑤 } 𝑤∈𝑋 * .As C{Li 𝑤 } 𝑤∈𝑋 * ∼ = C[ℒ𝑦𝑛(𝑋)], one can partition the alphabet of this polynomial algebra in (ℒ𝑦𝑛(𝑋) ∩ 𝑋 * 𝑥 1 ) ⊔ {𝑥 0 } and obtain the decomposition𝒞{Li 𝑤 } 𝑤∈𝑋 * ≃ 𝒞 ⊗ C C{Li 𝑤 } 𝑤∈𝑋 * 𝑥1 ⊗ C C{Li 𝑤 } 𝑤∈𝑥 * 0 .Due to the following identity[START_REF] Hoang | Summations of Polylogarithms via Evaluation Transform[END_REF],𝑢𝑥 1 𝑥 𝑛 0 = 𝑢𝑥 1 ⊔⊔ 𝑥 𝑛 0 -𝑛 ∑︁ 𝑘=1 (𝑢 ⊔⊔ 𝑥 𝑘 0 )𝑥 1 𝑥 𝑛-𝑘 0 we have an algorithm to convert Li 𝑢𝑥1𝑥 𝑛 0 as Li 𝑢𝑥1𝑥 𝑛 0 (𝑧) = ∑︁ 𝑚 𝑛 𝑃 𝑚 (𝑧) log 𝑚 (𝑧) = ∑︁ 𝑚 𝑛,𝑤∈𝑋 * 𝑥1 ⟨𝑃 𝑚 (𝑧) | 𝑤⟩ Li 𝑤 (𝑧) log 𝑚 (𝑧).This means that ℬ := (𝑧 𝑘 Li 𝑢𝑥1 (𝑧) Li 𝑥 𝑛 0 (𝑧)) (𝑘,𝑛,𝑢)∈Z×N×𝑋 * ⊔ (𝑧 𝑘 Li 𝑥 𝑛 0 (𝑧)) (𝑘,𝑛)∈Z×N ⊔ ((1 -𝑧) -𝑙 Li 𝑢𝑥1 (𝑧) Li 𝑥 𝑛 0 (𝑧)) (𝑙,𝑛,𝑢)∈N + ×N×𝑋 * ⊔ ((1 -𝑧) -𝑙 Li 𝑥 𝑛 0 (𝑧)) (𝑙,𝑛)∈N + ×N , is a C-basis of 𝒞{Li 𝑤 } 𝑤∈𝑋 * . With this basis, we can define 𝜄 0 as follows. Definition 6.5 ([22]). -Define the index map ind : ℬ → Z by ind(𝑧 𝑘 (1 -𝑧) -𝑙 Li 𝑥 𝑛 0 (𝑧)) = 𝑘 and ind(𝑧 𝑘 (1 -𝑧) -𝑙 Li 𝑢𝑥1 (𝑧) log 𝑛 (𝑧)) = 𝑘 + |𝑢𝑥 1 |. Then 𝜄 0 is computed as follows 𝜄 0 (𝑏) = )𝜔 0 (𝑠), if ind(𝑏) 1, ∫︁ 𝑧 1 𝑏(𝑠)𝜔 0 (𝑠), if ind(𝑏) 0.

1 (- 1 )(- 1 )

 111 𝑛+1 log 𝑚 ((1 -𝑧)-1 𝑛! Set 𝑓 𝑛 = ∑︁ 0 𝑚 𝑛 log 𝑚 (𝑧) 𝑚! and 𝑔 𝑛 = ∑︁ 1 𝑚 𝑛 (-1) 𝑚+1 log 𝑚 ((1 -𝑧) -1 )) 𝑚! (these two sequences are in C{Li 𝑤 } 𝑤∈𝑋 * ). It is easily seen that 𝜄 0 (𝑓 𝑛 ) = 𝑓 𝑛+1 -1, and then lim 𝑛→+∞ 𝜄 0 (𝑓 𝑛 )(𝑧) = 𝑧 -1. Now, for any 𝑠 ∈ [0, 𝑧] with 𝑧 ∈]0, 1[ one has | 𝑔(𝑠) |=| 𝑛 ∑︁ 𝑚=1 𝑚+1 log 𝑛 (1 -𝑠) 𝑚! | 𝑠 1 -𝑠 .

  lim(𝜄 0 (𝑔 𝑛 )) = lim Hence, for 𝑧 ∈]0, 1[ we obtain lim(𝜄 0 (𝑓 𝑛 )) = 𝑧-1 ̸ = 𝑧 = lim(𝜄 0 (𝑔 𝑛 )) which completes the proof.

  1} and so are (1.7) as Taylor coefficients of the following function

	Li 𝑠1,...,𝑠 𝑘 (𝑧) :=	∑︁	𝑛 -𝑠1 1	. . . 𝑛 -𝑠 𝑘
			𝑛1>...>𝑛 𝑘 >0	
	P 𝑠1,...,𝑠 𝑘 (𝑧) :=	Li 𝑠1,...,𝑠 𝑘 (𝑧) 1 -𝑧	=	∑︁ 𝑛 1

𝑘 𝑧 𝑛1 , for 𝑧 ∈ C, | 𝑧 | < 1, (1.6) H 𝑠1,...,𝑠 𝑘 (𝑛) := 𝑛 ∑︁ 𝑛1>...>𝑛 𝑘 >0 𝑛 -𝑠1 1 . . . 𝑛 -𝑠 𝑘 𝑘 , for 𝑛 ∈ N + . (1.7) More precisely, if (𝑠 1 , . . . , 𝑠 𝑟 ) ∈ ℋ 𝑟 then 1 , after a theorem by Abel, one has lim 𝑧→1 Li 𝑠1,...,𝑠 𝑘 (𝑧) = lim 𝑛→∞ H 𝑠1,...,𝑠 𝑘 (𝑛) = 𝜁 𝑟 (𝑠 1 , . . . , 𝑠 𝑘 ). (1.8) This does not hold for (𝑠 1 , . . . , 𝑠 𝑟 ) / ∈ ℋ 𝑟 , while (1.6) is well defined over {𝑧 ∈ C, | 𝑧 | < H 𝑠1,...,𝑠 𝑘 (𝑛)𝑧 𝑛 , for 𝑧 ∈ C, | 𝑧 | < 1.

  +∞ in the scales {𝑛 -𝑎 log 𝑏 (𝑛)} 𝑎,𝑏∈N and {𝑛 -𝑎 H 𝑏 1 (𝑛)} 𝑎,𝑏∈N , via combinatorial aspects of their noncommutative generating series (see Proposition 5.9 below).

1 (𝑠1,...,𝑠𝑟)∈N 𝑟 1 at 𝑧 = 1 with respect to the comparison scale {(1-𝑧) -𝑎 log 𝑏 (1-𝑧)} 𝑎,𝑏∈N , and the asymptotic expansions of the harmonic sums {H 𝑠1,...,𝑠𝑟 } 𝑟 1 (𝑠1,...,𝑠𝑟)∈N 𝑟 1 for 𝑛 →

  1 ) = span 𝐴 {𝜋 1 (𝑤) | 𝑤 ∈ 𝑌 * } and 𝜋 1 is the extended eulerian projector defined, for any 𝑤 ∈ 𝑌 * , by[START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] , the basis {𝑠 𝑤 } 𝑤∈𝑌 * of (𝐴⟨𝑌 ⟩, ⊔⊔ , 1 𝑌 * ), i.e.⟨𝑝 𝑢 | 𝑠 𝑣 ⟩ = 𝛿 𝑢,𝑣 for all 𝑢, 𝑣 ∈ 𝑌 * .

	𝜋 1 (𝑤) = 𝑤 +	(𝑤) ∑︁ 𝑘=2	(-1) 𝑘-1 𝑘	𝑢1,...,𝑢 𝑘 ∈𝑌 + ∑︁	⟨𝑤 | 𝑢 1 . . . 𝑢 𝑘 ⟩𝑢 1 . . . 𝑢 𝑘 .	(2.3)
	Denoting by (𝑙 1 , 𝑙 2 ) the standard factorization of 𝑙 ∈ ℒ𝑦𝑛𝑌 -𝑌 , let us consider
	(1) The PBW basis {𝑝 𝑤 } 𝑤∈𝑌 * of 𝒰(ℒ𝑖𝑒 𝐴 ⟨𝑌 ⟩) constructed recursively as follows
	[57]				
	⎧ ⎪ ⎨	𝑝 𝑦𝑛 = 𝑦 𝑛 , 𝑝 𝑙 = [𝑝 𝑙1 , 𝑝 𝑙2 ],	for 𝑦 𝑛 ∈ 𝑌, for 𝑙 ∈ ℒ𝑦𝑛𝑌 -𝑌, 𝑠𝑡(𝑙) = (𝑙 1 , 𝑙 2 ),
	⎪ ⎩	𝑝 𝑤 = 𝑝 𝑖1 𝑙1 . . . 𝑝 𝑖 𝑘 𝑙 𝑘 , for 𝑤 = 𝑙 𝑖1 1 . . . 𝑙 𝑖 𝑘 𝑘 with 𝑙 1 , . . . , 𝑙 𝑘 ∈ ℒ𝑦𝑛𝑌, 𝑙 1 > . . . > 𝑙 𝑘 .
							(2.4)
	(2) and, by duality 5		

  ⟨Π 𝑢 | Σ 𝑣 ⟩ = 𝛿 𝑢,𝑣 for all 𝑢, 𝑣 ∈ 𝑌 * , the basis {Σ 𝑤 } 𝑤∈𝑌 * of (Q⟨𝑌 ⟩, , 1 𝑌 * ) :

	1 , 𝑙 2 ),
	Π 𝑤 = Π 𝑖1 𝑙1 . . . Π 𝑖 𝑘 𝑙 𝑘 , for 𝑤 = 𝑙 𝑖1 1 . . . 𝑙 𝑖 𝑘 𝑘 with 𝑙 1 , . . . , 𝑙 𝑘 ∈ ℒ𝑦𝑛𝑌, 𝑙 1 > . . . > 𝑙 𝑘 .
	(2.6)
	(2) and, by duality, i.e.

  𝑠 𝑘 1 +...+𝑠 𝑘 𝑖 Σ 𝑙1...𝑙𝑛 , for 𝑙 = 𝑦 𝑠1 . . . 𝑦 𝑠 𝑘 ∈ ℒ𝑦𝑛𝑌, (𝑦 𝑠 𝑘 1 , . . . , 𝑦 𝑠 𝑘 𝑖 , 𝑙 1 , . . . , 𝑙 𝑛 ), where

	1 𝑖! Σ 𝑖1 𝑙1 𝑦 Σ 𝑤 = 𝑖 1 ! . . . 𝑖 𝑘 ! . . . Σ 𝑖 𝑘 𝑙 𝑘	,	for 𝑤 = 𝑙 𝑖1 1 . . . 𝑙 𝑖 𝑘 𝑘 , with 𝑙 1 , . . . , 𝑙 𝑘 ∈ ℒ𝑦𝑛𝑌, 𝑙 1 > . . . > 𝑙 𝑘 .	(2.7)
	In (*), the sum is taken over all {𝑘 1 , . . . , 𝑘 𝑖 } ⊂ {1, . . . , 𝑘} and 𝑙 1 . . . 𝑙 𝑛
	such that (𝑦 𝑠1 , . . . , 𝑦 𝑠 𝑘 )		⇐ denotes the
	transitive closure of the relation on standard sequences, denoted by ⇐ [3].

* ⇐ *

  The subspace 𝒞{Li 𝑤 } 𝑤∈𝑋 * is closed under the action of {𝜃 0 , 𝜃 1 } and {𝜄 0 , 𝜄 1 }. Thus, for any 𝑤 = 𝑦 𝑠1 . . . 𝑦 𝑠𝑟 ∈ 𝑌 𝑦 𝑡1 . . . 𝑦 𝑡𝑟 ∈ 𝑌 * 0 , the functions Li 𝑤 and Li - 𝑢 satisfy

* (whence 𝜋 𝑋 (𝑤) = 𝑥 𝑠1-1 0 𝑥 1 . . . 𝑥 𝑠𝑟-1 0 𝑥 1 )

and 𝑢 =

  • ⊗ Id 𝑌 )𝒟 and L = (Li • ⊗Id 𝑋 )𝒟 𝑋 . Thus, by Theorem 3.1, one obtains

	With suitable structures (topological ring [8]), by (2.2) and (2.8), one can write
	H = (H Proposition 3.8 ([38, 40, 46, 47]). -One has

1 , 𝜄 1 ) is stable under the action of 𝒢, i.e. for all ℎ ∈ 𝒞{Li 𝑤 } 𝑤∈𝑋 * and 𝑔 ∈ 𝒢 ℎ(𝑔(𝑧)) ∈ 𝒞{Li 𝑤 } 𝑤∈𝑋 * . (4) 𝜃 0 𝜄 1 and 𝜃 1 𝜄 0 are scalar operators in 𝒞{Li 𝑤 } 𝑤∈𝑋 * , respectively with eigenvalues 𝜆 := 𝑧 → 𝑧(1 -𝑧) and 1/𝜆. I.e. for all 𝑓 ∈ 𝒞{Li 𝑤 } 𝑤∈𝑋 * one has (𝜃 0 𝜄 1 )𝑓 = 𝜆𝑓 and (𝜃 1 𝜄 0 )𝑓 = (1/𝜆)𝑓. 3.3. Noncommutative generating series. The graphs (typed as series) of the isomorphisms of algebras, Li • and H • , defined in Theorem 3.1, then become Definition 3.7 ([13, 38, 40, 42]). -Let us consider the following power series L := ∑︁ 𝑤∈𝑋 * Li 𝑤 𝑤 and H := ∑︁ 𝑤∈𝑌 * H 𝑤 𝑤.

  H 𝑢1 ... 𝑢 𝑘 𝑢 1 . . . 𝑢 𝑘 , Li 𝑢1 ⊔⊔ ... ⊔⊔ 𝑢 𝑘 𝑢 1 . . . 𝑢 𝑘 .

				18
	log(H) =	∑︁ 𝑘 1	(-1) 𝑘-1 𝑘	∑︁ 𝑢1,...,𝑢 𝑘 ∈𝑌 +
	log(L) =	∑︁ 𝑘 1	(-1) 𝑘-1 𝑘	∑︁ 𝑢1,...,𝑢 𝑘 ∈𝑋 +

  𝛾 𝑢1 ... 𝑢 𝑘 𝑢 1 . . . 𝑢 𝑘 . Now, via Proposition 4.3, let us draw some consequences about the structure of polyzetas : by local coordinates identification in the assertions of Proposition 4.3, one obtains two families of polynomials, homogenous for the weight, {𝑄 𝑙 } 𝑙∈ℒ𝑦𝑛𝑋-𝑋 and {𝑄 𝑙 } 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} (see Example 6.2 in Appendix A), such that [46, 47] ℛ 𝑋 := (Q{𝑄 𝑙 } 𝑙∈ℒ𝑦𝑛𝑋-𝑋 , ⊔⊔ , 1 𝑋 * ) = ker(𝜁), (resp. ℛ 𝑌 := (Q{𝑄 𝑙 } 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} , , 1 𝑌 * ) = ker(𝜁)) describing the kernel of 𝜁 (see Example 6.1 in Appendix A), via homogenous polynomial relations for the weight, among the local coordinates of 𝑍 ⊔⊔ (resp. 𝑍 ), i.e. the convergent values 22 {𝜁(𝑆 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑋-𝑋 (resp. {𝜁(Σ 𝑙 )} 𝑙∈ℒ𝑦𝑛𝑌 -{𝑦1} ). Denoting 𝒳 the alphabet 𝑋 or 𝑌 , this local coordinate identification yields algebraic generator systems (see Example 6.3 in Appendix A) as irreducible 23 local coordinates (see Example 6.4 in Appendix A)

	𝒵 ∞ 𝑖𝑟𝑟 (𝒳 ) := lim										
					𝑘-1		∑︁						
					𝑘	𝑢1,...,𝑢 𝑘 ∈𝑌 +						
	The asymptotic behaviors on (4.2) and Proposition 4.2 lead to				
	Proposition 4.3 (Bridge equation, [14, 16, 45, 46, 47]). -Put 21			
	𝐵(𝑦 1 ) = exp	(︂ 𝛾𝑦 1 -	∑︁ 𝑘 2	𝜁(𝑘) 𝑘	(-𝑦 1 ) 𝑘	)︂	and 𝐵 ′ (𝑦 1 ) = exp	(︂ -	∑︁ 𝑘 2	𝜁(𝑘) 𝑘	(-𝑦 1 ) 𝑘	)︂	.

Then 𝑍 𝛾 = 𝐵(𝑦 1 )𝜋 𝑌 (𝑍 ⊔⊔ ), or equivalenty by cancellation, 𝑍 ⊔⊔ = 𝐵 ′ (𝑦 1 )𝜋 𝑌 (𝑍 ⊔⊔ ). 4.2. Structure of polyzetas. 𝑝→+∞ 𝒵 𝑝 𝑖𝑟𝑟 (𝒳 ) with 𝒵 2 𝑖𝑟𝑟 (𝒳 ) ⊂ . . . 𝒵 𝑝 𝑖𝑟𝑟 (𝒳 ) ⊂ . . . , (4.8) such that the restriction of 𝜁 on Q[ℒ ∞ 𝑖𝑟𝑟 (𝒳 )] is bijective [46, 47], where (see Example 6.4 in Appendix A)

)

  For any 𝑤 ∈ 𝑌 * 0 , there exists a unique polynomial 𝑅 𝑤 ∈ (Z[𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) of degree (𝑤)+ | 𝑤 | such that p(𝑥 * 1 ) = 𝑅 𝑤 . (4) More explicitly, for any 𝑤 = 𝑦 𝑠1 , . . . 𝑦 𝑠𝑟 ∈ 𝑌 * 0 , there exists a unique polynomial 𝑅 𝑤 belonging to (Z[𝑥 * 1 ], ⊔⊔ , 1 𝑋 * ) of degree (𝑤)+ | 𝑤 |, given by 𝑅 𝑦𝑠 1 ...𝑦𝑠 𝑟 =

	𝑠1	𝑠1+𝑠2-𝑘1	
	∑︁	∑︁	. . .
	𝑘1=0	𝑘2=0	

(𝑠 1 +...+𝑠𝑟 )-(𝑘 1 +...+𝑘 𝑟-1 )

  38 , respectively, {𝛾 𝜋 𝑌 (𝑅𝑤) } 𝑤∈𝑌 * and {𝜁 ⊔⊔ (𝑅 𝜋 𝑌 (𝑤) )} 𝑤∈𝑋 * : 𝜁 ⊔⊔ (𝑅 𝜋 𝑌 (𝑤) )𝑤 ∈ Z⟨⟨𝑋⟩⟩.

	𝑍 -𝛾 :=	∑︁
	𝑤∈𝑌 Via the diagonal series 𝒟 , 𝒟	given in (2.2)-(2.8), one has
	Lemma 5.14. -The extension 𝑅 •

* 𝛾 𝜋 𝑌 (𝑅𝑤) 𝑤 ∈ Q⟨⟨𝑌 ⟩⟩ and 𝑍 - ⊔⊔ := ∑︁ 𝑤∈𝑋 *

  1 ) * -𝑥 * 1 , one has Li 𝑅𝑦 1 (𝑧) = (1-𝑧) -2 -(1-𝑧) -1 and H 𝜋 𝑌 (𝑅𝑦 1 ) (𝑛) = 𝜁 ⊔⊔ (𝑅 𝜋 𝑌 (𝑦 1 ) ) = 0, and ⟨𝑍 - 𝛾 | 𝑥 1 ⟩ = 𝛾 𝜋 𝑌 (𝑅𝑦 1 ) = -1/2.(2) For any 𝑢 ∈ 𝑋 * and 𝑣 ∈ 𝑌 * one hasf.p. 𝑧→1 ⟨Λ(𝑧) | 𝑢⟩ = ⟨𝑍 - ⊔⊔ | 𝑢⟩, {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , f.p. 𝑛→+∞ ⟨ϒ(𝑛) | 𝑣⟩ = ⟨𝑍 - 𝛾 | 𝑣⟩, {𝑛 𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N , For any (𝑠 1 , . . . , 𝑠 𝑟 ) ∈ N 𝑟 + associated with 𝑙 ∈ ℒ𝑦𝑛𝑌 there exists a unique 𝑝 ∈ Z[𝑡] of valuation 1 and of degree (𝑙)+| 𝑙 | such that

			which means that (see also (4.5), (4.6) and (4.7))
				𝑍 -𝛾 = F.P. 𝑛→+∞ ϒ(𝑛) and 𝑍 -⊔⊔ = F.P. 𝑧→1 Λ(𝑧).
	Hence, by Propositions 4.11 and 5.11, Lemmas 2.4-3.5 and 5.12, one derives
	Theorem 5.15. -	(1)
	(︀ 𝑛 2 )︀	-	(︀ 𝑛 1 )︀	. Hence, ⟨𝑍 -

⊔⊔ | 𝑥 1 ⟩ =

  5.16. -By Corollary 5.4, Λ does not satisfy (𝐷𝐸) while 𝑍 - ⊔⊔ and 𝑍 - 𝛾 , regularizing Λ and ϒ respectively, satisfy similar properties as 𝑍 ⊔⊔ and 𝑍 𝛾 , respectively. The series 𝑍 - ⊔⊔ (or 𝑍 - 𝛾 ) is not unique because in Theorem 5.15 the elements of the family {Li 𝑅 𝑙 } 𝑙∈ℒ𝑦𝑛𝑌 are polylogarithms with negative multiindices which are polynomial in 𝑒 -log(1-𝑧) . Indeed, for any 𝑙 ∈ ℒ𝑦𝑛𝑌 one has 𝑅 𝑙 ∈ Z[𝑥 * 1 ]. Then, letting 𝜌 𝑙 be a monomial in Z[𝑥 * 0 , (-𝑥 0 ) * ] with 𝜌 𝑙 ̸ = 0 and using Lemma 5.12, one gets the same regularized values 𝜁 ⊔⊔ (𝑅 𝑙 ) and 𝛾 𝜋 𝑌 (𝑅 𝑙 ) for the series 𝑅 𝑙 ⊔⊔ 𝜌 𝑙 ∈ Z rat ⟨⟨𝑥 1 ⟩⟩ ⊔⊔ Z rat ⟨⟨𝑥 0 ⟩⟩ = Z rat exc ⟨⟨𝑋⟩⟩, i.e. (see Appendix C) f.p. 𝑧→1 Li 𝑅 𝑙 ⊔⊔ 𝜌 𝑙 (𝑧) = 𝜁 ⊔⊔ (𝑅 𝑙 ), {(1 -𝑧) 𝑎 log 𝑏 ((1 -𝑧) -1 )} 𝑎∈Z,𝑏∈N , f.p. 𝑛→+∞ H 𝜋 𝑌 (𝑅 𝑙 ⊔⊔ 𝜌 𝑙 ) (𝑛) = 𝛾 𝜋 𝑌 (𝑅 𝑙 ) , {𝑛 𝑎 log 𝑏 (𝑛)} 𝑎∈Z,𝑏∈N .

  𝛾 • furnished a generalization of the Euler's 𝛾 constant, {𝛾 𝑠1,...,𝑠𝑟 } 𝑟 1 𝛾 is transcendent over the 𝐴-algebra generated by the convergent zeta values {𝜁(𝑠 1 , . . . , 𝑠 𝑟 )} 𝑟 1 (𝑠1,...,𝑠𝑟)∈N 𝑟 1 ,𝑠1 2 (Corollary 5.7).

	then		
	(𝑠1,...,𝑠𝑟)∈N 𝑟	1	(Corollary 4.6), and moreover, if 𝛾 / ∈ 𝐴

  [START_REF] Berstel | Rational series and their languages[END_REF] 

  • • • 𝑒 ad -𝑥 0 log(𝑡 𝑘 ) 𝑥 1 Li 𝑤 (𝑧)𝑤 = 𝑒 𝑥0 log(𝑧) ∑︁ 𝜔 1 (𝑡 𝑘 ) log 𝑙 𝑘 (𝑡 𝑘 ) 𝑙 𝑘 !

	= 𝑒 𝑥0 log(𝑧)	∑︁ 𝑙1,••• ,𝑙 𝑘 0	𝑘 ∏︁ 𝑖=1	log 𝑙𝑖 (𝑡 𝑖 ) 𝑙 𝑖 !	ad 𝑙𝑖 -𝑥0 𝑥 1 .
	Hence (see the notations of Proposition 5.10) [43, 44],
	∑︁ 𝑤∈𝑥 * 0 ⊔⊔ 𝑥 𝑘 1	𝑙1,••• ,𝑙 𝑘 0	∫︁ 𝑧 0	𝜔 1 (𝑡 1 )	log 𝑙1 (𝑡 1 ) 𝑙 1 !	• • •
							∫︁ 𝑡 𝑘-1	𝑘 ∏︁	ad 𝑙𝑖 -𝑥0 𝑥 1
							0	𝑖=1
	= 𝑒 𝑥0 log(𝑧)	∑︁ 𝑙1,••• ,𝑙 𝑘 0	Li 𝑥1𝑥 𝑙 1 0 ∘•••∘𝑥1𝑥 0 𝑙 𝑘	(𝑧)

𝑘

∏︁

𝑖=1

ad 𝑙𝑖 -𝑥0 𝑥 1 .

𝜁 1 (𝑠 1 ) is nothing else than the Riemann zeta function. It is convenient to set 𝜁 0 to 1 R .

Here, 𝑌 = {𝑦 𝑘 } 𝑘 1 and is the quasi-shuffle (or stuffle, for sticky shuffle) product.

This coefficient is then ⟨𝑆 | 𝑢⟩ and ⟨𝑃 | 𝑢⟩.

In[START_REF] Bui | Dual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization[END_REF], other pairs of bases in duality for ℋ are also proposed.

This group contains the group 𝐷𝑀 (𝐴) introduced in[START_REF] Cartier | Fonctions polylogarithmes, nombres polyzetas et groupes pro-unipotents[END_REF][START_REF] Racinet | Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel[END_REF] (𝐷𝑀 for double mélange).

Note that since (see[START_REF] Hoang Ngoc Minh | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang Ngoc Minh | Polylogarithms and Shuffle Algebra[END_REF])⟨𝑍 ⊔⊔ | 𝑥 0 ⟩ = ⟨𝑍 ⊔⊔ | 𝑥 1 ⟩ = 0,by identification of the coefficients one has ⟨𝑍 ⊔⊔ | 𝑥 1 ⟩ = ⟨𝑒 𝐶 | 𝑥 1 ⟩ and ⟨𝑍 ⊔⊔ | 𝑥 0 ⟩ = ⟨𝑒 𝐶 | 𝑥 0 ⟩ which are not 0.
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