
HAL Id: hal-03558864
https://hal.science/hal-03558864

Submitted on 6 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Multiple Transform Selection Concept Modeling and
Implementation Using Dynamic and Parameterized

Dataflow Graphs
Naouel Haggui, Fatma Belghith, Wassim Hamidouche, Nouri Masmoudi,

Jean-François Nezan

To cite this version:
Naouel Haggui, Fatma Belghith, Wassim Hamidouche, Nouri Masmoudi, Jean-François Nezan. Mul-
tiple Transform Selection Concept Modeling and Implementation Using Dynamic and Parameterized
Dataflow Graphs. Journal of Signal Processing Systems, 2022, 94 (7), pp.709-720. �10.1007/s11265-
021-01725-4�. �hal-03558864�

https://hal.science/hal-03558864
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Multiple Transform Selection concept modeling and
implementation using Dynamic and Parameterized Dataflow
Graphs

Naouel HAGGUI · Fatma BELGHITH · Wassim HAMIDOUCHE ·
Nouri MASMOUDI · Jean-François NEZAN

Received: date / Accepted: date

Abstract The new video coding standard, Versatile
Video Coding (VVC), released by the end of 2020 has

increased the coding complexity both at encoder and
decoder sides. This complexity increase is due to several
coding tools proposed to enhance the coding efficiency.

One of these tools is the Multiple Transform Selection
(MTS) concept, a new approach for the transform unit.
This paper aims at providing a new optimization of the
MTS based on dataflow modeling. The proposed ap-

proach takes benefit of the different parallelism levels
of the MTS in order to create an optimized multicore
implementation. Also, this paper study the impact of

the dataflow model granularity and the dynamic re-
configuration on the implementation efficiency on x86
multicore architectures. The PREESM tool is used in

this study to develop the proposed dataflow models
and for the granularity analysis. The dynamic recon-
figuration study is here performed using the SPIDER

N. HAGGUI
Electronics and Information Technology Laboratory (LETI)
of Sfax and Univ Rennes, INSA Rennes, CNRS, IETR - UMR
6164, Rennes Campus de Rennes,5 Avenue de la Boulaie,
35510 Cesson-Sévigné
Tel.: +33753154885
E-mail: nawel.hagui@enis.tn

F. BELGHITH
Electronics and Information Technology Laboratory (LETI)
of Sfax, Road of Soukra, Sfax, Tunisia, 3038

W. HAMIDOUCHE
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164,
Rennes

N.MASMOUDI
Electronics and Information Technology Laboratory (LETI)
of Sfax, Road of Soukra, Sfax, Tunisia, 3038

J.NEZAN
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164,
Rennes

runtime optimized for the multicore execution of ap-
plications modeled using Parameterized and Interfaced

Synchronous Dataflow (PiSDF) dataflow graphs. Two
architectures were used in this work: an x86 architec-
ture with 4 cores and an x86 architecture with 24 cores.

The results show that the SPIDER overhead time is al-
most negligible (0.05%) compared to the execution time
of the application. Furthermore, a speed-up of 3.9 and

up to 22 for all block sizes was achieved using a 4-core
and 24-core machine, respectively.

Keywords Versatile Video Coding (VVC) · Multiple
Transform Selection (MTS) · PREESM · SPIDER

1 Introduction

Since 1988, the appearance of the first MPEG-1 stan-

dard, a variety of MPEG video coding standards has
been developed. The process of standardization has al-
ways focused on providing efficient coding tools for a

wide and easy deployment. The increase of video traf-
fic, which is expected to reach 82% of global Internet
traffic by 2022, has led to the appearance of a new
video coding standard called Versatile Video Coding
(VVC) [11]. This latter saves 40% of the bitrate com-
pared to the previous standard High Efficiency Video
Coding (HEVC) for the same visual quality [5], [37].
VVC offers many advantages dealing with higher res-
olutions, larger color gamut and a variety of differ-
ent applications. However, the decoding complexity has
been doubled compared to HEVC. This increase in com-
plexity is due to the adoption of new efficient coding
tools. One of this coding tools is the Multiple Transform
Selection (MTS) concept. The MTS concept is based

on three transform types (DCT type II (DCT-II),DCT
type VIII (DCT-VIII), and DST type VII (DST-VII)).

Accepted manuscript / Final version



2 Naouel HAGGUI et al.

The encoder executes the three types of transformation
and then applies the one resulting with the lower rate
distortion for each block to encode. The MTS concept
has significantly improved the compression ratio, but
it raises the computational complexity for the encoder
and the decoder as well [14]. Unfortunately, due to the
additional computing complexity, both the execution
time and the hardware cost are increased. These facts
have led several researchers to propose optimizations for
the MTS concept. The majority of the optimizations
have focused on reducing the number of required op-
erations (addition, multiplication) or on deducing one
transform type from another.
This paper introduces an extended version of [17]. Both
papers aim at providing a method for optimizing the
MTS concept based on dataflow modeling and study-
ing its efficiency. Dataflow modeling has proven its ef-
ficiency many times in the past, especially in the field
of signal and image processing. Dataflow modeling is
a powerful tool to study data dependencies and to re-
veal different levels of parallelism. Whereas [17] investi-

gates the use of static dataflow models to optimize and
evaluate the MTS at compile time, this paper extends
the results using dynamic dataflow models and extends

the analysis at runtime. The tool used to create the
dataflow models for the MTS concept is called Par-
allel and Real-time Embedded Executives Scheduling

Method (PREESM). PREESM is also used to analyse
the graphs and to automatically generate an optimized
multi-core algorithm for the MTS. PREESM allows to
implement a multicore algorithm characterized by an

optimal use of available computing resources (memory,
computing units) in days whereas traditional methods
take months. Dataflow modeling has been used on pre-

vious video coding standards, for example in [38]-[29] a
proposal of dataflow models for Mpeg-4 and Advanced
Video Coding (AVC) using SynDEx and Orcc has been
introduced. To the best of our knowledge, this is the
first dataflow model for the MTS concept presented in
the VVC standard. The proposed model takes advan-
tage of PREESM features such as memory optimization
and automatic pipelining. Three points summarize the
contributions of this work:

1. The proposition of an efficient Interface-Based Syn-
chronous Dataflow (IBSDF) graph for the MTS con-
cept.

2. The transformation of the IBSDF graph into a Pa-

rameterized and Interfaced Synchronous Dataflow
(PiSDF) graph in order to study the different chal-
lenges of dynamic behaviour on the application per-
formance, also details the extra benefits that a PiSDF
graph provides compared to an IBSDF graph.

3. The generation of a multicore optimized algorithm
for the MTS concept.

The rest of this paper is organized as follows. Sec-
tion 2 presents a background on the design of the MTS
concept and the state of the art of its hardware and
software optimizations. It also introduces the impor-
tance of using dataflow modeling in embedded systems
and gives an overview of the PREESM framework. Sec-
tion 3 studies the impact of granularity on application
performance while using an x86 architecture and based
on the IBSDF graph. A discussion on the paralleliza-
tion possibilities of the MTS concept was also provided.
In the Section 4, a proposal for a PiSDF graph is in-
troduced. Moreover, a study of its efficiency using x86
architecture is detailed. Finally, Section 5 concludes the
paper.

2 Background

This section encompasses the different optimizations
made for the MTS concept in a first part and, in a

second part, it introduces the benefits of dataflow mod-
eling on the application performance, as well as the dif-
ferent dataflow models (IBSDF and PiSDF) and the
different tools used to create these models.

2.1 Multiple Transform Selection Concept

The transform unit has been the focus of different re-
searchers because of the computing complexity it con-
tains. Several optimizations have been proposed, both
in terms of software and hardware. This section concen-
trates on the optimizations of the MTS concept. The
MTS has been introduced in the VVC standard [22].
The reason to use several types of transforms is based

on an awareness that using a single transform to model
the different statistical variations that might be con-
tained in an intra prediction residual block is not ef-
ficient [40]. MTS allows the VVC encoder to choose
the transform that minimizes the rate distortion among
predefined trigonometric transforms, including DCT-II,
DCT-VIII and DST-VII. The MTS concept is based on

three features which are the butterfly decomposition for
DCT-II, the derivation of DCT-VIII from DST-VII and
vice versa, and the zeroing-out of high frequency coef-
ficients for block of size 64× 64 for DCT-II and of size
32× 32 for DST-VII and DCT-VIII.

The majority of the improvements made to the MTS
concept, whether hardware or software, are based on
minimizing the computational complexity (addition, mul-
tiplications) or on the derivation of one transform type

Accepted manuscript / Final version



Title Suppressed Due to Excessive Length 3

from another. In [32], a link between the two types
of transformation DCT-II and DST-VII was found by
Reznik. Authors in [18], provides a detailed study of two
approximations; the first for DCT-VIII and the second
for DST-VII. The first approximation explored the link
between DCT-VIII and DST-VII. In fact, DCT-VIII
can be inferred from the DST-VII without causing ad-
ditional computational complexity, based on the vector
reflection matrix Γ and the sign change matrix Λ as
depicted in the following equation 1

C8 = Λ · S7 · Γ, (1)

where C8 and S7 present respectively the transforms co-
efficient matrices of DCT-VIII and DST-VII. The vec-
tor reflection matrix Γ and the sign change matrix Λ
are derived using the equations 2 and 3, respectively.

Γi,j =

{
1 if j = N − i+ 1
0 otherwise.

(2)

Λi,j =

{
(−1)i−1 if j = i
0 otherwise.

(3)

with i, j ∈ {1, 2, . . . , N} and N is the transform size.
The second approximation is based on the link between
the DST-VII and the DCT-II. In fact, the estimated

DST-VII can be obtained using DCT-II as the expres-
sion 4 shows.

S7 = Λ · CT
2 · Γ ·A, (4)

where S7 = Λ · CT
2 is equivalent to the DST-III trans-

form, the matrices Λ and Γ are calculated by the equa-

tions (2) and (3), respectively, and A being a sparse
banded matrix. Due to this approximation, the reduc-
tion of computational complexity is ensured as it is
based on the DCT-II algorithm which is known by fast

computation. Actually, DCT-II forms the base of sev-
eral approximations due to the symmetry and recur-
sion properties that it offers [36]-[2]. In [39], a method

based on the factorization of fast implementation al-
gorithms was adopted in order to minimize the num-
ber of required operations by the matrix multiplication.
There are three properties of the DST-VII. These prop-
erties make it possible to factorize many multiplica-
tions, which have the same absolute value coefficient in
the same baseline, in a single multiplication operation.
In [6] a 2D implementation of the HEVC DCT transfor-
mation has been introduced. The proposed design takes
advantage of multiple hardware resources, such as mul-
tipliers, DSP blocks and memory blocks, to reduce the
logic utilization. This reconfigurable architecture can
handle blocks of size up to 32 × 32. The proposed ar-

chitecture has been implemented in diverse Field Pro-
grammable Gate Arrays (FPGA) platforms. The result

showed that the design could support 4Kp30 video en-
coding with a reduced hardware cost. In [13] a pipelined
1D hardware implementation of the Adaptive Multiple
Transform (AMT) for all block sizes up to 32×32 have
been proposed. The design has been implemented on
various FPGA chips based on several Read Only Mem-
ory (ROM) in order to store the matrices of transform
coefficients. Despite of its low hardware cost, the design
can only support 1D AMT design or the transform pro-
cess is based on 2D operations which can be more com-
plex. In [25], a hardware implementation was proposed
by investigating two hardware methods with a fixed
throughput of 8 pixels/cycle. The first employs separate
data paths and the second takes into account reconfig-
urable data paths for all 1D transforms. Although, the
efficiency of the proposed implementation is limited to
a block size of 8 × 8. However, larger block size trans-
forms are more complex and require more resources. In
[23], a hardware implementation of 2D has been pro-
posed but it does not support blocks of size 64× 64. In
[12] another 2D hardware implementations for DCT-

VIII and DST-VII has been introduced. Despite being
the first implementation that takes advantage of asym-
metric blocks, it does not support the DCT-II transfor-
mation. There are some approximations for the MTS

transforms that were introduced in [33], [34], [31], and
[24]. The proposed implementations aim at using the
transform DCT-II to approximate DST-VII and DCT-

VIII. All optimizations use the same concept, except
that the contribution of [24] offers less complexity with
almost the same coding efficiency.

In this paper a new software optimization for the
MTS concept based on dataflow modeling is introduced.

Unlike the state of the art optimizations, the proposed
optimization does not focus on reducing the number of
computing operations neither referring one transform

type from another. Moreover, it considers all transform
sizes. It aims at revealing the independency between
tasks and explore parallelism in order to speed-up the
application performance.

2.2 Dataflow modeling

Dataflow modeling is a powerful tool to capture nu-
merous data dependencies and to explore parallelism
between cores, thanks to the additional insight into
the application it provides. Besides, dataflow modeling
allows targeting different architectures with the same
dataflow model. Dataflow is used extensively in Digital
Signal Processor (DSP) applications and it has proven
to be effective in facilitating the exploration of the var-

ious stages of parallelism [3]. In addition, the dataflow

Accepted manuscript / Final version



4 Naouel HAGGUI et al.

modeling is commonly used in the design of Multipro-
cessor Systems-on-Chip (MPSoC)[30]-[1]. The complex-
ity of the video coding standards has increased in the
last decades in order to increase the video quality and
the user experience. Parallel architectures provide suit-
able solutions to cope with this complexity at the cost
of longer software developments. The reduction of the
software development effort demands the use of a soft-
ware tool capable of automatically generating an op-
timized multicore implementations. In this paper, we
evaluate software tools based on dataflow models.
The tool used for creating the dataflow model is called
PREESM. PREESM is an Eclipse-based open-source
framework that generates C code for embedded multi-
core systems from dataflow models of the application.
Other tools have been employed to create a dataflow
model for some previous video coding standards, such
as Open RVC-CAL Compiler (Orcc) and SynDEx [38]-
[29]. Both PREESM and SynDEx are based on the
Algorithm-Architecture Matching (AAM) methodology.
Yet, unlike PREESM, SynDEx is not open source. Syn-

DEx is based on a very specific dataflow model, doesn’t
support schedulability analysis[16] and its mapping schedul-
ing algorithm is too complex to deal with real use cases.

Orcc is an open source tool based on a single dataflow
language which is RVC-CAL [15]. PREESM and Orcc
do not have the same MoC for the algorithm descrip-

tion. In fact, PREESM uses the predictable PiSDF MoC
[4] whereas, the Orcc language is not unpredictable pro-
viding results that may differ between two runs. In con-
sequence, the code generated by Orcc has no guarantee

in terms of deadlocks and memory requirements.
In an attempt to implement the concept of MTS us-
ing PREESM, three items must be developed: the al-

gorithm graph, the architecture graph and the scenario.
These items are developed using a graphical interface.
In fact, this is the same approach used in Simulink for
Matlab or in Labview from National Instruments. An-
other method that could be used to create these in-
puts is to use the Higher order Coordination Language
(HoCL) [35]. The execution is afterwards based on the
tasks used in the workflow graph. This section intro-
duces a complete and detailed description of each ele-
ment.

Two types of algorithm graphs are supported in
PREESM which are PiSDF and IBSDF. They are used
to model respectively dynamic and static applications.
In fact IBSDF is a static specialization of PiSDF. Both

algorithm graphs aim at describing the concept of ap-
plication with the help of actors and First In First Out
(FIFO)s. The FIFOs are used to ensure the commu-
nications between the actors. FIFOs control the firing
rules and the production/consumption rate between the

actors. Each type of algorithm graph has its pros and
cons. For example, the IBSDF graph improves the pre-
dictability of the dataflow model. In addition, it allows
the use of some powerful optimizations at compile-time
like the memory footprint reduction and the automatic
pipelining. On the downside, the IBSDF graph limits
the number of application behaviors that can be mod-
eled. For example, a static graph is not suitable for
modeling an algorithm where the execution of certain
actors can be turned on or off at runtime, depending
on the value of a data token provided by a sensor. The
PiSDF model enables this kind of dynamic behaviour
giving the possibility of changing the parameter’s values
at runtime thus, allowing the application to be reconfig-
urable. In fact, the PiSDF semantics provides a range of
parameters and parameter dependencies that allows the
change of the consumption and production rates of ac-
tors [8] at runtime. Figure 1 shows the different seman-
tics for IBSDF and PiSDF models. To run the IBSDF
model, the only required tool is PREESM; whereas, to
run the PiSDF model, an additional tool called Syn-

chronous Parameterized and Interfaced Dataflow Em-
bedded Runtime (SPIDER) must be used. SPIDER is
a dataflow based runtime used to support the execution
of dynamic PiSDF applications. SPIDER is based on a

master/slave structure in order to facilitate its porting
on different multicore architectures [26].
The kind of architecture graph adopted in PREESM is

called System-Level Architecture Model (S-LAM). It is
a combination of cores related to a shared memory in
order to communicate.
The scenario presents the control unit since it contains

all the parameters under which the application will per-
form. The multicore execution is optimized in two steps.
In the first one, the scheduling algorithm considers by
default that the execution times of all actors are iden-
tical. These inaccurate values usually result in an inef-
ficient execution. Therefore, the generated code auto-

matically integrates accurate timing measurements the
user report in the scenario for the second step. In the
second step, the accurate timing of each actor is used
to optimize the multicore mapping scheduling and the
generared code.
The workflow is a unit that gathers several tasks. Some
of these tasks are responsible of generating the mul-

ticore optimized algorithm and others to perform op-
timizations such as memory optimizations, and auto-
matic pipelining. The automatic pipelining task serves
at introducing delays in the critical path in order to
increase the throughput of the application on the mul-
ticore architecture. [21] details the optimizations pro-
vided by the automatic pipelining tool. The memory
optimization task provided by PREESM is called the

Accepted manuscript / Final version



Title Suppressed Due to Excessive Length 5

Data input
interface

Configuration
input interface

Configuration
output port

Configuration
input port

Configurable
parameter

Locally static
parameter

Parameter 
dependency

Data output
interface

Delay and
number of 
tokens

FIFO

Configuration
actor

Hierarchical 
actor

Actor

PiMM

πSDFIBSDFSDF

A
Port
and rate3

x4
ou
t

in

P

P Ah

Fig. 1: PiMM semantics [7]

memory footprint reduction. The authors proved in [9]
the efficiency of the memory footprint reduction task

on a computer vision application, allocating 34% less
memory than the state-of-the-art approaches.

3 IBSDF models and granularity impact

In order to study the efficiency of PREESM tool to
explore the parallelism of the MTS concept, two mod-
els with different granularity have been developed. The

granularity is an important parameter in dataflow mod-
els as it affects the performance of the execution. The
first IBSDF model shown in Figure 2 characterized with
fine grain granularity and the second one shown in Fig-

ure 3 with a coarse grain granularity. Each model is
created based on different levels of parallelism. A first
level exposes the parallelism between the MTS concept
tasks, and a second level exposes the exploration of the
independency between the blocks to be transformed.
This section deals with the result given by each model.

3.1 Fine grain granularity IBSDF model

The fine grain model (Figure 2) is composed of two ac-
tors with different structure.
The Blocks to be transformed actor is a low level ac-
tor. On the other hand, the MTS concept actor is a
hierarchical actor. It encompasses multiple actors in-

ternally as illustrated in Figure 4. Thus, the compu-
tational process is divided into several actors. As a
result, the execution time of each actor is minimized
so that a fine grain granularity model. The fine grain
IBSDF model relies on exploring parallelism between

MTS concept tasks (DCT-II, DST-VII, DCT-VIII ).
Running the application on an x86 machine that has

4 cores yielded a lower execution time on a single core
than on 2, 3 and 4 as shown in Table 1. This result
introduces a contradiction. In fact, the exploration of

parallelism aims at reducing the execution time while
increasing the number of cores used. There are several
possible reasons for this result. In fact the computing
time of the actors is too low compared to the time

taken by the tasks of the operating system. In fact,
for a fine grain IBSDF model, every process that the
operating system runs, including thread creation, com-

munication between tasks, synchronization and mem-
ory allocation, affects the performance of the applica-
tion. Indeed, synchronizations in this model becomes

very expensive. For example, PREESM calls barriers at
the end of each iteration. Each call takes between 400
nanoseconds, which is not insubstantial at the scale of
the actors used for this model. Therefore, in order to en-

sure the efficiency of the model, the computing time of
the actors must be greater than the time required for
data transfer and synchronization. In conclusion, the
fine grain granularity model is not efficient while using
x86 architecture but it could be very useful for mul-
ticore embedded systems (FPGA, Kalray,...). Actually,
according to the study presented in [19] the fine-grained

model has proven its efficiency using Kalray MPPA ar-
chitecture. In fact, at the intra-cluster level, a fine gran-
ularity model is necessary because a large number of
tasks must be executed in parallel. Similarly, fine gran-
ularity is needed on the FPGA to feed its large number
of cores fine granularity explodes the parallelism and
gives different levels of parallelism.
The fine grain model could leads to a better perfor-
mance if the MTS concept is applied on multiple blocks

Accepted manuscript / Final version



6 Naouel HAGGUI et al.

Block_numberBlock_size Transform_order

decision

Blocks_to_be_transformed

Transform_order

Block_size

Block_number

x

Duplicate_x

Transform_order

Block_size

decision

Block_number

x x_dct2

x_dct8

x_dst7

▼�✁✂✄☎✆✄✝✞✟

Transform_order

Block_size

Block_number

decision

x_dct2

x_dct8

x_dst7

Fig. 2: MTS fine grain IBSDF model

Block_number Transform_orderBlock_size

Blocks_to_be_transformed

Transform_order

Block_size

Block_number

x

MTS_concept

Transform_order

Block_size

Block_number

x

Fig. 3: MTS coarse grain IBSDF model

Transform_orderBlock_sizeBlock_number decision

DST7_2

Transform_order

Block_size

decision

Block_number

y4

transpose_0

Transform_order

Block_size

decision

Block_number

y6_dct2 y6_dct2_trans

DST7

Transform_order

Block_size

decision

Block_number

x1 y4

DCT8_2

Transform_order

Block_size

decision

Block_number

y1

Duplicate_y1

size

Block_size

decision

Block_number

y1 y1_dct8_2

y1_dst7_afterdct8

DCT2

Transform_order

Block_size

Block_number

x2 y6

DCT8_afterDST7

Transform_order

Block_size

decision

Block_number

y9

transpose

Transform_order

Block_size

Block_number

y6_dct2 y6_dct2_trans

Duplicate_y4

size

Block_size

decision

Block_number

y4 y4_dst7_2

y4_dct8_afterdst7

DCT2_2

Transform_order

Block_size

Block_number

y

DST7_afterDCT8

Transform_order

Block_size

decision

Block_number

y7

DCT8

Transform_order

Block_size

decision

Block_number

x y1

transpose_1

Transform_order

Block_size

decision

Block_number

y6_dct2 y6_dct2_trans

x_dct2

x_dct8

x_dst7

Fig. 4: The inside of the MTS concept actor

at the same time, which is a realistic case as a frame
contains a huge number of blocks to be transformed
and those blocks are independent. Figure 5 illustrates
the results of applying the MTS concept while increas-
ing the number of blocks to be transformed, the num-
ber of used cores as well as, applying memory foot-
print reduction and automatic pipelining optimizations.
For memory footprint reduction, a memory script has

been added to the transpose actors as their input and
output buffers can be allocated in a common mem-

ory space. The broadcast actors (the duplicate actors)
are automatically associated with memory scripts. The
two optimizations boost the speed-up of the applica-
tion. While increasing the number of blocks to be trans-
formed the speed-up of the application is getting closer
and closer to the theoretical case so that the possibil-
ity of creating an efficient model for the MTS concept
while employing a coarse grain granularity. The theo-

retical result is plotted according to Amdahl’s law for

Accepted manuscript / Final version



Title Suppressed Due to Excessive Length 7

Table 1: Execution time according to the number of
used cores

Cores number Execution time

1 0.796 ns
2 4.269 ns
3 6.287 ns
4 7.235 ns

1 2 3 4
core number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
ee

d-
up

Theoretical result
1 block
100 block
1000 block

Fig. 5: MTS IBSDF model acceleration according to the
number of used cores and while increasing the number
of blocks to be transformed

an application that could be parallelized at 100%; this

is why the theoretical result is linear y = x.

3.2 Coarse grain granularity IBSDF model

Compared to the fine grain IBSDF model, the coarse
grain model is constructed with two non-hierarchical
actors in order to ensure that the computing time of the
actors is greater than the time required for synchroniza-
tion and data transfer. The coarse grain model is based
on exploring the independency between the blocks to
be transformed. In other words, several blocks to be

transformed are sent at the same time and the MTS
module will be applied to all the blocks simultaneously.
For the purpose of studying the efficiency of this sec-
ond IBSDF model, several tests have been carried out.
The tests were performed on x86 architecture which
contains 4 cores and another one contains 24 cores. For
both tests, the experimental results are close to the the-
oretical performance (See Figs. 6 and 7). Thus, proving
the efficiency of the coarse grain IBSDF model on the
x86 architecture. In nutshell, the dataflow modeling of

the MTS concept turns to be very beneficial while using
a coarse grain model on x86 architecture.

To prove the efficiency of the coarse-grained dataflow
model over the state-of-the-art approach used to ex-
plore parallelism among the system cores. A comparison
between the OpenMP approach and the coarse-grained
IBSDF model was performed. OpenMP is commonly
used, in shared memory systems, such as the archi-
tecture used in the presented model. Therefore, it is
interesting to carry out such a comparison. OpenMP
often offers specific features, such as preprocessing di-
rectives or specific instructions via intrinsics, to target
specific architectures. When developing with OpenMP,
it is necessary to adapt #PRAGMA to the architecture.
Often, this is empirically done, by testing the impact
of the #PRAGMA parameters on the execution time
of the application, which is long and not easy to do.
Thus, programming with OpenMP requires a deep un-
derstanding of the application, the hardware and the
runtime libraries, which takes months to master [27].
However, the coarse grain IBSDF model needs less de-
velopment time. Also, once the algorithm graph of the
application is done, it is easy to switch from one archi-

tecture to another without rewriting the code. Figure 8
presents a comparison between the result of running
a multicore algorithm created using OpenMP and a

multicore algorithm-generated automatically while us-
ing PREESM. The results show that the speed-up ob-
tained using the algorithm automatically generated by
PREESM is superior to that based on the OpenMP ap-

proach. Thus, compared to OpenMP, PREESM builds
more efficient model with less development time.

4 MTS PiSDF model

In order to implement the multicore optimized MTS

concept based on a coarse grain dataflow model in a
real encoder or decoder, some modifications must first
be made. In fact, in the dataflow models detailed in

Section 3, the parameters that control the transform
order (4,8,16,32,64), and the size of the blocks to be
transformed (width × height), are modified manually.
These parameters cannot be changed at runtime as the
presented IBSDF model is a static model. As already
detailed in Section 2.2 the static property enhances
the predictability of the dataflow model and gives the
way to perform powerful application optimizations at
compile-time, such as memory optimization. While the
static property is an important benefit for compile-time
optimizations, this property limits the amount of appli-
cation behavior that can be modeled. On the encoder
and decoder sides, there are several blocks to be trans-
formed with different sizes and different transformation

orders. In addition, the data dependencies change over

Accepted manuscript / Final version



8 Naouel HAGGUI et al.

Fig. 6: MTS IBSDF model acceleration according to
the number of used cores while using x86 architecture
with 4 cores

Fig. 7: MTS IBSDF model acceleration according to
the number of used cores while using x86 architecture
with 24 cores

Fig. 8: MTS IBSDF model acceleration compared to
OpenMP result

time. Thus, the behavior of the application to be im-
plemented must be dynamic and not static. The coarse
grain IBSDF model can be implemented in a real en-
coder/decoder, but for each combination of block size
and transform order, an executable must be created.
Then, these executables are controlled via another large
one, which is not very convenient. However, by using a

PiSDF model, only one executable is needed for all pos-
sible combinations.

To create an efficient multicore algorithm for the
MTS concept based on PiSDF model is highly required
to ensure the efficient dispatching of tasks according
to the available processing elements while considering
dynamic behavior. For this reason, this section aims
to provide a dynamic model of the MTS concept. Also,
studying the efficiency of this new model. SPIDER run-
time tool has been used to support the execution of this
model. When using SPIDER, the application developer

only has to provide a dataflow graph and SPIDER takes
care of the rest since it is based on pthread. In fact, the
developer’s work is limited to high-level analysis and

manipulation of the application graph (choice of hierar-
chy level ie. granularity, production/consumption rate,
and adding delays between actors). Another powerful

aspect of SPIDER is that its optimization leads to high
performances. For example, in [20] SPIDER has proved
to be able to reduces the execution latency by up to
26% and allows handling multiple executions.

The new model illustrated in figure 9 has an additional
actor compared to the two IBSDF graphs already de-
tailed. The additional actor named parameters control

as its name indicates, controls the value of the pa-
rameters and makes possible their change at runtime,
so that a dynamic reconfiguration. The reconfigurable
dataflow model promotes a unique trade-off between
application dynamicity and predictability, which can
be leveraged by a runtime manager (SPIDER) to check

application properties or to perform runtime optimiza-
tions, such as actor computation mapping [20]. Recon-
figurable dataflow models allow actor firing rules to
be reconfigured in a non-deterministic way at specific
times during the application’s execution [28]. The re-
configuration in the PiSDF model is based on parame-
ters. Following the PiSDF execution rules [10], an actor

can invoke a reconfiguration of the graph topology and
intrinsic parallelism by defining a new parameter value
at runtime.
The parameters Transform order and Block size af-
fect the performance of the application both during
compile-time and runtime. Defining a new value for a
parameter in a graph at runtime has a strong impact
on the way the actors in that graph will be executed.
For example, increasing the value of a parameter used

Accepted manuscript / Final version



Title Suppressed Due to Excessive Length 9

as a production rate by an actor will have an impact on
the amount of memory allocated for the output buffer
of this actor. By dynamically changing the consump-
tion and production rates of the actors, the number
of executions of these actors can be modified, which
requires a new mapping of these executions to the pro-
cessing elements of the architecture. For those reasons
an investigation on the impact of the presented PiSDF
graph must be performed in order to ensure whether
the dynamic coarse grain model still performing on x86
architecture.
The parameters control actor is realized in a manner
that provides all possible combinations between the size
of the block to be transformed and the order of trans-
formation to be applied. Adding this process to the
dataflow model facilitates the implementation of the op-
timized multicore MTS algorithm in an encoder/decoder
in the future. Figure 11 illustrates the result of perform-
ing the MTS concept on 80 blocks of different sizes.
For all block sizes the execution time on 2, 3, 4 cores

are lower than on one core. This result proves the effi-
ciency of the PiSDF model on x86 architecture. Figure
10 illustrates the SPIDER overhead time compared to
the execution time of the application according to the

number of used cores on an x86 architecture with 4 and
24 cores, respectively. Results show that the SPIDER
overhead is too small compared to the execution time

for all block sizes. It represents only 0.05% of the en-
tire process. This fact proves the efficiency of the coarse
grain model on the x86 architecture and confirms the
fact that using a coarse grain model on x86 architec-

ture guarantees that the computation time of the ap-
plication is higher than the time taken by the operat-
ing system. The PiSDF model was also tested on an

x86 architecture with 24 cores and with the use of 480
blocks. As shown in figure 12 the experimental results
for all block sizes were close to the theoretical result
(blue curve). In fact, by increasing the number of cores
used, the speed-up of the application increases, which
corresponds to the objectives of the proposed PiSDF
model.

5 Conclusion

This paper introduced an in-depth case study about the
efficiency of applying dataflow modeling on the MTS
concept using PREESM. The study was based on two
types of algorithm graphs, a static graph IBSDF and

a dynamic graph PiSDF. The execution of the PiSDF
model requires the use of the SPIDER tool. For both
models (IBSDF and PiSDF), the use of dataflow mod-
eling has proven to be effective on the x86 architecture
while using a coarse grain model. However, compared to

Block_number

Transform_orderBlock_size

size_initial

Blocks_to_be_transformed

Transform_order

Block_size

Block_number

x

MTS_concept

Transform_order

Block_size

Block_number

x

Parameters_control

size_initial Transform_order

Block_size

Fig. 9: MTS coarse grain PiSDF model

the IBSDF model, the PiSDF model can be easily im-

plemented in a real encoder or decoder. In fact, PiSDF
model can handle different combinations of block sizes
and transformation orders using the same generated ex-
ecutable, which is not the case for the IBSDF model.

The IBSDF model requires the generation of a new exe-
cutable for each combination. While running the PiSDF
model, the result showed a negligible SPIDER over-

head time on both architectures (x86 architecture with
4 cores and with 24 cores). It represents 0.05% of the
complete process. This fact proves the efficiency of the

PiSDF model on both cases and also proves the possibil-
ity to switch from one architecture to another without
modifying the model and without rewriting any code,
unlike classical approaches like OpenMP or OpenCL.
The modeling of the MTS concept revealed two impor-
tant points. The first one is the importance of choosing
the level of granularity according to the architecture

used, and the second point is to show the difference be-
tween IBSDF and PiSDF graphs and their advantages.
In future work, we aim to create a PiSDF model for a
complete decoder. Also, to use the dataflow models to
generate optimized solutions for heterogeneous and em-
bedded architectures (big little Qualcomm SXR2130P
processor, Kalray, ...).

Acknowledgement

This work is supported by the PHC Maghreb project,
and within a co-supervised thesis between Institute of
Electronics and Telecommunications of Rennes (IETR),

and Electronics and Information Technology Labora-
tory (LETI) of Sfax.

Accepted manuscript / Final version



10 Naouel HAGGUI et al.

1 
co
re

2 
co
re

3 
co
re

4 
co
re

5 
co
re

6 
co
re

7 
co
re

8 
co
re

9 
co
re

10
 c
or
e

11
 c
or
e

12
 c
or
e

13
 c
or
e

14
 c
or
e

15
 c
or
e

16
 c
or
e

17
 c
or
e

18
 c
or
e

19
 c
or
e

20
 c
or
e

21
 c
or
e

22
 c
or
e

23
 c
or
e

24
 c
or
e

0

20

40

60

80

100

Pe
rc
en
ta
ge
 (%

)

Execution time
SPIDER overhead time

(a) x86 architecture with 24 cores

1 core 2 core 3 core 4 core
0

20

40

60

80

100

Pe
rc
en

ta
ge

 (%
)

Execution time
SPIDER overhead time

(b) x86 architecture with 4 cores

Fig. 10: SPIDER overhead time and execution time according to the number of used cores.

(a) blocks of sizes 4 × 4, 4 × 8, 4 × 16, 4 × 32,and 4 × 64 (b) blocks of sizes 8 × 4, 8 × 8, 8 × 16, 8 × 32,and 8 × 64

(c) blocks of sizes 16 × 4, 16 × 8, 16 × 16, 16 × 32,and
32 × 64

(d) blocks of sizes 32 × 4, 32 × 8, 32 × 16, 32 × 32,and
32 × 64

(e) blocks of sizes 64 × 4, 64 × 8, 64 × 16, 64 × 32, and
64 × 64

Fig. 11: MTS PiSDF model acceleration according to the number of used cores for all block sizes from 4× 4 up to

64× 64 while using x86 architecture with 4 cores

Accepted manuscript / Final version



Title Suppressed Due to Excessive Length 11

(a) blocks of sizes 4 × 4, 4 × 8, 4 × 16, 4 × 32,and 4 × 64 (b) blocks of sizes 8 × 4, 8 × 8, 8 × 16, 8 × 32,and 8 × 64

(c) blocks of sizes 16 × 4, 16 × 8, 16 × 16, 16 × 32,and
32 × 64

(d) blocks of sizes 32 × 4, 32 × 8, 32 × 16, 32 × 32,and
32 × 64

(e) blocks of sizes 64 × 4, 64 × 8, 64 × 16, 64 × 32, and
64 × 64

Fig. 12: MTS PiSDF model acceleration according to the number of used cores while using x86 architecture with
24 cores

References

1. Aguilar, M.A., Leupers, R., Ascheid, G., Murillo, L.G.:
Automatic parallelization and accelerator offloading for
embedded applications on heterogeneous mpsocs. In:
Proceedings of the 53rd Annual Design Automation Con-
ference, pp. 1–6 (2016)

2. Ahmed, A., Shahid, M.U., et al.: N point dct vlsi archi-
tecture for emerging hevc standard. VLSI design (2012)

3. Bhattacharyya, S.S., Deprettere, E.F., Leupers, R.,
Takala, J.: Handbook of signal processing systems.
Springer (2018)

4. Bhattacharyya, S.S., Levine, W.S.: Optimization of sig-
nal processing software for control system implementa-
tion. In: 2006 IEEE Conference on Computer Aided
Control System Design, 2006 IEEE International Con-

ference on Control Applications, 2006 IEEE International
Symposium on Intelligent Control, pp. 1562–1567. IEEE
(2006)

5. Bossen, F., Li, X., Norkin, A., Sühring, K.: Jvet-o0003.
JVET AHG report: Test model software development
(AHG3) (2019)

6. Chen, M., Zhang, Y., Lu, C.: Efficient architecture of
variable size hevc 2d-dct for fpga platforms. AEU-
International Journal of Electronics and Communications
73, 1–8 (2017)

7. Desnos, K.: Memory study and dataflow representations
for rapid prototyping of signal processing applications on
mpsocs. Ph.D. thesis, INSA de Rennes (2014)

8. Desnos, K., Heulot, J.: Pisdf: Parameterized & inter-
faced synchronous dataflow for mpsocs runtime recon-
figuration. In: 1st Workshop on MEthods and TOols for

Accepted manuscript / Final version



12 Naouel HAGGUI et al.

Dataflow PrOgramming (METODO) (2014)
9. Desnos, K., Pelcat, M., Nezan, J.F., Aridhi, S.: Buffer

merging technique for minimizing memory footprints of
synchronous dataflow specifications. In: 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1111–1115. IEEE (2015)

10. Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya,
S.S., Aridhi, S.: Pimm: Parameterized and interfaced
dataflow meta-model for mpsocs runtime reconfiguration.
In: 2013 International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation
(SAMOS), pp. 41–48. IEEE (2013)

11. Domı́nguez, H.O., Rao, K.R.: Versatile Video Coding
Latest Advances in Video Coding Standards, pp. i–xxx
(2018)

12. Fan, Y., Zeng, Y., Sun, H., Katto, J., Zeng, X.: A
pipelined 2d transform architecture supporting mixed
block sizes for the vvc standard. IEEE Transactions on
Circuits and Systems for Video Technology 30(9), 3289–
3295 (2019)

13. Garrido, M.J., Pescador, F., Chavarrias, M., Lobo, P.J.,
Sanz, C.: A high performance fpga-based architecture for
the future video coding adaptive multiple core transform.
IEEE Transactions on Consumer Electronics 64(1), 53–
60 (2018)

14. Garrido, M.J., Pescador, F., Chavarŕıas, M., Lobo, P.J.,
Sanz, C., Paz, P.: An fpga-based architecture for the
versatile video coding multiple transform selection core.
IEEE Access 8, 81887–81903 (2020)

15. Gorin, J., Raulet, M., Prêteux, F.: Mpeg reconfigurable
video coding: From specification to a reconfigurable im-
plementation. Signal Processing: Image Communication
28(10), 1224–1238 (2013)

16. Grandpierre, T., Lavarenne, C., Sorel, Y.: Optimized
rapid prototyping for real-time embedded heterogeneous
multiprocessors. In: Proceedings of the seventh inter-
national workshop on Hardware/software codesign, pp.
74–78 (1999)

17. Haggui, N., Belghith, F., Hamidouche, W., Masmoudi,
N., Nezan, J.F.: Multiple transform selection concept
modeling and implementation using interface based sdf
graphs. In: Workshop on Design and Architectures for
Signal and Image Processing (14th edition), pp. 60–67
(2021)

18. Hamidouche, W., Philippe, P., Mohamed, C.E., Kam-
moun, A., Menard, D., Déforges, O.: Hardware-friendly
dst-vii/dct-viii approximations for the versatile video
coding standard. In: 2019 Picture Coding Symposium
(PCS), pp. 1–5. IEEE (2019)

19. Hascoët, J., Desnos, K., Nezan, J.F., de Dinechin, B.D.:
Hierarchical dataflow model for efficient programming of
clustered manycore processors. In: 2017 IEEE 28th Inter-
national Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP), pp. 137–142. IEEE
(2017)

20. Heulot, J., Pelcat, M., Desnos, K., Nezan, J.F., Aridhi,
S.: Spider: A synchronous parameterized and interfaced
dataflow-based rtos for multicore dsps. In: 2014 6th Euro-
pean Embedded Design in Education and Research Con-
ference (EDERC), pp. 167–171. IEEE (2014)

21. Honorat, A., Desnos, K., Dardaillon, M., Nezan, J.F.: A
fast heuristic to pipeline sdf graphs. In: International
Conference on Embedded Computer Systems, pp. 139–
151. Springer (2020)

22. JVET: Algorithm Description of Joint Exploration Test
Model 7(JEM7), MPEG document N17055. ITU-

TVCEG (Q6/16) and ISO/IEC MPEG (JTC 1/SC
29/WG 11), July 2017

23. Kammoun, A., Hamidouche, W., Belghith, F., Nezan,
J.F., Masmoudi, N.: Hardware design and implemen-
tation of adaptive multiple transforms for the versatile
video coding standard. IEEE Transactions on Consumer
Electronics 64(4), 424–432 (2018)

24. Lorcy, V., Philippe, P.: Ce6: Further simplification of amt
with adjustment stages (test ce6. 1.6 b). In: Document
JVETL0135-v1 12th JVET Meeting: Macao, CN (2018)

25. Mert, A.C., Kalali, E., Hamzaoglu, I.: High performance
2d transform hardware for future video coding. IEEE
Transactions on Consumer Electronics 63(2), 117–125
(2017)

26. Miomandre, H., Hascoët, J., Desnos, K., Martin, K.,
de Dinechin, B.D., Nezan, J.F.: Demonstrating the spi-
der runtime for reconfigurable dataflow graphs execution
onto a dma-based manycore processor. In: IEEE Inter-
national Workshop on Signal Processing Systems (2017)

27. Miomandre, H., Hascoët, J., Desnos, K., Martin, K.J.,
de Dinechin Kalray, B.D., Nezan, J.F.: Embedded run-
time for reconfigurable dataflow graphs on manycore ar-
chitectures. In: Proceedings of the 9th Workshop and
7th Workshop on Parallel Programming and RunTime
Management Techniques for Manycore Architectures and
Design Tools and Architectures for Multicore Embedded
Computing Platforms, pp. 51–56 (2018)

28. Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of
dataflow models. In: Proceedings. Second ACM and
IEEE International Conference on Formal Methods and
Models for Co-Design, 2004. MEMOCODE’04., pp. 179–
188. IEEE (2004)

29. Nezan, J.F.: Prototypage rapide d’applications de traite-
ment des images sur systèmes embarqués. Ph.D. thesis
(2009)

30. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F.,
Aridhi, S.: Preesm: A dataflow-based rapid prototyping
framework for simplifying multicore dsp programming.
In: 2014 6th european embedded design in education and
research conference (EDERC), pp. 36–40. IEEE (2014)

31. Philippe, P., Lorcy, V.: Further simplification for amt
complexity reduction (ce6. 1.2). In: Document JVET-
K0299 11th JVET Meeting: Ljubljana, SI (2018)

32. Reznik, Y.A.: Relationship between dct-ii, dct-vi, and
dst-vii transforms. In: 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp.
5642–5646. IEEE (2013)

33. Said, A., Egilmez, H., Seregin, V., Karczewicz, M.: Com-
plexity reduction for adaptive multiple transforms (amts)
using adjustment stages. In: Document JVET-J0066 10th
JVET Meeting: San Diego, CA, USA (2018)

34. Said, A., Egilmez, H., Seregin, V., Karczewicz, M., Sere-
gin, V.: Efficient implementations of amt with trans-
form adjustment stages. In: Document JVET-K0272 11th
JVET Meeting: Ljubljana, SI (2018)

35. Sérot, J.: Hocl: High level specification of dataflow
graphs. In: IFL 2020: Proceedings of the 32nd Sympo-
sium on Implementation and Application of Functional
Languages, pp. 11–22 (2020)

36. Shen, S., Shen, W., Fan, Y., Zeng, X.: A unified
4/8/16/32-point integer idct architecture for multiple
video coding standards. In: 2012 IEEE International
Conference on Multimedia and Expo, pp. 788–793. IEEE
(2012)

37. Sidaty, N., Hamidouche, W., Philippe, P., Fournier, J.,
Déforges, O.: Compression Performance of the Versatile

Accepted manuscript / Final version



Title Suppressed Due to Excessive Length 13

Video Coding: HD and UHD Visual Quality Monitoring.
Picture Coding Symposium (PCS) (2019)

38. Yviquel, H.: From dataflow-based video coding tools to
dedicated embedded multi-core platforms. Ph.D. thesis,
Rennes 1 (2013)

39. Zhang, Z., Zhao, X., Li, X., Li, Z., Liu, S.: Fast adaptive
multiple transform for versatile video coding. In: 2019
Data Compression Conference (DCC), pp. 63–72. IEEE
(2019)

40. Zhao, X., Zhang, L., Ma, S., Gao, W.: Rate-distortion op-
timized transform for intra-frame coding. In: 2010 IEEE
International Conference on Acoustics, Speech and Signal
Processing, pp. 1414–1417. IEEE (2010)

Accepted manuscript / Final version




